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Abstract

At the beginning of a COVID-19 infection, there is a period of time known as the exposed or latency
period, before an infected person is capable of transmitting the infection to another person. We develop
two differential equations models to account for this period. The first is a model that incorporates
infected persons in the exposed class, before transmission is possible. The second is a model that
incorporates a time delay in infected persons, before transmission is possible. We apply both models to
the COVID-19 epidemic in China. We estimate the epidemiological parameters in the models, such as
the transmission rate and the basic reproductive number, using data of reported cases. We thus evaluate
the role of the exposed or latency period in the dynamics of a COVID-19 epidemic.

Keywords: corona virus, reported and unreported cases, isolation, quarantine, public closings; epidemic
mathematical model

1 Introduction
In [3] it is reported that transmission of COVID-19 infection may occur from an infectious individual,

who is not yet symptomatic. In [12] it is reported that COVID-19 infected individuals generally develop
symptoms, including mild respiratory symptoms and fever, on an average of 5-6 days after infection (mean
5-6 days, range 1-14 days) . In [13] it is reported that the median time prior to symptom onset is 3 days,
the shortest 1 day, and the longest 24 days. It is evident that these time periods play an important role in
understanding COVID-19 transmission dynamics.

In this work, we will examine the latency period of COVID-19 infection, that is, the period of time in
which newly infected individuals are asymptomatic and noninfectious. We illustrate the latency period in
Figure 1 below:
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Figure 1: Key time periods of COVID-19 infection. The latent or exposed period before symptoms and trans-
missibility, the incubation period before symptoms appear, the symptomatic period, and the transmissibility
period, which may overlay the asymptomatic period.

In the present article we develop two mathematical models to study the impact of the latency period.
One is a ODE (ordinary differential equations) model, with an exposed class of infected individuals, who
are not yet infectious. The other is a DDE (delay differential equations) model, with a time delay in newly
infected individuals, before they become infectious. The DDE model can be derived from a continuous age
of infection model, which can be reduced to a system of DDE. The derivation of such models is described
in [7]. We refer to [9, 13] for early models with exposure applied to COVID-19.

As mentioned in [5], asymptomatic infectious cases are not usually reported to medical authorities,
and reported infectious cases are typically only a fraction of the total number of the symptomatic infectious
individuals. In this work, we examine the number of asymptomatic infectious cases and unreported infectious
cases, as well as the number of reported infectious cases, for the COVID epidemic in mainland China. We
note that public measures in China, beginning January 26, strongly attenuated the epidemic. One of our
objectives is to understand how these measures, such as isolation, quarantine, and public closings, reduce
the final size of the epidemic. We examine how the latency period, tied contact tracing and to a 14-day
medical observation or quarantine period for exposed persons, mitigates the final size of the epidemic.

2 Models

2.1 Model with a compartment E of exposed infected individuals not yet in-
fectious

This model has a compartment in the system of ODE that corresponds to exposed or latent infected
individuals. We will designate this model as the SEIRU model:

S′(t) = −τ(t)S(t)[I(t) + U(t)],

E′(t) = τ(t)S(t)[I(t) + U(t)]− αE(t)

I ′(t) = αE(t)− νI(t)
R′(t) = ν1I(t)− ηR(t)
U ′(t) = ν2I(t)− ηU(t).

(2.1)

Here t ≥ t0 is time in days, t0 is the beginning date of the epidemic, S(t) is the number of individuals
susceptible to infection at time t, E(t) is the number of asymptomatic noninfectious individuals at time t,
I(t) is the number of asymptomatic but infectious individuals at time t, R(t) is the number of reported
symptomatic infectious individuals at time t, and U(t) is the number of unreported symptomatic infectious
individuals at time t. This system is supplemented by initial data

S(t0) = S0 > 0, E(t0) = E0 > 0, I(t0) = I0 > 0, U(t0) = U0 > 0, R(t0) = R0 = 0. (2.2)

The exit flux of the exposed class E is describe by the term −αE(t). The means that the time of
exposure follows an exponential law, and the average value of the exposure time is 1/α, which can be, for
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example, 6 hours, 12 hours, 1 day, 2 days, 3 days, etc.... The model contains an asymptomatic infectious class
corresponding to the I(t)-equation. The dynamics of the symptomatic infectious individuals are decomposed
into the R(t)-equation, which corresponds to the reported symptomatic infectious individuals (symptomatic
infectious with severe symptoms), and the U(t)-equation, which corresponds to the unreported symptomatic
infectious individuals (symptomatic infectious with mild symptoms). The flux of individuals leaving the
class I is νI(t). We assume that a fraction f are reported and a fraction 1 − f are unreported. Thus,
ν1 = fν and ν2 = (1− f)ν.

