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Abstract In this paper we consider a parametrized family of semi-flows with continuous
or discrete time. In the spirit of the global stability result proved by Smith and Waltman
(Proc AMS 127:447–453, 1999) we use the upper semi-continuity of a parametrized family
of global attractors. Here we investigate the case where the linearized equation of the unper-
turbed system has a simple dominant eigenvalue 0 in the case of a continuous time system
(or 1 in the case of a discrete time system). New difficulties arise since such a system may
exhibit a bifurcation. The goal of the paper is to describe the global dynamics of the perturbed
system.

Keywords Global stability · Uniform persistence · Global attractors ·
Upper semi-continuity
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1 Introduction

Uniform persistence is an important concept in population dynamics since it characterizes
the long-term survival of some or all interacting species in an ecosystem. There have been
extensive investigations on uniform persistence for discrete and continuous-time dynamical
systems. We refer to [8,22,47,55] for surveys and reviews. Roughly speaking, uniform persis-
tence is the notion saying that a closed subset of the state space (e.g., the set of extinction for
one or more populations) is repelling for the dynamics on the complementary set. A natural
question is about the existence of “interior” global attractors and “coexistence” steady states
for uniformly persistent dynamical systems. The existence of interior global attractors was
addressed by Hale and Waltman [19], and the existence of coexistence steady states under
a general setting was investigated by Zhao [54] and Magal and Zhao [36]. In [19,54] the
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classical concept of global attractors was employed: a global attractor is a compact, invariant
set which attracts every bounded set in the phase space (see, e.g., Hale [11], Temam [44],
Cholewa and Dlotko [5], Raugel [38]). Recently, a weaker concept of global attractors was
introduced by Hirsch et al. [21] and Sell and You [39]: a global attractor is a compact, invari-
ant set which attracts some neighborhood of itself and every point in the phase space. In
Magal and Zhao [36], several examples were considered in order to discuss the properties
of global attractors in the context of uniform persistence (see also Cholewa and Hale [6]).
These examples show that the notion of global attractor of [21,39] is more appropriate in the
context of uniform persistence. For this reason, we will use this non-classical definition here.
We want to point out that this more recent notion of global attractor is not classical and does
not coincide with the one used by Hale [11]. We also want to notice that, when the semi-flow
is asymptotically smooth, the notion of global attractor used in this paper here coincides with
the notion of a compact invariant set attracting all the compact sets.

In what follows, we will make the following assumption.

Assumption A Let M be a closed subset of a Banach space (X, ‖.‖), let (�, d�) be a metric
space, and let ̂λ ∈ � be fixed. Let {Uλ(t)}t∈I (with I = R or I = ωN for some ω > 0)
be a family of asymptotically smooth continuous semi-flows on M parametrized by λ ∈ �.
We assume that the map (t, λ, x) → Uλ(t)x is continuous from I × � × M into M. Let
ρ : � × M → [0,+∞)be a continuous map. For each λ ∈ �, we set

∂ Mλ
0 = {x ∈ M : ρλ(x) = 0} and Mλ

0 = {x ∈ M : ρλ(x) > 0} .

We assume that Mλ
0 is positively invariant by Uλ. We also assume that:

(a) For each λ ∈ �, Uλ has a global attractor Aλ in (M, d).
(b) The family {Aλ}λ∈� is upper semi-continuous at̂λ ∈ �.
(c) For each λ ∈ �, Uλ is ρλ-uniformly persistent, that is, for each λ ∈ �, there exists

ελ > 0, such that

lim inf
t→+∞ ρλ(Uλ(t)x) ≥ ελ, ∀x ∈ Mλ

0 .

We recall that the family {Aλ}λ∈� of subsets of M is upper semi-continuous at̂λ , if

δ
(

Aλ, A
̂λ

) → 0 as λ →̂λ.

where

δ(B, A) := sup
x∈B

d(x, A), and d(x, A) := inf
y∈A

d(x, y).

The property of upper semi-continuity of a familly of global attractor has been investigated
in many contexts and we refer to [4,11,12,15–18,20,26,37–39,43,51] for a nice survey on
the subject. In the context of uniform persistence we have the following result.

Theorem 1.1 Let AssumptionA be satisfied. Then for each λ ∈ �, Uλ has a global attractor
A0λ in Mλ

0 . Moreover the family {A0λ}λ∈� is upper semi-continuous at̂λ if and only if there
exist ε > 0, and δ > 0, such that

lim sup
t→+∞

ρλ (Uλ(t)x) ≥ ε, ∀x ∈ Mλ
0 , ∀λ ∈ B�

(

̂λ, δ
)

,

where B�

(

̂λ, δ
) := {

λ ∈ � : d�

(

̂λ, λ
) ≤ δ

}

.
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In order to study the local pertubation problem we make the following assumption.

Assumption B We assume that there exists a globally asymptotically stable equilibrium
point x

̂λ for U
̂λ in M̂λ

0

(

i.e. A0̂λ = {

x
̂λ

})

.

Smith and Waltman [42] prove that, when Mλ
0 = M for each λ ∈ �, and x

̂λ is locally
exponentially stable, then the perturbed system has also a globally asymptotically stable
equilibrium. Motivated by some examples in population dynamics (see for example Magal
and Webb [35]), we generalize the result of Smith and Waltman [42] to the context of uniform
persistence.

Theorem 1.2 Let AssumptionsA andB be satisfied, and assume in addition that:
(a) The family {A0λ}λ∈� is upper semi-continuous at̂λ.

(b) There exist t0 ∈ I \ {0} and a bounded linear operator L : X → X such that the
spectral radius r(L) of L satisfies r(L) < 1 and such that

lim
δ→0

sup
λ∈B�(̂λ,δ)

‖Uλ (t0) − L‖Lip,B M (x
̂λ,δ) = 0.

Then there exist δ > 0, and, for for each λ ∈ B�(̂λ, δ), a globally asymptotically stable
equilibrium point xλ for Uλ in Mλ

0 .

(For the definition of the norm ‖·‖Lip,B M (x
̂λ,δ), we refer the reader to the beginning of

Sect. 3)

Remark 1.3 In practice for continuous-time dynamical systems, Assumption (B) in Theo-
rem 1.2 will be satisfied if we can find a linear C0 -semi-group {V (t)}t∈I on X with negative

growth rate

(

i.e. limt→+∞
ln

(‖V (t)‖L(X)

)

t
< 0

)

such that

lim
δ→0

sup
λ∈B�(̂λ,δ)

‖Uλ (t) − V (t)‖Lip,B M (x
̂λ,δ) = 0, ∀t ∈ I.

