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Abstract

In this paper, we study the second eigenvalue problem for non-negative matrices. Using
the Hilbert projective metric, we give a new simple proof of the distance between the first
and second eigenvalue whenever the spectral radius is a single peripheral eigenvalue. This
article focuses on the convergence speed of (finite-dimensional) linear dynamical systems to the
Perron-Frobenius stationary distribution. We extend these results to primitive matrices and
cooperative ordinary differential equations, and our proof also extends to some non-autonomous
discrete-time systems.
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1 Introduction

The Perron Frobenius theorem says that the spectral radius r(A) > 0 of a non-negative matrix
A ∈Mn(R) with A� 0 (i.e., with all the components strictly positive) is a simple dominant eigen-
value of A. This famous theorem gives a result of convergence to the Perron-Frobenius stationary
distribution, that is

lim
m→∞

Amx

r(A)m
= α(x)VR(A),

where x > 0 and
α(x) :=

〈VL(A), x〉
〈VL(A), VR(A)〉

> 0,

where VR(A)� 0 and VL(A)� 0 are respectively right and left eigenvectors of A, associated with
r(A).

∗The research of this author is supported by China Scholarship Council.
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It follows that the solution of the discrete time system

u(t+ 1) = Au(t),∀t ∈ N, and u(0) = u0 ∈ Rn+ \ {0} ,

converge in direction to the line generated by VR(A). That is,

lim
t→∞

ut
‖ut‖

=
VR(A)

‖VR(A)‖
,

where ‖ · ‖ is a norm on Rn.

This property can be extended to non-autonomous linear systems of the form (1.4). In the
seventies, Golubitsky, Keeler, and Rothschild [10], and Cohen [4] considered the so-called ergodic
theorems in demography by using the Hilbert projective metric. The principle is to extend the
Perron-Frobenius theorem to a non-autonomous discrete-time linear model. In the eighties, the
Hilbert projective metric to obtain global asymptotic stability result for time-dependent sub-linear
difference and differential equations, Inaba [16, 17], Tuljapurkar [27, 28] also used Hilbert projective
metric and provided new ergodic theorems for population dynamics models.

Let A � 0 be a strictly positive n by n matrice. The second eigenvalue problem consists in
evaluating the distance between the spectral radius of A

r(A) = lim
m→∞

‖Am‖1/mL(Rn),

which turns (for finite dimensional space) to be equal to

r(A) = max {|λ| : λ ∈ σ (A)} ,

and the maximum modulus of the remaining eigenvalues is

r?(A) = max {|λ| : λ ∈ σ (A) and λ 6= r(A)} .

The second eigenvalue problem consists in evaluating the ratio

r?(A)

r(A)
.

While the Perron-Frobenius theorem informs us about the convergence to the stationary distri-
bution, the second eigenvalue problem tells us about the convergence speed to this stationary
distribution (see the formula (1.3)).

The main result of this paper about the speed of convergence is the Theorem 4.3, in which we
obtain the following estimation

r?(A) ≤ k(A) r(A), (1.1)

where k(A) ∈ [0, 1] is the Birkhoff contraction ratio, which is defined as

k(A) = sup
x,y>0:dH(x,y)6=0

dH(Ax,Ay)

dH(x, y)
,
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where dH(x, y) is the so called Hilbert projective metric [15] which is defined only when x and y
are comparable (see Section 3 for more details). In the special case, where x � 0 and y � 0, we
can write

dH(x, y) = ln

(
max

1≤i≤n

xi
yi

max
1≤j≤n

yj
xj

)
. (1.2)

In the sixties and seventies, the inequality (1.1) was proved by Zabreiko, Krasnoselskii, and
Pokornyi [29]. This problem was reconsidered by Eveson and Nussbaum [9]. We refer to the books
of Seneta [25], Lemmens and Nussbaum [21], and Krause [20] for a nice survey of the Hilbert
projective metric and their applications. We also refer to Krasnosel’skii and Sobolev [19] for a short
survey paper on this subject.

In the present paper, we propose a new proof for inequality (1.1). In Theorem 4.3, we will prove
that we can find a constant χ ≥ 1, such that for each integer m ≥ 1 and each z ∈ Rn,

‖
(

A

r(A)

)m
z −Πz‖ ≤ χk(A)m‖z‖, (1.3)

where
Π(x) =

〈VL(A), x〉VR(A)

〈VL(A), VR(A)〉
,∀x ∈ Rn,

and VL(A) and VR(A) are respectively left and right positive eigenvectors of A associated with r(A).
One can note that the inequality (1.3) is not a direct consequence of (1.1) (since r(A) are obtain
as a limit).

The plane of the paper is as follows. In Section 2, we recall the Perron-Frobenius theorem and
introduce some notations that will be used in the rest of the paper. In Section 3, we recall some
results about the Hilbert projective metric and extend a well-known estimation in Lemma 3.4.
Section 4 is devoted to the second eigenvalue problem for non-negative matrices. We first consider
the case of strictly positive matrices in Section 4.1. Then we consider the case of the primitive
matrices in Section 4.2. Section 4.3 considers an example of three-dimensional Hahn matrices. At
the end of Section 4.3 (see Lemma 4.8), we will prove that the limit

lim
m→+∞

k(Am)
1
m exists,

and based on the numerical simulations (see Figure 2), we will make the following conjecture

lim
m→+∞

k(Am)
1
m =

r?(A)

r(A)
.

Section 5 states a result for cooperative systems, and we provide an example of application the
speed of convergence to the Perron-Frobenius stationary distribution during the exponential phase
of epidemic wave. We conclude the paper with Section 6, which is devoted to non-autonomous
discrete-time linear systems. That is,

u(t+ 1) = Atu(t),∀t ∈ N, and u(0) = u0 ∈ Rn+ \ {0} . (1.4)

In Section 6, we extend the result mentioned above to a non-autonomous system. We obtain a
stronger convergence result (in norm of operator) than the recent result obtained by Pituk, and
Pötzsche [24] by imposing an additional condition on the left eigenvector of AtAt−1 . . . A0. This
extra condition is automatically satisfied for Markovian matrices. Therefore, we conclude the paper
by estimating convergence speed for non-autonomous Markovian matrices.
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2 Perron-Frobenius theorem

In this section, we introduce some notations and recall the Perron-Frobenius theorem. We refer to
Ducrot et al. [8, Chapter 4] for more results and references on this subject with applications in
population dynamics.

