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Abstract

In consumer-resource interactions, a resource is regarded as a biotic
population that helps to maintain the population growth of its consumer,
whereas a consumer exploits a resource and then reduces its growth rate.
Bi-directional consumer-resource interactions describe the cases where
each species acts as both a consumer and a resource of the other, which is
the basis of many mutualisms. In uni-directional consumer-resource inter-
actions one species acts as a consumer and the other as a material and/or
energy resource while neither acts as both. In this paper we consider an
age-structured model for uni-directional consumer-resource mutualisms in
which the consumer species has both positive and negative effects on the
resource species, while the resource has only a positive effect on the con-
sumer. Examples include a predator-prey system in which the prey is able
to kill or consume predator eggs or larvae and the insect pollinator and
the host plant relationship in which the plants provide food, seeds, nectar
and other resources for the pollinators while the pollinators have both
positive and negative effects on the plants. By carrying out local analy-
sis and bifurcation analysis of the model, we discuss the stability of the
positive equilibrium and show that under some conditions a non-trivial
periodic solution through Hopf bifurcation appears when the maturation
parameter passes through some critical values.
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1 Introduction

Consumer-resource interactions are closely related the process of energy and/or
nutrient transfer between a consumer organism and a resource. Here a resource
is regarded as a biotic population that helps to maintain the population growth
of its consumer, whereas a consumer exploits a resource and then reduces its
growth rate. Modeling consumer-resource interactions and understanding the
nonlinear dynamics of such interactions has been one of the most important
and active topics in ecology in the last four decades (MacArthur [13], Murdoch
et al. [21]). Traditionally a consumer-resource interaction is modeled by using
(+ −) (predation, parasitism) type relation in which the consumer gains some
material benefit at the cost of the resource, such as the classical predator-prey
or parasite-host models (Rosenzweig and MarArthur [23], May [19]).

Recently, mutualism has been studied explicitly in terms of consumer-resource
interactions, such as (+ 0) (commensalism), (− 0) (amensalism), and (+ +)
(mutualism), based on the balance between benefit and cost for the interacting
species. For example, a mutualistic consumer exploits a resource (nutrient or
nectar) supplied by another mutualistic species so that both the consumer and
resource benefit from their interaction, which is described by a (+ +) type rela-
tion. Such mutualisms tend to be bi-directional, including coral mutualisms and
mycorrhizal mutualisms (Holland and DeAngelis [7, 8]), in which each species
acts as both a consumer and a resource of the other. For instance, the coral
polyp passes nitrogen from captured prey to the photosynthetic zooxanthellae
while the zooxanthellae provide energy in the form of glucose to the coral an-
imals. Terrestrial plants and mycorrhizal fungi in the rhizosphere of the root
system have a mutualistic relationship (Wang et al. [30]).

The uni-directional consumer-resource mutualisms are consistent with the
traditional consumer-resource interaction, in which one species acts as a con-
sumer and the other as a material and/or energy resource, while neither acts as
both. Resources produced by a mutualistic species (N1) attract and reward a
consumer (N2), which in the process of exploring the resource provinsions N1

with a service of dispersal or defense (Holland and DeAngelis [7, 8], Wang et
al. [30]). By assuming that the consumer species is age-structured, we con-
sider the following consumer-resource interaction model coupled by an ordinary
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differential equation (ODE) and a partial differential equation (PDE)

dN1(t)

dt
= N1(t)

r − d1N1(t) +
α12

∫ +∞
0

β(a)N2(t, a)da

γ2 +
∫ +∞
0

β(a)N2(t, a)da︸ ︷︷ ︸
mutualist effect

− β1
∫ +∞

0

β(a)N2(t, a)da︸ ︷︷ ︸
consumtion effect

 ,
∂N2(t, a)

∂t
+
∂N2(t, a)

∂a
= −d2N2(t, a), a ≥ 0,

N2(t, 0) =
α21N1(t)

∫ +∞
0

β(a)N2(t, a)da

γ1 +N1(t)︸ ︷︷ ︸
flux of new borns

,

N1(0) = N10 ≥ 0, N2(0, ·) = N20 ∈ L1
+ ((0,+∞) ,R) ,

(1.1)
where N1(t) represents the density of the resource species at time t and N2(t, a)
represents the density of the consumer species at time t with age a. The number
r is the intrinsic growth rate of the resource species and d1 > 0 represents a
logistic type limitation of the resource species (i.e. limitation for space, foods,
etc.) so that r/d1 > 0 is its carrying capacity when in isolation from the
consumer. The function β(a) is the age-dependent maturation function so that

A(t) :=

∫ +∞

0

β(a)N2(t, a)da (1.2)

is the the number of matured (reproducing) consumers. The term
α12N1(t)A(t)

γ2 +A(t)
describes the positive feedback on the growth of the resource species N1 due to
mutualistic interactions with the consumer species N2, where α12 denotes the
saturation level of the functional response of the consumer species and γ2 de-
notes the half-saturation density of resource species; β1N1(t)A(t) represents the
consumption level of resource species by matured consumer species. The num-

ber d2 denotes the death rate of the consumer species. The term
α21N1(t)A(t)

γ1 +N1(t)
in the boundary condition denotes the new population births of the consumer
species N2 depending on resource supplied by N1, which saturates with resource
density (N1) according to an Michaelis-Menton function, where α21 is the in-
teraction strength and γ1 is the half-saturation constant.

