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ABSTRACT. In this paper we investigate global stability for a differential equa-
tion containing a positively homogeneous nonlinearity. We first consider per-
turbations of the infinitesimal generator of a strongly continuous semigroup
which has a simple dominant eigenvalue. We prove that for ”small” perturba-
tion by a positively homogeneous nonlinearity the qualitative properties of the
linear semigroup persist. From this result, we deduce a global stability result
when one adds a certain type of saturation term. We conclude the paper by
an application to a phenotype structured population dynamic model.

1. Introduction. The objective of this paper is to investigate the asymptotic be-
havior of solutions of abstract semilinear differential equations with homogeneous
nonlinearities. The equation we consider has the form

du(t)

dt

We suppose that A is the infinitesimal generator of a strongly continuous semigroup
{T'(t)},>, of positive linear operators in a Banach lattice X, g is a nonlinear oper-
ator in X, satisfying g(cx) = cg(x), € Xy, ¢ > 0, and F is a continuous linear
functional satisfying F'(z) > 0,Vz € X\ {0} . Moreover, to assure the positivity of

the solutions, we assume there exists po (g) > 0 such that (g+po (9) Id)(X+) C X4.
Let us now consider the positively homogeneous Cauchy problem

dv,(t)
dt

In section 2, we will recall a global center manifold theorem that will be used in
section 3. In section 3, we will investigate the behavior of equation (2). More pre-
cisely, we assume that A has a dominating simple real eigenvalue )y € R associated
to some positive eigenvectors ¢p € Xy \ {0} and ¢f € X7 \ {0} with ¢f(¢o) = 1,
with ¢§(¢) > 0,Ve € X1 \ {0}. Then (see Theorem 3.1) when the Lipschitz norm
of g and pg (g) are small enough (A being fixed), there exists 7, € X4 \ {0} with
|ig]l = 1 and there exists py € R such that

= Auy(t) + g (up(t)) — F(ug(t))ug(t), t >0, uy(0) = x. (1)

= Avy(t) + g (vx(t)), t >0, vy(0) = z. (2)

Uy € D(A), and pgvy = ATy + g (Tg) -
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542 P. MAGAL

Moreover for each 2 € X \ {0} there exists a;; > 0 such that

vz (1)
etgt

— Qi;Vg as t — +00.

A usual way to prove such a result is to use the same technics as in Wysocki [15]
and Takac [9] (see also references there in). In order to apply such a technic,
some compactness arguments are necessary. Here we have not such a compactness
property. So we use a direct approach related with the contraction of the semiflow
due to the second eigenvalue of the linear semigroup. We refer to Webb [14] for a
result going in this direction.

Since g is positively homogeneous one has the following relation between the
solutions of equations (1) and (2) (see Proposition 3.3)

ug (t) = tvz ()

1+ [y F(ve(s))ds
In section 4, we will use equation (3) and results of section 3, to derive a global
stability result for equation (1). The global stability result proved here is a general
version of Theorem 4.11 p:236 in Magal and Webb [3]. An important argument to
apply the technics used in [3] is the existence of a compact global attractor. In [3]
the existence of global attractor is due to the compactness of the linear semigroup.
Here we avoid this problem and we allow some weaker compactness conditions on
the linear semigroup. Finally, in section 5, we will apply the result to an example
coming from population dynamics.

L t>0,z€ X, (3)

2. A reduction result. In this section we state some results proved in Magal
[6]. These results are variations of some of the results proved in Vanderbauwhede
[10][11], and in Vanderbauwhede and Iooss [12].

Let (X, ||-|l) be a Banach space, let (A, D(A)) be the infinitesimal generator of a
strongly continuous semigroup of bounded linear operators T'(¢t), t > 0, in X, and
let g : X — X be a (nonlinear) operator from X into X, g is Lipschitz continuous.
Then we want to reduce the following semi-linear problem:

S(t)up = T(t)uo —l—/o T(t — s)g(S(s)up)ds,Vt > 0. (4)

Assumption 2.1: a) X = X,® X, where X; and X, are closed subspaces, satisfy-
ing T'(t)Xs C X, and T(t)X. C X, Vt > 0. We denote II; € L(X), and II, € L(X)
the projection operators satisfying IT;(X) = X, II.(X) = X, and Id — 1, = Il;.
b) dim(X.) < 400, and X. C D(A) and o (A.) C Ri, where A. = AIl. € L(X).

¢) There exist 8 > 0 and M, > 1 such that

HT(t)HsHL()Q < Mse_[’t,w > 0.

d) There exists M, > 1 such that sup,cp HeACtHL(X) < M.. The center manifold

will be related with function v € C(R, X) solution of

u(t) = T(t — to)u(ty) + /t T(t— s)g(u(s))ds,Vt, to € R, with t > t5.  (5)

to
We denote

Lip(X,X)=q9: X = X :|gllp;, = sup M<+oo ,
z,yeX x#y Hx_yH
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and for all n € R,
BC"(R, X) = {w € C(R,X) : [Jwl, = sup e~ ||w(t)|| < +oo} .
teR

The center manifold is defined for n € (0, ), as follows:
M, = {uo € X : there exists u € BC"(R, X) a solution of (5), with u(0) = uo} .
We refer to Magal [5] Theorem 1.3 for a proof of the following theorem.

Theorem 2.1. : Under Assumption 2.1. Let n € (0,0) be fized. Let 69 =
do (A,m) > 0 be such that for each g € Lip(X,X), with |g|/5;, < do, there ez-
ists a unique map V : X, — X which is Lipschitz continuous and such that

M, ={zc.+¥(z.): 2. € X.}.

We refer to Magal [5] Theorem 1.4 for a proof of the following theorem.

