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Abstract
This article proposes a new model to describe human intra-city mobility. The goal
is to combine the convection-diffusion equation to describe commuting people’s
movement and the density of individuals at home. We propose a new model
extending our previous work with a compartment of office workers. To understand
such a model, we use semi-group theory and obtain a convergence result of the
solutions to an equilibrium distribution. We conclude this article by presenting
some numerical simulations of the model.
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1 Introduction
Understanding human intra-city displacement is crucial since it influences populations’
dynamics. Human mobility is essential to understand and quantifying social behavior
changes. In light of the recent COVID-19 epidemic outbreak, human travel is critical
to know how a virus spreads at the scale of a city, a country, and the scale of the
earth, see [42, 43].

We can classify human movement into: 1) short-distance movement: working,
shopping, and other intra-city activities; 2) long-distance movement: intercity trav-
els, planes, trains, cars, etc. These considerations have been developed recently in
[7, 20, 25, 32]. A global description of the human movement has been proposed (by
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extending the idea of the Brownian motion) by considering the Lévy flight process.
The long-distance movement can also be covered using patch models (see Cosner et
al. [10] for more results).

The spatial motion of populations is sometimes modeled using Brownian motion
and diffusion equations. For instance, reaction-diffusion equations are widely used to
model the spatial invasion of populations both in ecology and epidemiology. We refer,
for example, to Cantrell and Cosner [8], Cantrell, Cosner, and Ruan [9], Murray [33],
Perthame [35], Roques [41] and the references therein. In particular, the spatial prop-
agation for the solutions of reaction-diffusion equations has been observed and studied
in the 30s by Fisher [16] and Kolmogorov, Petrovski, and Piskunov [26]. Diffusion
is a good representation of the process of invasion or colonization for humans and
animals. Nevertheless, once the population is established, the return-to-home process
(i.e., diffusion-convection combined with return-to-home) seems to be more suitable
for describing the movement of human daily life.

A good model for intra-city mobility should also incorporate population density in
the city. Figure 1 represents the evolution of the population density in Tokyo. This
type of problem have been consider by geographer long ago, and we refer to the book
of [37] for nice overview on this topic.

Fig. 1 The above figure represents the evolution of the density of individuals (at home)
in Tokyo city. This figure is taken from [5].

Ducrot and Magal [13] previously proposed a model with return-to-home with
two classes of people, the travelers and the people at home. The present article aims
to improve this previous model by introducing a third compartment composed of
immobile individuals composed mostly of office workers.
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In other words, we are trying to model commuting people in a city. This process
combines several aspects; some are summarized in Figure 2. In [11], a patches model
was proposed to describe commuting people. To our best knowledge, our approach
using partial differential equations is new. An important ingredient of the model is
the process of diffusion and convection, which gives a trend describing urban move-
ment instead of detailed transport information. Such a simple model should be more
robust or accurate once we compare it with real data. Here, we model the tendency of
commuters to travel in a city, and the diffusion takes care of the uncertainty around a
tendency (which is modeled by a transport term). For instance, people going to work
may change sometime their travel (to buy something, for example).

Fig. 2 Principle of the return-home model.
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The plane of the paper is the following. In section 2, we present the model. Section
3 focuses on the motion of travelers by using a linear diffusion-convection equation
in L1

(
R2
)
. In section 3, we present an L1 semigroup theory and prove the positivity

and the preservation of the total mass of individuals. In section 4, we investigate the
asymptotic behavior of the return-to-home model. Section 5 presents a hybrid model
where the home locations are discrete. Section 6 presents some numerical simulations
of a hybrid model on a Ω = [0, 1] × [0, 1]. In section 7, we conclude the paper by
discussing some perspectives. The appendix section A is devoted to the model on a
bounded domain and its numerical scheme.

2 Eulerian formulation of the model
The principle of the model is described in Figure 3. After leaving home, people spend
some time commuting to their working places, and after spending some time at work,
they return home. In the model, the average time spent at home will be 1/γ, the
average time spent commuting is 1/α, the average time spent at work in 1/χ.