Definition 2.1. Let x, y ∈ Rn be given. We will use the following notations

x ≥ y ⇔ xi ≥ yi for all i = 1, ..., n,

x > y ⇔ x ≥ y and xi0 > yi0 for some i0 ∈ {1, ..., n},
x� y ⇔ xi > yi for all i = 1, ..., n.

We can of course extend the above definition to the real matrices.

Definition 2.2. Let A ∈Mn(R) be given. The spectral radius r(A) of A is defined by

r(A) = lim
p→+∞

‖Ap‖
1
p

L(Rn).

In addition, the peripheral spectrum σper(A) of A is defined by

σper(A) = {λ ∈ σ(A) : |λ| = r(A)} .

By Jordan normal form of A, r(A) has the following equality

r(A) = sup {|λ| : λ ∈ σ(A)} .

In the follows, we introduce the definitions of primitive and irreducible matrices.

Definition 2.3. Let A ∈ Mn(R) be a non-negative matrix. We will say that A is primitive if
there exists an integer m ≥ 1 such that

Am � 0.

We will say that a matrix A ∈Mn(R) is irreducible if there exists an integer m ≥ 1 such that

I +A+A2 + · · ·+Am � 0.

We recall the classical theorem of Perron–Frobenius.

Theorem 2.4. (Perron–Frobenius) Let A ∈Mn(R) be a non-negative and irreducible matrix. Then
A satisfies the following properties:

(i) r(A) > 0.

(ii) r(A) is a simple eigenvalue of A.

(iii) There exists VR(A)� 0 a right eigenvector of A such that

AVR(A) = r(A)VR(A).

(iv) There exists VL(A)� 0 a left eigenvector of A (i.e. an eigenvector of AT ) such that

ATVL(A) = r(A)VL(A)⇔ VL(A)TA = r(A)VL(A)T .

Moreover, the matrix A is primitive if and only if

σper(A) = {λ ∈ σ(A) : |λ| = r(A)} = {r(A)} .
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3 Hilbert projective metric in Rn

Definition 3.1. If x > 0 and y > 0 are two elements of Rn+. Then x and y are comparable if we
can find two real numbers α > 0 and β > 0 such that

αy ≤ x ≤ βy.

If x and y are comparable, we can define

max(x/y) = inf{β > 0 : x ≤ βy},

and
min(x/y) = sup{α > 0 : αy ≤ x},

and one has
min(y/x) =

1

max(x/y)
.

We use the above max(x/y) and min(x/y) notations, because

max(x/y) = max
i=1,...,n

xi
yi
, and min(x/y) = min

i=1,...,n

xi
yi
.

whenever x� 0 and y � 0.

Definition 3.2. If x > 0 and y > 0 are two comparable elements of Rn+, the Hilbert metric (or
Hilbert projective metric) is defined by

dH(x, y) = ln

[
max(x/y)

min(x/y)

]
= ln [max(y/x) max(x/y)] .

We can extend the definition by imposing

dH(x, y) = +∞,

whenever x and y are not comparable.

If x > 0 and y > 0 are two comparable elements of Rn+, then we always have

max(x/y) ≥ min(x/y),

which implies
dH(x, y) ≥ 0.

In the special case, where x� 0 and y � 0, we can write

dH(x, y) = ln
max1≤i≤n

xi

yi

min1≤j≤n
xj

yj

= ln

(
max

1≤i≤n

xi
yi

max
1≤j≤n

yj
xj

)
. (3.1)

The following lemma summarizes some properties of the Hilbert metric. It follows from this lemma
that the Hilbert metric is a pseudo-metric.
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Lemma 3.3. If x > 0 , y > 0, and z > 0 are pairwise comparable elements of Rn+. The Hilbert
metric satisfies the following properties:

(i) dH(x, y) = 0 if and only if there exists some λ > 0 such that x = λy.

(ii) dH(x, y) = dH(y, x).

(iii) dH(x, z) ≤ dH(x, y) + dH(y, z).

(iv) For any λ > 0 and µ > 0,
dH(λx, µy) = dH(x, y).

(v) Let D ∈Mn(R) be a diagonal matrix with strictly positive diagonal elements or a permutation
matrix, we have

dH(Dx,Dy) = dH(x, y).

The following lemma establishes a relationship between the Hilbert metric dH and the standard
metric (induced by the Euclidean norm). The following lemma extends a well known inequality
which is true only when ‖x‖ = ‖y‖ = 1. We refer to the book of Lemmens and Nussbaum [21,
inequality (2.21) p.48], or the book of Krause [20, Lemma 2.1.10, p. 24].

Lemma 3.4. If x > 0 and y > 0 are two comparable elements of Rn+ \ {0}, then

‖x− y‖ ≤ |‖x‖ − e−dH(x,y)‖y‖|+ 2|‖y‖ − e−dH(x,y)‖x‖|.

If we assume in addition that ‖x‖ = ‖y‖ = M , we obtain

‖x− y‖ ≤ 3M
(

1− e−dH(x,y)
)
. (3.2)

Proof. Let x and y be two comparable elements of Rn+ \ {0}. We can define a, b as follows

a = min(x/y) > 0 and b = min(y/x) > 0,

and we deduce
dH(x, y) = − ln(ab).

For simplicity, we use c = dH(x, y). Then we have

ay ≤ x and bx ≤ y.

Assuming that the norm is monotone on Rn+, we obtain

‖ay‖ = a‖y‖ ≤ ‖x‖ ⇒ a ≤ ‖x‖
‖y‖

,

and
‖bx‖ = b‖x‖ ≤ ‖y‖ ⇒ b ≤ ‖y‖

‖x‖
.