Theorem 2.2. : Under Assumption 2.1. Let n € (0,03) be fixred. Then there exists
61 =01 (A,n) >0, such that for each g € Lip(X, X), with ||g|;, < 61, there exists
a map H : X — M, such that for each x € X,

M, N M,(z) = {H(z)},

where

My(z) = {y € X :supe||S(t)x — S(t)y| < —1—00} .
>0

3. Homogeneous problem. Let X be a positive cone of a Banach space X, i.e.
X closed convex subset of X such that i) AX; C X, VA >0, and i4) X, N—X, =
{0} . Such a cone X induces a partial order on X, denoted < and defined by
r<yesy—xzeX,.
In the sequel, we denote X* the topological dual space of X (i.e. the space of
continuous linear forms on X), and we denote X} the dual cone defined by
Xi={peX " :p(x)>0,VzeX,}.
We recall that a bounded linear operator L € L(X) is said to be positive if L(X ) C
X,
Let (X, ||.||) be a Banach lattice with positive cone X (see Schaefer [8]). In this
section, we will make the following assumptions.
Assumption 3.1: a) (A4, D(A)) is the infinitesimal generator of a strongly contin-
uous semigroup of positive bounded linear operators T'(t), ¢ > 0 in X.
b) There exist ¢ € X4 \ {0} and ¢ € X5 \ {0} with ¢§(¢o) = 1, such that
T(t)Py = Py, P, T(t) =T(t)P,Vt > 0,
and there exist § > 0 and M > 1, such that
IT(t)Proll < Me™ P | Pig|| Vo € X,
where Py(¢) = ¢§(P)po, Vo € X, and P, = Id — F.
c) ¢f is strictly positive i.e. ¢f(¢) > 0,Vp € X \ {0}.
d) ¢ is a nonlinear operator from X to X, g is Lipschitz continuous on X, and

there exists pg (g) > 0 such that (g + po (g9) Id)(X4) C X,
e) g is positively homogeneous, i.e. g(Ax) = Ag(z),VA > 0,Vx € X .
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Remark: 1) Assumption 3.1 b) implies that the spectral bound of A satisfies
s(A4) = 0.
2) Assume that g is only Lipschitz continuous on bounded sets. Denote k > 0 the
Lipschitz constant of g on B(0,1) N X,. Then if z,y € B(0, M) N X, by using
Assumption 3.1 e) we have
x Y x Yy

lo(@) = g@)ll = M g(=) = 9(20)| < M |17 = || <k llo — y.
So, g is k—Lipschitz on X, .
3) Assumption 3.1 b) and ¢) will be verified if A is the infinitesimal generator of a
strongly continuous semigroup of positive operator T'(t), which is quasi-compact and
irreducible i.e. Vo € X \ {0}, and Yy € X7 \ {0}, 3t > 0 such that ¢ (T'(t)z) > 0,
and the spectral bound of A satisfies

s(A) = 0.

This result can be found in the book of Nagel [6] see Theorem 2.1 p:343, and remark
d) p:344. But here we don’t assume that ¢q is a quasi-interior point. So the situation
that we consider here is more general than the case of irreducible semigroups. We
also refer to Webb [13] (see Proposition 2.3 and Proposition 2.5 and Remark 2.2)
for a generalized version of this result, in which the compactness conditions on the
linear semigroup are weaker.

We denote {Sy(t)},~, the nonlinear semigroup solution of

Sg(t)x =T(t)x + /O75 T(t—s)g(Sy(s)x)ds, ¥t > 0,Vr € X,. (6)

We extend equation (6) by setting
9(x) = g(|z|), Vo € X.
One can note (since |Az| = |A| |z|, VA € R,Vz € X, see Schaefer [8] p:207) the map
g is also positively homogeneous, namely
g(Ax) = Ag(z),Vxr € X,VA > 0.

Moreover, let be z,y € X, (since X is a Banach lattice, and ||z| — |y|| < | — y|,Va,y €
X, see Schaefer [8] p:207) we deduce that

l9(z) =gl < llg(zl) = g(yDIl < llgll iy Ml = 1yl = llgll L W] = [y
< gl Mz = ylll = llgll Ly Iz =
SO we obtain
l9(z) =gl < llgll Ly Iz =yl - (7)
So
190l ip < N9l Lip - (8)

We denote {S5(t)},-, the nonlinear semigroup solution of

t
Sy(t)x =T(t)x +/ T(t —s)g(Sz(s)x)ds,Vt > 0,V € X, (9)
0
We start with a preliminary result.

Proposition 3.1. : Under Assumption 3.1. For each x € X, there exists a unique
global continuous solution t — Sy(t)x of equation (6), and we have the following:
i) Sg(t)(0) =0,Vvt > 0.

ii) Sg(t)(X4 \ {0}) = X\ {0}, vt >0.

i17) Sg(t)(Ax) = ASy(t)(x),Vt > 0,Vx € X4, VA > 0.



GLOBAL STABILITY RESULT 545

For each x € X, there exists a unique global solution of (9) and

iv) Sz(t)x = Sg(t)x,Vt > 0,Ve € X .

v) S5(t)(Az) = AS5(t)(x),Vt > 0,Vx € X,VA > 0.

We denote Se5(t)x =77 €' S5(t)x,Vt > 0,Va € X,Ve € R, then {S:5(t)},5 0 a
strongly continuous nonlinear semigroup, and B

S.5(t)x = e T(t)x + [3 e =IT(t — 5)(S. 5(s)z)ds,

g
=T(t)a+ [ T(t — s)(§ + eld)(S. 5(s)x)ds
vi) Ve > po (9),Vz € X4 \ {0}, we have
||Se.5(t)x|| — +00, ast — 400, (10)

where po (g) > 0 is the constant introduced in Assumption 3.1 d).

