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1. INTRODUCTION

In this paper we investigate the uniqueness of a nontrivial fixed point of
a map preserving a positive cone. This work is motivated by application to
age-structured density-dependent population dynamics models. The main
result of this paper shows that in certain situations all the fixed points are
comparable for the order induced by the positive cone. We then apply this
result to prove the uniqueness of the nontrivial equilibrium solution for
a discrete-time population dynamics model and its continuous-time
analogue.

Let K be a cone of a Banach space (X, ||-[D; that is, K is a closed
convex subset of X, satisfying tK c K, for all ¢t > 0, and if x € K\ {0},
then —x ¢ K. Such a cone K induces a partial order on X, denoted by
<, and defined by x <y &y —x € K. In the sequel, we will also define

x<yey-xeK\{0} and x<yey—xelnt(K),

where Int(K) denotes the interior of K in (X, |- D.

Let (A,d,) be a metric space, and A\, € A. Let F: A XK —> K be a
continuous map, such that F(A,,-) is right differentiable at zero (see
Deimling [2, p. 225] for the corresponding definition), for each A € A,
F(A,-) is asymptotically smooth (see Hale [3, p. 11] for the corresponding
definition), and F(A,0) = 0.

In the sequel, for each A € A, we will denote by F, : K — K the map
defined for all x € K by F,(x) = F(A, x). Moreover, given (M, d) a metric
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space, and T: M — M a map, we will denote by T™ (m € N) the map
defined by

T°=1d and T"=T""'T Vm>1.

Given g: M — X a map, and A a subset of M, we will denote by

lglup 4= sup llx =yl Mllg(x) —g(p)ll.

X, yEA: x#y

We will make the following hypotheses on F.

(H1) Zero is globally asymptotically stable for F, .

(H2) There exists v € Inty(K) such that D F, (0)v = v, there ex-
ists v* € K*\ {0} (with v*(v) = 1) such that D F, (0)*v* = v*, and

r((1d = P)D,F, (0)(Id — P)) < 1,
where D F, (0) denotes the right derivative of F, at zero, and P € Z(X)
is defined by
P(x) =v*(x)v, VxeX.

(H3) We assume that

lim sup ||g)\|||_ip,3,<(o,a) =0,
320 NeA:dyr, A<d

where B, (0,8) = {x € K:||lxl| < 8}, and g: A X K — X is defined by

g(A,x) =F(Ax) —D,F,(0)x, VxeK, VAeA.

(H4) For each A € A, there exists «, > 0, such that B,(0, «,) is
positively invariant by F, (i.e., F,(Bg(0, a,)) € B¢(0, ), and for all x
K :llxll = a,, there exists m = m(x) € N such that [|[F"(x)ll < a,.

(H5) If{A4,},, is a subset family of K, such that for each A € A,
A, is maximal compact invariant for F, (see Hale [3, p. 17] for the
corresponding definition), then there exists a compact subset C < K such
that

lim & U  4,.c]=o
R=>0" L) cAtd(A A <R

where 8(B;, B,) is defined by 6(B;, B,) = sup inf |lx — yll.

yEB; XEB,
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The following theorem is the main result of this paper.

THEOREM 1.1. Let K be a cone of a Banach space (X, |- ), such that
INt(K) # . Let (A, d,) be a metric space, and A\y € A. Let F: A X K - K
be a continuous map, such that F(\y,-) is right differentiable at zero, for
each A € A, F, is asymptotically smooth, F,(0) = 0, and F satisfies assump-
tions (H1)-(HY5).

Then there exists 8 > 0, such that YA € A\ {A}:d(Ay, M) < 8, and if
Xy, X, € K are two distinct fixed points of F,, then

X, <X, or X;>X,.

As consequence of Theorem 1.1, we will obtain a uniqueness result for
nontrivial equilibrium solutions of the model introduced by Liu and Cohen
[4]. Consider the difference equation Vi € N

n

x(t+1) =Y lbi-xi(t) - exp

i=1

> %w,(t))]
j=1

X, 1) =x.(2) - -
(r+1) (1) exp( )

j=1

M, + i 71j'xj(t)l)

x,(t+1) =x,_4(1) 'eXp(_[Mnl + i 'Ynl,j'xj(t)l)-
j=1

with
x(0)=x,20, Vi=1,...,n,

where b, >0, ¥,;>0, and M, >0, v, >0, Vi,jl=1,...,n, Vk=
1,...,n — 1.