The time-dependent parameter τ(t) is the transmission rate. During the early phase of the epidemic,
when the cumulative number of reported cases grows approximately exponential, τ(t) is a constant value
τ0. After January 23, strong government measures in all of China, such as isolation, quarantine, and public
closings, strongly impacted the transmission of new cases. The actual effects of these measures were complex,
and we use a time-dependent exponentially decreasing transmission rate τ(t) to incorporate these effects
after the early exponentially increasing phase. The formula for τ(t) during the exponential decreasing phase
is derived by a fitting procedure to the data:{

τ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−µ× (t−N)) , N < t.
(2.3)

Day N corresponds to the day when the public measures take effect, and µ is the rate at which they take
effect. A schematic diagram of the model is given in Figure 2, and the parameters of the model are listed
in Table 1 below.
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Figure 2: Flow chart for the model SEIRU.

Symbol Interpretation Method
t0 Time at which the epidemic started fitted
S0 Number of susceptible at time t0 fixed
E0 Number of asymptomatic and noninfectious at time t0 fitted
I0 Number of asymptomatic but infectious at time t0 fitted
U0 Number of unreported symptomatic infectious at time t0 fitted
τ(t) Transmission rate fitted
N First day of the public interventions fitted
µ Intensity of the public interventions fitted

1/α average duration of the exposed noninfectious period fitted
1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fitted
ν2 = (1− f) ν Rate at which asymptomatic infectious become unreported symptomatic fitted

1/η Average time symptomatic infectious have symptoms fixed

Table 1: Parameters and initial conditions of the model SEIRU.
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2.2 Model with a constant time delay δ in the I class equation
This model has a time delay δ in the I(t) equation in the system of DDE that contains the latency

period. We will designate this model as the SEIRUδ model:
S′(t) = −τ(t)S(t)[I(t) + U(t)],

I ′(t) = τ(t− δ)S(t− δ)[I(t− δ) + U(t− δ)]− νI(t)
R′(t) = ν1I(t)− ηR(t)
U ′(t) = ν2I(t)− ηU(t).

(2.4)

This system is supplemented by initial data

S(t0 + θ) = S0(θ) > 0, I(t0 + θ) = I0(θ) > 0, U(t0 + θ) = U0(θ) > 0,∀θ ∈ [−δ, 0], and R(t0) = 0. (2.5)

In the model SEIRUδ, the duration of exposure is constant and equal to δ. The exposed class is given by
the integral formula

E(t) =

∫ t

t−δ
τ(σ)S(σ)[I(σ) + U(σ)]dσ. (2.6)

or alternatively, by using the differential equation

E′(t) = τ(t)S(t)[I(t) + U(t)]− τ(t− δ)S(t− δ)[I(t− δ) + U(t− δ)]. (2.7)

E(t) can be decoupled from the equations in the DDE system SEIRUδ, since it can be obtained from S(t),
I(t), and U(t). The parameters and initial conditions of the SEIRUδ model are given in Table 1, and a
schematic diagram of the model is given in Figure 3.
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Figure 3: Flow chart for the model SEIRUδ.

2.3 Data for the COVID-19 epidemic in China
In our simulations of models SEIRU and SEIRUδ for COVID-19 in mainland China, we will use the

following data:
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January
19 20 21 22 23 24 25
198 291 440 571 830 1287 1975

26 27 28 29 30 31
2744 4515 5974 7711 9692 11791

February
1 2 3 4 5 6 7
14380 17205 20438 24324 28018 31161 34546

8 9 10 11 12 13 14
37198 40171 42638 44653 46472 48467 49970

15 16 17 18 19 20 21
51091 70548− 17409 72436− 17409 74185− 17409 75002− 17409 75891− 17409 76288− 17409