Proof: i) — v) use classical arguments. We now prove vi). Let be z € X, \ {0}.
We have

S.5(t)x = e~ (P DFIT ()
+ Jo e @I (¢ — 5) (S 5()2) + po (9) Seg(s)2] s,
so by using Assumption 3.1 d) we have
Sez(t)x > e P ST (1)
and since X is a Banach lattice we have
1258zl > oD | T(t)]|
and from Assumption 3.1 b) we have

Jim ([T (z]| = [[Po(2)ll = do(2) [|9oll

and from Assumption 3.1 ¢) we have ¢f(z) > 0, and the result follows. O
The following theorem is the main result of this section.

Theorem 3.1. : Under Assumption 3.1. Let n € (0,8) be fized. Then there
exists 6 = 6" (A,m) > 0, such that if |91, < 6" and po(g) < n (where po(g)
is the constant introduced in Assumption 3.1 d)), there exists Ty € X1 \ {0} with
gl = 1, and there exists puy € R such that

Uy € D(A), and pgvg = ATy + g (7). (11)
Moreover for each x € X1 \ {0} there exists a, > 0 and M, > 0 such that
t
Sot)x _ Tg|| < Mye=(1Hra)t it > 0, (12)
@Mgt
and
n+pg > 0. (13)

Proof: Let be * > 0, such that if ||g| ., < 6", then Theorem 2.1 and Theorem
2.2 apply to equation (9) (which is possible because ||g|[1,, < |9l 1;,)- We start by
describing the center manifold. Let us start by noting that if u € BC" (R, X) =

{w € OR,X) : [[w]], = sup;er e Mt Jw(t)|| < —l—oo} is a solution of

u(t) = T(t — to)u(to) + /t T(t — s)g (u(s))ds,Vt, to € R, with t > t. (14)

to
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then since g is positively homogeneous, YA > 0, Au(.) € BC" (R, X), and t — Au(t)
is a solution of (14). By definition the center manifold is
M, = {up € X : Ju € BC"(R, X) a solution of (14), and u(0) = uo}, (15)
so we deduce that
Vo € M,, YA >0, Az € M, (16)

Furthermore by Theorem 2.1 there exists a map ¥ : Py(X) — (Id — Fp)(X) such
that

]\477 = {.’170 + v (SL‘()) T X € P()(X)} (17)
In particular from (16) we deduce that 0 € M,, so ¥ (0) = 0. Moreover, if y €
M, \ {0}, then Py(y) # 0 (because ¥ is a map). So from (16) we deduce that there
exist y1,y2 € X with ¢§(y1) > 0, and ¢§(y2) < 0, such that
M, =Ry UR4 g5 (15)
Furthermore, S;(t)M,, C M,,Vt > 0, we deduce that for each y € M, \ {0}, there
exists a maximal open interval I C R with 0 € I, and there exists a continuous
map « € C(I, R) with «(0) = 1 such that
t — a(t)y is a solution of (14), and a(t) > 0,Vt € I. (19)
We first note that
R_ CI. (20)

Otherwise there exists tg < 0 such that a(tgp) = 0, and a(t) = 0,Vt > to, a
contradiction. Moreover, we have

t
at)y =Tt —to)alto)y + / T(t — s)g(a(s)y)ds,Vt, tg € I, with t > to,

to

and since g is positively homogeneous, we have

a(t)y = alte)T(t —to)y + /t a(s)T(t — s)g(y)ds,Vt,tg € I, with t > t9. (21)

Let be A > 0. By Assumption 3.1 b), A is in the resolvent set of A, and we denote
R()\, A) := (M — A)~! the resolvent operator of A. We have for all ¢,t, € I, with
t Z th

a(t)R(\, Ay = a(te)T(t —to)R(N, A)y + / a(s)T(t —s)R(N, A)g(y)ds.  (22)

to

As R(A\, A)x € D(A),Vz € X, the maps from R, into X defined by
t — T@)R(N\, Ay and t — T(t)R(A, A)g(y),
are continuously differentiable. So from (22) we deduce that
a € CYI,R). (23)
Furthermore, from (21) with ¢to = 0,

T(t)y = a(t)y — /O a(s)T(t — 8)§(y)ds, ¥t € [NRy,
T(t)y = alt)y — /0 a(t — DT (1)i(y)ds, vt € T ARy,

and from (23), we deduce that the map ¢t — T'(t)y is continuously differentiable, so
y € D(A). (24)
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Finally by using (22), we have Vt,ty € I, with ¢ > ¢,

o/ () RN, A)y = alte)AT(t — to)R(\, A)y + ftfo a(8)AT(t — s)R(\, A)g(y)ds
+a(t)R(X, A)g(y)
' ()R, A)y = Aa(t)R(\, A)y + a(t)R(N, A)g(y),Vt € I,
and since y € D(A), we obtain
o (t)y = a(t)Ay + a(t)g(y), vt € I,

and since y # 0, we deduce that there exists a certain constant y € R such that

O cher
So
I =R, and a(t) = e, Vt € R, (25)
and
py = Ay +g(y). (26)

By using (18) we deduce that there exist u*, 4~ € R, and v, v~ € X \ {0}, with
5 (vt) > 0, and ¢§(v~) < 0, such that

vT,v” € D(4),
M"7 = R+U+ U R+’U7,
and (27)

ot = Avt 4 G(0), pvm = Av + (0.

