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Abstract

We model the COVID-19 coronavirus epidemics in China, South Korea, Italy, France, Germany
and the United Kingdom. We identify the early phase of the epidemics, when the number of cases
grows exponentially, before government implementation of major control measures. We identify the
next phase of the epidemics, when these social measures result in a time-dependent exponentially de-
creasing number of cases. We use reported case data, both asymptomatic and symptomatic, to model
the transmission dynamics. We also incorporate into the transmission dynamics unreported cases.
We construct our models with comprehensive consideration of the identification of model parame-
ters. A key feature of our model is the evaluation of the timing and magnitude of implementation
of major public policies restricting social movement. We project forward in time the development of
the epidemics in these countries based on our model analysis.

Keywords: corona virus, reported and unreported cases, isolation, quarantine, public closings; epidemic
mathematical model

1 Introduction
COVID-19 epidemics are currently a global crisis. Our goal in this paper is to develop a mathematical

model to guide understanding of the dynamics of COVID-19 epidemics. In previous works [11, 12, 13], our
team has developed differential equations models of COVID-19 epidemics. Our goal is to predict forward
in time the future number of cases from early reported case data in regions throughout the world.
Our model incorporate the following important elements of COVID-19 epidemics: (1) the number of
asymptomatic infectious individuals (with no or very mild symptoms), (2) the number of symptomatic
reported infectious individuals (with severe symptoms) and (3) the number of symptomatic unreported
infectious individuals (with mild symptoms). With our model, we provide a prediction of the final size
of the asymptomatic infectious cases, the reported cases (with severe symptoms) and unreported cases
(with mild symptoms). We will apply the model in this paper to the epidemics in China, South Korea,
Italy, France, Germany, and the United Kingdom.

The significance of transmission by asymptomatic and mildly symptomatic individuals is of major
importance. It is well established that newly infected patients, who are asymptomatic or have only mild
symptoms, can transmit the virus [7, 16, 17, 20, 23, 25, 26]. In an early phase of the epidemic, the
reported case data grows exponentially, which corresponds to a constant transmission rate. We assume
that government measures and public awareness cause this early constant transmission rate to change to
a time dependent exponentially decreasing rate. We identify this early constant transmission rate using
a method developed in [11]. We then identify the time dependent exponentially decreasing transmission

∗Corresponding author, email: pierre.magal@u-bordeaux.fr.

1



rate from reported case data, and project forward the time-line of the epidemic course. Our model is
applicable to COVID-19 epidemics in any region with reported case data, which can be updated to higher
accuracy with on-going day-by-day reported case data. We refer to [1, 3, 9, 10, 15, 21, 24] for related
results.

The organisation of this paper is as follows. In Section 2 we present a general differential equations
model for current COVID-19 epidemics, applicable to any region for which reported case data is available.
In Section 3 we provide a general method to parameterize and initialize the model. In Section 4 we apply
the model to China, South Korea, Italy, France, Germany, and the United Kingdom. In Section 5 we
discuss conclusions obtained from our analysis.

2 Model
The model consists of a mass action law epidemic model where the asymptomatic infectious and the

unreported infectious can transmit the virus
S′(t) = −τ(t)S(t)[I(t) + U(t)],

I ′(t) = τ(t)S(t)[I(t) + U(t)]− νI(t),
R′(t) = ν1I(t)− ηR(t),
U ′(t) = ν2I(t)− ηU(t).

(2.1)

This system is supplemented by initial data

S(t1) = S1 > 0, I(t1) = I1 > 0, R(t1) = R1 ≥ 0 and U(t1) = U1 ≥ 0. (2.2)

Here t ≥ t1 is time in days, t1 is the beginning date from which the number of reported symptomatic
infectious individuals grows exponentially, S(t) is the number of individuals susceptible to infection at
time t, I(t) is the number of asymptomatic infectious individuals at time t, R(t) is the number of reported
symptomatic infectious individuals at time t (i.e. symptomatic infectious with sever symptoms), and U(t)
is the number of unreported symptomatic infectious individuals at time t (i.e. symptomatic infectious
with mild or no symptoms) .