22 23 24 25 26 27 28
76936− 17409 77150− 17409 77658− 17409 78064− 17409 78497− 17409 78824− 17409 79251− 17409

29
79824− 17409

March
1 2 3 4 5 6 7
80026− 17409 80151− 17409 80270− 17409 80409− 17409 80552− 17409 80651− 17409 80695− 17409

8 9 10 11 12 13 14
80735− 17409 80754− 17409 80778− 17409 80793− 17409 80813− 17409 80824− 17409 80844− 17409

15 16 17 18
80860− 17409 80881− 17409 80894− 17409 80928− 17409

Table 2: Cumulative daily reported case data from January 19, 2020 to March 18, 2020, reported for
mainland China by the National Health Commission of the People’s Republic of China and the Chinese
CDC [1]. The data corresponds to cumulative reported cases confirmed by testing.

3 Estimation of the parameters and initial conditions
The parameters τ , ν, ν1, ν2, η, α, δ, as well as the starting time t0 and the initial conditions S(t0),

E(t0), I(t0), U(t0), are uncertain. Our objective is to identify them from specific time data of reported
symptomatic infectious cases. To identify the unreported asymptomatic infectious cases, we assume that
the cumulative reported symptomatic infectious cases at time t consist of a constant fraction f of the total
number of symptomatic infectious cases at time t. In other words, we assume that the removal rate ν of
infectious asymptomatic cases I(t) takes the following form: ν = ν1 + ν2, where ν1 = fν is the removal
rate of reported symptomatic infectious individuals, and ν2 = (1 − f)ν is the removal rate of unreported
symptomatic infectious individuals due to all causes. The cumulative number of reported symptomatic
infectious cases at time t, denoted by CR(t), is

CR(t) = ν1

t∫
t0

I(s)ds. (3.1)

Our method is the following: We assume that CR(t) has the following form when the epidemic is in the
early exponentially growing phase:

CR(t) = χ1 exp (χ2t)− χ3. (3.2)

We evaluate χ1, χ2, χ3 using the reported cases data. By using the method in Section 6.1 (Supplementary
material), we estimate the starting time t0 for the models from

CR(t0) = 0⇔ χ1exp (χ2t0)− χ3 = 0 ⇒ t0 =
1

χ2

(
ln (χ3)− ln (χ1)

)
.

We fix S0 = 1.40005× 109, which corresponds to the total population of mainland China. We assume that
the variation in S(t) is small during this exponentially growing phase. We fix ν, η, f, α. We assume that
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the transmission rate τ(t) ≡ τ0 is constant during this exponentially growing phase. We identify τ0 from
χ1, χ2, χ3 for each of the models SEIRU and SEIRUδ.

3.1 Parameters and initial conditions for model SEIRU
We fix the fraction f = 0.8 of symptomatic infectious cases that are reported. Thus, 80% of infectious

cases are reported. We assume 1/ν, the average time during which the patients are asymptomatic infectious
is 5 days or 7 days. We assume that 1/η, the average time during which a patient is symptomatic infectious,
is 7 days. Since f is known, we obtain

ν1 = f ν = 0.8/5 (or 0.8/7) and ν2 = (1− f) ν = 0.2/5 (or 0.2/7). (3.3)

From Section 6.1 (Supplementary material), we obtain

E0 =
χ2 + ν

α
I0, U0 =

ν2
χ2 + η

I0,

τ0 =
(χ2 + α)E0

S0[I0 + U0]
=

(χ2 + ν)(χ2 + α)(χ2 + η)

αS0(χ2 + η + ν2)
. (3.4)

From Section 6.2 (Supplementary material), we obtain basic reproductive number R0 for model SEIRU

R0 =
(χ2 + ν)(χ2 + α)(χ2 + η)

αν(χ2 + η + ν2)

(
1 +

(1− f) ν
η

)
.