Now, by Theorem 2.2 we know that Vo € X, 3z, € M,, and there exists M, > 0
such that

1S5(t)a — Sg(t)ay|| < Mye™™,Vt > 0. (28)
Let be x € X1 \ {0}. From (27) and (28) we deduce that there exist ;1 € R, and
xy € My, such that

|S5(t)a — e*ay|| < Mye "Vt > 0. (29)

But since pg (g) < n, we can choose € € (po (g),n), and by Proposition 3.1 vi), we
have

|t S5 (t)z|| — +o0, as t — +oo. (30)
But for all £ > 0, we have
||e(“+5)tzn|’ > et Sy (t)x|| — ||e€tS§(t)x — e(’“rs)tan
> [|est Sy (t)z|| — Mpe=—mt,
So we deduce that

e ||z, || — +oo, as t — +oo. (31)
Thus
xy #0, and (p+¢) >0, (32)
but since € < 7, we have
n—+p>0. (33)

Now by using (29) we have
H S‘g(t)x

o < Mye~ (10t i > 0. (34)

— Ty




548 P. MAGAL

So by Proposition 3.1 i3) and iv), and since z € X1 \ {0}, we know that

S5 (t)x
gem € X, ,Vt>0, (35)
and by using (32) (33) (34) (35) and the fact that X is closed, we deduce that
7 € X4\ {0}
So ¢§(xy) > 0, and x,, = vt for some o, >0, and p = pt € R. O

Corollary 3.1. : Under Assumptions 3.1 a)-c). Let g : X1 — X be a Lipschitz
continuous map, such that g(Ax) = Ag(x),\ > 0,2 € X4, and assume that there
exists po > 0 such that
g(x) + por € X4 ,Vx € Xy

Consider the following semilinear Cauchy problem

dvg(t)

dt

Then there exists " > 0 such that for all T € [0,7*] the conclusions of Theorem
3.1 hold.

Proof: This result is a direct consequence of Theorem 3.1. (Il

= Av,(t) + 79 (vg(t)), t >0, v;(0) = z.

We now prove some additional properties for the nonlinear eigenvalue p, and
the nonlinear eigenvector .

Proposition 3.2. : Under Assumption 3.1. Let n € (0,0) be fized, and assume
that ||gll 1., < 0* and po (g) <n. Then

=1 < g < [Tl lgll iy »

with [T = supyso [|[T(t)[(x) (which is finite because of Assumption 3.1 b)).
Moreover

g — 0, and T4 — & as ||gll;, — 0 (with po (9) <n).

Proof: We first note that from Theorem 3.1 we have

fg = —1). (36)
Moreover, by Theorem 3.1, we also know that
1S4 (£)Tl = e*s" [Tl , vt > 0. (37)

Furthermore, we have
t
Se(t)vg =T(t)v, + / T(t—5)g(Sg(s)vg)ds, vt > 0.
0
thus

t
15a ()Tl < TNl oo 17611 + 1Tl ||9||L¢p/0 154 (s)vg [ ds, vt > 0,

and by Gronwall’s lemma we obtain

155 (804 | < Il [0 | T8t vt > 0. (38)
Finally from equations (36) (37) and (38) we obtain
=1 < pig < Tl l9ll iy - (39)

So there exists 67 > 0 such that
lgll;p < 07 and po (9) < n = |pgl <. (40)
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‘We denote
~ g
Vg = —
g ¢8(Ug)
Then one has
Py(vg) = Po(eo),
SO
Po(”ljg —¢0) :07 and 7[},9_¢0 :Pl(”l?g —gbo). (41)
(42)

Moreover, since g is positively homogeneous, we also have
fgUg = Avg + (1),

but A¢g = 0, so
pgVg = A(Ug — ¢0) + (9(09) — g(¢0)) + 9(¢0),
thus VA > 0,
(A, A)vg = AR(X, A)(0g — ¢0) + R(A, A)(9(09) — 9(¢0)) + R(A, A)g(do).
But AR(A\, A) = —Id+ AR(), A), so
(Vg = d0) = (A = pg) R(A, A) (g — o) + R(A, )(9( ug) — 9(¢0))
+R(A, A)g(¢o) — g R(A, A)o.
But we have R(\, A)(¢o) = +OO e MT(t)podt = +¢o, and Py(¢g) = 0. So, VA > 0,
Pi(vg = do) = (A = Mg)R()\7A)P1(5g ¢0) + R(A, A)P1(9(74) — g(0)) (43)
+R(A, A)Prg(do).
Consider now the equivalent norm
ol = max( Pyt sup LEOR v e x,

which is well defined by Assumption 3.1 b). Then we have
|T(t)Prx| < e P! |Pix|,Vt > 0,Vx € X,

SO
|z| ,Vz € X,V > 0. (44)

+oo
e MT(t) P adt

/ (O Prrdt] < 1

4), we obtain VA > 0,

By using equations (40) (41)(43) and (
|P1(Tg — do)| < 355 [P1(Tg — d0)| + 545 |9|Llp |Pilpxy [P1(0g = o))
+)\+5 |9|L1p |P1|L (X) |pol -

By using the fact that n < (3, we deduce that there exist 45 > 0 and 0 < C < 1

such that
A+n
+ |g|Lip |P1|L(X) <C.

9l i, < 05 and po (g)

We have
) [P1(vg — ¢o)| < 7‘9|L1p‘P1|L(X)|¢O|

(-

By using (41) we obtain
1
|vg ¢0|_ 1 C}\+ﬂ|g|sz|P1|L(X)|¢O|’
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80 Ug — ¢o as |g[y,;, — 0. Thus

Ty = Y, %o as [g|p;, — 0.
[5g]l - lloll

Furthermore, we have p,0, = Avy + g(vy) and since s(A) = 0, we have

Mg = o (g(gg))

thus

|1gl < ll¢oll x-
We conclude this section with a result relating solution of equations (1) and (2).

gHLip [0g]] — 0 as |g|Lip*>0' O

Proposition 3.3. : Under Assumptions 3.1 a), d), e), and assume that F € X7.
Then for each x € X, the semilinear problem

ug(t) =T(t)x + /0 T(t—s)[g (uz(s)) — F(ug(s))uz(s)] ds, ¥t >0,  (45)

admits a unique mild solution u, € C ([0, +00),X) which is given by

w Vg (t)
o(8) = 1+ fo ))ds

where v, (t) is the unique solution of the semilinear problem

V>0

)

ve(t) = T(t)x + /0 T(t — s)g (ve(s))ds,Vt > 0. (46)