The transmission rate at time t is τ(t). Asymptomatic infectious individuals I(t) are infectious for an
average period of 1/ν days. Reported symptomatic individuals R(t) are infectious for an average period
of 1/η days, as are unreported symptomatic individuals U(t). We assume that reported symptomatic
infectious individuals R(t) are reported and isolated immediately, and cause no further infections. The
asymptomatic individuals I(t) can also be viewed as having a low-level symptomatic state. All infections
are acquired from either I(t) or U(t) individuals. The fraction f of asymptomatic infectious become
reported symptomatic infectious, and the fraction 1 − f become unreported symptomatic infectious.
The rate asymptomatic infectious become reported symptomatic is ν1 = f ν, the rate asymptomatic
infectious become unreported symptomatic is ν2 = (1 − f) ν, where ν1 + ν2 = ν. The cumulative
number of reported cases at time t is obtained by using the following equation

CR′(t) = ν1I(t), (2.3)

and the cumulative number of unreported at time t is given by the formula

CU ′(t) = ν2I(t). (2.4)

The parameters and initial conditions of the model are given in Table 1 and a flow diagram of the model
is given in Figure 1.
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Symbol Interpretation Method
t1 Date from which the epidemic grows exponentially fitted
S1 Number of susceptible at time t1 fixed
I1 Number of asymptomatic infectious at time t1 fitted
R1 Number of reported symptomatic infectious at time t1 fitted
U1 Number of unreported symptomatic infectious at time t1 fitted
τ(t) Transmission rate at time t fitted
N Date at which public intervention measures became effective fitted
µ Intensity of the public intervention measures fitted

1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fitted
ν2 = (1− f) ν Rate at which asymptomatic infectious become unreported symptomatic fitted

1/η Average time during which symptomatic infectious have symptoms fixed

Table 1: Parameters and initial conditions of the model.
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Figure 1: Compartments and flow chart of the model.

3 Method to estimate the parameters and initial conditions
We assume that 100 × f % of symptomatic infectious cases go unreported. The actual value of

f is unknown and varies from country to country. We assume η = 1/7, which means that the average
period of infectiousness of both unreported symptomatic infectious individuals and reported symptomatic
infectious individuals is 7 days. We assume ν = 1/7, which means that the average period of infectiousness
of asymptomatic infectious individuals is 7 days. These values can be modified as further epidemiological
information becomes known.

At an early stage of the epidemic we assume that all the infected components of the system grow
exponentially while the number of susceptible remains unchanged during a relatively short period of time
t ∈ [t1, t2], which corresponds to a constant transmission rate τ1. Therefore, we will assume that

I(t) = I1e
χ2(t−t1), R(t) = R1e

χ2(t−t1), U(t) = U1e
χ2(t−t1). (3.1)

We deduce that the cumulative number of reported satisfies

CR(t) = CR(t1) +

∫ t

t1

ν1I(θ)dθ (3.2)

and by replacing I(t) by the exponential formula in (3.1), we have

CR(t) = CR(t1) +
ν1I1
χ2

(
eχ2(t−t1) − 1

)
. (3.3)

Hence it makes sense to assume that CR(t)− CR(t1) has the following form

CR(t)− CR(t1) = χ1e
χ2(t−t1) − χ3. (3.4)
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By identifying (3.3) and (3.4) we deduce that

χ1 = χ3 =
ν1I1
χ2

. (3.5)

Moreover by assuming that the number of susceptible S(t) remains constant S1 on the time interval
t ∈ [t1, t2], the I-equation, R-equation and U -equation of the model (2.1) become

I ′(t) = τ1S1[I(t) + U(t)]− νI(t),
R′(t) = ν1I(t)− ηR(t),
U ′(t) = ν2I(t)− ηU(t).

By using (3.1) we obtain  χ2I1 = τ1S1[I1 + U1]− νI1,
χ2R1 = ν1I1 − ηR1,
χ2U1 = ν2I1 − ηU1.

Computing further, we get 

R1 =
ν1

χ2 + η
I1,

U1 =
ν2

χ2 + η
I1,

τ1 =
(χ2 + ν)I1
S1[I1 + U1]

.