3.2 Parameters and initial conditions for model SEIRUδ
The values of f , ν, and η are the same as for model SEIRU. From Section 6.3 (Supplementary material),

we obtain
S(t0 + θ) = S0(θ) = S0, θ ∈ [−δ, 0], (3.5)

I(t0 + θ) = I0(θ) =
χ3χ2

f ν
eχ2θ, θ ∈ [−δ, 0], (3.6)

U0(t0 + θ) = U0(θ) =
(1− f)ν
η + χ2

I0(θ), θ ∈ [−δ, 0] (3.7)

and
τ0 =

χ2 + ν

S0

η + χ2

ν2 + η + χ2
eχ2δ. (3.8)

From Section 6.4 (Supplementary material), we obtain the basic reproductive numberR0 for model SEIRUδ

R0 =
τ0S0

ν

(
1 +

ν2
η

)
=
χ2 + ν

ν

η + χ2

ν2 + η + χ2
eχ2δ

(
1 +

(1− f) ν
η

)
.

4 Comparisons of the models with the data
We use the data from Table 2 to numerically simulate models SEIRU and SEIRUδ.

4.1 Comparison of model SEIRU with data
In Figures 4 and 5, we plot the graphs of CR(t), CU(t), R(t), and U(t) from the numerical simulation

of model SEIRU. We use χ1 = 0.2254, χ2 = 0.3762, χ3 = 1, f = 0.8, η = 1/7, t0 = 3.9607, and
S0 = 1400050000 in both Figures 4 and 5. We take ν = 1/5 in Figure 4 and ν = 1/7 in Figure 5 . We take
four different values for α: 1/4, 1/2, 1, 3 in both Figure 4 and Figure 5. The value of µ is chosen so that
the simulations align with the cumulative reported case data. In this way, we are able to predict the future
values of the epidemic from early cumulative reported case data. We see from the simulations the following:
for Figure 4, with ν = 1/5, the simulations are almost the same; for Figure 5, with ν = 1/7, the simulations
are almost the same.
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Figure 4: Graphs of the reported cumulated symptomatic infectious individuals t→ CR(t) (black solid line),
unreported cumulated symptomatic infectious individuals t→ CU(t) (green solid line), t→ U(t) (blue solid
line), and t → R(t) (red solid line). The red dots are the data of the reported cumulated confirmed cases
for mainland China in Table 2. We use χ1 = 0.2254, χ2 = 0.3762, χ3 = 1, f = 0.8, η = 1/7, ν = 1/5,
t0 = 3.9607, and S0 = 1400050000. (a) µ = 0.1276, 1/α = 6 hours. (b) µ = 0.142, 1/α = 12 hours. (c)
µ = 0.166, 1/α = 1 day. (d) µ = 0.25, 1/α = 3 days.
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Figure 5: Graphs of the reported cumulated symptomatic infectious individuals t→ CR(t) (black solid line),
unreported cumulated symptomatic infectious individuals t→ CU(t) (green solid line), t→ U(t) (blue solid
line), and t → R(t) (red solid line). The red dots are the data of the reported cumulated confirmed cases
for mainland China in Table 2. We use χ1 = 0.2254, χ2 = 0.3762, χ3 = 1, f = 0.8, η = 1/7, ν = 1/7,
t0 = 3.9607, and S0 = 1400050000. (a) µ = 0.1539, 1/α = 6 hours. (b) µ = 0.169, 1/α = 12 hours. (c)
µ = 0.198, 1/α = 1 day. (d) µ = 0.3, 1/α = 3 days.
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4.2 Comparison of model SEIRUδ with data
In Figures 6 and 7, we plot the graphs of CR(t), CU(t), R(t), and U(t) from the numerical simulation