It follows that

e−c = a
‖y‖
‖x‖

b
‖x‖
‖y‖
≤ a‖y‖
‖x‖
≤ 1 and ec = (a

‖y‖
‖x‖

b
‖x‖
‖y‖

)−1 ≥
(
b
‖x‖
‖y‖

)−1

≥ 1.
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Then
ay ≤ x and e−c

‖x‖
‖y‖
≤ a⇒ e−c

‖x‖
‖y‖

y ≤ x, (3.3)

bx ≤ y and e−c
‖y‖
‖x‖
≤ b⇒ e−c

‖y‖
‖x‖

x ≤ y. (3.4)

We deduce from the above inequalities that

0 ≤ x− ye−c ‖x‖
‖y‖

= (x− y) + y(1− e−c ‖x‖
‖y‖

) ≤ x(1− e−c ‖y‖
‖x‖

) + y(1− e−c ‖x‖
‖y‖

).

Assuming that the norm is monotone on Rn+, and using the triangle inequality, we obtain

‖(x− y) + y(1− e−c ‖x‖
‖y‖

)‖ ≤ ‖x‖|1− e−c ‖y‖
‖x‖
|+ ‖y‖|1− e−c ‖x‖

‖y‖
|.

By the triangle inequality, we obtain

‖x− y‖ ≤ ‖(x− y) + y(1− e−c ‖x‖
‖y‖

)‖+ ‖y(1− e−c ‖x‖
‖y‖

)‖ ≤ |‖x‖ − e−c‖y‖|+ 2|‖y‖ − e−c‖x‖|.

Definition 3.5. If x > 0 and y > 0, and max(y/x) < +∞, we define the Hopf oscillation

osc(y/x) = max(y/x)−min(y/x). (3.5)

In the case that max(y/x) = +∞, we define

osc(y/x) = +∞.

Definition 3.6. Let A ∈Mn (R) with A� 0. We define the projective diameter as

∆(A) := sup
{
dH(Ax,Ay) : (x, y) ∈ Rn+ × Rn+, Ax 6= 0 and Ay 6= 0

}
,

the Birkhoff contraction ratio as

k(A) := inf{λ > 0 : dH(Ax,Ay) ≤ λ dH(x, y),∀x, y ∈ Rn+ \ {0}},

and Hopf oscillation ratio as

N(A) := inf{γ > 0 : osc(Ax,Ay) ≤ γ osc(y, x),∀x, y ∈ Rn+ \ {0}}.

The Birkhoff contraction ratio can be equivalently defined as

k(A) = sup
x,y>0:dH(x,y)6=0

dH(Ax,Ay)

dH(x, y)
. (3.6)

The following result combines Birkhoff’s [1, 2], and Hopf’s [12] results. A short proof of this
theorem was obtained by Eveson and Nussbaum [9].
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Theorem 3.7 (Birkhoff-Hopf). Suppose that A ∈Mn (R) with A� 0. It follows that

k(A) = N(A) = tanh

[
∆(A)

4

]
.

By Theorem 3.7 we have

k(A) = tanh

[
∆(A)

4

]
=
e

∆(A)
4 − e−

∆(A)
4

e
∆(A)

4 + e−
∆(A)

4

=
1−
√
e−∆(A)

1 +
√
e−∆(A)

,

therefore, Theorem 3.7 implies that
k(A) < 1.

The following result gives an explicit formula for k(A). This result was proved by Seneta [25,
Theorem 3.12, p. 108]. The arguments leading to the two inequalities which comprise the proof of
this theorem are due to Ostrowski [23] and Brushell [3].

Theorem 3.8 (Seneta). Let A = (aij) ∈ Mn (R), and assume that A � 0. Then the Birkhoff
contraction ratio is strictly less than 1, and explicitly given by

k(A) =
1−

√
Φ(A)

1 +
√

Φ(A)
< 1, (3.7)

with
Φ(A) = min

1≤i,j,k,l≤n

aikajl
ajkail

. (3.8)

By comparing Theorems 3.7 and 3.8, we have

Φ(A) = e−∆(A)

whenever A� 0.

Lemma 3.9. Let A,B ∈Mn (R), and assume that A� 0 and B � 0. Then we have the following
properties

(i)
dH(Ax,Ay) ≤ k(A) dH(x, y),∀x > 0,∀y > 0. (3.9)

(ii)
k(AB) ≤ k(A) k(B). (3.10)

(iii) For each integer p ≥ 1, q ≥ 1, and m = p+ q,

k (Am) ≤ k (Ap) k (Aq) ≤ k (A)
m
. (3.11)

Proof. Proof of (ii). Let x > 0 and y > 0. Inequality (3.9) is direct consequence of the definition
(3.6) of Birkhoff contraction ratio, and we have

dH(ABx,ABy) ≤ k(A) dH(Bx,By) ≤ k(A) k(B) dH(x, y),

and (3.10) follows.
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In the following lemma, we give an estimate of the supper bound of k(A).

Lemma 3.10. Let A = (aij) ∈Mn(R), and assume that A� 0. Then

k(A) ≤ Amax −Amin

Amax +Amin
,

where
Amax = max

i,j=1,...,n
aij , and Amin = min

i,j=1,...,n
aij .

Proof. By Theorem 3.8, we have

Φ(A) = min
1≤i,j,k,l≤n

aikajl
ajkail

≥ A2
min

A2
max

,

which implies √
Φ(A) ≥

√
A2

min

A2
max

=
Amin

Amax
,

and we obtain

k(A) =
1−

√
Φ(A)

1 +
√

Φ(A)
≤

1− Amin

Amax

1 +
Amin

Amax

=
Amax −Amin

Amax +Amin
.

4 The second eigenvalue problem for non negative matrices

4.1 Main result
Let A = (aij) ∈Mn (R), and assume that A� 0.

Definition 4.1. We define the second spectral radius of A as

r?(A) := sup {|λ| : σ (A) \ {r(A)}} .

Definition 4.2. Let A = (aij) ∈Mn (R), and assume that A� 0. Let Π ∈ L (Rn), the linear map
defined by

Π(x) =
〈VL(A), x〉VR(A)

〈VL(A), VR(A)〉
,∀x ∈ Rn. (4.1)

Then Π a projector on the eigenspace associated with r(A), which is the unique projector satisfying

ΠA = AΠ = r(A) Π.