(3.6)

By (3.5) we deduce that
I1 =

χ2χ3

ν1
. (3.7)

Finally we obtain 

R1 =
χ2χ3

χ2 + η
,

U1 =
ν2χ2χ3

ν1(χ2 + η)
,

τ1 =
(χ2 + ν)(χ2 + η)

S1(ν2 + η + χ2)
.

(3.8)

The value of the basic reproductive number is

R0 =

(
τ1S1

ν1 + ν2

)(
1 +

ν2
η

)
, (3.9)

which was derived in [11].
During the exponential growth phase of the epidemic, τ(t) ≡ τ1 is constant. When strong government

measures such as isolation, quarantine, and public closings are implemented, we use an exponential
decrease for a time-dependent decreasing transmission rate τ(t) to incorporate these effects since the
actual effects of these measures are complex. The formula for τ(t) during this phase is{

τ(t) = τ1, 0 ≤ t ≤ N,

τ(t) = τ1 exp (−µ (t−N)) , N < t.
(3.10)

The date N and the value µ are chosen so that the cumulative reported cases in the numerical simulation
of the epidemic aligns with the cumulative reported case data after day N , when the public measures
take effect. In this way we are able to project forward the time-path of the epidemic after the government
imposed public restrictions take effect.

The daily number of reported cases from the model can be obtained by computing the solution of
the following equation:

DR′(t) = ν1 I(t)−DR(t), for t ≥ t1 and DR(t1) = DR1. (3.11)
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4 Predicting the cumulative number of cases
In this section we apply the method described in Section 3 to the data of confirmed cases in China,

South Korea, Italy, France, Germany, and the United Kingdom. We predict the time evolution of a
COVID-19 epidemic through its phases, we identify epidemic turning points by using the data for the
cumulative number of reported cases and the daily number of reported cases, and we project the epidemic
final sizes.
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Figure 2: In this figure we plot the cumulative number cases (with log scale) at the early beginning of the
epidemic for (a) mainland China; (b) South Korea; (c) Italy; (d) France; (e) Germany; (f) UK.

As we can see in Figure 2, a major difficulty for the predictions from the reported case data, is to
determine the date intervals for the exponential growth phase of the epidemic. For South Korea, the
date intervals for the exponential growth phase of the epidemic is relatively clear from February 25 to
March 1. This is because the measures imposed for contact tracing and social distancing were very
strong. For Italy, the interval is more difficult to ascertain. We choose March 1 to March 10, but these
values may change as more data of reported cases becomes available. For France, Germany, and the
United Kingdom, the interval is very difficult to know with the present data. Again, future reported case
data, will clarify these intervals. In general, the dates for the exponential growth interval and the date
N , are key elements of our model, and they depend strongly on the implementation of social distancing
measures. If these measures are implemented gradually, then the difficulty is increased.

Another difficulty in applying our model is how to fix the values of the parameters ν, f, η, µ, N .
We take η = 1/7, which means that the average period of infectiousness of both unreported symptomatic
infectious individuals and reported symptomatic infectious individuals is 7 days, ν = 1/7, which means
that the average period of infectiousness of asymptomatic infectious individuals is 7 days. These values
follow from the medical and epidemiological information and can be modified as further epidemiological
information becomes known. N is around the time point of the implementation of the national prevention
and control measures. The values of f is unknown, but information about the level of testing relates to
the value of f . A decreased value of f corresponds to a greater final size of the epidemic. The increased
testing can increase the value of f . Mortality can also be used as a reference to estimate the value of
f . High mortality indicates high unreported ratio. In fact, from the values of f , N and µ, we can also
obtain some information of the actual effects of these measures of testing, quarantining and isolation
implemented by the governments in these countries.

The principle of our method is the following. By using an exponential best fit method we obtain a
best fit of (3.4) to the data over a time [t1, t2] and we derive the parameters χ1 and χ2. The values of I1
U1, R1 and τ1 are obtained by using (3.7)-(3.8). Next we fix N (first day of public intervention) to some
value and we obtain µ by trying to get the best fit to the data.