The difference equation (1) is investigated by Liu and Cohen [4]; they
obtain an existence and uniqueness result for nontrivial equilibrium solu-
tions. Here we will obtain a new kind of condition for the uniqueness of
the nontrivial fixed point. Let us denote by

A= (by,by,....b,) €R", and R(A) = Y b,
j=1



UNIQUENESS RESULT FOR A POPULATION MODEL 151

where
i—1
LL=1and [, = [Texp(—-M;), Vi=2,...,n. (2)
j=1

Let A, = (b, b3,...,b9)" € R" be fixed such that R()A,) =1, and as-

sume that
(i) Vi=1,...,n(b? >0 = (3, > 0).
b? bg br?o
)2 0 0
() L,=0 p . © | € M, (R) is primitive,
: . . 0 0
(5 0' Pyt 0
where p, = exp(=M,), Vi=1...,n —1, and n, = max{k €

{1,2,...,n}:b? > 0}. We denote by F: R"” X R" - R", the map associated
to Eq. (1), which is defined by

b;-x;exp| — Z:;;ij'xj)
i-1 j=1
x,exp| —|M; + Vi X;
F(A, x) = 1 ( B l) ,

|

VA e R}, VxeR]L.

n
xnlexp(— |:Mn1 + X Y1
j=1

Then by defining A as

A={re R’ A <A< CiA}, forsome C; > 1,

one has the following theorem.

THEOREM 1.2. Under assumptions (i)—(ii), there exists & > 0, such that
forall A € A\ A{Ao}: 1Ay — AMlgn < 8, and F, has at most one non-null fixed

point.
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The model of Liu and Cohen [4] is obtained by discretizing the following
partial derivative equation:

du u
—t o= —(m(a) + [§y(a, s)u(t,s) ds)u(t,a),

u(t,0) = [{"f(a)exp(— [§¥ (a, s)u(t,s) ds)u(t,a) da.

(3)

We now investigate the uniqueness of the nontrivial steady state of Eq. (3).
Such equations are extensively studied in the book by Webb [9], and we
refer to this book for a survey on this subject. Integrating over age, the
problem of finding a steady state of Eq. (3) can be rewritten as the
following fixed point problem: To find u € C2[0, m], satisfying

u(a)=Hf(u)a'(a)exp[—foaV(u)(s)ds], Vae[0,m], (4

where for all u € C°[0, m], for all a € [0, m],

V(u)(a) = [y (a, s)u(s) ds, V(u)(a) = [§F(a,s)u(s) ds,
Hy(u) = [§'f(s)exp| = V(u)(s)]u(s) ds,
and
o(a) = exp[— ¢ u(s) ds].

In this example X = C°0, m], endowed with the norm [v].. =
SUP, cpo. (@), K=C%[0,m], and A =feL”[0,m] Let A,=f; €
L% [0, m], such that [J"f,(a)o(a)da = 1, and there exists ¢ €]0, ml, such
that

supp(fo) < [&,m].

We will make the following assumptions,

(i) Va €[0,ml, [§uls)ds < +oo, and lim,_, - [§uls)ds = +oo.
G(v) v,5 <€ C°0,m] x [0,m],R,).

(v) There exists C, > 0, such that for all a [0, ¢], y(a,s) >
C,fo(s) for almost every s € [0, m].

Then by defining A as
A ={feLl”[0,m]: fy <f<Cf,} forsome C; > 1,

one has the following theorem.
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THEOREM 1.3. Under assumptions (iii)—(v), there exists & > 0, such that
forall f € A:|lfy — fll0,m) < 8, Eq. (4) has at most one non-null solution.

2. ATTRACTORS EXISTENCE

In this section we recall some results proved in Magal [6] using results
on dissipative discrete time dynamical systems of the book by Hale [3].
The following proposition is proved in Magal [6, Proposition 2.2].