Define
B = A (I −Π) = A− r(A) Π,
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then we observe that
r?(A) = lim

p→+∞
‖Bp‖

1
p

L(Rn) = r(B),

and by the Perron-Frobenius theorem we have

σ (B) = (σ (A) \ {r(A)}) ∪ {0} .

The main result of this article is the following theorem.

Theorem 4.3 (Speed of convergence). Let A = (aij) ∈Mn (R), and assume that A� 0. Then

r?(A) ≤ k(A) r(A), (4.2)

and we can find a constant χ ≥ 1, such that for each integer m ≥ 1 and each z ∈ Rn,

‖
(

A

r(A)

)m
z −Πz‖ ≤ χk(A)m‖z‖, (4.3)

where 0 ≤ k(A) < 1 is the Birkhoff contraction ratio.

Proof. Replacing A by A/r(A), we can always assume that r(A) = 1. Now, by the Perron-Frobenius
theorem, we can decompose A into

A = Π +B,

where Π� 0 is a projector matrix (Π2 = Π and ΠA = AΠ = Π) associated with the linear operator
defined in (4.1), and since r(A) = 1 it follows that r(B) < 1. Moreover

ΠB = BΠ = 0,

hence
An = Π +Bn,∀n ∈ N.

Since VL(A)� 0, the map
|||x||| = 〈VL(A), |x|〉 ,

defines a norm on Rn which satisfies

|||Anx||| = |||x|||,∀n ≥ 1, and ∀x ∈ Rn+,

which follows from the definition of the left eigenvector (i.e., from the fact VL(A)TA = r(A)VL(A)T ),
and since by assumption r(A) = 1.

We can choose x� 0 large enough (with ‖x‖ = M) so that

x+BRn (0, 1) ⊂ (0,+∞)n.

We deduce that by choosing z ∈ Rn with |||z||| = ρ > 0 (small enough so that |||(I −Π)|||L(Rn)ρ ≤ 1),
and since (I −Π)z ∈ BRn (0, 1), we deduce that

y = x+ (I −Π)z � 0,

and since y ≥ 0 we obtain
|||y||| = |||Any|||,∀n ≥ 1,
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and
|||y||| = |||x|||.

Dropping the three bars norm notation, by Lemma 3.4, and since Π(x− y) = 0,

‖Bnx−Bny‖ = ‖Anx−Any‖ ≤ 3M(1− e−dH(Anx,Any)).

and since 1− e−x ≤ x, ∀x ≥ 0, we obtain

‖Bnx−Bny‖ = ‖Anx−Any‖ ≤ 3M dH(Anx,Any).

By Birkhoff theorem and (3.11), we have

‖Bnx−Bny‖ = ‖Anx−Any‖ ≤ 3M k(An)dH(x, y) ≤ 3M k(A)ndH(x, y).

Next

‖Bnz‖ = ‖Bn(I −Π + Π)z‖ = ‖Bn(I −Π)z‖ = ‖Anx−Any‖ ≤ 3M k(A)ndH(x, y),

and by taking the supremum over all z ∈ Rn with ‖z‖ = ρ > 0, we obtain

‖Bn‖L(Rn) ≤
3M

ρ
k(A)n sup

z∈Rn:‖z‖≤1

dH(x, x+ z),

and (4.3) follows.

Moreover we deduce that

ln
(
‖Bn‖L(Rn)

)
n

≤
ln

(
3M

ρ

)
n

+ ln (k(A)) +
ln
(

supz∈BRn (0,1) dH(x, x+ z)
)

n
.

We deduce that

ln (r(B)) = lim
n→∞

ln
(
‖Bn‖L(Rn)

)
n

≤ ln (k(A)) ,

the proof is completed.

Example 4.4. The above result could be optimal since for the example

A0 =

[
1/2 1/2
1/2 1/2

]
.

Then the spectral radius of A0 is 1, and since A0 is a projector, and the second eigenvalue is 0.
Moreover, by Lemma 3.10, we have

k(A0) = 0.

Therefore, in this example, Theorem 4.3 gives an exact estimation of the distance to the second
eigenvalue.
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Example 4.5. In the follows, we give a numerical comparison of second eigenvalue and Birkhoff
contraction of the strict positive matrices.

We consider the following 2-dimensional matrix A1

A1 =

[
1 2
3 4

]
.

By using the function eig of MATLAB to compute the eigenvalues of A1, we obtain

r?(A1) = 0.37, r(A1) = 5.37, and k(A1) = 0.1.

Then we have
r?(A1) ≤ k(A1) r(A1) = 0.54.

This example shows that our estimate of the second eigenvalue of matrix A1 is pretty good compared
to the spectral radius of A1.

Example 4.6. We consider the following 3-dimensional matrix A2

A2 =

 1 2 3
4 5 6
7 8 9

 .
By using the function eig of MATLAB to compute the eigenvalues of A2, we obtain

r?(A2) = 1.12, r(A2) = 16.12, and k(A2) = 0.21.

Then we have
r?(A2) ≤ k(A2) r(A2) = 3.36.

4.2 The case of primitive matrices
In order to extend Theorem 4.3 to non-negative irreducible matrix A ≥ 0, one must remember that

σper(A) = {λ ∈ σ(A) : |λ| = r(A)} = {r(A)}

if and only if A is primitive. Therefore it makes sense to consider now only the case of primitive
matrices.

It is well known that a non-negative matrix A ≥ 0 is primitive if and only if

An
2

� 0,

where n is the dimension of A. We refer for example to the book of Horn and Johnson [13, Corollary
8.6.9, p. 520] for a proof of this result.

Now since
σ(An

2

) =
{
λn

2

: λ ∈ σ(A)
}
,

by applying Theorem 4.3 to An
2

, we obtain the following corollary.
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Corollary 4.7. Let A = (aij) ∈Mn (R). Assume that A ≥ 0 and A is primitive. Then

r?(A) ≤ k(An
2

)
1
n2 r(A),

and we can find a constant χ ≥ 1, such that for each integer m ≥ n2 and each z ∈ Rn,

‖
(

A

r(A)

)m
z −Πz‖ ≤ χk(An

2

)
m
n2 ‖z‖,

where 0 ≤ k(An
2

) < 1 is the Birkhoff contraction ratio of An
2

.