The average time spent at home 1/γ should be approximately equal to 12 hours
(= 0.5 day) and the time spent at works 1/χ should be approximately equal to 10
hours (= 0.41 day) will be much longer than the average time spent commuting 1/α
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which should be approximately equal to 2 hours (= 0.08 day). But the point is to get
a "simple" model to describe the movement of people using diffusion and convection.

The parameters 1/γ, 1/χ, and 1/α may change with time, for example, during the
lockdown due to an epidemic outbreak.

Fig. 3 Flowchart.
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Here, for simplicity, we focus on people who leave their homes to go to work.
Therefore, the model is not focusing on people leaving their homes and spending a
little time shopping, practicing their hobbies, etc... We consider this in the model
by considering some random fluctuation around the main activity, which is working.
Another simplification in the model is that people at work no longer move. So here
we look at people working in offices or factories, and we neglect the people moving
within the city for their job (ex., taxi drivers, etc...). So the model intends to capture
only a part of the workers’ movement.

We define the distribution of population y ∈ R2 7→ u(t, y) ∈ R is the distribution
of the population of the people staying at home at time t. That is to say that, for any
subdomain ω ⊂ R2, ∫

ω

u(t, y)dy ∈ R,

is the number of people staying at home with their home located in ω at time t.

Let y ∈ R2 be the home location individuals. Then the distribution x→ v(t, x, y)
is the distribution of travelers who are going to their working place, some shopping
place, etc... and which are coming from a home located at the position y. That is to
say that, for any subdomain ω ⊂ R2∫

ω

v(t, x, y)dx,

is the number of travelers located in the region ω at time t coming from a home located
at the position y.
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The distribution x → w(t, x, y) is the distribution of individuals who arrived at
their destination. Those people stay for a random time at their working place, a shop-
ping place, and others before returning home. The home location of the distribution
x→ w(t, x, y) is y. We assume for simplicity that those people are no longer moving.
That is, for any subdomain ω ⊂ R2∫

ω

w(t, x, y)dx,

is the number of people who arrived at their destination in the subdomain ω at time
t and are not yet back home.

To simplify the analysis of the model, we consider the home location y as a
parameters of the model, and we use the notations

uy(t) = u(t, y), vy(x) = v(x, y), and wy(x) = w(x, y).

The return home model is the following for each y ∈ R2, the system
∂tuy(t) = χ

∫
R2 wy(t, x)dx− γuy(t),

∂tvy(t, x) = ε2∆xvy(t, x)−∇x · (vyCy)− αvy + γg(x− y)uy(t),

∂twy(t, x) = αvy(t, x)− χwy(t, x),

(2.1)

with the initial distribution

uy(0) = uy0 ∈ R+,

vy(0, x) = vy0(x) ∈ L1
+

(
R2
)
,

and

wy(0, x) = wy0(x) ∈ L1
+

(
R2
)
.

(2.2)

Remark 2.1. We refer to [13] for an approach allowing the integrability of u(t, x, y)
with respect to both x and y for each t > 0.
Remark 2.2. Through the paper for the Banach, we use L1

(
R2
)
instead of L1

(
R2,R

)
to simplify the notations. We will only specify the range of maps whenever it is not
equal to R.

In the model, the map x → g(x − y) is a Gaussian distribution representing the
location of a house centered at the position y ∈ R2. The function g is defined by

g(x1, x2) =
1

2πσ2
e
−
x2

1 + x2
2

2σ2 . (2.3)
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That is a Gaussian distribution centered at 0, and with standard deviation σ > 0.
Note that for all y ∈ R2, the translated map g(· − y) satisfies∫

R2

g(x− y)dx = 1, and
∫
R2

xg(x− y)dx = y.

In the model, ∆xvy is the Laplace operator of x with respect to the variable x =
(x1, x2) ∈ R2. That is,

∆xvy(t, x) = ∂2
x1
vy(t, x) + ∂2

x2
vy(t, x).