Proof: We start by noting that the problem (46) has a unique v,(t). Also for
A > 0, we have

Md—A) " () =(Md—A)~'T () +(\d—A) [ T( t—s (vg(s)) ds
=T(t) (\[d— A)~* fOtT(t—s)(AId A) g (vg(s)) ds

so by applying Theorem 2.4 p:107 in Pazy [7], we deduce that

Woa®) gy (1) + (Md— A) g (va(1)) ,VE > 0,
v A (0) = (Md — A)~"

where
Ve x(t) = (M d — A) " o, (t), Ve > 0.
We denote
Unz(t) = :)w”\(t) , and U, (t) = Um(t) vt >0
1+ [, F(ve(s))ds 1+ fo vz(8))ds

One can note that since z € X, and F' € X7, uy ,(t) and um(t) are defined for all
t > 0. Moreover we have

diis . _
Tzl — Aty o (1) + m (M — A)" g (va(t))

_ ’U..,jy)\(t)
(14 F(va(s))ds)” F(va(s)),vt 2 0,

Uro(0) = (Md—A)""z
and since g is positively homogeneous,

d“*dz = = Aia(t) 1 (Md A) 7 g (@a(t) — Fl@a (1)) (1), vt > 0,
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So
Ura(t) =Tt) (Md— A"z
+ [y T(t—s) (Ad — ) g (T@a(s)) — F(ia(s))a(s)] ds
we deduce that

Uy (t) = T(t)x + /0 T(t—s) g (uy(s)) — F(ug(s))uz(s)] ds, vVt > 0,

and by uniqueness of the solution of problem (45) (see Cazenave and Haraux [2]
Lemma 4.3.2 p:56) the result follows. (]

4. Global stability. In this section we investigate the global stability for the

following Cauchy problem
dug (¢
%U = Aug(t) + 79(ua (1)) — Fua(t))ue(t), 20, ug(0) =2 (47)

Let (X, ].||) be a Banach lattice with positive cone X . In this section, we will
make the following assumptions.

Assumption 4.1: a) (4, D(A)) is the infinitesimal generator of a strongly contin-
uous semigroup of positive bounded linear operators T'(t), t > 0 in X.
b) There exist ¢ € X1 \ {0} and ¢5 € X5 \ {0} with ¢§(¢o) = 1, such that
T(t)Py = NPy, PT(t) = T(t)Py,Vt > 0,
and there exist 4 > 0 and M > 1, such that
IT(5)Prg]| < MDD P, ¥o € X,

where Py(¢) = ¢§(P)po, Vo € X, and Py = Id — F,.

c¢) ¢f is strictly positive i.e. ¢f(¢) > 0,Vp € X \ {0}.

d) g : X1 — X is Lipschitz continuous, and there exists pg > 0 such that
g(x) — por € Xy,Va € X,

e) g(Ax) = Ag(x),A >0,z € X .
f) Let F € X* be a linear functional which is strictly positive i.e. F(x) > 0,Vx €
X\ {0}

We denote {Ty(t)},~, the strongly continuous semigroup of linear positive oper-
ators defined by

To(t) = e *WtT (), ¢ > 0,

we denote {U-(t)},~ the strongly continuous semigroup of nonlinear operator from
X into X solution of

Ur(t)x = T(t)x—i—/o T(t—s)[rg (Ur(s)x) — F(Us(s)x)Ur(s)x] ds,Vt > 0,Vx € X,

and we denote {S;(t)},-, the strongly continuous semigroup of nonlinear operator
from X, into X, solution of

Sr(t)r =To(t)x + /0 To(t —s) [tg (Sr(s)x)]ds,Vt > 0,Vz € X .

Theorem 4.1. : Under Assumption 4.1. Then V1 > 0, i) U, (t)0 = 0,Vt > 0;4i)
U:(t)(X+ \ {0}) € X4\ {0},Vt > 0. Moreover there exists T > 0 such that
V1 € [0,7*], there exists v, € D(A) N X4 \ {0}, with ||v-|| =1, pr € R and

(1r +s(A)) vy = Avr + 79 (v7),
and V1 € [0,7*], Vo € X4 \ {0},
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M vr ast — +0o
U@l 7 '
Furthermore V7 € [0,7*], Vo € X1 \ {0},
a) If pr + s(A) <0, then
U,(t)x — 0, ast — +oo.
b) If pr + s(A) > 0,

U,(t)x — Ty := (s(A) + pr) , ast — 4oo.

vy
F(v;)
Assume in addition that s(A) > 0, and that g can be extended locally around each
point of X4\ {0} by a continuously differentiable map. Then there exists T € (0, 7]
such that for all T € [0,7], we have

s(A) + pr >0, and U, is exponentially asymptotically stable.

Proof: By Proposition 3.3 we have
S(A)tS t
AT P 4 —
1+ [, F(es(MsS, (s)x)ds

By Corollary 3.1, there exists 7* > 0 such that V7 € [0,7*] ,Vo € X1 \{0}, Ja, > 0,
such that

Vt>0,Vz € X, (48)

S-(t)x
errt
where v, € D(A) N X, \ {0}, with [Jo || =1, pr € R and

prvr = (A —s(A)Id) v, + 79 (v;) .

— QzUs, as t — +o0, (49)

So in particular
Urt)x  Sy(t)x
1=zl [15-(6)]
We now prove a). Assume that s(A) + pur < 0. Then by using (48) and (49) we
deduce that
S (t (s(A)+pr)t S, (t
Ur(t)x = ( )tx ; c < ( zxe(S(A)Jr“*)t — 0, as t — +o0.
et 14 [ F(esMsS (s)x)ds et

Assume now that s(A) + p, = 0, then

— Uy, as t — +o0.