The main goal of this paper is to describe the asymptotic behavior of the perturbed system
Uλ(t) whenever 1 is a simple dominant eigenvalue of the linear operator L (or 0 is a simple
dominant eigenvalue of the infinitesimal generator of {V (t)}t∈I ). In this case the parametrized
system may exhibit a bifurcation at λ =̂λ (see examples in Sect. 4). This type of assumption
is relatively natural in the context of population dynamics, because this property is usually
associated to the positivity of the linear operator L (or the positivity of the linear C0-semi-
groups {V (t)}t∈I ). For example, assume that (X, ‖.‖) is a Banach lattice for some partial
order ≤ on X ; if {V (t)}t∈I is irreducible, then it is known that there is a simple dominant
eigenvalue of the infinitesimal generator of {V (t)}t∈I ( see [53]). We also refer to [3,10,46]
for a nice survey on this subject.

Let K be a subset of X . A point x ∈ K is said to be extreme in K (in the sense of
Minkowski) if x = λy + (1 − λ) z with y, z ∈ K , and λ ∈ (0, 1) implies x = y = z.

The main result of this paper is the following theorem.

Theorem 1.4 Let AssumptionsA andB be satisfied. We assume in addition that:
(a) For each λ ∈ �, A0λ is connected.
(b) The family {A0λ}λ∈� is upper semi-continuous at̂λ.
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(c) There exist t0 ∈ I \ {0}, a bounded linear operator L : X → X and a bounded linear
projector P : X → X with rank 1, such that

L P = P L = P and r(L(I − P)) < 1,

and

lim
δ→0

sup
λ∈B�(̂λ,δ)

‖Uλ (t0) − L‖Lip,B M (x
̂λ,δ) = 0.

(d) For each λ ∈ �\ {

̂λ
}

, one of the following conditions is satisfied:
(1) There exists an equilibrium point xλ of Uλ in Mλ

0 , such that P(xλ) is extreme in
P(A0λ) or in P(Mλ

0 ).
(2) There exist two disjoint non-empty compact connected subsets E1λ, E2λ ⊂ Mλ

0
which are positively invariant by Uλ.

Then there exists δ > 0, such that for each λ ∈ B�(̂λ, δ), the following assertions are
satisfied:

(i) There exists a map φλ ∈ Lip (P(A0λ), (I d − P)(A0λ)) such that

A0λ = {y + φλ (y) : y ∈ P(A0λ)} .

(ii) For each t > 0, Uλ(t) is a bijection from A0λ into itself. Furthermore, if we set
Uλ(−t) = Uλ(t)−1,∀t ∈ I, then {Uλ(t)}t∈I is a strongly continuous group on
A0λ. Moreover, for each x ∈ A0λ, there exist two equilibrium points x+, x− ∈
A0λ of {Uλ(t)}t∈I , such that

Uλ(t) → x+ and Uλ(−t)(x) → x− as t → +∞.

(iii) If Mλ
0 contains at most a finite number of equilibria for {Uλ(t)}t∈I , then, for each

x ∈ Mλ
0 , there exists an equilibrium x ∈ A0λ of Uλ(t), such that

Uλ(t)(x) → x, as t → +∞.

(iv) If there exists a compact subset Bλ ⊂ Mλ
0 which is invariant by Uλ and contains

at most one equilibrium of Uλ, then Bλ = {xλ}, and xλ is an equilibrium of Uλ.
(v) We set

T (λ, x) = Uλ(t0)x, ∀(λ, x) ∈ � × M.

Assume in addition that there exist a neighborhood V of
(

̂λ, x
̂λ

)

in � × X and
an extension ̂T of T to V , such that

lim
δ→0

sup
λ∈�:d�(λ,̂λ)≤δ

∥

∥̂Tλ − L
∥

∥

Lip,B X (x
̂λ,δ)

= 0.

Then there exist δ∗ ∈ (0, δ) and, for each λ ∈ B�(̂λ, δ∗) and each x ∈ Mλ
0 , an

equilibrium point x = x(λ, x) ∈ A0λ of {Uλ(t)}t∈I , such that

Uλ(t)x → x as t → +∞.

In Assumption A, the subset ∂ Mλ
0 can be empty for each λ ∈ �. In this case, we have

Mλ
0 = M , and Aλ = A0λ, and Theorem 1.2 corresponds to the result of Smith and Waltman

[42]. One may also apply Theorem 1.4 on M by considering the case where ∂ Mλ
0 is empty.

Theorem 1.4 generalizes the results obtained in [29,30] for discrete time dynamical system.
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The plan of the paper is the following. In Sect. 2, we recall some results about global
attractors, and we investigate upper semi-continuity results in the context of uniform persis-
tence. In Sect. 3, we prove Theorems 1.2 and 1.4. In Sect. 4, we apply Theorem 1.4 to some
examples of age-structured population dynamics models.

2 Attractors

Let (M, d) be a complete metric space. For any subsets A, B ⊂ M and any ε > 0, we define

dH (A, B) = max (δ(B, A), δ(A, B)) (Hausdorff’s metric)
N (A, ε) := {x ∈ M : d(x, A) < ε} , N (A, ε) := {x ∈ M : d(x, A) ≤ ε} ,

B(y, ε) := N ({y} , ε), and B(A, ε) := N ({y} , ε).

Let I be a subset of R+, which is either 1) I = ωN for some ω ∈ R+\ {0} ; or 2) I = R+.

Let {U (t)}t∈I be a family of maps from M into itself. We say that {U (t)}t∈I is a semi-flow if

U (0) = I d and U (t + s) = U (t) ◦ U (s), ∀t, s ∈ I.

We will say that U is continuous if the map (t, x) → U (t)x is a continuous map from I × M
into M . Here the case I = R+ or (respectively I = ωN for some ω ∈ R+\ {0}) corresponds
to the case of continuous (respectively discrete) time semi-flows.

When I = ωN, we set T = U (ω). Then, U (nω) = T n , where T 0 = I d and T n =
T ◦ T n−1,∀n ≥ 1. Moreover in the discrete time case, U is continuous if and only if
T = U (ω) is a continuous map.

For each subset B ⊂ M, we denote by γ + (B) = ⋃

t≥0
U (t)(B) the positive orbit of B for

U , and

ω(B) =
⋂

t≥0

⋃

s≥t

U (s)(B)

the omega-limit set of B. A subset A ⊂ M is positively invariant for U if U (t) (A) ⊂ A,∀t ≥
0. A is invariant for U if U (t)(A) = A,∀t ≥ 0. We say that a subset A ⊂ M attracts a
subset B ⊂ M for U, if limt→∞ δ(U (t)B, A) = 0.

To give a unified definition of internally transitive sets for both discrete and continuous
time dynamical systems, we set

σt =
{

t, if I = R,

ω, if I = ωN (for some ω > 0),

whenever t ∈ I\ {0}. Let A be a subset of M , and let a, b ∈ A. We say that a is chained to
b in A if for each t ∈ I\ {0} , each ε > 0, and each η > 0, there exist τ ∈ [σt , σt + η] ∩ I
and x1, x2, ..., xm ∈ A (with m ≥ 2) such that

x1 = a, xm = b, and d (U (τ )xi , xi+1) ≤ ε, ∀i = 1, ..., m − 1.