PROPOSITION 2.1. Let K be a cone of a Banach space (X, ||- 1), and let
(A,d)) be a metric space. Let F: A X K - K be a continuous map, such
that for A € A, F, is asymptotically smooth. Assume in addition that F
satisfies Assumption (H4).

Then, for each A € A, there exists a subset A, C B(0, a)) maximal
compact and invariant by F,, which is stable and attracts the compact sets of K
by F,.

The following proposition is proved in Magal [6, Proposition 2.5].

PROPOSITION 2.2. Let K be a cone of a Banach space (X, |-, and let
(A,d,) be a metric space. Let F: A X K = K be a continuous map, such
that A € A, F, is asymptotically smooth, F,(0) = 0, and F satisfies assump-
tions (H1)(H4) and (H5).

Then Ye > 0, 3 > 0 such that A, C Bg(0, &), VA € A: d\(A, Ay) < 7.

3. A REDUCTION RESULT

In this section we adapt to invariant bounded sets the method developed
by Vanderbauwhede [7]. For a survey of this question, we also refer to the
paper by Vanderbauwhede [8] and the book by Chow et al. [1, p. 1-48].

We consider a Banach space (X, || - |), M a bounded subset of X, and T
M — M a continuous map, and we assume that M is invariant by T (i.e.,
T(M) = M). The problem is then to reduce the following system:

x(t+1)=T(x(t)), VteN
with (5)
x(0) =x, € M.

Here, to reduce the system (5) means that given P € 2(X) a bounded
linear operator of projection, we look for a map ¢: P(M) — (Id — P)(M)
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such that Vx e M
x=P(x) + ¢(P(x)).

In other words, we look for a map ¢: P(M) — (Id — P)(M) such that the
graph of ¢ (i.e., Gr(¢) = {y + ¢(y): y € P(M)} is equal to M. Then each
solution of system (5) corresponds to a solution of the following system
(and conversely):

y(t+1) =P(T[y(t) + (P[y()])]), VeeN
with (6)
y(0) =y, € P(M).

We will make the following assumptions.

(H1) M is invariant by T (i.e., T(M) = M).

(H2) VxeM, T(x)=A(x) +g(x) where 4 €#(X), and g e
Lip(M, X).

(H3) X has a decomposition X = X, ® X,, where X, and X, are
closed subspaces X which are positively invariant 4 and

a= sup |Al<b= inf |Al<1
rEo(A,) rea(4y)

where A; = Alx, e Z(X)), for i = 1,2.

In the sequel, we will denote by P € #(X) the linear bounded operator
projection satisfying Im(P) = X,, and Ker(P) = X,, and for each n > 0,
we will denote by Y, (.X) the Banach space of all the sequences y = {y_,
€ X: p € N} satisfying [lylly; x) = sup{n”lly_,Il: p € N} < +o, and we
denote Y, (M) the subset of all sequence y ={y_, € X: p € N} c M.

The following lemma can be found in the paper by Vanderbauwhede [7,
Lemma 1, p. 410].

LEMMA 3.1.  Let A € Z(X) be bounded linear operator satisfying assump-
tion (H3). Then ¥Ye > 0, AM = M(&) > 0 such that Ym € N

|47 < M(g)(a+ &))" and (b—&)"14;"7] < M(&).

The proof of the following lemma uses similar of arguments as in the
proof of Lemma 2, p. 411 in Vanderbauwhede [7].

LEMMA 3.2. Let (X, |- |)) be a Banach space, M be a bounded subset of
X, and T: M — M be a continuous map satisfying (H1), (H2), and (H?3).
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Lety = {y_p: p € N} € M be a negative T-orbit, then Vp € N,

©

P
y_, =A; Py — Y VAT PPg(y ) + L AV (Id = P)g(y_, ).