In the method the uncertainty in our prediction is due to the fact that several sets of parameters
(t1, t2, N, f) may give a good fit to the data. As a consequence, at the early stage of the epidemics (in
particular before the turning point) the outcome of our method can be very different from one set of
parameters to another. We try to solve this uncertainty problem by using several choices of the period
to fit an exponential growth of the data to determine χ1 and χ2 and several choices for the first day of
intervention N . So in this section, we vary the time interval [t1, t2], during which we use the data to
obtain χ1 and χ2 by using an exponential fit. In the simulations below, the first day t1 and the last day
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t2 vary such that
Earliest day ≤ t1 ≤ t2 ≤ Latest day.

We also vary the first day of public intervention

Earliest first day of intervention ≤ N ≤ Latest first day of intervention.

We vary f between 0.1 to 0.9. For each (t1, t2, ν, f, η, µ,N) we evaluate µ to obtain the best fit of the
model to the data. We use the mean absolute deviation as the distance to data to evaluate the best fit
to the data. We obtain a large number of best fit depending on (t1, t2, ν, f, η, µ,N) and we plot smallest
mean absolute deviation MADmin. Then we plot all the best fit graphs with mean absolute deviation
between MADmin and MADmin + 40.

5 Numerical simulations
The numerical simulations are presented in the chronological order of appearance for six countries

(China, South Korea, Italy, France, Germany and United Kingdom). The data used are taken from
[30, 31, 32, 33, 34, 35].

5.1 Predicting the number of cases for mainland China
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Figure 3: In this figure we plot the cumulative number of cases of the left hand side and the daily number
of cases on the right hand side. In (a) and (b) we use the data until February 5. In (c) and (d) we use
the data until February 12. In (e) and (f) we use the data until March 11. The best is obtained for t1 =
January 20, t2 = January 30, 1/ν = 5 days, 1/η = 6 days, f = 0.6, µ = 0.1 and N = January 27. The
smallest mean absolute deviation MADmin is 475.

Before February 11, the data was based on confirmed testing. From February 11 to February 15, the
data included cases that were not tested for the virus, but were clinically diagnosed. There were 17,409
such cases from February 11 to February 15 and there is a gap in the reported case data on February
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11. The data from February 11 to February 15 specified both types of reported cases (i.e. the case
tested for virus and the case clinically diagnosed). From February 16, the data did not separate the
two types of reporting, but reported the sum of both types. We subtracted 17,409 cases (i.e. the new
clinically diagnosed patient on Feb. 11) from the cumulative reported cases after February 15 to obtain
the cumulative reported cases based only on confirmed testing after February 15.

In Figure 3, the predictions are improving with time. We observe that if we apply our method too
early as in Figure 3 (a) and (b) the predictions vary a lot. But once we pass the turning point as in
Figure 3 (c) and (d) the predictions are becoming pretty good and do not vary too much until the end
of the epidemic.

5.2 Predicting the number of cases for South Korea
The first confirmed case of the pandemic of COVID-19 in South Korea was announced on January

20, 2020. During the following four weeks (January 20 - February 17), South Korea monitored the
potential spread of COVID-19 from existing confirmed patients, by using technological resources, such
as tracking credit card use and checking CCTV footage of confirmed patients. On February 18, South
Korea confirmed its 31st case in Daegu. This 31st patient had continued to go to gatherings of Shincheonji
for days after showing symptoms. On February 19, the number of confirmed cases increased by 20 and
on February 20 by 70, with a total of 346 confirmed cases by February 21, 2020, according to the Korean
Centers for Disease Control (KCDC).

On February 20, the streets of Daegu were empty in reaction to the Shincheonji outbreak. On
February 23, the government raised the coronavirus alert to ’highest level’, and increased testing and
contact tracing. Extensive measures were taken to screen the population for the virus, to isolate any
infected people, and to quarantine those who were in contact with them. These rapid and extensive
measures taken by the South Korean government have been judged successful in limiting the spread of
the outbreak, without using the extreme measure of quarantining entire cities.
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Figure 4: In this figure we plot the cumulative number of cases of the left hand side and the daily number
of cases on the right hand side. In (a) and (b) we use the data until March 4. In (c) and (d) we use the
data until March 8. (e) and (f) we use the data until March 24. The best is obtained for t1 = February
19, t2 = February 24, 1/ν = 4 days, 1/η = 16 days, f = 0.9, µ = 0.26 and N = February 27. The
smallest mean absolute deviation MADmin is 144.