The operator ∇x · (vyCy) is the divergence of vyCy with respect to the variable
x = (x1, x2) ∈ R2. That is,

∇x · (vy(t, x)Cy(x)) = ∂x1

(
vy(t, x)Cy(x)1

)
+ ∂x2

(
vy(t, x)Cy(x)2

)
,

where
Cy(x) =

(
Cy(x)1

Cy(x)2

)
∈ R2,

is the speed of individuals located at the position x ∈ R2 and coming from a home
located at the position y ∈ R2.

The density of individuals per house remains constant with time. That is

n(y) = uy(t) +

∫
R2

vy(t, x)dx+

∫
R2

wy(t, x)dx, ∀t ≥ 0,∀y ∈ R2, (2.4)

where n(y) is the density of home in R2. That is, for each subdomain ω ⊂ R2

∫
ω

n(y)dy,

is the number of people having an their home in the subdomain ω.

This motion speed of individuals in a city depends on their home location y of
individuals. The distance to individuals’ workplaces often relies on their home location
in the city. For example, people living in the suburbs travel much longer than people
living downtown. Therefore, the traveling speed Cy(x) at x ∈ R2 depends on the home
location y.

3 Model describing the motion of travelers
The convection terms describes the tendency to moving the speed Cy(x) at the loca-
tion x when they started from the home located at the position y. The diffusion
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describes a random movement around the tendency corresponding to the convection.
In this model the displacement of individuals is described by

∂tvy(t, x) = ε2 4x vy(t, x)︸ ︷︷ ︸
Random

motion

−∇x · (vy(t, x)Cy(x)) ,︸ ︷︷ ︸
Deterministic

movement

with speed C

(3.1)

where ε2 ≥ 0 is the diffusion constant (which corresponds to the standard deviation
of the law of displacement after one day of the around the original location), and
x → Cy(x) = C(x, y) ∈ R2 is a deterministic speed displacement at location x ∈ R2

for individuals having their home located at the position y ∈ R2.

In this section , we use semigroup theory to define the solution of (3.1). We refer
to [1, 15, 17, 22, 23, 27, 28, 34, 39, 40, 44] for more result about semigroups generated
by diffusive systems. The book of Lunardy provides a very detailed presentation for
the case Lp

(
R2
)
(with 1 < p <∞). Here, we consider the case p = 1.

3.1 Purely diffusive model
In this section, we consider the equation (3.1) the special case Cy(x) ≡ 0. That is,{

∂tv(t, x) = ε2 4x v(t, x),

v(0, x) = v0(x) ∈ L1
(
R2
)
.

(3.2)

We consider the family of bounded linear operator
{
Tε24x(t)

}
t≥0
⊂ L

(
L1
(
R2
))

defined by

Tε24x(t) (v(.)) (x) =


∫
R2

K(t, x− z)v(z)dz, for t > 0,

v(x), for t = 0,

with
K(t, x) =

1

4πε2t
e−

x21+x22
4ε2t .

The family of bounded linear operator
{
Tε24x(t)

}
t≥0
⊂ L

(
L1
(
R2
))

is a strongly
continuous semigroup on L1

(
R2
)
. That is,

(i) Tε24x(0) = I;
(ii) Tε24x(t)Tε24x(s) = Tε24x(t+ s),∀t, s ≥ 0;
(iii) t 7→ Tε24x(t)u is continuous from [0,+∞) to L1

(
R2
)
.

Furthermore,
{
Tε24x(t)

}
t≥0
⊂ L

(
L1
(
R2
))

is a semigroup of contraction

‖Tε24x(t) (φ) ‖L1(R2) ≤ ‖φ‖L1(R2),∀t ≥ 0,∀φ ∈ L1
(
R2
)
,
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and
{
Tε24x(t)

}
t≥0
⊂ L

(
L1
(
R2
))

is a positive semigroup, that is

Tε24x(t)

(
L1

+

(
R2
))
⊂ L1

+

(
R2
)
,∀t ≥ 0, (3.3)

and the total of mass of individuals in preserved∫
R2

Tε24x(t) (φ) (x)dx =

∫
R2

φ(x) dx,∀t ≥ 0,∀φ ∈ L1
+

(
R2
)
. (3.4)

By using the semigroup property of
{
Tε24x(t)

}
t≥0
⊂ L

(
L1
(
R2
))
, we deduces that

the family of linear operator

Rλ =

∫ ∞
0

e−λtTε24x(t)dt,∀λ ∈ C, with Reλ > 0,

is a pseudo resolvent. That is

Rλ −Rµ = (µ− λ)RλRµ,∀λ, µ ∈ C, with Reλ > 0.