R
P s
and since
F(S(;E?:x) — azF(vr) >0, as t — +o0,
we deduce that (s
1+ | F( ;ufs )ds — +00, as t — +00,
so by using (48) and (49)0

U,(t)x — 0, as t — +o0.
We now prove b). Assume that s(A) + p, > 0. Then
ST (t)x e(s(A)J"p‘T)t

UT(t)x = t t I
ert 14 [ F(esAsS (s)x)ds
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and S;L(f)f — vy, as t — +oo, thus
(5(4) + pr)ele(Ar e 1
A T) 1 - .\ 3 )
Fle@ss. ) A ) ast— 4o
and

t
1+ / F(e*WsS_(s)x)ds — 400, as t — 400,
0

so by applying 'Hospital’s rule we deduce that
e(s(A)+pur)t

1+ fot F(es(A)s S (s)z)ds

— (s(A) + pr) as t — +oo.

_
F(azv,)’

Thus

U, (t)r — u, := (s(A) + MT)%? as t — +oo.

We now assume that s(A) > 0, and that g can be extended locally around each
point of X \ {0} by a continuously differentiable map. We now prove that for all
7 > 0 small enough @, is locally stable. From Proposition 3.2 we know that

pr T Tl o gl Lip » V7 € 10,771,
and since s(A) > 0, there exists 777 > 0, such that
s(A) + pur >¢>0,Y7 € [0,7].
The generator of the linearized equation of equation (47) at @, is given by
Ayx = Az +1Dg (u,;)x — F(u,)xr — F(z)u,, Vo € D(A).
and by definition of w, we have
F@r) = (s(A) + ir),
S0
Arz = Az — (s(A) + pr )z + 7Dy () v — F(x)u,, Vo € D(A),
We denote B, € L(X) the bounded linear operator defined by

B.(z) = —p,x+7Dg (u;) x — F(x) (uT — 3(A)¢0> Vo e X.
F(¢o)
Then
Ay = (A—s(A)Id)x — F(x)s(A) F?(; ] + B, (z),Vz € D(A).
0
Since g is differentiable on X, and X = X — X, we deduce that
1Dg (@)l < 2[|gll 14, » V2 € X5\ {0} (50)

Indeed for h € X, z € X \ {0}, and £ > 0, we have

> llgeh+2) = 9@ < gl 1]
SO
[Dg(z)hll < gl Lip IRl
For h € X, we have
IDg(2)hl| < |[Dg()n* || + |Dg(@)h || < llgll iy 12T+ 127 (1] < 29l 121
From (50) we deduce that

1Br oy < Vel + 72 gy + 1Pl [[(504) + p10) iy = s(A) 5y

Fl g« -
< el 4+ 72 gl iy + S {|(5() + i) 8L — ()|
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and from Proposition 3.2, we deduce that for each € > 0, there exists 7 € (0, 77],
such that

1B- 1l x) < &% € [0,7].
It now remains to investigate the exponential asymptotic stability of the linear
semigroup generated by

bo

Aoz = (A —s(A)Id)xz — F(I)S(A)F(¢O>,

Vo € D(A).
But Ag is the generator of T} (t) solution of

T (t)x = To(t)x + fo TO (t— 5) ( F(Tl(S)ac)s(A) F((Zgo)) ds
=To(t)x — F(¢o) fO Ti(s)z)ds

Consider now the equivalent norm

|x| = max(||Py(x)]| , sup w) YVt >0,Vz € X,
t>0
where
0 < e < min(g, s(A)). (51)

Then we have

|Py T (H) x| = |PyTo(t)z| < e =t vt > 0. (52)
Moreover,

t *
oo (T1(t)x) = ¢ () — /0 F(Ty(s)x)ds s(A) (i?(((;b;))) NVE>0
> dgs (T (H)a) !
6 1 t)x _
= = S(A)F(%)F(Tl(t)x),w > 0.

But

F(Ti(t)z) = F(PoTh(t)x + PiTi(t)x) = ¢ (Th(t)x) F(do) + F (P Ty (t)7),
thus

6 THOD _ 405 (nu(e)e) - (1) %

thus by setting « () = e*(Dies (T (t)x) , we have

dy(t) L sy
B — () g O E(AT (1),

thus

1 t
10 =7 (0) = s() g [ PR ()i,
s0, by using equations (51) and (52) we obtain

* Flx« t (s s
Iy (8)] < 165 ()] + s(A) s f (+(A)=)s s |
% Flys s
< [65 ()] + s(A) F5 s et =) Jaf

thus

|F| - 1
F(¢o) s(A) —¢
and the exponential stability follows. O

|65 (T1()2)] < e g (2)] + s(A) e " |=f vt >0,
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5. Application to a population dynamics model. In this section we investi-
gate a model which was already considered in Magal [4]. In this model we consider
the evolution of a population with a continuous varying phenotype

{ B — o [L(u(t)) — u(t)] + Bu(t) + 7 [R((t)) — u(t)] — % [} x(@u()G)dgu(t
u(0) = ug € L (0,1),
(53)
where wu(t)(y) is the density of population, v > 0 is the mutation rate, 8 €
*°((0,1),R) represents the fitness of individuals with respect to the phenotype, 7 >
0 is the recombination rate, K > 0 is the carrying capacity, and x € L((0,1),R) is
positive almost everywhere. The bounded linear operator L € L(L'(0,1), L*(0,1))
is defined by

/Iﬁyy y)dy,
the nonlinear operator R : Li_ (0,1) — L% (0,1) is defined by

Jo Kx(w9)eQRy-D)e@)dy . L
R(¢)(y) = NG , if o € L1 (0,1)\ {0},
0if o = 0.

and the kernels Ky and K; are defined by
L ifo<y<l,anday<y<ayg+1-—

Kolnd) ={ 55

0 elsewhere, , with 0 <a <1
and

21f0<y<7and0<
Ki(y,y) = 2ﬂ1<y<1wd%

0 elsewhere.