A set A is said to be internally chain transitive if for each pair a, b ∈ A, a is chained to
b in A.

In the discrete time case the previous definition coincides with the one in ([21], Sect. 2), but
in the continuous time case, our definition is different from the definition in ([21], Sect. 2).
Note that, the above notion of internally chain transitive set will be used in the proof of
Lemma 3.3.
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Following LaSalle [25], a compact invariant subset is said to be invariantly connected if
it cannot be decomposed into two disjoint closed non-empty invariant subsets. It is easy to
see that every internally chain transitive set is invariantly connected.

Following the arguments used in ([21], Lemma 2.1) we obtain the following lemma.

Lemma 2.1 Let {U (t)}t∈I be a continuous semi-flow on (M, d). Then the omega (alpha)

limit set of a relatively compact positive (negative) orbit of a point is internally chain
transitive.

The first main tool used in investigating the existence of global attractors is the following
result. Its proof follows the same lines as the one in ([36], Lemma 2.2).

Lemma 2.2 Let {U (t)}t∈I be a continuous semi-flow. Let A be a subset of M, and assume
that there exists a compact subset C ⊂ M, which attracts A for U. Then ω(A) is non-empty,
compact, invariant for U, and attracts A.

A positively invariant subset A ⊂ M for U is said to be stable if for any neighborhood V
of A, there exists a neighborhood W ⊂ V of A such that U (t) (W ) ⊂ V,∀t ≥ 0 . We say
that A is globally asymptotically stable for U if, in addition, A attracts every point in M for
U . Note that A is stable if and only if for each neighborhood V , there exists a neighborhood
W of A which is positively invariant by U and satisfies W ⊂ V .

The second main tool used in showing the existence of global attractors is the following
lemma. The proof follows the arguments used in ([11], Theorem 2.2.5).

Lemma 2.3 Let {U (t)}t∈I be a continuous semi-flow. Let A ⊂ M be compact and positively
invariant for U. If A attracts all the compact subsets of one of its neighborhoods, then A is
stable.

Definition 2.4 A non-empty, compact and invariant set A ⊂ M is said to be an attractor for
U if A attracts one of its neighborhoods; A is a global attractor for U if A is an attractor that
attracts each point of M .

Definition 2.5 We say that U is point dissipative if there exists a bounded set B ⊂ M such
that for each x ∈ M , there exists t ∈ I, such that U (s)x ∈ B for each s ≥ t . We say that U
is asymptotically smooth if every positively invariant bounded set is attracted by a compact
subset.

The following theorem is known (see Theorem 3.2, [13]) and (Theorem 2.6, [36]) for
discrete and continuous time semi-flows. The proof of this result uses similar arguments as
in (Theorem 2.6, [36]) combined with Lemmas 2.2 and 2.3.

Theorem 2.6 Let U be a continuous semi-flow on a complete metric space (M, d). Assume
that

(a) U is point dissipative and asymptotically smooth;
(b) For each compact subset C of M, there exists tC ∈ I , such that the orbit γ + (U (tC ) (C))

is bounded.

Then U has a global attractor A ⊂ M. Moreover, for each subset B of M, if there exists
tB ≥ 0 such that γ +(U (tB)(B)) is bounded, then A attracts B for U.
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We now investigate the dependence with respect to a parameter. We refer to [11,38,39]
for a nice survey on this subject. Let (�, d�) be a complete metric space, let {Uλ (t)}t∈I be
a family of semi-flows on M parameterized by λ ∈ �. Let {Aλ}λ∈� be a family of compact
subsets of M . We first have the following result.

Proposition 2.7 We assume that, for each t ∈ I , the map (λ, x) → Uλ(t)x is continuous,
that, for each λ ∈ �, Aλ is invariant by Uλ, and that A

̂λ is a global attractor for U
̂λ. Then

the following statements are equivalent:
(1) {Aλ}λ∈� is upper semi-continuous at̂λ ∈ �.
(2) For each sequence {λn}n≥0 such that λn → ̂λ as n → +∞, there exists a compact

subset C ⊂ M, such that δ
(

Aλn , C
) → 0 as n → +∞.

Proof (1)⇒ (2) is obvious with C = A
̂λ. We now prove (2)⇒ (1). Assume that {Aλ}λ∈� is

not upper semi-continuous at̂λ ∈ �. Then we can find ε > 0, and a sequence {λn}n≥0 →̂λ,
such that

δ
(

Aλn , A
̂λ

) ≥ ε, ∀n ≥ 0.

Then one can find a subsequence
{

λn p

}

p≥0 and a compact subset ̂A∞ such that

dH (Aλn p
, ̂A∞) → 0 as p → +∞. By construction, δ

(

̂A∞, A
̂λ

) ≥ ε. But for each p ≥ 0,
Aλn p

is invariant by Uλn p
, and for each t ∈ I, the map (λ, x) → Uλ(t)x is continuous, so

̂A∞ is invariant by U
̂λ. Finally, since A

̂λ is a global attractor for U
̂λ, we deduce that ̂A∞ ⊂ A

̂λ

and δ
(

̂A∞, A
̂λ

) = 0, which leads to a contradiction. 
�
As an immediate consequence of the previous result we have the following proposition.

Proposition 2.8 We assume that, for each λ ∈ �, Aλ is invariant by Uλ, and that there exists
a subset B of M such that:
(a) A

̂λ attracts B for U
̂λ.

(b) Aλ ⊂ B,∀λ ∈ �.

(c) For each t ∈ I, Uλ (t) x → U
̂λ (t) x as λ →̂λ uniformly in x ∈ B.

Then {Aλ}λ∈� is upper semi-continuous at̂λ.

Proof The proof is straightforward. 
�
In the application one may use the following result. This theorem is known in the context

of global attractors, and for completeness we prove it.

Proposition 2.9 Let (�, d�) be a metric space, let ̂λ ∈ � be fixed, and let {Uλ (t)}t∈I be
a family of continuous semi-flows on a metric space (M, d) parameterized by λ ∈ �. We
assume that:

(a) Uλ is asymptotically smooth for each λ ∈ �.
(b) U

̂λ has a global attractor A
̂λ.

(c) There exists a bounded subset B0 of M, such that A
̂λ attracts B0 for U

̂λ, and, for each
λ ∈ � and each x ∈ M, there exists t0 = t0 (λ, x) ≥ 0, such that

Uλ(t)x ∈ B0, ∀t ≥ t0.
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(d) For each bounded set B ⊂ M and each τ > 0, Uλ (t) x → U
̂λ (t) x as λ →̂λ uniformly

in (t, x) ∈ ([0, τ ] ∩ I ) × B.