System (1.1) is a generalization of the ODE model (2.1) of Wang and DeAn-
gelis [29] on uni-directional consumerresource interactions. As pointed out by
Wang et al. [30], such interactions may be modeled by age-structured mod-
els. This is the motivation of this article. Moreover, Wang and DeAngelis [29]
showed that there is no periodic orbit in their ODE model and all solutions
converge to a steady state. We will show that under some conditions a non-
trivial periodic solution of the age-structured model (1.1) appears through a
Hopf bifurcation when the maturation parameter passes through some critical
values.
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The insect pollinator and the host plant relationship is an example of the
uni-directional consumer-resource mutualisms as the insect provides no material
resource to the plant (though it provides a pollination service), see Holland and
DeAngelis [7]. Pollinators travel from their nest to a foraging patch, collecting
food, flying back to their nests, and unloading food. Interacting with flowers in-
dividually, the pollinators remove nectar, contact pollen, and provide pollination
service. Therefore, the plants provide food, seeds, nectar and other resources
for the pollinators, while the pollinators have both positive and negative effects
on the plants. The positive effect of pollinators on plants is described by the
Michaelis-Meton functional response α12N1(t)A(t)/(γ2 + A(t)), where the pa-
rameter α12 is regarded as the plants efficiency in translating plant-pollinator
interactions into fitness and α21 is the corresponding value for the pollinators;
β1 denotes the per-capita negative effect of pollinators on plants (Holland and
DeAngelis [7], Wang, DeAngelis and Holland [31], and Mitchell et al. [20]).

Another example of consumer-resource interaction is introduced by Barkai
and McQuaid [1] where they consider in some South African islands, rock lob-
sters feed on whelks, but in other areas whelks may be in such high abundance
that they overwhelm and consume the lobsters. Also, Magalhães et al. [18]
observed that small juvenile predatory mites may be killed by their thrips prey.
Polis et al. [22] noted that 90 species of jellyfish and ctenophores eat fish eggs
or larvae, while the older fish feed on these same species.

Before presenting our analysis and simulations of model (1.1), we make the
following assumption.

Assumption 1.1 Assume that

β(a) = β∗1[τ,+∞)(a) =

{
β∗, if a ≥ τ
0, otherwise

and ∫ +∞

0

β(a)e−d2ada =: R0,

where τ ≥ 0, β∗ > 0 and 0 < R0 < +∞.

Assumption 1.1 indicates that there is a maturation period τ > 0, so that
the maturation rate of the consumer species is β∗ > 0 when the age a is less than
τ and zero when the age a is greater than τ. We will use the maturation period
τ as the bifurcation parameter to study the stability of the positive equilibrium
and the existence of a Hopf bifurcation in the age-structured model (1.1).

The rest of the paper is organized as follows. in next section we recall the
general Hopf bifurcation theorem for the semilinear Cauchy problem with a non-
densely defined domain. Section 3 deals with the stability of the positive steady
state and existence of Hopf bifurcation in the age-structured consumer-resource
model (1.1). Some numerical simulations and a brief discussion are given in
section 4.

4



2 Hopf Bifurcation Theorem for Nondensely De-
fined Cauchy Problems

For convenience, we recall the general Hopf bifurcation theorem we established
in Liu et al. [11]. Consider the semilinear Cauchy problem:

du(t)

dt
= Au(t) + F (µ, u (t)) ,∀t > 0, u(0) = x ∈ D (A), (2.1)

whereµ ∈ R is the bifurcation parameter, A : D(A) ⊂ X → X is a linear
operator on a Banach space X with D(A) not dense in X and A not necessary
a Hille-Yosida operator, F : R×D (A)→ X is a Ck map with ( k ≥ 4). Denote
by AY : D(AY ) ⊂ Y → Y the part of A in Y, which is defined by

AY x = Ax, ∀x ∈ D(AY ) = {x ∈ D(A) ∩ Y : Ax ∈ Y } .

Set
X0 := D (A).

A0 : D(A0) ⊂ X0 → X0 is the part of A in X0, which is defined by

A0x = Ax, ∀x ∈ D(A0) = {x ∈ D (A) : Ax ∈ X0} .

We denote by {TA(t)}t≥0 the strongly continuous semigroup of bounded linear
operators on X (respectively {SA(t)}t≥0 the integrated semigroup) generated
by A. The essential growth bound ω0,ess (L) ∈ (−∞,+∞) of L is defined by

ω0,ess (L) := lim
t→+∞

ln (‖TL(t)‖ess)
t

.

We make the following assumptions on the linear operator A and the nonlinear
map F .

Assumption 2.1 Assume that A : D(A) ⊂ X → X is a linear operator on a
Banach space (X, ‖ · ‖) such that there exist two constants ωA ∈ R and MA ≥ 1,
such that (ωA,+∞) ⊂ ρ(A) and the following properties are satisfied

(i) lim
λ→+∞

(λI −A)
−1
x = 0,∀x ∈ X;

(ii) ‖ (λI −A)
−k ‖L(X0) ≤

MA

(λ−ωA)k
,∀λ > ωA,∀k ≥ 1.