4.3 Numerical illustration for Hahn matrix model
The Hahn matrix model was used to describe cell metabolism. This model was introduced in the
early sixties and developed in the seventies by Hahn [11] to model cell metabolism. Such matrices
have a particular form that allows computing their full spectrum (see Appendix A). This property
was observed simultaneously by Demongeot [6, 7], and Thames and White [26]. This class of
matrices called quasi-circulant matrices have the following form

A = α0I + α1P + . . .+ αmP
m,

where α0, α1, . . . , αm ∈ R, and

P =


0 0 · · · 0 pn
p1 0 · · · 0 0
0 p2 · · · 0 0
...

...
. . .

... 0
0 0 · · · pn−1 0

 ,

where p1, . . . , pn ∈ (0,+∞).

Let us consider the 3 by 3 example of quasi-circulant matrix

N(n+ 1) = AN(n),∀n ≥ 0, N(0) = N0 ∈ R3
+, (4.4)

where

A =

 α0 2Dα2 2Dα1

α1 α0 2Dα2

α2 α1 α0

 . (4.5)

Consider the matrix

P =

 0 0 2D
1 0 0
0 1 0

 .
Circulant matrices use a permutation P only. That is 2D = 1 in the above example (see the book
of Davis [5] for more results). Then it is straightforward

P 2 =

 0 2D 0
0 0 2D
1 0 0

 ,
13



and we deduce

A = α0I + α1

 0 0 2D
1 0 0
0 1 0

+ α2

 0 2D 0
0 0 2D
1 0 0

 = α0I + α1P + α2P
2.

Let λP,1, λP,2, λP,3 be the eigenvalues of matrix P . By Lemma A.1, it follows that

λ3 = 2D.

and
λP,1 =

3
√

2D,

λP,2 =
3
√

2De
i
2π

3 =
3
√

2De
i

(
π−
π

3

)
,

and

λP,3 =
3
√

2De
i
4π

3 =
3
√

2De
i

(
π+
π

3

)
,

so we obtain

λP,1 =
3
√

2D,λP,2 =
3
√

2D

[
−1

2
+ i

√
3

2

]
, and λP,2 =

3
√

2D

[
−1

2
− i
√

3

2

]
.

Moreover, by Lemma A.2, the eigenvalues of the matrix A are given from the eigenvalues of P by

λA,i = α0 + α1λP,i + α2λ
2
P,i.
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Figure 1: In this figure we plot r(A), k(A) r(A), and r?(A) in function of D. We take α0 = 0.01
(very small), α1 = 0.4 and α2 = 0.3. We observe that k(A) is close to 1.
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Figure 2: In this figure we plot r(A), k(A) r(A), and r?(A) in function of D. We take α0 = 0.01
(very small), α1 = 0.4 and α2 = 0.3. We observe that k(A9)1/9 (where 9 = 32 corresponds to the

Corollary 4.7) is close to
r?(A)

r(A)
.

Lemma 4.8. Let A = (aij) ∈Mn (R). Assume that A ≥ 0 and A is primitive. Then the limit

lim
m→+∞

k(Am)
1
m exists,

and satisfies

lim
m→+∞

k(Am)
1
m = einfm≥0

ln(k(Am))
m .

The proof of this result given below is taken from the book of Kato [18, pp. 27–28].

Proof. Define ap := ln (k (Ap)) for p ≥ 0. Here A0 := I, which implies that ‖A0‖ = 1, so that
a0 = 0. Let us prove that

lim
p→+∞

ap
p

= inf
m>0

am
m
.

Since we have
k
(
Ap+q

)
≤ k (Ap) k (Aq) , ∀p, q ∈ N,

we deduce that the sequence (ap)p≥0 is sub-additive, namely it satisfies

ap+q ≤ ap + aq, ∀p, q ∈ N,

and the result follows from the classical argument from the book of Kato [18, pp. 27–28].

Conjecture: The above numerical simulations suggest the following property

lim
m→+∞

k(Am)
1
m =

r?(A)

r(A)
.

5 Application to cooperative system of ordinary differential
equations

Let A = (aij) ∈ Mn (R), and assume that the off-diagonal elements of A are non-negative, and
A+ δI is non-negative irreducible whenever δ > 0 is large enough. Then

eAt � 0, ∀t > 0.
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Recall that s(A) the spectral bound of A is defined by

s(A) = sup {Re λ : λ ∈ σ (A)} .

Then we can find VR(A)� 0 a Right eigenvector of A such that

AVR(A) = s(A)VR(A),

and we can find VL(A)� 0 a Left eigenvector of A (i.e. an eigenvector of AT ) such that

ATVL(A) = s(A)VL(A)⇔ VL(A)TA = s(A)VL(A)T .

We define the projector

Π(x) =
〈VL(A), x〉VR(A)

〈VL(A), VR(A)〉
, ∀x ∈ Rn.

Then Π a projector on the eigenspace associated with s(A), which is the unique projector satisfying

ΠA = AΠ = s(A) Π.

Definition 5.1. We define the second spectral bound

s?(A) = sup{Re λ : σ (A) \ {s(A)}},

and the Birkhoff contraction bound as

β(A) =

{
ln
(
k
(
eA
))
< 0, if k

(
eA
)
> 0,

−∞, if k
(
eA
)

= 0.

Now by applying Theorem 4.3 to eA we obtain that following result.

Corollary 5.2. Let A = (aij) ∈ Mn (R), and assume that the off-diagonal elements of A are
non-negative, and A+ δI is non-negative irreducible whenever δ > 0 is large enough. Then

s?(A) ≤ β(A) + s(A) < s(A),

and we can find a constant χ ≥ 1, such that for each real number t ≥ 0 and each z ∈ Rn,

‖e(A−s(A)I)t z −Π z‖ ≤ χ eβ(A) t ‖z‖.