Then there exists η > 0, such that for all λ ∈ B�

(

̂λ, η
)

, Uλ(t) has a global attractor
Aλ ⊂ M, and the family {Aλ}λ∈B�(̂λ,η) is upper semi-continuous at̂λ.

Proof For each λ ∈ �, we set

Jλ(B0) := {y ∈ B0 : Uλ(t)(y) ∈ B0,∀t ∈ I } .

Then Jλ(B0) ⊂ B0 is bounded and positively invariant by Uλ, and for each x ∈ M , there
exists t ≥ 0, such that Uλ(t)(x) ∈ Jλ(B0). Since Uλ is asymptotically smooth, we deduce
that ωλ (Jλ(B0)) = ⋂

s≥0

⋃

t≥s
Uλ(t) (Jλ(B0)) is compact, invariant by Uλ, and attracts the points

of M for Uλ. By applying Proposition 2.8 (with Aλ = ωλ (Jλ(B0)), whenever λ �= ̂λ, and
B = B0), we deduce that

lim
λ→̂λ

δ
(

ωλ (Jλ(B0)) , A
̂λ

) = 0. (2.1)

Let ε > 0 be fixed. Since A
̂λ is a global attractor for U

̂λ, it follows that A
̂λ is stable for U

̂λ

and A
̂λ attracts one of its neighborhoods for U

̂λ. So there exist ε̂ ∈ (0, ε) and t∗ ∈ I, such
that A

̂λ attracts N
(

A
̂λ, ε̂

)

for U
̂λ,

U
̂λ(t)N

(

A
̂λ, ε̂

) ⊂ N
(

A
̂λ, ε/4

)

, ∀t ≥ 0,

and

U
̂λ(t

∗)N
(

A
̂λ, ε̂

) ⊂ N
(

A
̂λ, ε̂/4

)

.

By using Assumption D, we deduce that there exists η1 > 0, such that for each λ ∈ � with
d�

(

̂λ, λ
) ≤ η1,

Uλ(t)N
(

A
̂λ, ε̂

) ⊂ N
(

A
̂λ, ε/2

)

, ∀t ∈ [

0, t∗
] ∩ I,

and

Uλ(t
∗)N

(

A
̂λ, ε̂

) ⊂ N
(

A
̂λ, ε̂/2

)

.

We set, for each λ ∈ �, with d�

(

̂λ, λ
) ≤ η1,

Bλ =
⋃

t∈[0,t∗]

Uλ(t)N
(

A
̂λ, ε̂

)

,

then Bλ is positively invariant by Uλ and N
(

A
̂λ, ε̂

) ⊂ Bλ ⊂ N
(

A
̂λ, ε/2

)

. Moreover, by
(2.1), there exists η ∈ (0, η1) , such that ωλ (Jλ(B0)) ⊂ N

(

A
̂λ, ε̂/2

)

, for each λ ∈ �, with
d�

(

̂λ, λ
) ≤ η. Then for each λ ∈ � with d�

(

̂λ, λ
) ≤ η, Bλ attracts the compact subset

of M and Aλ = ωλ (Bλ) is a global attractor for Uλ. Finally since Bλ ⊂ N
(

A
̂λ, ε/2

)

, we
deduce that

Aλ ⊂ N
(

A
̂λ, ε/2

)

,

and the result follows. 
�
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Let ρ : M → [0,+∞) be a continuous function. Define

M0 := {x ∈ M : ρ(x) > 0} and ∂ M0 := {x ∈ M : ρ(x) = 0} .

Let {U (t)}t∈I be a continuous semi-flow such that

U (t) (M0) ⊂ M0, ∀t ≥ 0.

A subset B ⊂ M0 is said to be ρ-strongly bounded if B is bounded in (M, d) and
inf x∈B ρ(x) > 0.

Definition 2.10 {U (t)}t∈I is said to be ρ-uniformly persistent if there exists ε > 0 such that
lim inf t→+∞ ρ (U (t)(x)) ≥ ε, ∀x ∈ M0.

The following result on the existence of global attractors in (M0, d) is proved in ([36],
Theorem 3.7).

Theorem 2.11 Assume that U is asymptotically smooth, ρ-uniformly persistent, and that U
has a global attractor A in (M, d). Then U has a global attractor A0 in (M0, d). Moreover,
for each subset B of M0, if there exists t ≥ 0 such that γ + (U (t) (B)) is ρ-strongly bounded,
then A0 attracts B for U.

From now on we assume that Assumption A is satisfied. By Theorem 2.11 , it follows that,
for each λ ∈ �, Uλ has a global attractor A0λ in (Mλ

0 , d), and the first part of Theorem 1.1
follows. So it remains to prove the upper semi-continuity of the family {A0λ}λ∈� at ̂λ, that
is to show that

δ
(

A0λ, A0̂λ

) = sup
x∈A0λ

inf
y∈A0̂λ

d(x, y) → 0 as λ →̂λ.

In practice as for uniform persistence (see [36], Proposition 3.2), we may use the following
equivalent conditions.

Lemma 2.12 Let AssumptionA be satisfied. Then the following statements are equivalent:

(a) There exist ε > 0 and η > 0, such that

lim
t→+∞ inf ρλ (Uλ(t)x) ≥ ε, ∀x ∈ Mλ

0 , ∀λ ∈ B�

(

̂λ, η
)

.

(b) There exist ε > 0 and η > 0, such that

lim
t→+∞ sup ρλ (Uλ(t)x) ≥ ε, ∀x ∈ Mλ

0 , ∀λ ∈ B�

(

̂λ, η
)

.

(c) There exist ε > 0 and η > 0, such that for each x ∈ Mλ
0 and each λ ∈ B�

(

̂λ, η
)

,

if 0 < ρλ (x) < ε, there exists t0 = t0(x, λ) ≥ 0, such that ρλ (Uλ(t0)(x)) ≥ ε.

Proof The implications (a)⇔ (c) and (b)⇒ (a) are obvious. We prove that (a) implies (b).
Let ε > 0 and η > 0 satisfy

lim
t→+∞ sup ρλ (Uλ(t)(x)) ≥ ε, ∀x ∈ M0, ∀λ ∈ B�

(

̂λ, η
)

. (2.2)

Assume that there exist sequences {xm}m≥0 ⊂ M and {λm}m≥0 ⊂ B�

(

̂λ, η
)

, such that

λm → ̂λ as m → +∞,

um : = lim
t→+∞ inf ρλm

(

Uλm (t)(xm)
) → 0 as m → +∞.
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Let m0 ≥ 0 such that for each m ≥ m0, um < ε/2. Then for each m ≥ m0, we can find
tm ∈ I and lm ∈ I, such that, if ym = Uλm (tm)(xm), then

d
(

ym, Aλm

) ≤ 1

m
, ρλm (ym) ≥ ε/2, ρλm

(

Uλm (l)ym
) ≤ ε/2, ∀l ∈ (0, lm] ∩ I,

and

ρλm

(

Uλm (lm)ym
) ≤ um + 1

m + 1
.