=1 =1
(7)

where the notation Y indicate that the corresponding sum is only present if
p=1L

Equation (7) can be rewritten in the more compact form y € YT,*(M),
y = SP(y,) +KG(y), (8)

where for each n €la, b[, the operators § € 2(X,,Y, (X)), K€
(Y, (X)), and G € C°(Y, (M), Y, (X)) are defined by

(Sx,)_, =A;7x,, Vx,€X,, VpeN,

p oo
= XAy T AT =Py, Yy EY, (X)),
=1 =1

(K}’)*p
Vp e N,

and
(Gy)-p =g(y_,), VYyeY (M), VpeN.

The fact that S and K are bounded linear operators follows from Lemma
3.1. Moreover, one has for all y,y € Y, (X),

1G(y) = G(Dly; xy < lIglliiplly = Ylly; cx)-

THEOREM 3.3. Let (X,||-|) be a Banach space, let M be a bounded
subset of X, and let T: M — M be a continuous map satisfying Assumptions
(H1), (H2), and (H3) and m €la, bl. Then there exists C.(A,n) > 0, such
that if

Cl(A!n)”g”Llp < 15
there exists a map ¢ € Lip(P(M),(Id — P)X(M)) such that Vx € M

x=P(x) + ¢(P(x)),
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and there exists C,( A, ) > 0 such that

Cz(A-”l)
1-Cy(A,m)lgllip

lpllLip < l1gllLip-

Moreover, Vx € M, there exists one and only one negative T-orbity € Yn‘(M )
through x.

Proof. In the sequel we will take C,(A, n) = [[K|l ¢y, x). We start by
proving that there exists a map ¢: P(M) — (Id — P)(M) such that for all
xe M, (Id — P)Xx) = ¢(Px). Let y,,z, € M such that Py, = Pz,. We
now show that necessarily (Id — P)y, = (Id — P)z,. Indeed, since M is
invariant by T, we may find two negative T-orbits y, z € Y,,‘(M) such that
(»)o = ¥4, and (z), = z,. Then by Lemma 3.2, one has

y =SP(y,) + KG(y),and z = SP(z,) + KG(z).
But, since P(y,) = P(z,) one has
y — KG(y) =z — KG(z).

Let ¥: Y, (M) — Y, (X) be the map defined by W(x) =x — KG(x),
Vx € Y, (M). Let us show that W is injective. Let x,;, x, € Y, (M); then

X —x, = ¥(xy) = ¥(xy) + KG(x,) — KG(x3),
thus
||x1 - x2||Y;(X)
<W(xy) = W(x)lly; ) + 1K 2oy copllgliciplixg = xallv; x),
and by stating that
Cc=1- ||K||,7(Y;(X))||g||up >0,
one has
dYn’(M)(xl’ x,) = llxy _xan;(X) = C_1||\P(x1) - q’(xz)”Y;(X)- (9)

From Eg. (9), and since ¥(y) = ¥(z) we deduce that y = z. Finally we
obtain

(1d — P)y, = (1d — P)z,.



UNIQUENESS RESULT FOR A POPULATION MODEL 157

So there exists a map ¢: P(M) — (Id — P)(M) such that for all x e M
(Id = P)(x) = ¢(Fx).

The previous part of the proof also shows that given x € M, there exists
one and only one negative T-orbit through x. To prove that ¢ is Lips-
chitzian, let us first come back to the map ¥: Y, (M) — Y, (X), and let us
denote by ¥ Y, (M) - W(Y, (M)) the map deflned by

V(x) =W¥(x), Vxe Y, (M).

Then by construction of ¥, and from Eq. (9), ¥ is invertible. Moreover,
one has from Eq. (9) for all x,, x, € W(Y, (M))

1P~ (x,) — T ()Ml x) < €My = Xyl (10)

Let x,,y, € P(M), and x,y € Y, (M) be the negative T-orbits through
x, + ¢(x,) and y, + &(y,), respectively. Then we have from Lemma 3.2
that

x=38(x,) + KG(x) and y=S(y,) + KG(y),
so
x=T"1(8(x,)) and y=T"1(S(y,)),
and
¢(x,) = (1d = P)((S(x,) + KG(x)),) and
$(y2) = (1d = P)((5(y2) + KG(¥))o).
From this we deduce that

d(x,) = iAlfl(ld —~P)g(x_,) and
=1

d(y,) = liAll_l(ld —P)g(y-,),
=1

SO

l¢(x;) = ¢(v2)ll

-+ oo
< llgllpll(ld — P)”L(X)[ Z ||A11||L(X1)7]_l:|
=0

X W2 Sx,) = TH(Sy,) v x-
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Finally, one has