Assumption 2.2 There exists a function δ : [0,+∞)→ [0,+∞) with

lim
t(>0)→0

δ (t) = 0,

such that for each τ > 0 and f ∈ C ([0, τ ], X) , t →
∫ t
0
SA(t − s)f(s)ds is

continuously differentiable and∥∥∥∥ ddt
∫ t

0

SA(t− s)f(s)ds

∥∥∥∥ ≤ δ(t) sup
s∈[0,t]

‖f(s)‖, ∀t ∈ [0, τ ].
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Assumption 2.3 Let ε > 0, F ∈ Ck ((−ε, ε)×BX0(0, ε);X) , k ≥ 4. Assume
that the following conditions are satisfied

(i) F (µ, 0) = 0,∀µ ∈ (−ε, ε), and ∂xF (0, 0) = 0.

(ii) (Transversality condition) For each µ ∈ (−ε, ε), there exists a pair of con-
jugated simple eigenvalues of (A+ ∂xF (µ, 0))0, denoted by λ(µ) andλ(µ),
such that

λ(µ) = α(µ) + iω(µ),

the map µ→ λ(µ) is continuously differentiable,

ω(0) > 0, α(0) = 0,
dα(0)

dµ
6= 0,

and
σ (A0)

⋂
iR =

{
λ(0), λ(0)

}
.

(iii) The essential growth bound of {TA0
(t)}t≥0 is strictly negative, that is,

ω0,ess (A0) < 0.

Now we can state the Hopf bifurcation theorem obtained in Liu et al. [11].

Theorem 2.4 Let Assumptions 2.1-2.3 be satisfied. Then there exist ε∗ > 0,
three Ck−1 maps, ε→ µ(ε) from (0, ε∗) into R, ε→ xε from (0, ε∗) into D(A),
and ε → γ (ε) from (0, ε∗) into R, such that for each ε ∈ (0, ε∗) there exists a
γ (ε)-periodic function uε ∈ Ck (R, X0) , which is an integrated solution of (2.1)
with the parameter value equals µ(ε) and the initial value equals xε. So for each
t ≥ 0, uε satisfies

uε(t) = xε +A

∫ t

0

uε(l)dl +

∫ t

0

F (µ(ε), uε(l)) dl.

Moreover, we have the following properties

(i) There exist a neighborhood N of 0 in X0 and an open interval I in R
containing 0, such that for µ̂ ∈ I and any periodic solution û(t) in N
with minimal period γ̂ close to 2π

ω(0) of (2.1) for the parameter value µ̂,

there exists ε ∈ (0, ε∗) such that û(t) = uε(t+ θ) (for some θ ∈ [0, γ (ε))),
µ(ε) = µ̂, and γ (ε) = γ̂.

(ii) The map ε→ µ(ε) is a Ck−1 function and we have the Taylor expansion

µ(ε) =

[ k−2
2 ]∑

n=1

µ2nε
2n +O(εk−1), ∀ε ∈ (0, ε∗) ,

where [k−22 ] is the integer part of k−2
2 .

6



(iii) The period γ (ε) of t→ uε(t) is a Ck−1 function and

γ (ε) =
2π

ω(0)
[1 +

[ k−2
2 ]∑

n=1

γ2nε
2n] +O(εk−1),∀ε ∈ (0, ε∗) ,

where ω(0) is the imaginary part of λ (0) defined in Assumption 2.3.

3 Equilibrium stability and Hopf bifurcation

In this section we investigate the stability and Hopf bifurcation of the age-
structured consumer-resource model (1.1).

3.1 Rescaling time and age

In order to use the parameter τ as a bifurcation parameter (i.e. in order to
obtain a smooth dependency of the system (1.1) with respect to τ) we first
normalize τ in (1.1) by the time-scaling and age-scaling

â =
a

τ
and t̂ =

t

τ

and consider the following distribution

N̂1(t̂) = N1(τ t̂) and N̂2(t̂, â) = τN2(τ t̂, τ â). (3.1)

By dropping the hat notation we obtain, after this change of variable, the new
system

dN1(t)
dt = τN1(t)

[
r +

α12

∫ +∞
0

β(a)N2(t,a)da

γ2+
∫ +∞
0

β(a)N2(t,a)da
− β1

∫ +∞
0

β(a)N2(t, a)da− d1N1(t)
]
,

∂N2(t, a)

∂t
+
∂N2(t, a)

∂a
= −τd2N2(t, a), a ≥ 0,

N2(t, 0) = τ
α21N1(t)

∫ +∞
0

β(a)N2(t,a)da

γ1+N1(t)
,

N1(0) = N10 ≥ 0, N2(0, ·) = N20 ∈ L1 ((0,+∞) ,R) ,
(3.2)

with the new function β(a) defined by

β(a) = β∗1[1,+∞)(a) =

{
β∗, if a ≥ 1
0, otherwise

and ∫ +∞

τ

β∗e−d2ada = R0 ⇔ β∗
e−d2τ

d2
= R0 ⇔ β∗ = R0d2e

d2τ

where τ ≥ 0, β∗ > 0 and 0 < R0 < +∞.
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3.2 The transformation of the Cauchy problem

Consider the Banach space

X = R× R× L1((0,+∞),R)

with ∥∥∥∥∥∥
 α1(

α2

ϕ

) ∥∥∥∥∥∥ = |α1|+ |α2|+ ‖ϕ‖L1((0,+∞),R).