of model SEIRUδ. We use χ1 = 0.2254, χ2 = 0.3762, χ3 = 1, f = 0.8, η = 1/7, t0 = 3.9607, and
S0 = 1, 400, 050, 000 in both Figures 6 and 7. We take ν = 1/5 in Figure 6 and ν = 1/7 in Figure 7. We take
four different values for δ: 1/4, 1/2, 1, 3 in both Figure 6 and Figure 7. The value of µ is chosen so that
the simulations align with the cumulative reported case data. In this way, we are able to predict the future
values of the epidemic from early cumulative reported case data. We see from the simulations the following:
for Figure 6, with ν = 1/5, the simulation for δ = 1/4 is almost the same as δ = 1/2, the simulations for
δ = 1 and δ = 3 do not agree with the data, and thus, δ cannot be greater than 5 days; for Figure 7, with
ν = 1/7, the simulations for δ = 1/4, δ = 1/4, and δ = 1 are almost the same and for δ = 3, the simulation
does not agree with the data, and thus, δ cannot be greater than 7 days.
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Figure 6: Graphs of the reported cumulated symptomatic infectious individuals t→ CR(t) (black solid line),
unreported cumulated symptomatic infectious individuals t→ CU(t) (green solid line), t→ U(t) (blue solid
line), and t → R(t) (red solid line). The red dots are the data of the reported cumulated confirmed cases
for mainland China in Table 2. We use χ1 = 0.2254, χ2 = 0.3762, χ3 = 1, f = 0.8, η = 1/7, ν = 1/5,
t0 = 3.9607, and S0 = 1400050000. (a) µ = 0.1273, δ = 1/4. (b) µ = 0.1432, δ = 1/2. (c) µ = 0.177, δ = 1.
(d) µ = 0.373, δ = 3.
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Figure 7: Graphs of the reported cumulated symptomatic infectious individuals t→ CR(t) (black solid line),
unreported cumulated symptomatic infectious individuals t→ CU(t) (green solid line), t→ U(t) (blue solid
line), and t → R(t) (red solid line). The red dots are the data of the reported cumulated confirmed cases
for mainland China in Table 2. We use χ1 = 0.2254, χ2 = 0.3762, χ3 = 1, f = 0.8, η = 1/7, ν = 1/7,
t0 = 3.9607, and S0 = 1400050000. (a) µ = 0.1515, δ = 1/4 day. (b) µ = 0.17, δ = 1/2 day. (c)
µ = 0.2093, δ = 1 day. (d) µ = 0.454, δ = 3 days.

5 Discussion
We have developed two models SEIRU and SEIRUδ of the COVID-19 epidemic in China that incor-

porate key features of this epidemic: (1) the importance of implementation of major government public
restrictions designed to mitigate the severity of the epidemic; (2) the importance of both reported and
unreported cases in interpreting the number of reported cases; and (3) the importance of asymptomatic
infectious cases in the disease transmission. The main difference from our previous papers [5] and [6] is that
we consider a latency period in the two models. In model SEIRU, an exposed class E is used to model
latency. Newly infected individuals enter the class E, where they are neither symptomatic nor infectious.
From this exposed class, noninfectious asymptomatic individuals enter an infectious asymptomatic class I.
From I, asymptomatic infectious individuals enter a class R or U where they are symptomatic infectious,
and later are reported R or unreported U . In model SEIRUδ a time delay is used to model latency. Newly
infected individuals enter the class I after a fixed time delay δ, and then proceed through classes R and U .

In order to compare the models SEIRU and SEIRUδ, we use the Median of Absolute Deviation (MAD)
as an indicator:

MAD = median(CR− CRData), (5.1)

where CRData is the vector of the cumulative number of reported cases from Table 2, while CR is the vector
of predicted cumulative number of reported cases of the model. The following table summaries the MAD
of models SEIRU and SEIRUδ:
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ODE DDE
Figure MADODE Figure MADDDE

Figure 4 (a) 1717 Figure 6 (a) 662
Figure 4 (b) 1251 Figure 6 (b) 796
Figure 4 (c) 1899 Figure 6 (c) 1095
Figure 4 (d) 1485 Figure 6 (d) 1967
Figure 5 (a) 893 Figure 7 (a) 178
Figure 5 (b) 572 Figure 7 (b) 485
Figure 5 (c) 754 Figure 7 (c) 585
Figure 5 (d) 713 Figure 7 (d) 852

Table 3: Table of the Median Absolute Deviation of model SEIRU and SEIRUδ.

From Table 3, it is evident that Figure 5(b) is the best fit for model SEIRU (which corresponds to
1/α = 12 hours) and Figure 7(a) is the best fit for model SEIRUδ (which corresponds to δ = 6 hours).
This mean that for both models, ν = 1/7 is better than ν = 1/5. Furthermore, Table 3 also indicates
that model SEIRUδ gives a better prediction than model SEIRU. We also deduce that the best exposure
period varies between 6 hours for model SEIRUδ and 12 hours for model SEIRU. Our finding is consistent
with Zou [14] where the high viral load observed for COVID-19 was used to explain that the transmission
can occur at the early stage of the infection. This gives an explanation for the very short exposure period
which give the best fit with data here. This also justifies the fact that in our previous articles [5, 6, 8] we
neglected the exposure period.