In Figure 4, the predictions are improving with time. As in Figure 3, when we apply our method too
early as in Figure 4 (a) and (b) the result is very uncertain.

5.3 Predicting the number of cases for Italy
On January 31, the first two cases of COVID-19 were confirmed in Rome. On February 22, the

government announced a series of isolation measures, such as a new decree imposing the quarantine of
more than 50,000 people from 11 different municipalities in Northern Italy. On March 1, nationwide
measures began to be implemented. On March 8, Prime Minister Giuseppe Conte extended the quaran-
tine lockdown to cover all the region of Lombardy and 14 other northern provinces. On March 10, Prime
Minister Conte increased the quarantine lockdown to cover all of Italy, including travel restrictions, a
ban on public gatherings, and a shut down of all commercial and retail businesses except those providing
essential services, such as grocery shops and pharmacies. On March 20, the Italian Ministry of Health
ordered tighter regulations on free movement. The epidemic in Italy can be divided into the exponential
growth phase before February 22. It is reasonable to take N between February 22 and March 10, be-
cause the government gradually strengthened control measures to the whole country during the period
February 22 to March 10.
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Figure 5: In this figure we plot the cumulative number of cases of the left hand side and the daily number
of cases on the right hand side. In (a) and (b) we use the data until March 3. In (c) and (d) we use the
data until March 10. (e) and (f) we use the data until March 24. The best is obtained for t1 = February
23, t2 = March 10, 1/ν = 23 days, 1/η = 14 days, f = 0.4, µ = 0.11 and N = March 10. The smallest
mean absolute deviation MADmin is 1129.

5.4 Predicting the number of cases for France
On January 24, the first COVID-19 case was confirmed in Bordeaux, France. The epidemic in France

can be divided into the exponential growth phase before March 14. It is reasonable to take N between
March 14 and March 17. The reasons are as follows: (1) On March 14, many cultural institutions
in the Paris region announced their closure, such as the Louvre, the Eiffel Tower, and institutions in
other provinces such as the Chateau de Montsoreau Museum of Contemporary Art; (2) French President
Emanuel Macron delivered a speech on March 16, announcing that France entered a "state of war",
and closure measures would be imposed throughout all of France. On March 17, the "ban on foot" was
officially launched.
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Figure 6: In this figure we plot the cumulative number of cases of the left hand side and the daily number
of cases on the right hand side. In (a) and (b) we use the data until March 17. In (c) and (d) we use
the data until April 1. (e) and (f) we use the data until June 10. The best is obtained for t1 = March 1,
t2 = March 20, 1/ν = 6 days, 1/η = 15 days, f = 0.4, µ = 0.05 and N = March 15. The smallest mean
absolute deviation MADmin is 2347.

5.5 Predicting the number of cases for Germany
A COVID-19 case was confirmed to have been transmitted to Germany on January 27, 2020. The

epidemic in Germany can be divided into the exponential growth phase before March 13. It is reasonable
to take N between March 13 and March 15, for the following reasons: (1) On March 13, 14 of the 16
German federal states closed their schools and nurseries; (2) On March 14, several federal states widened
their measures to limit public activities. For example, Berlin, Schleswig-Holstein, and Saarland closed
bars and other leisure venues. Cologne forbade all public events in the city center.
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Figure 7: In this figure we plot the cumulative number of cases of the left hand side and the daily number
of cases on the right hand side. In (a) and (b) we use the data until March 22. In (c) and (d) we use the
data until April 11. (e) and (f) we use the data until June 10. The best is obtained for t1 = February
24, t2 = March 11, 1/ν = 15 days, 1/η = 14 days, f = 0.7, µ = 0.1 and N = March 13. The smallest
mean absolute deviation MADmin is 1368.