Let δ > 0 be fixed. Define the linear operator L : D(L)→ X by

L

 N1(
0R
N2

)  =

 −δN1(
−N2(0)
−N ′2 − δN2

) 
with

D(L) = R× 0R ×W 1,1((0,+∞),R) 6= X.

Notice that L is non-densely defined since

X0 := D(L) = R× 0R × L1((0,+∞),R). (3.3)

Let F : D(L)→ X be the nonlinear operator defined by

F

 N1(
0R
N2(.)

)  =

 τN1

[
r − d1N1 + α12A2

γ2+A2
− β1A2 + δN1

]
τ α21N1A2

γ1+N1

(−τd2 + δ)N2(.)

 .

where

A2 :=

∫ +∞

0

β(a)N2(a)da.

Then setting

x(t) =

 N1(t)(
0R

N2(t, .)

)  ,

we can rewrite system (3.2) as the following non-densely defined abstract Cauchy
problem 

dx(t)

dt
= Lx(t) + F (x(t)), t ≥ 0,

x(0) =

 N10(
0R
N20

)  ∈ D(L).
(3.4)

The global existence and uniqueness of solutions of system (3.4) follow from the
results of Magal [14] and Magal and Ruan [16].
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3.3 Existence of equilibria

If x(a) =

 N1

0R
N2(a)

 ∈ X0 is an equilibrium of (3.4), we have

 N1

0R
N2(a)

 ∈ D(L) and L

 N1

0R
N2(a)

+ F

 N1

0R
N2(a)

 = 0X ,

which is equivalent to
τN1

[
r +

α12

∫ +∞
0

β(a)N2(a)da

γ2+
∫ +∞
0

β(a)N2(a)da
− β1

∫ +∞
0

β(a)N2(a)da− d1N1

]
τ
α21N1

∫ +∞
0

β(a)N2(a)da

γ1+N1
−N2(0)

−τd2N2(·)−N ′2

 = 0X .

By solving the above equations, we obtain the following lemma.

Lemma 3.1 The system (3.4) has always the equilibria

x1 =

 0R
0R

0L1((0,+∞),R)

 and x2 =

 r
d1
0R

0L1((0,+∞),R)

 .

Furthermore, there exists a unique positive equilibrium of system (3.4)

x(a) =

 N1

0R
N2(a)


with

N1 =
γ1

α21R0 − 1
,

N2(a) =


α21N1τ

( (
α12 − β1γ2 − d1N1 + r

)
+√(

α12 − β1γ2 − d1N1 + r
)2

+ 4β1γ2
(
r − d1N1

) )
2β1

(
γ1 +N1

)
 e−d2τa

if and only if

α21 >
d1γ1 + r

R0r
.
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3.4 The characteristic equation

In order to get the linearized equation around the positive equilibrium x(a), we
make the following change of variable

y(t) := x(t)− x(a).

We obtain 
dy(t)

dt
= Ly(t) + F (y(t) + x(a))− F (x(a)), t ≥ 0,

y(0) =

 N10 −N1

0R
N20 −N2(a)

 =: y0 ∈ D(L).
(3.5)

Therefore the linearized equation of (3.5) around the equilibrium 0 is given by

dy(t)

dt
= Ly(t) +DF (x)y(t) , t ≥ 0, y(0) ∈ X0.

Then (3.5) can be written as

dy(t)

dt
= Ay(t) +H(y(t)), t ≥ 0, (3.6)

where
A = L+DF (x)

is a linear operator and

H(y(t)) = F (y(t) + x)− F (x)−DF (x)y(t),

satisfying H(0) = 0, and DH(0) = 0.
Let

υ := min{δ, τd2}.

Denote
Ω := {λ ∈ C : Re(λ) > −υ}.
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For

 N1(
0R
N2(.)

)  ∈ D(L), we have

DF (x)

 N1(
0R
N2(.)

) 

=

 δ − τd1N1 0 0
τα21γ1

∫ +∞
0

β(a)N2(a)da

(γ1+N1)
2 0 0

0 0 −τd2 + δ


 N1(

0R
N2(.)

) 

+


0 0 τN1

[
α12γ2

(γ2+
∫ +∞
0

β(a)N2(a)da)
2 − β1

]
0 0

τα21N1(γ1+N1)
(γ1+N1)

2

0 0 0


∫ +∞

0

β(a)

 N1(
0R
N2(.)

)  da.

Let

L̂

 N1(
0R
N2

)  :=

 −δN1(
−N2(0)

−N ′2 − τd2N2

) 
and

B

 N1(
0R
N2

)  :=

=

 δ − τd1N1 0 0
τα21γ1

∫ +∞
0

β(a)N2(a)da

(γ1+N1)
2 0 0

0 0 0


 N1(

0R
N2

) 

+


0 0 τN1

[
α12γ2

(γ2+
∫ +∞
0

β(a)N2(a)da)
2 − β1

]
0 0

τα21N1(γ1+N1)
(γ1+N1)

2

0 0 0


∫ +∞

0

β(a)

 N1(
0R
N2

)  da.