We summarize in the following tables the predicted turning point and final size, respectively, for models
SEIRU and SEIRUδ.

Figure Final Final size Final size Turning point Turning point
size Reported Unreported of R(t), U(t) of I(t)

Figure 4 (a) 79346 63477 15869 day 39.4 day 33.9
Figure 4 (b) 78241 62593 15648 day 39.0 day 33.7
Figure 4 (c) 79036 63229 15807 day 38.9 day 33.6
Figure 4 (d) 78363 62691 15672 day 38.8 day 33.4
Figure 5 (a) 78688 62950 15738 day 39.4 day 33.6
Figure 5 (b) 79097 63278 15819 day 39.2 day 33.5
Figure 5 (c) 78754 63003 15751 day 38.9 day 33.3
Figure 5 (d) 78805 63044 15761 day 38.9 day 33.1

Table 4: Predicted turning point and final size of the ODE model SEIRU. The turning point for I(t) U(t)
and R(t) is the time t at which these functions reach a maximum.

Figure Final Final size Final size Turning point Turning point
size Reported Unreported of R(t), U(t) of I(t)

Figure 6 (a) 78633 62907 15728 day 39.4 day 33.9
Figure 6 (b) 78562 62850 15712 day 39.1 day 33.7
Figure 6 (c) 78590 62872 15718 day 38.6 day 33.4
Figure 6 (d) 79011 63209 15802 day 37.1 day 32.3
Figure 7 (a) 80043 64035 16008 day 39.6 day 33.8
Figure 7 (b) 79139 63312 15827 day 39.3 day 33.5
Figure 7 (c) 78934 63147 15787 day 38.7 day 33.1
Figure 7 (d) 78839 63071 15768 day 37.0 day 33.8

Table 5: Predicted turning point and final size of the DDE model SEIRUδ. The turning point for I(t) U(t)
and R(t) is the time t at which these functions reach a maximum.

For our model without latency in [6], the turning point of the asymptomatic infectious cases I(t) is
approximately day 35 = February 4. The turning point of the reported cases R(t) and the unreported
cases U(t) is approximately day 41 = February 10, and the final size of cumulative cases is approximately
79,400 with approximately 63,500 reported, 15,900 unreported. For the ODE model SEIRU, Figure 5 (b)
(the best one according to MAD) predicts a turning point of the asymptomatic infectious cases I(t) at
approximately day 34 = February 3. The turning point of the reported cases R(t) and the unreported cases
U(t) is approximately day 39 = February 8, and the final size of cumulative cases is approximately 63,278
reported, 15,819 unreported. For the DDE model SEIRUδ, Figure 7 (a) (the best one according to MAD)
predicts a turning point of the asymptomatic infectious cases I(t) at approximately day 34 = February 3.
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The turning point of the reported cases R(t) and the unreported cases U(t) is approximately day 40 =
February 9, and the final size of cumulative cases is approximately 64,035 reported 16,008 unreported.

Our analysis of the latency period for the COVID-19 epidemic in mainland China is applicable to
COVID-19 epidemics in other regions.

6 Supplementary material
The part is devoted to the parameters estimation’s of the models by assuming the reported cases data

are exponentially growing. We assume that this exponential phase occurs before any public intervention.
Therefore we assume that

τ(t) = τ0

for both SEIRU and SEIRUδ models.

6.1 Method to estimate the parameters and initial conditions of SEIRU from
the number of reported cases

In the following we fix f, ν, η, α.

Step 1: Since f , α, η and ν are fixed, we know that

ν1 = fν and ν2 = (1− f) ν.

Step 2: By using equation (3.1) and (3.2) we obtain

CR′(t) = ν1I(t)⇔ χ1χ2exp (χ2t) = ν1I(t) (6.1)

and
exp (χ2t)

exp (χ2t0)
=

I(t)

I(t0)
,

and therefore
I(t) = I0exp (χ2 (t− t0)) . (6.2)

Moreover by using (6.2) at t = t0

I0 =
χ1χ2exp (χ2t0)

f ν
=
χ3χ2

f ν
. (6.3)

Step 3: In order to evaluated the parameters of the model we replace S(t) by S0 = 1.40005 × 109 in the
right-hand side of (2.1) (which is equivalent to neglecting the variation of susceptibles due to the epidemic,
which is consistent with the fact that t → CR(t) grows exponentially). Therefore, it remains to estimate
τ0, E0, and U0 in the following system: E′(t) = τ0S0[I(t) + U(t)]− αE(t)

I ′(t) = αE(t)− νI(t)
U ′(t) = ν2I(t)− ηU(t).