Since {Aλ}λ∈� is upper semi-continuous at̂λ, there exists a subsequence (that we still denote
ym), satisfying,

ym → y ∈ A
̂λ as m → +∞.

We set̂l := lim inf
m→+∞ lm . If̂l < +∞, we have

ρ̂λ (y) ≥ ε/2 and ρ
̂λ

(

U
̂λ(

̂l)y
) = 0,

which is impossible because y ∈ M̂λ
0 and M̂λ

0 is positively invariant by U
̂λ. If̂l = +∞, we

have

y ∈ M
̂λ
0 and lim

n→+∞ sup ρ
̂λ

(

U
̂λ(t)(y)

) ≤ ε/2, ∀t > 0,

which contradicts (2.2). 
�
Proof of Theorem 1.1 Assume that {A0λ}λ∈� is upper semi-continuity at ̂λ. Let ε

∈ (0, inf
x∈A0̂λ

ρλ (x)). Assume by contradiction that we can find a sequence λn → ̂λ and

xn ∈ Mλn
0 such that

lim
t→+∞ inf ρλn

(

Uλn (t)xn
) ≤ ε.

So, for each n ≥ 0, the omega-limit set ω (xn) for Uλ contains a point yn ∈ A0λn with
ρλn (yn) ≤ ε. But since ρ is continuous, by using the upper semi-continuity of {A0λ}λ∈� at
̂λ, we can find y ∈ A0̂λ ⊂ M̂λ

0 with ρλn (y) ≤ ε, which leads to a contradiction.
Conversely assume that there exists ε > 0 such that

lim
t→+∞ inf ρλ (Uλ(t)(x)) ≥ ε, ∀x ∈ Mλ

0 , ∀λ ∈ B�

(

̂λ, η
)

. (2.3)

We first prove that there exist ε̂ ∈ (0, ε) and η̂ ∈ (0, η) , such that

ρ̂λ (x) ≥ ε̂, ∀x ∈
⋃

λ∈B�(̂λ,̂η)

A0λ.

Assume, by contradiction, that this is not true. Then we can find two sequences λn →̂λ and
xn ∈ A0λn , such that

un := ρ̂λ (xn) → 0 as n → +∞.

Since {Aλ}λ∈� is upper semi-continuous at̂λ, there exists subsequence (that we still denote
xn) such that,

xn → x ∈ A
̂λ,
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Since ρ is continuous, we deduce that

ρλn (xn) → 0 as n → +∞.

So for all n ≥ 0 large enough, we have

ρλn (xn) < ε/2, ∀n ≥ 0.

Since A0λn is invariant by Uλn , for each n ≥ 0, we can find yn ∈ A0λn and ln ∈ I, such that

xn = Uλn (ln)yn, ρλn (yn) ≥ ε/2, and ρλn

(

Uλn (l)(yn)
) ≤ ε/2,∀l ∈ (0, ln] ,

Otherwise we can find a negative orbit {un(−t)}t≥0 ⊂ A0λn such that

xn = un(0), and un(l − t) = Uλn (l)(u
n(−t)), ∀t, l ≥ 0, with l − t ≤ 0,

and ρλn (un(−t)) < ε/2, ∀t ≥ 0.

We deduce that, for each point z ∈ α(xn) = ⋂

t≥0

⋃

s≥t
{un(−s)} ⊂ A0λn , we have

ρλn

(

Uλn (t)(z)
) ≤ ε/2, ∀t ≥ 0,

which contradicts (2.3). Now since {Aλ}λ∈� is upper semi-continuous at ̂λ, there exists a
subsequence (that we still denote yn) such that,

yn → y ∈ A
̂λ as n → +∞.

We denotêl = limn→+∞ inf ln . Then if̂l < +∞, we have

ρ̂λ (y) ≥ ε/2 and ρ̂λ

(

U
̂λ(

̂l)(y)
) = 0,

which is impossible, since y ∈ M̂λ
0 and M̂λ

0 is positively invariant by U
̂λ. If ̂l = +∞, we

have

y ∈ M
̂λ
0 and lim

t→+∞ sup ρ̂λ

(

U
̂λ(t)(y)

) ≤ ε/2,

which contradicts (2.3). Finally, there exist ε̂ ∈ (0, ε) and η̂ ∈ (0, η) , such that

ρ̂λ (x) ≥ ε̂, ∀x ∈ ∪λ∈B�(̂λ,̂η) A0λ.

We set V := {

x ∈ M : ρ
̂λ (x) ≥ ε̂

}

. Then V is closed in (M, d), the subset C := V ∩ A
̂λ is

a compact subset of M0̂λ, and

δ (A0λ, C) → 0 as λ →̂λ.

Thus, Proposition 2.7 implies the result. 
�

3 Perturbation of a Globally Stable Steady State

In this section, motivated by the results in [42], we study the perturbation of a globally stable
steady state.

Let (X, ‖.‖) be a Banach space. For any subsets A ⊂ B ⊂ X and any map g : B → X,

we set

‖g‖Lip,A = sup
x,y∈A:x �=y

‖g(x) − g(y)‖
‖x − y‖ .
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Proof of Theorem 1.2 We recall that r(L) = limn→+∞ ‖Ln‖1/n
L(X). Let c ∈ (r(L), 1) . We

consider the norm

|x | = sup
n≥0

c−n
∥

∥Ln x
∥

∥ , ∀x ∈ X.

Then |.| is a norm equivalent to ‖.‖ , and |Lx | ≤ c |x | ,∀x ∈ X. So without loss of generality,
we can assume that ‖L‖L(X) < 1. Let k ∈ (

0, 1 − ‖L‖L(X)

)

, and let r > 0 be fixed such
that

‖Uλ (t0) − L‖Lip,B M (x
̂λ,r) ≤ k, ∀λ ∈ B�(̂λ, r).

Then for each λ ∈ B�(̂λ, r) and each x, y ∈ B M (x
̂λ, r), we have

‖Uλ (t0) x − Uλ (t0) y‖ ≤ α ‖x − y‖ , (3.1)

with α = k + ‖L‖L(X) < 1.

Since the family {A0λ}λ∈� is upper semi-continuous, we can find η ∈ (0, r) , such that

A0λ ⊂ B M (x
̂λ, r/2), ∀λ ∈ B�(̂λ, η).