Then
A = L+DF (x) = L̂+B

By applying the results of Liu et al. [11], we obtain the following result.

Lemma 3.2 For λ ∈ Ω, λ ∈ ρ(L̂) and

(λI − L̂)−1

 α1(
α2

ψ

)  =

 β(
0
ϕ

) 
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where  α1(
α2

ψ

)  ∈ X,
 β(

0
ϕ

)  ∈ D(L),

β =
α1

λ+ δ

and

ϕ(a) = e−
∫ a
0
(λ+τd2)dlα2 +

∫ a

0

e−
∫ a
s
(λ+τd2)dlψ(s)ds.

Moreover, L̂ is a Hille-Yosida operator, and

‖(λI − L̂)−n‖ ≤ 1

(Re(λ) + υ)n
, ∀ λ with Re(λ) > −υ, ∀ n ≥ 1. (3.7)

Define the part of L̂ in D(L) by L̂0,

L̂0 : D(L̂0) ⊂ X → X.

For x ∈ D(L̂0) = {x ∈ D(L) : L̂x ∈ D(L)}, we have L̂0x = L̂x. Then we get

for

 β(
0
ϕ

)  ∈ D(L̂0),

L̂0

 β(
0
ϕ

)  =

 −δβ(
0
L0ϕ

)  ,

where L0ϕ = −ϕ′ − τd2ϕ with

D(L0) = {ϕ ∈W 1,1((0,+∞),R) : ϕ(0) = 0}.

Since A = L+DF (x) = L̂+B and B : D(L) ⊂ X −→ X is a compact bounded
linear operator. From (3.7), we obtain

‖TL̂0
(t)‖ ≤ e−υt, ∀ t ≥ 0.

Thus we have
ω0,ess(L̂0) ≤ ω0(L̂0) ≤ −υ.

By applying the perturbation results in Thieme [27] or Ducrot, Liu and Magal
[5], we obtain

ω0,ess(A0) ≤ −υ < 0.

Hence we obtain the following proposition.

Proposition 3.3 The linear operator A is a Hille-Yosida operator, and its part
A0 in D(A) satisfies

ω0,ess(A0) < 0.
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Let λ ∈ Ω. Since λI−L̂ is invertible, it follows that λI−
(
L̂+B

)
is invertible

if and only if I−B
(
λI − L̂

)−1
is invertible. Moreover, when I−B

(
λI − L̂

)−1
is invertible we have(

λI − (L̂+B)
)−1

=
(
λI − L̂

)−1 (
I −B(λI − L̂)−1

)−1
.

Consider

(I −B(λI − L̂)−1)

 α1

α2

ψ

 =

 γ1
γ2
ϕ

 .

We have

(
1− δ−τd1N1

λ+δ

)
α1 −

(
τN1

[
α12γ2

(γ2+
∫ +∞
0

β(a)N2(a)da)
2 − β1

] ∫ +∞
0

β(a)e−
∫ a
0
(λ+τd2)dlda

)
α2

= γ1 −
∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlψ(s)dsda,(

1− τ α21N1

γ1+N1

∫ +∞
0

β(a)e−
∫ a
0
(λ+τd2)dlda

)
α2 −

τα21

∫ +∞
0

β(a)N2(a)daγ1

(γ1+N1)
2
(λ+δ)

α1

= γ2 + τ α21N1

γ1+N1

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlψ(s)dsda,

ψ = ϕ.

.

Then we obtain the system ∆(λ)

(
α1

α2

)
=

(
γ1 −

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlψ(s)dsda

γ2 + τα21N1

γ1+N1

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlψ(s)dsda

)
,

ψ = ϕ,

where

∆(λ) =

 1− δ−τd1N1

λ+δ −τN1

(
α12γ2

(γ2+
∫ +∞
0

β(a)N2(a)da)
2

−β1

)∫ +∞
0

β(a)e−(λ+τd2)ada

− τα21γ1
∫ +∞
0

β(a)N2(a)da

(γ1+N1)
2
(λ+δ)

1− τα21N1

γ1+N1

∫ +∞
0

β(a)e−(λ+τd2)ada

 .

(3.8)
Whenever ∆(λ) is invertible, we have(

α1

α2

)
= ∆(λ)−1

(
γ1 −

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlϕ(s)dsda

γ2 + τα21N1

γ1+N1

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlϕ(s)dsda

)
.

From the above discussion, we obtain the following lemma.

Lemma 3.4 The following results hold.

(i) σ(A) ∩ Ω = σP (A) ∩ Ω = {λ ∈ Ω : det(∆(λ)) = 0}.
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(ii) If λ ∈ ρ(A) ∩ Ω, we have the following formula for the resolvent

(λI −A)−1

 γ1
γ2
ϕ

 =

 β(
0
φ

)  , (3.9)

where

β :=
α1

λ+ δ
and φ(a) := e−

∫ a
0
(λ+τd2)dlα2 +

∫ a

0

e−
∫ a
s
(λ+τd2)dlϕ(s)ds

with(
α1

α2

)
:= ∆(λ)−1

(
γ1 −

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlϕ(s)dsda

γ2 + τ α21N1

γ1+N1

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlϕ(s)dsda

)

and ∆(λ) defined in (3.8).