—+ oo

l(d — P)”L(X)[ Y ”AZl”L(Xl)T)I}HS”L(XZ,YW(X))
=0

1- ”KHL(Y,;(X))”g“Lip

I $lliip < lIgllip-

4. PROOF OF THEOREM 1.1

Under Assumption (H4) Proposition 2.1 applies, and we deduce that for
each X € A, there exists 4, C Y,, which is compact maximal invariant by
F,, stable for F,, and attracts all the compacts subsets of K by F,. Under
Assumptions (H1), (H4), and (H5) Proposition 2.2 applies, and one has
Ve > 0, 36, > 0 such that

A, CBg(0,e) = {x e K: |lxll < &}, VAEB,(Ay,8).

Consider now the projection operator P € #(X), the bounded linear
operator defined by P(x) = v*(x)v, Vx € X introduced in Assumption
(H?2). Then, since v € Int,(K), there exists & > 0 such that

v+ By(0,¢) ClInty(K). (11)

where B, (0, &) = {x € X: ||x|| < &}.

Let n €la, 1[, where a = r((Id — P)D+FAO(O)(Id — P)) < 1. Then, under
Assumption (H3), and by upper semicontinuity of the family {4,}, ., at
A = A, there exists §, > 0 such that VA € A: d, (A, D) < §,

Cl(D+E\O(O) y n)Hg,\HLip,A)\ <1 and
Cy(D.F,(0), 1)
1 — Cy(D,F,(0),m)liglliip, 4,

lglliip, 4, < —.
P |

Thus we can apply Theorem 3.3 to F|,,, and we deduce that for all
A e A d(Ay, N < 8, there exists a map ¢, € Lip(P(A,),(Id — P)(A,))
such that Vx € A,

x=P(x) + $(P(x))

and

1, c
in < —.
Pilluie < 1)
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Let A* € A: d (A, A*) < 8, be fixed, and let x,, x, € 4,. be fixed. Then
X, — X, = P(x; — x) + ¢(P(x)) — ¢(P(x,)) = v*(x; — x)v +
$(P(x)) — ¢,(P(x,)), and

[ p(P(x1)) — S (P(x))ll

< llluipllP(x1) = P(x,)ll <

&
mllu*(xl —x,)0ll.
Thus

(P (x1)) = du(P(x2))ll < ev*(xy — xp).
From this we deduce using Eqg. (11) that
X, — X, € 0*(x; — x,) [0 + By (0, )] Cv*(x, —x,)Int(K),

and the proof is complete. |

5. PROOF OF THEOREM 1.2

We now prove that Assumptions (H1) to (H5) are satisfied for F. Here
K=R",and X = R” is endowed with the norm || - ||.. defined by ||xll.. =
max{|x,l: i = 1,...,n}, Vx € R.. One may note that

F(Ax)=L(Ax)x, YVxeR}, VAEA,

where the map L: A X R} - M,(R,) is a continuous map from A X R’
into the set of nonnegative matrices, defined by

Ly( A, x) 0 l

LX) =11 %) Lax)

where (under assumption (ii)), and the fact that A > A, VA € A, the block
matrix L,(A, x) € M, (R) is primitive VA € A, Vx € R, with r(L(A,,0))
= 1 (because L,(A,,0) =L,), and r(L,(A,0)) > 1, VA € A, and the block
matrix L,(A,,0) satisfies r(L,(Ay,0)) = 0.

Assumption (H1) can be verified using the Lyapunov method with the
Lyapunov function

V(x) =max{)lc—;: i=1,...,n},

where [, is defined in Eq. (2). Using this Lyapunov function with assump-
tion (i) one may verify assumption (H1). Moreover, F(A,,-) is clearly
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right differentiable at zero, and by using Assumption (if), one deduces
from non-negative matrix theory that r(D,F(A,,0) =1, 1 is a simple
eigenvalue of

L,(2,0) 0
Ly(20,0)  L3(4,0)
and there is no other eigenvalue into the peripheral spectrum of

D, F(A,,0). Moreover, by a direct computation, if we denote by v € R”
the eigenvector of D, F(A,,0) associated to the eigenvalue 1, one has

D, F(A,0) =

v=_(~4 1, = 1) €Int(R"),

where [, is defined in Eqg. (2), and Assumption (H2) is satisfied.