5.6 Predicting the number of cases for United Kingdom
The United Kingdom was slow to implement public distancing measures. On 19 March, the govern-

ment introduced the Coronavirus Act 2020, which gave discretionary emergency powers in restricting
social care facilities, schools, police, the Border Force, local councils, and other public functions. The act
went into effect on 25 March 2020. Closures to pubs, restaurants and indoor sports and leisure facilities
were imposed by the Health Protection Regulations on March 21.
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Figure 8: In this figure we plot the cumulative number of cases of the left hand side and the daily number
of cases on the right hand side. In (a) and (b) we use the data until April 6. In (c) and (d) we use the
data until April 26. (e) and (f) we use the data until June 25. The best is obtained for t1 = March 4,
t2 = March 26, 1/ν = 30 days, 1/η = 31 days, f = 0.1, µ = 0.08 and N = March 22. The smallest
mean absolute deviation MADmin is 1248.

6 Conclusions
We have applied a method developed in [11] and [12] to predict the evolution of a COVID-19 epidemic

based on reported case data in that region. Our method uses early data, when the epidemic is in its
exponential growth phase, corresponding to a constant transmission rate. In [11] we demonstrated a
method to identify this constant transmission rate. When public measures are begun in order to slow
down the epidemic, a new phase begins, which we model with a time-dependent exponentially decreasing
transmission rate in [12]. In [12] we applied this method to mainland China, and demonstrated the
ability of our model to predict the forward time-line of the epidemic. In Figure 4 in [12], we showed how
the prediction unfolded week by week, with increasing agreement with reported case data, in mainland
China.

In Table 2 we summarized the parameters giving the best fit to the data.
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Country χ1 χ2 χ3 t1 µ N S1 τ1

China 5.07 0.25 800.47 Jan. 20 0.1 Jan. 27 1.40005× 109 2.73× 10−10

South Korea 3.529 0.24 319.67 Feb. 19 0.26 Feb. 27 51.47× 106 8.82× 10−9

Italy 9.52 0.18 583.47 Feb. 23 0.11 Mar. 10 60.48× 106 3.36× 10−9

France 4.86 0.16 717.7 March 1 0.05 Mar. 15 66.99× 106 3.41× 10−9

Germany 0.0389 0.27 26.07 Feb. 24 0.1 Mar. 13 82.79× 106 4.76× 10−9

United Kingdom 121.83 0.17 287.31 Mar. 4 0.08 Mar. 22 66.44× 106 2.75× 10−9

Table 2: The parameters χ1, χ2, χ3 are estimated by using the data to fit χ1 exp(χ2 t) to the cumulative
reported cases data CR(t)+χ3 (χ3 is chosen to minimize the error of the fit). For each country the best
fit of the data over the all period is obtained by choosing: (1) t1 = January 27 and t2 = January 30 for
mainland China; (2) t1 = February 19 and t2 = February 24 for South Korea; (3) t1 = February 23 and
t2 = March 10 for Italy; (4) t1 = March 1 and t2 = March 20 for France; (5) t1 = February 24 and
t2 = March 11 for Germany; (6) t1 = March 4 and t2 = March 26 for United Kingdom. The parameters
ν = 1/7 and η = 1/7. The values of I1, R1, U1, τ1 are obtained by using (3.7), (3.8), and (3.4).

In this work we use data for the cumulative number of reported cases and the daily number of reported
cases for China, South Korea, Italy, France, Germany, and the United Kingdom. With this data, we
project the future number of cases, both reported and unreported, in each country. For each country we
observe that before the turning point the prediction is very uncertain and several of parameter values
of f ν η may fit very well the data before the turning point. However, if we use enough reported case
data, such as data up to the turning point, the prediction is pretty good and certain until the end of the
epidemic.

A major difficulty for the predictions from the reported cases data, is to determine the date intervals
of exponential growth phase. From the Figure 2 (a) this period is clear for mainland China (Jan 19-27).
But it is much more difficult to decide for South-Korea (see Figure 2 (a)). By applying our method to
the data for South Korea, we find the interval going from February 19 to February 24. This is because
the measures imposed for contact tracing and social distancing were very strong. For Italy, the interval is
difficult to ascertain (see Figure 2 (c)). We choose February 23 to March 10, but these values may change
as more data of reported cases becomes available. For France, Germany, and the United Kingdom, the
interval are also difficult to know with present data. Again, future reported case data, will clarify these
intervals.