Since A0λ is invariant by Uλ, we obtain for each λ ∈ B�(̂λ, η) that

diam (A0λ) : = sup
x,y∈Aλ

‖x − y‖ = sup
x,y∈A0λ

‖Uλ (t0) x − Uλ (t0) y‖
≤ α diam (A0λ) .

We deduce that for each λ ∈ B�(̂λ, η), diam (A0λ) = 0, so there exists xλ ∈ M, such that
A0λ = {xλ} . Since A0λ is invariant by Uλ, it follows that xλ is an equilibrium. Moreover
xλ ∈ B M (x

̂λ, r/2), and Uλ is a continuous semi-flow, so by using (3.1 ), it follows that xλ

is stable. 
�
We now turn to the case where 1 is a simple dominant eigenvalue of L . We first recall

some reduction results, which hold under the following assumption.

Assumption C Let L be a bounded linear operator on a Banach space X . We assume that
X can be written as X = X1 ⊕ X2, where X1 and X2 are closed subspaces of X ,which are
positively invariant by L , and

a = sup
λ∈σ(L1)

|λ| < inf
λ∈σ(L2)

|λ| = b ≤ 1,

where Li = L |Xi ∈ L(Xi ), for i = 1, 2.

We denote by P ∈ L(Xi ) the bounded linear projector, such that

P (X) = X2, and (I − P) (X) = X1.

Lemma 3.1 ([28], Theorem 3.3) Let AssumptionC be satisfied. Let M be a closed bounded
set of X. Let η ∈ (a, b) be fixed. Then there exists a constant C1 = C1(L , η) > 0, such that
for each map T : M → M satisfying

C1 ‖T − L‖Lip,M < 1 and T (M) = M,

then T is bijective, and there exists a Lipschitz continuous map φ : P(M) → (I d − P)(M)

such that

M = {y + φ (y) : y ∈ P(M)} .
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For each η > 0, we define the Banach space Y −
η (X) of all sequences

{

y−p
}

p∈N
such that

‖y‖Y −
η (X) = sup

p≥0
ηp

∥

∥y−p
∥

∥ < +∞.

For each η > 0 and each map T : X → X, we denote

Mη(T ) =
{

y0 : there is a T -negative orbit y ∈ Y −
η (X) passing through y0

}

.

Lemma 3.2 ([50], Theorems 5 and 6) Let AssumptionC be satisfied. Let η ∈ (a, b) be fixed.
Then there exists C1 = C1(A, η) > 0, such that for each map T : X → X satisfying

T − L is bounded and C1 ‖T − L‖Lip,X < 1,

then T is a bijection on Mη, and there exists a map φη ∈ Lip (X2, X1) such that for all
x ∈ Mη,

Mη(T ) = {

x + φη (x) : x ∈ X2
}

.

Moreover, there exists a continuous map H : X → Mη such that for each x ∈ X,

Mη ∩ ˜M1/η(x) = {H(x)} ,

where

˜M1/η(x) =
{

y ∈ X : sup
n≥0

η−n
∥

∥T n (y) − T n (x)
∥

∥ < +∞
}

.

Lemma 3.3 Let J be a closed interval in R. Let I = R or I = ωN for some ω > 0.
Let {V (t)}t∈I be a strongly monotone continuous semi-flow on J (i.e. x < y ⇒ V (t)x <

V (t)y,∀t ∈ I ). Let A be a compact subset of J. Set a = inf A and b = sup A. Then we have
the following:
(i) If A is invariant for V , then a and b are equilibria of V . Moreover, if there exist x ∈ [a, b]
and τ ∈ I\ {0} , such that V (τ )x > x (V (τ )x < x) then there exist two equilibria of V ,
c, d ∈ [a, b] with c < x < d such that V (t)y > y (V (t)y < y), ∀t ∈ I\ {0} ,∀y ∈ (c, d) .

(ii) If A is invariant and internally chain transitive for V, then

A = [a, b] , and V (t)x = x, ∀t ∈ I\ {0} , ∀x ∈ [a, b] .

Proof The proof for (i) is immediate. To prove (ii), assume that there exist τ > 0 and
x ∈ (a, b) , such that V (τ ) x �= x . If V (τ ) x > x then b is not chained to a, and if
V (τ ) x < x then a is not chained to b. So V (t)x = x,∀t ∈ I,∀x ∈ [a, b] . By using again
the fact that b is chained to a, we deduce that A is dense in [a, b] , and since A is closed, we
deduce that A = [a, b] . 
�
Proof of Theorem 1.4 We set Tλ(x) = Uλ (t0) (x) ,∀(λ, x) ∈ � × M. By using Assump-
tion (C) of Theorem 1.4, we deduce that there exists ̂δ > 0, such that, if λ ∈ B�(̂λ,̂δ), and
̂M ⊂ B M (x

̂λ,
̂δ) is invariant for Tλ, then we can apply Lemma 3.1. But since A

̂λ = {

x
̂λ

}

and
the family {A0λ}λ∈� is upper semi-continuous at ̂λ, we deduce that there exists δ ∈ (0,̂δ),

such that

A0λ ⊂ B M (x
̂λ,

̂δ), ∀λ ∈ B�(̂λ, δ).

We can now apply Lemma 3.1 to Tλ with M = A0λ and λ ∈ B�(̂λ, δ). We deduce that
∀λ ∈ B�(̂λ, δ), there exists φλ ∈ Lip (P(A0λ), (I d − P)(A0λ)) such that

A0λ = {y + φλ (y) : y ∈ P(A0λ)} .
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Moreover, Tλ = Uλ (t0) is a bijection from A0λ into itself. We claim that for each t ∈ I,
Uλ(t) is a bijection from A0λ into itself. Let t ∈ [0, t0) ∩ I be fixed. Since Uλ(t)A0λ = A0λ,

it is sufficient to prove that Uλ(t) is one to one. Let x, y ∈ A0λ be fixed. Assume that
Uλ(t)x = Uλ(t)y, then Uλ (t0) x = Uλ(t0 − t)Uλ(t)x = Uλ(t0 − t)Uλ(t)y = Uλ (t0) y, and
since Uλ (t0) is one to one, we deduce that x = y. So Uλ(t) is one to one.

Let v ∈ X, v∗ ∈ X∗, with v∗(v) = 1, such that P(x) = v∗(x)v,∀x ∈ X . We set

Jλ = {

v∗ (x) : x ∈ A0λ

}

,

and {Vλ(t)}t≥0 a family of maps on Jλ, defined by

Vλ(t)(α) = v∗ (Uλ(t) (αv + φλ (αv))) , ∀α ∈ Jλ.

For each λ ∈ B�(̂λ, δ), {Vλ(t)}t∈I is a continuous semiflow on Jλ, and since A0λ is compact
connected, Jλ is a compact interval in R, which is invariant by Vλ.