(6.4)

By using the second equation we obtain

E(t) =
1

α
[I ′(t) + νI(t)] ,

and therefore by using (6.2) we must have

I(t) = I0 exp (χ2 (t− t0)) and E(t) = E0 exp (χ2 (t− t0)) .

Then, by using the first equation we obtain

U(t) =
1

τ0S0
[E′(t) + αE(t)]− I(t)

and then
U(t) = U0 exp (χ2 (t− t0)) .

By substituting these expressions into (6.4), we obtain χ2E0 = τ0S0[I0 + U0]− αE0

χ2I0 = αE0 − νI0
χ2U0 = ν2I0 − ηU0.

(6.5)
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Remark 6.1 Here we fix τ0 in such a way that the value χ2 becomes the dominant eigenvalue of the
linearized equation (6.5), and (E0, I0, U0) is the positve eigenvector associated to this dominant eigenvalue
χ2. Thus, we apply implicitly the Perron-Frobenius theorem. Moreover the exponentially growing solution
(E(t), I(t), U(t)) that we consider (which is starting very close to (0, 0, 0)) follows the direction of the positive
eigenvector associated with the dominant eigenvalue χ2.

From the second and third equations of (6.5) we obtain

E0 =
χ2 + ν

α
I0, U0 =

ν2
χ2 + η

I0,

and by substituting these expressions into the first equation of (6.5) we obtain

τ0 =
(χ2 + α)E0

S0[I0 + U0]
=

(χ2 + ν)(χ2 + α)(χ2 + η)

αS0(χ2 + η + ν2)
. (6.6)

6.2 Computation of the basic reproductive number R0 of model SEIRU
In this section we apply results in Diekmann, Heesterbeek and Metz [2] and Van den Driessche and

Watmough [11]. The linearized equation of the infectious part of the system is given by
E′(t) = τS0[I(t) + U(t)]− αE(t)

U ′(t) = ν2I(t)− ηU(t).

I ′(t) = αE(t)− νI(t)
(6.7)

The corresponding matrix is

A =

 −α τS0 τS0

0 −η ν2
α 0 −ν


and the matrix A can be rewritten as

A = V − S

where

V =

 0 τS0 τS0

0 0 ν2
α 0 0

 and S =

 α 0 0
0 η 0
0 0 ν

 .
Therefore, the next generation matrix is

V S−1 =

 0 τS0

η
τS0

ν

0 0 ν2
ν

1 0 0


and we obtain that

R0 =
τS0

ν

(
1 +

ν2
η

)
. (6.8)

By using (6.6) we obtain

R0 =
(χ2 + ν)(χ2 + α)(χ2 + η)

αS0(χ2 + η + ν2)

S0

ν

(
1 +

ν2
η

)
and by using ν2 = (1− f) ν we obtain

R0 =
(χ2 + ν)(χ2 + α)(χ2 + η)

αν(χ2 + η + ν2)

(
1 +

(1− f) ν
η

)
. (6.9)

6.3 Method to estimate the parameters of model SEIRUδ from the number of
reported cases

Step 1: We have
ν1 = fν and ν2 = (1− f) ν.

Step 2: By using equation (3.2) we obtain

CR′(t) = ν1I(t)⇔ χ1χ2exp (χ2t) = ν1I(t) (6.10)
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and
exp (χ2t)

exp (χ2t0)
=

I(t)

I(t0)
,

and therefore
I(t) = I(t0)exp (χ2 (t− t0)) . (6.11)

Moreover, by using (6.10) at t = t0,

I(t0) =
χ1χ2exp (χ2t0)

f ν
=
χ3χ2

f ν
, U(t0) =

ν2
χ2 + η

I0. (6.12)

Step 3: In order to evaluate the parameters of the model SEIRUδ, we replace S(t) by S0 = 1.40005× 109

in the right-hand side of (2.4) (which is equivalent to neglecting the variation of susceptibles due to the
epidemic, and is consistent with the fact that t → CR(t) grows exponentially). Therefore, it remains to
estimate τ0 and η in the following system:{

I ′(t) = τS0[I(t− δ) + U(t− δ)]− νI(t)
U ′(t) = ν2I(t)− ηU(t).