Proof. Due to the assumption that A + δI is non-negative irreducible whenever δ > 0 is large
enough, we deduce that eAt � 0 (that is all the components of eAt are strictly positive) for each
t > 0. By applying Theorem 4.3 to B = eA, we deduce that

r?(eA) ≤ k(eA)r(eA), (5.1)

and we deduce that
s?(A) = s(A (I −Π))) = ln(r(eA (I −Π)))

= ln(r?(eA))

≤ ln(k(eA)) + ln(r(eA))

= β(A) + s(A).

(5.2)
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By applying the second part of Theorem 4.3 to B = eA, we deduce that we can find a constant
χ ≥ 1, such that for each integer m ≥ 1 and each z ∈ Rn,

‖e(A−s(A)I)mz −Πz‖ = ‖
(

eA

r(eA)

)m
z −Πz‖ ≤ χk(eA)m‖z‖ = χ eβ(A)m ‖z‖.

By definition of Π, we have

Πe(A−s(A)I)tz = e(A−s(A)I)tΠz = Πz,∀t ≥ 0.

Therefore, for t ∈ [m,m+ 1] (for some positive integer m ∈ N) we obtain

‖e(A−s(A)I)tz −Πz‖ = ‖e(A−s(A)I)me(A−s(A)I)(t−m)z −Πe(A−s(A)I)(t−m)z‖

≤ χ eβ(A)m ‖e(A−s(A)I)(t−m)z‖,

hence
‖e(A−s(A)I)tz −Πz‖ ≤ χ̂ eβ(A) t ‖z‖,

where
χ̂ = χ sup

s∈[0,1]

e−β(A) s sup
δ∈[0,1]

sup
‖z‖=1

‖e(A−s(A)I)δz‖,

and the proof is completed.

At the early stage of the epidemic of COVID-19 in China (see Liu et al. [22] ), it was reasonable
to assume that the number of infectious and unreported satisfy the following system for t ≥ t0,{

I ′(t) = τ0S0[I(t) + U(t)]− νI(t),

U ′(t) = ν(1− f)I(t)− ηU(t).

This system is supplemented by initial data

I(t0) = I0 > 0, and U(t0) = U0 ≥ 0.

Here t ≥ t0 is time in days, t0 is the beginning date of the epidemic, I(t) is the number of asymp-
tomatic infectious individuals at time t, U(t) is the number of unreported symptomatic infectious
individuals (i.e. symptomatic infectious with mild symptoms) at time t. In addition, S0 denotes
the number of susceptible at time t0, τ0 denotes transmission rate, f denotes the fraction of asymp-
tomatic infectious that become reported symptomatic, 1/η denotes the average time symptomatic
infectious have symptoms, and 1/ν denotes the average time during which asymptomatic infectious
are asymptomatic.

As in [22, See caption of Figure 3], we use

f = 0.8, η = 1/7, ν = 1/7, and S0 = 11.081× 106. (5.3)

and
τ0 = 4.44× 10−8. (5.4)

the value estimated from the data in [22, See the caption of Figure 3].
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So we consider the matrix
A =

[
τ0S0 − ν τ0S0

ν(1− f) −η

]
.

In Figures 2 and 3 we plot
s(A) = ln

(
r(eA)

)
,

β(A) + s(A) = ln
(
k
(
eA
))

+ s(A),

and
s?(A) := sup{Re λ : σ (A) \ {s(A)}},

in function of τ0.

In these figures, we first compute eA by using the MATLAB function expm(A) which is based
on the algorythm proposed by Higham [14].
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Figure 3: In this figure we plot s(A), β(A) + s(A), and s?(A) in function of τ0. We vary τ0 from
10−12 to 10−7 and we use the parameters values in (5.3) and (5.4). Here, we use a log scale for the
horizontal axis.
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Figure 4: In this figure we plot s(A), β(A) + s(A), and s?(A) in function of τ0. We vary τ0 from
10−8 to 10−6 and we use the parameters values in (5.3) and (5.4). Here, we use a log scale for the
horizontal axis.
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In order to visualize the speed of convergence to the Perron-Frobenius stationary distribution,
we define

Is(A)(t) = e−s(A)(t−t0)I(t), and Us(A)(t) = e−s(A)(t−t0)U(t).

Then Is(A)(t) and Us(A)(t) satisfy the following system(
I ′s(A)(t)

U ′s(A)(t)

)
= (A− s(A)I)

(
Is(A)(t)
Us(A)(t)

)
(5.5)

with the initial value
Is(A)(t0) = I0 > 0, and Us(A)(t0) = U0 ≥ 0.

and
I0 + U0 = 1.

From Figures 5 and 6, we observe that changing the transmission τ from 4 × 10−9 to 4 × 10−8

(by one order to magnitude) will have a very significant effect on the speed of convergence to the
Perron-Frobenius stationary distribution. We also observe that the relative proportion of unreported
individual is much smaller for 4× 10−8 than from 4× 10−9.

In Figure 5, we use τ0 = 4 × 10−9 , and we obtain a period of 40-50 days for the solutions to
converge to the Perron-Frobenius stationary distribution.
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Figure 5: In this figure, we plot Is(A)(t) and Us(A)(t) in the phase plane (left) and as a function
of time (right). In the figure, we use τ0 = 4 × 10−9 and we use the parameters values in (5.3)
and (5.4). Here s(A) = 0.16, and s?(A) = 0.08, and s?(A) − s(A) = −0.08 gives us the speed of
convergence to the Perron-Frobenius stationary distribution.

In Figure 6, we use τ0 = 4 × 10−8, and we obtain a period of 5-10 days for the solutions to
converge to the Perron-Frobenius stationary distribution.
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Figure 6: In this figure, we plot Is(A)(t) and Us(A)(t) in the phase plane (left) and as a function
of time (right). We use τ0 = 4 × 10−8 and we use the parameters values in (5.3) and (5.4). Here
s(A) = 0.33, and s?(A) = 0.17, and s?(A)− s(A) = −0.16 gives us the speed of convergence to the
Perron-Frobenius stationary distribution.