S%
1<y<1

From now we denote
1 N g
F(¢) =+ Jo x@)e(@)dy, Ve € L'((0,1),R)

B =inf,c(1)ess B(y), and b= SUPye(0,1) €55 B(y)-

In (53) w = u(t,y) is the density of population with respect to a phenotype
variable y € (0,1) at time ¢. The subpopulation of phenotype at time ¢ in the range
[y1,y2] € (0,1) is given by f u(t,y)dy. The population is viewed as evolving over
time due to the three beparate processes of mutation, selection, and recombination.
In (53) the mutation process is represented by the kernel operator v [L(u) — u],
where «y is the mutation rate, and 0 < « < 1 corresponds to a rate of movement in
y per unit time for an individual which mutates. For example, if @ = 1, the result of
the mutation of individuals during a unit of time will give a constant distribution.
In (53) the selection process for the population depends on the fitness of individuals
with respect to the phenotype represented by the function 3(y). Fitness is variable
in y and the sign of 5(y) may be positive or negative. In (53) there is also a density
dependent rnortality independent of phenotype represented by the crowing term
7 fo y)dy. The problem (53) also incorporates DN A exchange in phenotype
evolutlon represented by the term 7 [R(u(t)) — u(t)] . The recombination operator R
corresponds to the average rate at which two parent phenotypes y; and gy hybridize
to yield offspring with phenotype yl“’? . This form of recombination inheritance is
an idealization and other genetic recomblnation processes could be treated in similar
way. Problem (53) thus models the evolution of phenotype structure from the initial
phenotype distribution ug € L}r (0,1) at time 0 subject to these processes.
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We also refer to Magal and Webb [3] for similar model where the mutation
process is represented by a diffusion operator with Neumann boundary conditions.
We refer to the book by Burger [1] for a comprehensive and update treatment of
this topics.

In this section, we denote

X =LY0,1), X4 = LL(0,1).

We start with some properties of the operator R. The following result is proved in
[3] (see Theorem 2.1).

Theorem 5.1. R is a nonlinear operator from X, to Xy satisfying the following
properties:

i) R is positive homogeneous, i.e. R(co) = cR(¢),Vé € X, ,Ve > 0;

1) R is Lipschitz continuous in X ;

We now recall some properties of the operator L. The following theorem is proved
in [4] (see Theorem 2.2).

Theorem 5.2. The bounded linear operator L € L (X, X) satisfies the following
properties:

i) L is compact;

1) L is irreducible;

ii1) The spectrum of L is o (L) = {ak 1 k=0,1,2 } U{0}, and Yk > 0 the eigen-

value o is simple;

We are now interested in the linear part of the equation (53). So, we first consider
the bounded linear operator

Ag=~(L-1Id).
From Theorem 5.2, the spectrum of A is
o(Ao) = {v (ozk -1):k=0,1,2,..} U{—}.
The following theorem can be found in [4] (see Theorem 2.3).
Theorem 5.3. The bounded linear operator Ay generates a uniformly continuous

semigroup (see Pazy [7]) To(t) = et which satisfies the following properties:

i) Jy To(t)(9) W)y = J, dy)dy, ¥ € X
it) To(t) = e "' Id + C(t), where C(t) € L(X) is compact ¥t > 0;
iii) To(t) is irreducible, more precisely we have

" (To(t)x) > 0,Ve € X\ {0},Va™ € X1\ {0},Vt > 0;

i) Ty(t) has the property of asynchronous exponential growth, that is,

lithJroo To(t)(b = P0(¢)7Vd) S X,

and

ITo(t)Pigll < Me U= || Pig|| Vo € X,
for some M > 1, with Py(¢) = f01 o(y)dypo, Vo € X, for some ¢g € X4 \ {0} (with
Iy o(y)dy = 1), and P, = Id — P.

We now recall some definitions taken from the book of Nagel [6]. We recall that
given an operator A € L(X) then s(A) the spectral bound of A is defined by

s(A) =%/ sup {Re(\) : A\ € 0 (A)},
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and given a strongly continuous semigroup {7'(t)},5, the growth bound of T' is
defined by

w(A) =% inf {w € R: |T()|| < Mye"*,Vt > 0 and suitable M, } .

We also recall that a strongly continuous semigroup T'(t) on a Banach space X is
called quasi-compact if

lim dist(T(t), K(X)) =0,

t—+o00
where K(X) denotes the set of compact bounded linear operator on X, and for
T e L(X)
dist(T, K (X)) =% inf {|T — L| : L € K(X)}.
We will say that ¢ € X is quasi-interior if ¢* (¢) > 0 V¢* € X1 \ {0}, and
¢* € X7 is strictly positive if ¢* (¢) > 0 V¢ € X, \ {0}. We now consider the
following bounded linear operator

Ay pp =~(L - Id)p + B, Vo € X.
we denotes
B¢ = Bé(y),Yp € X,Vt > 0,a.ce. on (0,1).

Theorem 5.4. The bounded linear operator A, g generates a uniformly continuous
semigroup T, g(t) = e85t which satisfies the following properties:
i) Ty p(t) = VB L O 5(1), where C, 5(t) € L(X) is compact Vt > 0;
1) T, a(t) is positive and irreducible.
i1i) There exist ¢o € X4 \ {0} quasi-interior, and ¢5 € X1 \ {0} strictly positive,
with fol 3 (y)do(y)dy = 1 such that

T, 5(t)po = " A0 gy, and T; 4(t)dh = >0 g5, vt > 0.
i)

B<s(Ayp) <P

v) There exists C > 0 such that

95(0) 2 C o]l Vo € X,
vi) s(Ay,8) = w(Ay ), and
1
1T sl < 5|

<5 e*(Av8)t it > (.