Assumption (H3) is an immediate consequence of the regularity of the
exponential map. We are now interested in Assumption (H4). From
Assumption (i) the constant

C,=min{ —:i=1,...,n, and b°>0}>0
is well defined, and one has
¢
Cixexp(Cyx) < T’ Vx > 0.

The ball
By (0, M) = {x € R": ||x|l. < M}

(with M = (C,/C,e) + 1) is then positively invariant by F(A,-), and
Vx € R’} one also has

) C, -
F/'(x) € By, 0 e C Intg, [ B, (0, M)],

and by taking «, = M, Assumption (H4) is satisfied.

Assumption (H5) is then automatically satisfied, because from Proposi-
tion 2.1, we know that under Assumption (H4), if A, is compact, maximal,
and invariant by F(A, - ), then A, C B, (0, M). So by taklng C = By (0, M)
in Assumption (H5), we deduce that Assumptlon (H5) is satisfied.

One may now apply Theorem 1.1, and we deduce that there exists 6 > 0
such that VA € A\ {A.}: d\(Ay, M) < 8, if X, X, € R are two distinct
fixed points of F,, then X, < X, or X, > X,.
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Assume that there exists A € A\ {Ay}: d,(Ay, A) < 8, and there exist
X, X, € R1\{0}, two distinct fixed points of F,. Then from Theorem 1.1
one has

O0<xx, <x, or 0<xXx, <X,
But then since
F(Ax)=L(Ax)x, Vxe R}, VAeEA,
where

L,(A, x) 0

LY =) Lan |

Vx e R%,

and L,(A, x) is an irreducible matrix Vx € R, we deduce that

r(Ly(A %)) =r(Ly(A, X)) =1

On the other hand, assume, for example, that 0 < ¥, < X%, then by
construction one has

Ll(/\' )_Cl) > Ll()\’ )_62)’
and since L,(A, x) is an irreducible matrix Vx € R’ this implies that
r(Ly(A, %)) > r(Ly(A, Xy)),
and we obtain a contradiction. From this contradiction, we deduce that
there exists 8 > 0, such that VA € A\ {A}: d(Ap, M) < 8, and F, has at
most one nontrivial fixed point. The proof is complete. |
6. PROOF OF THEOREM 1.3
We first remark that to find a solution of Eq. (4) is equivalent to solving

the following fixed point problem: Find v € C°[0, m], satisfying for all
a € [0, m]

v(a) =Hf(au)exp[—j0”V(au)(s) ds}. (12)

Let F: L~ [0,m] X C°[0, m] = C°[0, m], the map defined for each fe&
L~.[0, m], for all v € C°[0, m], by

Fy(v)(a) = Hf(ou)exp[—j:V(O'U)(s) ds}, Va € [0, m],
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where

Hy(ov) = /Omf(s)exp[—f/’(au)(s)]a(s)u(s)ds.

To prove Theorem 1.3, we start by proving the following proposition.

PropPoSITION 6.1. Under the assumptions of Theorem 1.3, there exists
8 > 0, such that for all f € A: || fg — fllio,m < 8, if v, 0, € CL[0, m] are
two distinct fixed points of Fy, then

v, KV, or v, <.

To prove Proposition 6.1, we will apply Theorem 1.1 of Ffz. We start by
proving some preliminary lemmas.