6 Non-autonomous discrete time system

We consider
u(t+ 1) = Atu(t),∀t ∈ N, with u(0) = u0 ∈ Rn+ \ {0} , (6.1)

where At ∈Mn(R) for each t ∈ N.

Assumption 6.1. We assume that there exist two non-negative matrices A− and A+ (with all
their components strictly positive) such that

0� A− ≤ At ≤ A+,∀t ∈ N.

Lemma 6.2. Let Assumption 6.1 be satisfied. Then

r(A−) ≤ r(At) ≤ r(A+).

Proof. Due to 0� A− ≤ At ≤ A+,∀t ∈ N, then we have

A−VR(At) ≤ AtVR(At) = r(At)VR(At).

Moreover, we apply VL(A−)T on the above inequality and then obtain

r(A−)VL(A−)TVR(At) = VL(A−)TA−VR(At) ≤ VL(A−)TAtVR(At) = r(At)VL(A−)TVR(At).

Therefore, we deduce that r(A−) ≤ r(At). The proof for r(At) ≤ r(A+) is similar.

Lemma 6.3. Let Assumption 6.1 be satisfied. Then there exist two real numbers α > 0 and β > 0
(satisfying β ≥ 1 ≥ α > 0) such that

α1 ≤ VR(At) ≤ β 1, ∀t ∈ Z, (6.2)

where VR(At) is the normalized right eigenvector of At (i.e. ‖VR(At)‖ = 1) and 1 = (1, 1, ..., 1)T .
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Proof. Since all the norms are equivalent in Rn we can find a constant γ+ > γ− > 0 such that

γ−‖x‖∞ ≤ ‖x‖ ≤ γ+‖x‖∞,∀x ∈ Rn,

where ‖ · ‖∞ is the supremum norm ‖x‖∞ = maxi=1,...,n xi. Since ‖VR(At)‖ = 1, we have

‖VR(At)‖∞ = max
i=1,...,n

VR(At)i ≥ γ−1
+ .

So we can find i0 ∈ {1, . . . , n} , satisfying

VR(At)i0 ≥ γ−1
+ .

Next, we have
AtVR(At) = r(At)VR(At), ∀t ∈ Z,

hence

VR(At) =
At
r(At)

VR(At) ≥
A−
r(A+)

VR(At) ≥ VR(At)i0
minA−
r(A+)

1 ≥ γ−1
+

minA−
r(A+)

1,

where minA− = min
1≤i,j≤n

(A−)ij .

To prove the second inequality of (6.2), it is sufficient to observe that

VR(At) ≤ ‖VR(At)‖∞ 1 ≤ γ−1
− ‖VR(At)‖1,

and the proof is completed.

By applying the Lemma 6.3 to ATt , we obtain the following lemma.

Lemma 6.4. Let Assumption 6.1 be satisfied. Then there exist two real numbers α > 0 and β > 0
(satisfying β ≥ 1 ≥ α > 0) such that

γ 1 ≤ VL(At) ≤ β 1, ∀t ∈ Z, (6.3)

where VL(At) is the normalized left eigenvector of At (i.e. ‖VL(At)‖ = 1) and 1 = (1, 1, ..., 1)T .

We define
U(t, s) = At−1 . . . As, if t > s, and U(s, s) = I.

Thus, we have the semigroup property for each t ≥ r ≥ s,

U(t, r)U(r, s) = (At−1 . . . Ar) (Ar−1 . . . As) = U(t, s).

For each t > s, we define

Π(t, s)x =
〈VL (U (t, s)) , x〉VR (U (t, s))

〈VL (U (t, s)) , VR (U (t, s))〉
(6.4)

where VL (U (t, s)) � 0 and VR (U (t, s)) � 0 are respectively a left and a right eigenvectors of
U(t, s) associated with r(U(t, s)) (the spectral radius of U(t, s)). This means that

VL (U (t, s))
T
U(t, s) = r (U(t, s))VL (U (t, s))

T and U(t, s)VR (U (t, s)) = r (U(t, s))VR (U (t, s)) ,

therefore we have
Π(t, s)U(t, s) = U(t, s)Π(t, s) = r (U(t, s)) Π(t, s).

The following lemma is a direct result from Lemma 3.9.
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Lemma 6.5. Let Assumption 6.1 be satisfied. Then there exists a constant δ ∈ [0, 1) such that

k(U(t, s)) ≤ δt−s,∀t > s. (6.5)

Proof. By Lemma 3.9, we have

k(U(t, s)) ≤ Πj=s,...,t−1k(Aj), (6.6)

and by using (3.7)-(3.8), we deduce that k(A) is continuous on the compact subset A− ≤ A ≤ A+,
hence

δ = sup
A−≤A≤A+

k(A) < 1,

and (6.5) follows from (6.6).

In addition, we make the following assumption.

Assumption 6.6. For each t > s, we assume that there exist two positive numbers γ > 0 and
β > 0 (with γ < β) such that

γ 1 ≤ VL (U (t, s)) ≤ β 1,

where VL (U (t, s)) is a positive left eigenvector of U(t, s) associated with r(U(t, s)).

The main result of this section is the following theorem.

Theorem 6.7. Let Assumptions 6.1 and 6.6 be satisfied. Then there exists a constant χ ≥ 1, such
that for each z ∈ Rn, and each t > s,∥∥∥∥ U(t, s)z

r (U(t, s))
−Π(t, s)z

∥∥∥∥ ≤ χ δt−s ‖z‖,
where

δ = sup
A−≤A≤A+

k(A) < 1.

Proof. We define

U(t, s) =
U(t, s)

r (U(t, s))
.

By the Perron-Frobenius theorem, we decompose U(t, s) into

U(t, s) = Π(t, s) +B(t, s),

where Π(t, s)� 0 is the projector defined above, and we have

Π(t, s)U(t, s) = U(t, s)Π(t, s) = Π(t, s),

r(B(t, s)) < 1,

and
Π(t, s)B(t, s) = B(t, s) Π(t, s) = 0.

Since VL (U (t, s)) ≥ γ1 is the left eigenvector, the map

9x9(t,s) = 〈VL (U (t, s)) , |x|〉 ,
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defines a norm on Rn which satisfies

|||U(t, s)x|||(t,s) = 9x9(t,s),∀t > s.