In the case of South Korea, the peak of the epidemic occurred approximately on February 29. In
Figure 4, we see that our model agrees very well the data for South Korea. Accordingly to our model, the
daily number of cases reaches a maximum of approximately 700 cases near the turning point February
29. Compared to South Korea, the public interventions in Italy, France, and Germany were relatively
late. The peak of the epidemic occurs in Italy around March 14, and the peak of the maximum daily
number of cases in our simulation is approximately 6 000, which agrees well with the daily reported cases
data for Italy. For France, Germany, and the United Kingdom, the number of daily reported cases may
still be rising. Our simulations captures these increasing values for exponential growth phase, but the
advance to the next phase for both countries requires advanced data.

In general, the dates for the exponential growth interval, and the date N for the start of the new
phase after the exponential growth interval, are key elements of our model, and they depend strongly on
the implementation of social distancing measures. If these measures are implemented gradually, then the
difficulty is increased. In future work we will allow for a series of N and µ values to account for a more
complex implementation of measures that use a time-dependent transmission function τ(t) depending
on these values.

Another difficulty in applying our model is the assumption of the fraction f of total cases reported.
The value of f is unknown, but we vary f between 0.1 to 0.9. In future work, we will allow a time-
dependent value for f , because in many applications the fraction of reported cases changes over the
course of the epidemic. Our model incorporates social distancing measures through the time dependent
transmission rate τ(t). It is evident that these measures should start as early as possible, and should be
as strong as possible. The consequences of late public interventions may have severe consequences for
the epidemic outcome. In future work we will apply our methods to other countries and regions within
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countries in an effort to better understand the evolution of COVID-19 epidemics. In [4, 22] Bayesian’s
approach has been used successfully. Such a method could be used here as well, and that is left for future
work.

In Table 3 we summarized the parameters giving the best fit to the data.

Country 1/ν 1/η f

China 5 days 6 days 0.6

South Korea 4 days 16 days 0.9

Italy 23 days 14 days 0.4

France 6 days 15 days 0.4

Germany 15 days 14 days 0.7

United Kingdom 30 days 31 days 0.1

Table 3: In this table, we summarize the values for 1/ν (mean duration in days of the asymptomatic
phase before symptoms onset), 1/η (mean duration in days of the symptomatic phase), and f (the fraction
of reported) obtained for the best fits to the cumulative reported data.

The values of 1/ν (mean duration in days of the asymptomatic phase before symptoms onset) and
1/η (mean duration in days of the symptomatic phase) are very uncertain. Reported values have a
wide range of variability. In an early report, a value of the asymptomatic phase was given as 5 days in
[5]. WHO reported that the asymptomatic period is on average 5 − 6 days, but can be up to 14 days
[29]. In recent reports, patients were reported asymptomatic 4 -17 days after admission to hospitals [14],
and 9.5 days [8]. The Centers for Disease Control reported an average value of 6 days for asymptomatic
transmission [2]. The period of median viral shredding was reported as 19 days pre-symptomatic patients
and 14 days for symptomatic patients [14], and 22.6 days in pre-symptomatic patients and 25.2 days in
symptomatic patients [18], although viral shedding does not necessarily correlate to infectiousness.

In this work many questions need future considerations. First the data are questionable and may
induce a bias in the estimation of parameters. Probably the most significant effect on the data is induced
by the daily fluctuations of the number of tests. Such a large fluctuation has been observed in China
and other countries when the medical doctors were trying to adapt the number of tests to the number
of symptomatic patients. Such a phenomenon may induce a large variation in the number of reported
cases. In order to improve our understanding of the real situation from the cumulative reported cases,
we can improve the model in several ways. For example we can introduce age groups (see [19, 6]) or
we may examine big cities and their interconnections (see [27]). The method used to fit the data in the
present paper has been extended and used successfully for age groups in Japan [6]. Such a method is
general and may probably be applied to other situations (patch models etc . . . ). In future work, we
can also incorporate the number of tests (see [22]) which may significantly improve our understanding
of COVID-19 epidemics.
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