LEMMA 6.2. Under the assumptions of Theorem 1.3, there exists M > 0,
such that

IIFfz(v)IIOc <M, Vfe A, YvecC?l[0,m].
Proof. Let v € C2[0,m], and f € A. Then for all a € [0, m],
F?(v)(a) =Hf(ﬂ-(u))exp[—/OaV(O'Ff(U))(s) ds|;

thus
IFZ ()l < Jg"f(s) o (s)v(s) dsfg"f(a) o (a)exp[ — [V (o v)(s) ds] da,
IFZ (0) 1l < [f(s) o (s)o(s) ds["f(a) o (a) daexp| =[5V (ov)(s) ds].
Under assumption made on f,, and by construction of A, one has
[Viao)syds = [ ["y(s.6)o(£)0(£) dé ds
> g—jf:fomf(f)a(f)v(@dws;

thus

& CO m
LWmMﬂwZETLﬂQU@W@ﬁm
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So, we obtain, using in addition that
IEZ (V) < ["f(a)o(a) daf"f(&)o(€)v(€)déE

X exp

Co
—aafgmf(fi)a(f)v(é)ﬁ},

IF ()l < " F(€) o (€)v(€) dé

C
X exp —Fosfsmf(ﬂa(f)v(g)df};
1
thus
F? C12
IE- (o)l < @
|

LEMMA 6.3.  Under assumptions of Theorem 1.3, foreachf € A, Fylc2 (0, m)
is completely continuous.

Proof.  The proof is a direct consequence of the Ascoli-Arzela criteria
of compactness in C°[0, m], and we will not detail further the proof. [

LEMMA 6.4. Under assumptions of Theorem 1.3, Assumption (H1) is
satisfied for Ff|co o, m).

Proof. From the proof of Lemma 6.2, we already know that for all
v e C[0, m],

IE ()]l = ["fo(a)o (@) daf"fy €) o (£)o(¢) d

C, m
‘Fffs fo(f)cr(au(»s)df},

X exp

and as ["f,(a)o(a)da = 1, one has

m CO m
IF2(0)lle < [ fo(€) o (€)0(€) dgeXP[—C—Sf fo €)a(£)v(é) dg}.

1 &

From this we deduce that for all v € C°[0, m],

IF2(0)l < loll.,
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and zero is a stable fixed point of Ffz. Moreover, since for all v € C°[0, m],

Sfo(€) o (§)FP(v) dé < |IFf(v)ll-
< [fo(§)o(§)v(¢) dé

C
——8f "fo(€)a(§)v(€)dé |,

X exp

one also has global asymptotic stability using the Lyapunov function

L(v) = /gmfo(a)a(a)u(a) da, YoveC[o,m].

LEMMA 6.5. Under the assumptions of Theorem 1.3, Assumption (H?2) is
satisfied for Fleco (0, m]-

Proof.  F;, lco 0, m)s Ff0|c3[o m), are clearly right differentiable at zero, and
one has for each v € C][0, m]

D_F(0)(0)(s) = [ fo(a)o(a)o(a) da, Vs & [0,m].
D, F;(0) is a projection operator, so the spectrum of D_ F;(0) is {0, 1},
D,F,(0)v=v and |vll.=1e0v(a)=1 Vae [0, m],

and by taking

v*(3) = [ To(@)o (a)y(a) da, ¥y € CI[0,m],

Assumption (H2) is satisfied. 1

LEMMA 6.6. Under the assumptions of Theorem 1.3, Assumption (H3) is
satisfied for F?: A X C°[0, m] —» CY[0, m], the map defined by

F?(f,v) =F/(v), Y(f,v) € AXCL[0,m].
Proof. To prove the lemma, it is sufficient to remark that for each

f€ A, and each v € C{[0, m], F?: C°0, m] — C°[0, m] is differentiable
at v, and DFfz(u) depends continuously on f and v. Indeed, by definition

g/(v) = FF(v) = D.Fj(0)0, Vv e Co[o,m].
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Let £ > 0, v,,0, € C2[0, m]; then
gf(Ul) - gf(Uz)
= j;)lDFfz(svl + (1 =s)vy)(s[vy —v,])
- D+Ffi(0)(S[U1 —v,]) ds,
and one has

llgsliLip, By0. 5y < sup ” DFfz(U) - D+Ffi(0) ”
vEBLO, 5)

Using now the continuity of DFfZ(U) in v and f, one has

lim sup ”g)\”Lip,BK(O,b‘) =0.
20 \eA: dy(r, A<

LEMMA 6.7.  Under the assumptions of Theorem 1.3, Assumption (H4) is
satisfied for F?: A X C°[0, m] —» C°[0, m], with a;=M+1,VfeA.