X *

%

Assume in addition that
either a) s(Ayg) >0 andy > 3, or b) v > B —f3,

then e‘s(A%ﬁ)tTyﬁ(t) 18 a quasi-compact strongly continuous semigroup, and
vii) T, 5(t) has the property of asynchronous exponential growth. Namely

iy 4 oo e 5Av0IT (1) = Po(¢), V¢ € X,
and

oot < e ] o x

for some M > 1, and some § > 0, with ]50(@ = fol ag(yw(y)dyqzo, Vo € X, and
P, =1d— P,.
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Proof: i) follows directly from the fact that L is compact, and the variation of
constant formula

t
T, 5(t)p = 771448t g o / CHIEBE=3) [T 5(5)(¢)ds, Vit > 0.
0

So if one denotes C., 5(t)(¢) = fot e=d+BIt=9)y [T, 5(s)(¢)ds, it is clear that
C,,3(t) is compact.
Assertion i4) follows from the fact that Vi € R, V¢ € X, Vt > 0,

t
T, 5(t)p = e e Bl 4 / e =) (LD ([ d 4 B)T, 5(s)(¢)ds.
0

So by taking
1 2 _év

we obtain
T, 5(t)¢p > e Hte?E-1dtg vy € X\ Wt > 0, (54)

and since by Theorem 5.3 the semigroup e?Z—I®* ig irreducible, assertion i1) fol-
lows.

To prove #ii) it is sufficient to use the facts that X = L'(0,1) is a Banach lattice,
and that T (t) is irreducible, then by applying Proposition 3.5 p: 310 in Nagel [6]
1i1) follows.

We now prove iv). From iii) there exists o € X, \ {0} such that

3(Ay,3)80 = 7(L = 1d) (d0) + B,
thus
1 _ 1 - 1 -
(5(Ay0) +7) / Folu)dy =~ / L@ Wiy + [ ().

By using 4¢) in Theorem 5.2 we obtain

1~ 1~ 1 -
(5(Ay0) +7) /0 Fo(y)dy =~ /0 Fo(y)dy + /0 B)do(y)dy,
thus
5(Ay5) / Foly)dy = / B)do(y)dy,

and iv) follows.
We now prove v). From equation (54) we have

A0t [1Gi(y)edy = [y G5(y)T,5(1)(9) (W)dy = e [ Gis(y)er E TN (6) (y)dy
> et | [ 05 (y)er TRy (@) (y)dy + [y G5(y)e? E VP (6) (y)dy

> =t [y o)y Jy Giw)soddy — G5 M0 g
ot [l 17 T (1o
>e tfo o(y)dy {fo d)o(y)qi)o(y)dy - ’ @5 Loo(0,1) Me=7(1=o)t ”PlHL(X)
and for ¢ > 0 large enough we have
1
Cy = /0 b5 (y)do(y)dy — ‘ o o) Me YO Py| oy >0,
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since (Ea is strictly positive, and ¢g is quasi-interior. Thus by choosing ¢ > 0 large
enough we have Cy > 0, and

65 (9) = Cre= CLAral Tt g
We prove vi). We first have to note that

HTW(L‘)%H = *(Ar0)t

%’OH ’
so w(A, ) > s(Ay,3). From v) we have V¢ € X

CIIT 56l < CIT, (6D < Jy 50)T: 5(1)(9]) )y
= et [ 550) || (n)dy < |G| et ol

thus w(A, ) < s(A4y5)-
It remains to prove vii). From assertion 4) and since v >  we have {T’, 5(t)},-,
quasi-compact. Assume in addition that s(A, ) > 0, then it is clear that

T(t) = ="' T, 50,
is also quasi-compact. Moreover, the semigroup
e~ 5(Ay. )t (—7Id+B)t
converges to zero in norm of operator if
—s(Ay3) —v+B(y) < -0 <0, ae. on (0,1),
so by using iv) it is sufficient to verify
v>B-p.

So in both cases we obtain a quasi-compact semigroup. Applying vi) or Theorem
2.10 p:216 in Nagel [6] one deduces that

w(Ay5) = s(Ay ),
SO
w(Ay 3 —s(A,)Id)=0.
We are now in position to apply Theorem 2.1 p:343 , and remark (d) p:344 in Nagel

[6], and vi4) follows.[]
We now return back to equation (53), and we apply Theorem 4.1.

Theorem 5.5. : Let v >0, and € L™ (0,1) be fized, and assume that
either a) s(Ay ) >0 andy > B3; orb) v >3 —f.
Consider equation (53), namely

{ 1= LU0 < w0+ ) [RO0) = (0] = OO0

u(0) = up € L_l‘_ (0,1).

Then there exists T* > 0, such that for all T € [0,7*], there exists u, € L (0,1)\

{0}, with ||u-|| =1, and pr € R, such that

(s(Ay,8) + pr)ur = v [L(ur) — ur] + Bur + 7 [R(ur) — us].

and V1 € [0, 7], Vug € X4 \ {0},
u(t)
[[u(®)]]

— u,; ast — +o00.
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Moreover Y1 € [0, 7], Vug € X4 \ {0},

a)

b)

As

If s(A, ) + pr <0, then
u(t) — 0, ast — +oo.
If s(Ay8) + pr >0,
u(t) = ur = (s(Ay ) + pr) %, as t — +oo.
sume in addition that s(A g) > 0, there exists T € (0,7*], V7 € [0, 7],
s(Ay )+ - >0, and T, is exponentially stable.

Proof: The proof of this theorem is a direct consequence of Theorem 4.1, and
Theorem 5.4. g
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