Proof. Assume that λ ∈ Ω and det(∆(λ)) 6= 0. Then I − B(λI − L̂)−1 is
invertible, and

(I −B(λI − L̂)−1)−1

 γ1
γ2
ϕ

 =

 α1

α2

ψ

 ,

where
(
α1

α2

)
= ∆(λ)−1

(
γ1 −

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlϕ(s)dsda

γ2 + τ α21N1

γ1+N1

∫ +∞
0

β(a)
∫ a
0
e−

∫ a
s
(λ+τd2)dlϕ(s)dsda

)
,

ψ = ϕ.

Then we obtain (3.9), and we have {λ ∈ Ω : det(∆(λ)) 6= 0} ⊂ ρ(A) ∩ Ω, and
σ(A) ∩ Ω ⊂ {λ ∈ Ω : det(∆(λ)) = 0}. Assume λ ∈ Ω and det(∆(λ)) = 0. We

claim that we can find

 N1(
0R
N2

)  ∈ D(L) \ {0} such that

(L̂+B)

 N1(
0R
N2

)  = λ

 N1(
0R
N2

)  (3.10)

if and only if we can find

 α1

α2

ψ

 ∈ X \ {0} satisfying

[I −B(λI − L̂)−1]

 α1

α2

ψ

 = 0.
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From the above argument this is equivalent to find

 α1

α2

ψ

 6= 0 satisfying

 ∆(λ)

(
α1

α2

)
= 0,

ψ = 0,

which means that we can find a solution of (3.10) if and only if we can find(
α1

α2

)
6= 0 such that ∆(λ)

(
α1

α2

)
= 0. But by assumption det(∆(λ)) =

0, there exists

(
α1

α2

)
6= 0 such that ∆(λ)

(
α1

α2

)
= 0. So we can find N1(

0R
N2

)  ∈ D(A) \ {0} satisfying (3.10), and λ ∈ σP (A). Hence we have

{λ ∈ Ω : det(∆(λ)) = 0} ⊂ σP (A) and (i) follows.
Under the Assumption 1.1 and the condition α21 >

d1γ1+r
R0r

, it follows from
(3.8) that

det ∆(λ) =
λ2 + τp1λ+ τ2p2 +

(
τ2p3 + τp4λ

)
e−λ

(λ+ δ) (λ+ τd2)
=:

f(λ)

f̂(λ)
= 0,

where

p1 = d2 + d1N1,

p2 = d1N1d2,

p3 = −R0d2α21N1

γ1 +N1

d1N1

−

 α12γ2N1(
γ2 +

∫ +∞
1

β∗N2(a)da
)2 − β1N1

 R0d2γ1α21

∫ +∞
1

β∗N2(a)da(
γ1 +N1

)2 ,

p4 = −R0d2α21N1

γ1 +N1

. (3.11)

Let
λ = τζ.

Then we get

f(λ) = f(τζ) := τ2g(ζ) = τ2
(
ζ2 + p1ζ + p2 + (p3 + p4ζ) e−ζτ

)
.

It is easy to see that

{λ ∈ Ω : det(∆(λ)) = 0} = {τζ ∈ Ω : g(ζ) = 0}.
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3.5 The existence of a Hopf bifurcation

Let ζ = iω (ω > 0) be a purely imaginary root of g(ζ) = 0 . Then we obtain

−ω2 + ip1ω + p2 + p3e
−iωτ + ip4ωe

−iωτ = 0,

where pi(i = 1, 2, 3, 4) are defined in (3.11). Separating the real and imaginary
parts in the above equation, we obtain{

−ω2 + p2 = −p4ω sin(ωτ)− p3 cos(ωτ),
p1ω = p3 sin(ωτ)− p4ω cos(ωτ).

(3.12)

Thus we have (
p2 − ω2

)2
+ (p1ω)

2
= p23 + p24ω

2, (3.13)

i.e.
ω4 + (p21 − 2p2 − p24)ω2 + p22 − p23 = 0. (3.14)

Set σ = ω2, (3.14) becomes

σ2 + (p21 − 2p2 − p24)σ + p22 − p23 = 0. (3.15)

When p22 − p23 < 0, it is easy to know that Eq.(3.15) has only one positive real
root

σ0 =
−(p21 − 2p2 − p24) +

√
(p21 − 2p2 − p24)2 − 4 (p22 − p23)

2
.