(6.13)

By using the first equation we obtain

U(t) =
1

τS0
[I ′(t) + νI(t)]− I(t),

and therefore by using (6.11) we must have

I(t) = I(t0) exp (χ2 (t− t0)) and U(t) = U(t0) exp (χ2 (t− t0)) ,

so by substituting these expressions into (6.13) we obtain{
χ2I(t0) = τS0[I(t0) + U(0)]e

−χ2δ − νI(t0)
χ2U(t0) = ν2I(t0)− ηU(t0).

(6.14)

Remark 6.2 Here we fix τ0 in such a way that the value χ2 becomes the dominant eigenvalue of the
linearized equation (6.14) and (I(t0), U(t0)) is the positve eigenvector associated to this dominant eigenvalue
χ2. Thus, we apply implicitly the Perron-Frobenius theorem. Moreover the exponentially growing solution
(I(t), U(t)) that we consider (which is starting very close to (0, 0)) follows the direction of the positive
eigenvector associated with the dominant eigenvalue χ2.

By dividing the first equation of (6.14) by I(t0) we obtain

χ2 = τS0

[
1 +

U(t0)

I(t0)

]
e−χ2δ − ν

and hence
U(t0)

I(t0)
=

(χ2 + ν)

τS0
eχ2δ − 1. (6.15)

By using the second equation of (6.14) we obtain

U(t0)

I(t0)
=

ν2
η + χ2

. (6.16)

By using (6.15) and (6.16) we obtain

τ =
(χ2 + ν)

S0
eχ2δ

η + χ2

ν2 + η + χ2
. (6.17)

By using (6.12) we compute

U(t0) =
ν2

η + χ2
I(t0) =

(1− f)ν
η + χ2

I(t0). (6.18)
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6.4 Computation of the basic reproductive number R0 of model SEIRUδ
The linearized equation of the infectious part of the system is given by{

I ′(t) = τS0[I(t− δ) + U(t− δ)]− νI(t),
U ′(t) = ν2I(t)− ηU(t).

(6.19)

We apply the results in Thieme [10] to the linear operator A : D(A) ⊂ X → X where

X = R2 × C([−δ, 0],R2)

A


0R
0R
I
U

 =


−I ′(0) + τS0[I(−δ) + U(−δ)]− νI(0)

−U ′(0) + ν2I(0)− ηU(0)
I ′

U ′


with

D(A) = {0R}2 × C1([−δ, 0],R2).

We split A into

C


0R
0R
I
U

 =


τS0[I(−δ) + U(−δ)]

ν2I(0)
0C
0C



B


0R
0R
I
U

 =


−I ′(0)− νI(0)
−U ′(0)− ηU(0)

I ′

U ′


By using Theorem 3.5 in [4] we obtain that −B is invertible and

(−B)
−1


α
β
I
U

 =


0
0

Ĩ

Ũ


where

Ĩ(θ) = ν−1 [α+ I(0)] +
∫ 0

θ
I(σ)dσ

Ũ(θ) = η−1 [β + U(0)] +
∫ 0

θ
U(σ)dσ

Thus we can compute

C (−B)
−1


α
β
I
U


and since the range of C is contained into R2 × {0C}2 it is sufficient to compute

C (−B)
−1


α
β
0C
0C

 =


τS0[

α

ν
+
β

η
]

ν2
ν
α

0C
0C

 .

Therefore, the next generation matrix is

V S−1 =

 τS0

ν

τS0

η
ν2
ν

0


which is a Leslie matrix, and the basic reproductive number R0 is

R0 =
τS0

ν

(
1 +

ν2
η

)
. (6.20)
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By using (6.17) and ν2 = (1− f) ν, we obtain

R0 =
χ2 + ν

ν

η + χ2

ν2 + η + χ2
eχ2δ

(
1 +

(1− f) ν
η

)
. (6.21)
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