We reconsider following norm defined in Euclidean space Rn,

‖x‖ = 〈1, |x|〉 =
n

Σ
i=1
|xi|, ∀x ∈ Rn.

By using Assumption 6.6, we deduce that

γ‖x‖ ≤ 9x9(t,s) ≤ β‖x‖, ∀x ∈ Rn, (6.7)

which is equivalent to
1

β
|||x|||(t,s) ≤ ‖x‖ ≤

1

γ
|||x|||(t,s), ∀x ∈ Rn.

Moreover
‖Π(t, s)x‖ =

〈VL (U (t, s)) , |x|〉 ‖VR (U (t, s)) ‖
〈VL (U (t, s)) , VR (U (t, s))〉

=
|||x|||(t,s)‖VR (U (t, s)) ‖
|||VR (U (t, s))|||(t,s)

≤ β‖x‖‖VR (U (t, s)) ‖
γ‖VR (U (t, s)) ‖

hence
‖Π(t, s)‖L(Rn) ≤

β

γ
,

and
‖I −Π(t, s)‖L(Rn) ≤ 1 +

β

γ
. (6.8)

We can choose x� 0 large enough (with ‖x‖ = M) so that

x+BRn(0, 1) ⊂ (0,+∞)n.

By using (6.8), we can find ρ > 0 small enough such that

‖I −Π(t, s)‖L(Rn)ρ ≤ 1.

Let z ∈ Rn with ‖z‖ = ρ. Then (I −Π(t, s))z ∈ BRn(0, 1), and we deduce that

y = x+ (I −Π(t, s))z � 0

and since x ≥ 0 and y ≥ 0, we obtain

9x9(t,s) = 9U(t, s)x9(t,s),

and
9y9(t,s) = 9U(t, s)y9(t,s),

and since ‖x‖ = M , the inequality (6.7) gives

9y9(t,s) = |||x|||(t,s) ≤ βM.
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Since Π(t, s)(x− y) = 0, we have by Lemma 3.4

‖B(t, s)x−B(t, s)y‖ ≤ 1
γ 9B(t, s)x−B(t, s)y9(t,s)

= 1
γ 9 U(t, s)x− U(t, s)y9(t,s)

≤ 3βM

γ

(
1− e−dH(U(t,s)x,U(t,s)y)

)
,

and since 1− e−x ≤ x, ∀x ≥ 0, we obtain

‖B(t, s)z‖ = ‖B(t, s)x−B(t, s)y‖ ≤ 3βM

γ
dH (U(t, s)x,U(t, s)y) ≤ 3βM

γ
k (U(t, s)) dH (x, y) .

By Lemma 6.5, we deduce that

‖B(t, s)‖L(Rn) ≤ χ δ
t−s,∀t > s,

with
χ =

3βM

γρ
sup

‖z‖=ρ>0

dH(x, x+ z),

and the proof is completed.

Definition 6.8. A non-negative matrix A ∈Mn (R) is calledMarkovian if the sum of each column
of A is equal to 1. That is,

1
TA = 1

T ,

where 1 = (1, . . . , 1)
T .

Now, assuming that each matrix At is Markovian, we deduce that U(t, s) is also Markovian and

1
TU(t, s) = 1

T ,∀t ≥ s.

Together with Assumption 6.1, it follows that

r(U(t, s)) = 1,

and we obtain the following corollary.

Corollary 6.9. Let Assumption 6.1 be satisfied. Assume in addition that each matrix At is Marko-
vian. Then there exists a constant χ ≥ 1, such that for each z ∈ Rn, and each t > s,∥∥∥∥U(t, s)z −

∑n
i=1 zi∑n

i=1 VR (U(t, s))i
VR (U(t, s))

∥∥∥∥ ≤ χ δt−s ‖z‖,
where

δ = sup
A−≤A≤A+

k(A) < 1.
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Appendix

A Quasi-circulant matrices

We consider the following matrix

A = α0I + α1P + ...+ αnP
n, (A.1)

where

P =


0 0 · · · 0 pn
p1 0 · · · 0 0
0 p2 · · · 0 0
...

...
. . .

... 0
0 0 · · · pn−1 0

 . (A.2)

Lemma A.1. Let λ1, ..., λn be the eigenvalues of P , then for each λi, i = 1, ..., n, we have

λni = p1p2...pn.

Proof. For each λi, i ≤ i ≤ n, we have

det(λiI − P ) = 0. (A.3)

(A.3) reads as

det(λiI − P ) =

∣∣∣∣∣∣∣∣∣∣∣

λi 0 · · · 0 −pn
−p1 λi · · · 0 0

0 −p2 · · · 0 0
...

...
. . .

... 0
0 0 · · · −pn−1 λi

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

λi 0 · · · 0 −pn
0 λi · · · 0 −p1pn

λi

0 −p2 · · · 0 0
...

...
. . .

... 0
0 0 · · · −pn−1 λi

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λi 0 · · · 0 −pn
0 λi · · · 0 −p1pn

λi

0 0 · · · 0
...

...
...

. . .
... −p1p2...pn−2pn

λn−2
i

0 0 · · · 0 λi − p1p2...pn
λn−1
i

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λni − p1p2...pn = 0

Lemma A.2. Let ξ1, ξ2, ..., ξn be some eigenvectors of matrix P corresponding to the eigenvalues
λ1, λ2, ..., λn. Then ξ1, ξ2, ..., ξn are also the eigenvectors of matrix A.

Proof. Note that ξ1, ξ2, ..., ξn are the eigenvectors of matrix P corresponding to the eigenvalues
λ1, λ2, ..., λn, we have

Pξi = λiξi, 1 ≤ ξ ≤ n.
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By (A.1), we obtain
Aξi = α0Iξi + α1Pξi + ...+ αnP

nξi
= (α0 + α1λi + α2λ

2
i + ...+ αnλ

n
i )ξi.

Therefore, ξi is the eigenvector of matrix A corresponding to eigenvalue

α0 + α1λi + α2λ
2
i + ...+ αnλ

n
i .

The proof is completed.
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