So Eq.(3.14) has only one positive real root ω0 =
√
σ0. From (3.12), we know

that g(ζ) = 0 with τ = τk, k = 0, 1, 2, · · · has a pair of purely imaginary roots
±iω0, where

τk=


1

ω0
[2kπ + arccos

(p3 − p1p4)ω2
0 − p2p3

p23 + p24ω
2
0

], if Θ ≥ 0,

1

ω0
[2(k + 1)π − arccos

(p3 − p1p4)ω2
0 − p2p3

p23 + p24ω
2
0

], if Θ < 0
(3.16)

for k = 0, 1, 2, · · · and with

Θ :=
p1p3ω0 + p4ω0(ω2

0 − p2)

p23 + p24ω
2
0

. (3.17)

Lemma 3.5 Let Assumption 1.1 be satisfied. Assume that α21 >
d1γ1+r
R0r

and

p22 − p23 < 0. Then
dg(ζ)

dζ

∣∣∣∣
ζ=iω0

6= 0.

Therefore ζ = iω0 is a simple root of g(ζ) = 0.
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Proof. By the expression of g(ζ) = 0, we have

dg(ζ)

dζ

∣∣∣∣
ζ=iω0

= i2ω0 + p1 + p4e
−iω0τ − p3τe−iω0τ − ip4ω0τe

−iω0τ

and

−
(
2ζ + p1 + p4e

−ζτ − τ (p3 + p4ζ) e−ζτ
) dζ(τ)

dτ
= ζ (p3 + p4ζ) e−ζτ .

Thus if
dg(ζ)

dζ

∣∣∣∣
ζ=iω0

= 0, then

iω0 (p3 + p4iω0) e−iω0τ = 0.

Since ω0 > 0,
p3 + p4iω0 = 0

which implies
p3 = p4 = 0.

However, p4 < 0. Hence
dg(ζ)

dζ

∣∣∣∣
ζ=iω0

6= 0.

This completes the proof.

Lemma 3.6 Let Assumption 1.1 be satisfied. Assume that α21 >
d1γ1+r
R0r

and

p22−p23 < 0. Denote the root ζ(τ) = α(τ)+iω(τ) of g(ζ) = 0 satisfying α(τk) = 0,
ω(τk) = ω0, where τk is defined in (3.16). Then

α′(τk) =
dRe(ζ)

dτ

∣∣∣∣
τ=τk

> 0.

Proof. For convenience, we study
dτ

dζ
instead of

dζ

dτ
. From the expression of

g(ζ) = 0, we obtain

dτ

dζ

∣∣∣∣
ζ=iω0

=

(
−τ
ζ

+
p4

ζ (p3 + p4ζ)
− 2ζ + p1
ζ (ζ2 + p1ζ + p2)

)∣∣∣∣
ζ=iω0

.

By using (3.13), we have

Re
dτ

dζ

∣∣∣∣
ζ=iω0

=
−p24

p23 + p24ω
2
0

+
2ω2

0 +
(
p21 − 2p2

)
p21ω

2
0 + (p2 − ω2

0)2

=
2ω2

0 + p21 − 2p2 − p24
p23 + p24ω

2
0

.
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Since

ω2
0 =
−(p21 − 2p2 − p24) +

√
(p24 − p21 + 2p2)

2 − 4 (p22 − p23)

2
,

we obtain

sign
(dRe(ζ)

dτ

∣∣∣∣
τ=τk

)
= sign

(
Re
(dτ
dζ

∣∣∣∣
ζ=iω0

))
= sign

(
2ω2

0 + p21 − 2p2 − p24
p23 + p24ω

2
0

)
> 0.

The lemma is proven.
From the above discussion about g(ζ) = 0, we know that for any k ∈ N0,

there exists τk such that the characteristic equation has two simple complex
roots λ(τ) = τζ(τ) = τα(τ)± iτω(τ) that cross the imaginary axis transversely
at τ = τk :

τkα(τk) = 0, τkω(τk) = τkω0,

sign
(dRe(λ)

dτ

∣∣∣∣
τ=τk

)
= Reζ(τ)|τ=τk + τ

∣∣∣∣dRe(ζ)

dτ

∣∣∣∣
τ=τk

> 0.

Summarizing the above results, we obtain the following conclusion.

Lemma 3.7 Let Assumption 1.1 be satisfied. Assume that α21 >
d1γ1+r
R0r

, then
there exists a unique positive equilibrium for system (1.1) given by

N1 =
γ1

α21R0 − 1
, N2(a) = N2(0)e−d2a

with

N2(0) :=

(
α21N1

( (
α12 − β1γ2 − d1N1 + r

)
+
√

∆
)

2β1
(
γ1 +N1

) )
and

∆ :=
(
α12 − β1γ2 − d1N1 + r

)2
+ 4β1γ2

(
r − d1N1

)
.

Assume in addition that

p1 + p4 > 0, p2 + p3 > 0 and p2 − p3 < 0,

where pi(i = 1, 2, 3, 4) are defined in (3.11). Then we have the following alter-
natives:

(i) If τ ∈ [0, τ0) then the positive equilibrium of (1.1) is asymptotically stable.

(ii) If τ > τ0, the positive equilibrium of (1.1) is unstable.

By Theorem 2.4, the above results can be summarized as the following Hopf
bifurcation theorem for system (1.1).
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Theorem 3.8 Let Assumption 1.1 be satisfied. Assume that α21 > d1γ1+r
R0r

and p22 − p23 < 0. Then there exists a sequence {τk}k≥0 ⊂ (0,+∞) (defined
by (3.16)), such that the consumer-resource interaction model (1.1) undergoes a
Hopf bifurcation at the positive equilibrium (N1, N2) whenever τ passes through
τk. In particular, when τ = τk, a non-trivial periodic orbit bifurcates from the
positive equilibrium (N1, N2).