Let t ∈ I be fixed. Since Uλ (t) is a bijection from A0λ into itself, Vλ(t) is also a bijection
from Jλ into itself. So Vλ(t) is either increasing or decreasing. If the Assumption D-(1) of
Theorem 1.4 is satisfied, then v∗ (xλ) is a fixed point of Vλ(t), which is extreme in Jλ, and
Vλ(t) (Jλ) ⊂ Jλ, so Vλ(t) is increasing. If the Assumption D-(2) of Theorem 1.4 is satisfied,
then Jλi ≡ {v∗ (x) : x ∈ Eiλ}, for i = 1, 2, is a compact interval, Vλ(t) (Jλi ) ⊂ Jλi , and
Jλ1 ∩ Jλ2 = ∅. So Vλ(t) has two distinct equilibria, and Vλ(t) is increasing. Assertions (i)
and (ii) of Theorem 1.4 now follow from Lemma 3.3-(i) applied to {Vλ(t)}t∈I .

We now prove assertion (iii) of Theorem 1.4. Assume that A0λ contains at most a finite
number of equilibria. Let x ∈ M be such that d(Uλ(t)(x), A0λ) → 0 as t → +∞. By
Lemma 2.1, we know that the omega-limit set ω(x) of {Uλ(t)(x)}t∈I is compact and internally
chain transitive for Uλ, and ω(x) ⊂ A0λ. We set

Jω(x) = {

v∗ (x) : x ∈ ω(x)
} ⊂ Jλ.

Then Jω(x) is compact, and internally chain transitive for Vλ. By using the fact that Vλ is
increasing, and by Lemma 3.3-(ii), we deduce that there exist a, b ∈ Jλ, a ≤ b, such that

Jω(x) = [a, b] with Vλ(t)(x) = x, ∀x ∈ [a, b] ,∀t ∈ I.

But since Uλ has a finite number of equilibria in A0λ, we deduce that Vλ has a finite number
of equilibria, so a = b.

Assertion (iv) of Theorem 1.4 follows from Lemma 3.3-(i). So, it remains to prove assertion
(v). We proceed by extension and truncation and we apply Lemma 3.2. Since V is a neigh-
borhood of

(

̂λ, x
̂λ

)

in � × X, there exists δ∗ > 0, such that B X (x
̂λ, δ

∗) × B�(̂λ, δ∗) ⊂ V .

Let χ : [0,+∞) → [0,+∞) be a Lipschitz continuous function, such that

χ(s) = 0, if s ≥ 2,

χ(s) ∈ [0, 1] , if s ∈ [1, 2] ,

χ(s) = 1, if 0 ≤ s ≤ 1

We set for each R > 0 and each λ ∈ B�(̂λ, δ∗)

˜TR,λ(x) =
{

Lx + χ(R−1
∥

∥x − x
̂λ

∥

∥)
(

̂Tλ(x) − Lx
)

, if x ∈ BX (x
̂λ, δ

∗)
0, otherwise.
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By using the same arguments as in the proof of [30,Proposition 4.4], we obtain

(1) ˜TR,λ(x) = Tλ(x),∀x ∈ B M (x
̂λ, R),∀R > 0.

(2) There exists R0 > 0, such that ˜TR,λ − L is
Lipschitz and bounded,∀λ ∈ B�(̂λ, δ∗),∀R ∈ (0, R0) .

(3) limR→0+ supλ∈�:d�(̂λ,λ)≤R

∥

∥˜TR,λ − L
∥

∥

Lip,X = 0.

Let η ∈ (r(L (I − P)), 1) be fixed. Let R > 0 be fixed, such that for each λ ∈ � : d�(̂λ, λ) ≤
R, Lemma 3.2 applies to ˜TR,λ. Then there exists a map φλ ∈ Lip (P(X), (I d − P)(X)) such
that

Mη,λ = {x + φλ (x) : x ∈ P(X)} .

Moreover, ˜TR,λ is a bijection from Mη into itself. We define the continuous map hλ : R → R

by

hλ,R(α) = v∗ (

˜TR,λ (αv + φλ (αv))
)

, ∀α ∈ R.

We deduce that hλ,R is continuous and invertible, so hλ,R is either strictly increasing, or
strictly decreasing. Now by using the upper semi-continuity of the family {A0λ}λ∈� at̂λ, we
deduce that there exists δ ∈ (0, R) , such that for all λ ∈ B�(̂λ, δ),

A0λ ⊂ BM (x
̂λ, R/2).

In particular by the definition of the center manifold Mη, and since Tλ(A0λ) = A0λ and A0λ

is bounded, we deduce that A0λ ⊂ Mη. Let x ∈ M be such that d(T n
λ (x), A0λ) → 0 as

n → +∞. Then there exists m ≥ 0, such that

T k+m
λ (x) ∈ BM (x

̂λ, R), ∀k ≥ 0.

So in particular if we set y = T m
λ (x), we have

T k
λ (y) = ˜T k

R,λ(y), ∀k ≥ 0.

If A0λ is a single point (which is possible under Assumption D-(1) of Theorem 1.4), then
T n

λ (x) → x as n → +∞, and there is nothing to prove.
Otherwise, if A0λ is not reduced to a single point, we know from the first part of the

proof that hλ,R restricted to Jλ = {v∗ (x) : x ∈ A0λ} is increasing. We deduce that hλ,R is

increasing on R . So for all z ∈ Mη, if
{

˜T n
R,λ(z)

}

n≥0
is bounded, then this sequence converges

to some fixed point of ˜TR,λ. By Lemma 3.2, we know that there exist z ∈ Mη and C > 0
such that

∥

∥˜T n
R,λ (y) − ˜T n

R,λ (z)
∥

∥ < Cηn → 0as n → +∞.

We deduce that
{

˜T n
R,λ(z)

}

n≥0
is a bounded sequence, so this sequence converges to some

fixed point x ∈ Mη of ˜TR,λ. So

T n
λ (y) = ˜T n

R,λ(y) → x as n → +∞.

Finally, since d(T n
λ (x), A0λ) → 0 as n → +∞, we deduce that x ∈ A0λ, so x is also a fixed

point of Tλ. Now by using Lemma 3.3-(i), we deduce that x is an equilibrium of Uλ, and the
result follows. 
�
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4 Applications

We now present two examples of applications to age-structured population dynamic models.
We refer to [23,52] for studies on age-structured models by using Volterra integral equations.
We also refer to [31–33,45] and to the references therein for the integrated semi-group
approach.

From now on, for any interval I ⊂ R, we denote by CBU (I, R) the set of bounded and
uniformly continuous maps from I into R.