Proof. Using Lemma 6.2, we know that there exists M > 0, such that
IF?(v)ll. <M, VfeA, VveCl[0,m].

So to verify Assumption (H4), it is sufficient to take
a,=M+1,VfeA.

To prove Assumption (H5), we will use the following proposition, which
is proved in Magal [5, Corollary 3.6.2, p. 90].

ProPOSITION 6.8.  Let (A, d,) be a metric space, Ay € A, let (M, d) be a
metric space, and let T: A X M — M be continuous map. Let {A,},c , be a
family of subsets of M, such that for each A € A, A, is maximal compact
invariant for T,. Assume in addition that

() T, is completely continuous.
(ii) There exists a bounded subset U C M, such that U, , A, € U.
(i) T\(y) > T,(y) as A = Ay uniformly on y in U.
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Then there exists a compact subset C C M such that

lim & U A4,,C| =0,

.
R=0 XEA: dy(A, A) <R

where 8(B,, B,) is defined by 8(B,, B,) = sup inf d(x,y).

yEB, XEB,

LEMMA 6.9. Under the assumptions of Theorem 1.3, Assumption (H5) is
satisfied for F?: A X C°[0, m] —» CY[0, m].

Proof. From Lemma 6.7, we know that Assumption (H4) is satisfied for
F?: A x C[0,m] —» C{[0, m], with a; = M + 1, Vf € A. So, from Propo-
sition 2.1 we deduce that if {4}, ., is a subset family of C[0, m], such
that for each fe A, A4, is maximal compact invariant for Ffz, then
A; € Beop (0, M + 1) ={v € Col0, ml: llvll. < M + 1}. To prove
Lemma 6.9, it remains to verify Assumption (iii) of Proposition 6.8. But
one can verify that there exists C > 0, such that

IF2(0) = F2(0)lL < CIf = foll o, m,
Vo € Beogy (0, M + 1), VfeA.

Proof (of Proposition 6.1). From Lemmas 6.4, 6.5, 6.6, 6.7, and 6.9,
Theorem 1.1 applies to F?, and we deduce that there exists & > 0, such
that Vf e A\ (ol IIfo — fllzqo.m < 8, if 0,0, € CY[0, m] are two dis-
tinct fixed points of F?Z, then

U, <0, Or U;>70,.

As every fixed point of F, is a fixed point F}?, the same conclusion hold for
F. 1

Proof (of Theorem 1.3). By Proposition 6.1, we know that there exists
8> 0, such that Vf e A\ {fol: IIfo — fllimo,m < 8, if 0,0, € CL[0, m]
are two distinct fixed points of F,, then

U, < U, Or U;>70,.
On the other hand, for each f € A, F; has the form
Fi(v) = Ly(v)v, Yve Cl[0,m],

where L: A X C°[0, m] - A(C°[0, m)), is defined for each f€ A, v €



UNIQUENESS RESULT FOR A POPULATION MODEL 167

CY[0,m], y € C°0, m], and each a € [0, m], by
Li(v)(y)(a)

= [ 1] - o) )] o ()3(5) dsewp| - [ V(o)) |
One may note that, for each f € A, v € C2[0, m],

Ly(v) =r(f,0)Q(v),

where Q,(v) is a projection operator, and
r(fiv) = /0 f(a)exp[—V(UU)(a)]a(a)exp[—/o V(ov)(s) ds] da.

Let fe AN{fo): Ifo — fllzro,m) < 8. Suppose that there exists 7,7, €
€210, m]\ {0}, two distinct fixed points of F;; then

O, <xp, or 0, >0,>0.
Assume for example that 0 < 1, < 7,, then
0; =r(f.0,)Qp(0), Vi=1.2,
o)
r(f,0,) =r(f.7;) =1.
On the other hand, by using Assumption (vi) of Theorem 1.3, one has
r(f,vy) >r(f.0,),

and we obtain a contradiction. The proof is complete. |
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