We would like to mention that the stability of the bifurcated periodic so-
lutions can be determined by using the normal form theory developed in our
recent work Liu et al. [12].

4 Numerical Simulations and Discussions

Recently, Wang and DeAngelis [29] considered a specific uni-directional consumer-
resource mutualism model in which the consumer species has both positive and
negative effects on the resource species, while the resource has only a positive
effect on the consumer, such as a predator-prey system in which the prey is able
to kill or consume predator eggs or larvae.

In this article we generalized the ODE model of (2.1) of Wang and DeAngelis
[29] to an age-structured model coupled by an ODE and a PDE, which describes
uni-directional consumer-resource mutualism interactions with one species act-
ing as a consumer and the other as a material and/or energy resource. Examples
of such uni-directional consumer-resource mutualisms include the predator-prey
systems in which the prey is able to kill or consume predator eggs or larvae, and
the insect pollinator and the host plant relationship in which the plants provide
food, seeds, nectar and other resources for the pollinators while the pollinators
have both positive and negative effects on the plants. By carrying out local
analysis and bifurcation analysis of the model, we discussed the stability of the
positive equilibrium and found that under some conditions a non-trivial periodic
solution through Hopf bifurcation appears when the maturation period of the
consumer species τ passes through critical values τ = τk.

In the following, we provide some numerical simulations to illustrate the
stability of the positive equilibrium and the existence of a Hopf bifurcation for
system (1.1).

In the following, we choose parameters r = 4, α21 = α12 = β1 = d1 = 0.5,
d2 = 1.0, γ1 = γ2 = 0.5, and

β(a) :=

{
3d2e

d2τ , if a ≥ τ,
0, if a ∈ (0, τ).

(4.1)

With these parameters value we obtain numerically that τ0 is approximately
equal to 12.55. Under the same initial values

N1(0) = 1, N2(0, a) = 5e−0.2a,

we choose τ = 10 in Figure 1 and τ = 50 in Figure 2, respectively, and obtain
graphs N1(t) and N2(t, a) by using Matlab.
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Figure 1: Numerical simulations of system (1.1) with τ = 10. (a) Time series

of N1(t) (blue curve) and
∫ +∞
0

N2(t, a)da (green curve) which converge to their
equilibrium values. (b) The age distribution and time series of N2(t, a).
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Figure 2: Numerical simulations of system (1.1) with τ = 50. (a) Time series

of N1(t) (blue curve) and
∫ +∞
0

N2(t, a)da (green curve) which are oscillatory
about their equilibrium values. (b) The age distribution of N2(t, a) which is
periodic in time. 21



Fig. 1 and 2 demonstrate that the positive equilibrium (N1, N2) of system
(1.1) is asymptotically stable when the maturation period is less than its first
critical value and system (1.1) undergoes a Hopf bifurcation and a non-trivial
periodic solution bifurcates from the positive equilibrium when the maturation
period passes through the critical value. Notice that the ordinary differential
equation version of model (1.1) does not exhibit oscillatory behavior (Wang
and DeAngelis [29]). It is well-known that periodic oscillations via limit cycles
are common in predator-prey systems (May [19]). The existence of periodic
solutions in system (1.1) via bifurcation demonstrates that the age-structured
models has more dynamic possibilities than the unstructured model. It is shown
that both consume and resource species are more likely to coexist in oscillatory
modes when the maturation period of the consumer species is long enough.

It has been observed that Hopf bifurcation occurs in age-structured mod-
els (see Cushing [3], Magal and Ruan [17], and the references cited therein).
Recently, by re-writing age-structured systems as nondensely defined Cauchy
problems, we established a Hopf bifurcation theorem for a general class of age-
structured models (Liu et al. [11]). Due to the complexity of analysis and
computations, applications of this general Hopf bifurcation theorem mainly
focus on single species age-structured models. In this article we applied the
techniques and results to a uni-directional consume-resource mutualism model
coupled of one ordinary differential equation and one age-structured equation.
We would like to point out that, due to the form of the age-dependent matu-
ration function β(a), system (1.1) could be handled by reducing it to a system
of delay differential equations. Nevertheless, we would like to use our recent
results and techniques to treat this model in the age-structured model setting
and believe that similar results hold for more general forms of age-dependent
maturation functions. Moreover, such a model structure is similar to the classi-
cal predator-prey interaction systems, but is different. The nonlinear dynamics
of age-structured predator-prey population models have been studied by many
researchers, see for example, Cushing [2, 3], Cushing and Saleem [4], Gurtin
and Levine [6], Levine [9], Li [10], Saleem [25], and Venturino [28], and various
interesting asymptotical behaviors including bifurcation have been observed. It
will be very interesting to apply the general Hopf bifurcation theorem in Liu
et al. [11] to study Hopf bifurcations in predator-prey population models when
both predator and prey species are age-structured.

Acknowledgement. We thank the reviewers for their valuable comments
and suggestions which helped us to improve the presentation of the paper..
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