Example 1 We consider the age-structured model introduced by Liu and Cohen [27],
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂u

∂t
+ ∂u

∂a
= −

(

µ(a) +
c
∫

0
γ (a, s)u(t, s)ds

)

u(t, a), a ∈ (0, c) ,

u(t, 0) =
c
∫

0
β(a) exp

(

−
c
∫

0
γ̂ (a, s)u(t, s)ds

)

u(t, a)da,

u(0) = ϕ ∈ L1+ (0, c) .

(4.1)

where c ∈ (0,+∞) is the maximum attainable age, µ(a) is the natural mortality rate, β(a) is
the fertility rate, γ and γ̂ are saturation terms for the mortality and the fertility respectively.
We set

R0 (β) :=
c

∫

0

β(a) exp

⎛

⎝−
a

∫

0

µ(s)ds

⎞

⎠ da,

and we make the following assumption.

Assumption D We assume that

(a) β0 ∈ CBU ([0, c) , R), β0 ≥ 0, R0 (β0) = 1, and for each a ∈ (0, c), there exists
a1 ∈ [a, c), such that β0 (a1) > 0.

(b) µ ∈ L1
loc([0, c) , R), µ ≥ 0, and

lim
a→c−

a
∫

0

µ(s)ds = +∞.

(c) γ, γ̂ ∈ C1
(

[0, c]2 , R
)

, there exists a constant δ > 0, such that

0 < δβ0(s) ≤ γ (a, s), ∀a, s ∈ [0, c] .

Here we consider β as a parameter of the system, and we set

� = {β ∈ CBU ([0, c) , R) : β0 ≤ β ≤ 2β0}
Then, as a direct application of Theorem 1.4 and of the results in [34] about the asymptotic
smoothness of the semi-flow, we obtain the following result.

Theorem 4.1 Let AssumptionD be satisfied. Then there exists ε > 0, such that, for each
β ∈ �, with ‖β0 − β‖∞ ≤ ε and R0 (β) > 1, we have:

(a) The system (4.1) has a unique equilibrium uβ in L1+ (0, c) \ {0} .

(b) uβ is globally asymptotically stable for the semi-flow generated by (4.1) in L1+
(0, c) \ {0} .
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Sketch of Proof We fix ρβ (ϕ) = 1,∀ϕ ∈ L1+ (0, c) , and M = M0 = L1+ (0, c). To prove
Assumptions A and B, one may start by proving that for β = β0, 0 is globally asymptotically
stable for the system. By using the results in [34] one may prove that the semi-flow is
asymptotically smooth. Finally by applying Proposition 2.9 to the system, we deduce that
there exists η > 0, and a family of global attractors

{

Aβ

}

β∈B�(β0,η)
which is upper semi-

continuous at β0. Now since L1+ (0, c) is closed and convex, so by using the results in [9] or
in [11] we deduce that Aβ is connected. So Assumption (A) of Theorem 1.4 is satisfied. The
linearized equation of system (4.1) at 0 is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂v

∂t
+ ∂v

∂a
= −µ(a)v(t, a), a ∈ (0, c) ,

v(t, 0) =
c
∫

0
β(a)v(t, a)da,

v(0) = ϕ ∈ L1 (0, c) .

Under Assumptions D-(a) and (b), it is well-known that this system generates an irreducible
linear C0-semi-group on L1 (0, c) . It follows that Assumption (C) of Theorem 1.4 is sat-
isfied, where P a positive operator. In particular 0 ∈ Aβ, for each β ∈ B� (β0, η) , and
Assumption D-(1) of Theorem 1.4 holds.

Now when β ∈ �, with R0 (β) > 1, one may prove (by studying the linearized equation
of System (4.1)) that there is uniform persistence in L1+ (0, c) \ {0} . It follows that this system
has a global attractor A0β in L1+ (0, c) \ {0}. Moreover (see [28]), there exists η1 > 0 such
that, for each β ∈ �, satisfying ‖β0 − β‖∞ ≤ η1 and R0 (β) > 1, the system (4.1) has a
unique equilibrium uβ in L1+ (0, c) \ {0} . It follows that A0β contains a unique equilibrium
so we can apply Assertion (iv) of Theorem 1.4 with Bβ = A0β . It follows that A0β = {

uβ

}

,

for ‖β0 − β‖∞ small enough. 
�
Example 2 We now consider the case of an infection-age epidemic model

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

d S(t)

dt
= λ − µS(t) − S(t)

+∞
∫

0
F (a) i(t, a)da

∂i

∂t
+ ∂i

∂a
= − (µ + ν(a)) i(t, a), a ∈ (0,+∞) ,

i(t, 0) = S(t)
+∞
∫

0
F (a) i(t, a)da

S(0) = S0 ≥ 0, i(0) = i0 ∈ L1+ (0,+∞) .

(4.2)

where S(t) is the number of susceptible individuals at time t, i(t)(a) is the density of infected
individuals at time t structured with respect to the infection-age a, λ > 0 is the rate of incom-
ing susceptible, µ> 0 is the mortality (or exit) rate, ν(a) ∈ L∞+ (0,+∞) is the mortality (or
exit) rate due to the disease, F (a) is the infection rate. We set

R0 (F) := λ

µ

+∞
∫

0

F(a)e
−

a
∫

0
(µ+ν(r))dr

da,

and make the following assumption.

Assumption E λ > 0, µ > 0, ν ∈ L∞+ (0,+∞), F0 ∈ CBU ([0,+∞) , R), F0 ≥ 0,
R0 (F0) = 1 , and, for each a ∈ (0,+∞) , there exists a1 ∈ [a,+∞), F0 (a1) > 0.

This model has been studied by Thieme and Castillo-Chavez [48,49]. More precisely,
the local stability of equilibria, the global stability of the disease free equilibrium, and the
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persistence of the disease are investigated in [49]. The global asymptotic stability of the
endemic equilibrium has also been proved in [7] under the assumptions that F is uniformly
continuous and bounded, and that the map a → F(a)e

∫ a
0 µ−ν(r)dr is non-decreasing. Here

we relax this assumption locally around the bifurcation point.
In order to obtain a global stability result for the endemic equilibrium point, one may

directly apply Theorem 1.4 to System (4.2). As before, we consider F as a parameter of the
system, and we set

� = {F ∈ CBU ([0,+∞) , R) : F0 ≤ F ≤ 2F0} .

If R0(F) ≤ 1, one can prove that the disease free equilibrium is globally asymptotically
stable and attracts the bounded sets of R × L1+ (0,+∞). Moreover, when R0(F) > 1, there
is uniform persistence in R×(

L1+ (0,+∞)\{0}). So by applying Theorem 1.4–4.2, we obtain
the following result.

Theorem 4.2 Let AssumptionE be satisfied. Then there exists ε > 0, such that if F ∈
�, ‖F − F0‖∞ ≤ ε, and R0 (F) > 1, then the endemic steady state of (4.2) is globally
asymptotically stable in [0,+∞) × (

L1+ (0,+∞)\{0}) .
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