From Lemma 2.2.13. in [28], we know that the null space N (Rλ) and the range R (Rλ)
are independent of λ ∈ C with Reλ > 0, and the null space N (Rλ) is closed in
L1(R2). Moreover, by using the strong continuity of the semigroup

{
Tε24x(t)

}
t≥0
⊂

L
(
L1
(
R2
))
, one can prove that

λRλu→ u, as λ→ +∞,

hence
N (Rλ) = {0L1} ,∀λ ∈ C, with Reλ > 0.

Consequenlty, it follows from [28, Proposition 2.2.14] that there exists a linear closed
operator A : D(A) ⊂ L1

(
R2
)
→ L1

(
R2
)
, such that

Rλ = (λI −A)
−1
,∀λ ∈ C, with Reλ > 0.

Moreover A is the infinitesimal generator of
{
Tε24x(t)

}
t≥0
⊂ L

(
L1
(
R2
))
. That is

D(A) =

{
u ∈ L1

(
R2
)

: lim
t↘0

Tε24x(t)u− u
t

exists in L1
(
R2
)}

,

and
Au = lim

t↘0

Tε24x(t)u− u
t

,∀u ∈ D(A).

To connect A and ε24x, one can prove that

lim
t↘0

Tε24x(t)u− u
t

= ε2 4x u,∀u ∈ C2
c

(
R2
)
.
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where C2
c

(
R2
)
is the space of C2 functions with compact support.

It follows that
C2
c

(
R2
)
⊂ D(A),

and
Au = ε2 4x u,∀u ∈ C2

c

(
R2
)
.

Since C2
c

(
R2
)
is dense in L1

(
R2
)
, it follows that the graph of A is the closure of the

graph of ε24x considered a linear operator from C2
c

(
R2
)
into L1

(
R2
)
.

Remark 3.1. In the above problem, the difficulty is to define the domain D(A) of A
properly. This domain is not explicit in dimension 2, and the goal is to guarantee the
invertibility of λI−A from D(A) to L1

(
R2
)
. The Proposition 8.1.3 p. 223 in the book

Haase [22] gives
W 1,1

(
R2
)
⊂ D(A) ⊂W 2,1

(
R2
)
.

Lemma 3.2. The semigroup
{
Tε24x(t)

}
t≥0
⊂ L

(
L1
(
R2
))

is irreducible. That is, for
each u ∈ L1

+

(
R2
)
with u 6= 0, and each φ ∈ L∞+

(
R2
)
with φ 6= 0,∫

R2

φ(x)Tε24x(t)(u)(x)dx > 0,∀t > 0.

Proof. Let u ∈ L1
+

(
R2
)
with u 6= 0, φ ∈ L∞+

(
R2
)
with φ 6= 0, and t > 0. By using

Fubini theorem, we have∫
R2

φ(x)Tε24x(t)(u)(x)dx =

∫
R2

φ(x)

∫
R2

K(t, x− z)u(z)dzdx

and since
K(t, x) =

1

4πε2t
e−

|x|2

4ε2t .

it follows that x →
∫
R2 K(t, x − x)u(x)dx is continuous and strictly positive for each

x ∈ R2. The result follows. �

3.2 Purely convective model
In this section, we consider the equation (3.1) the special case ε = 0. That is,{

∂tv(t, x) = −∇x · (v(t, x)Cy(x)) ,

v(0, x) = v0(x) ∈ L1
(
R2
)
.

(3.5)

To define the solutions integrated along the characteristics we make the following
assumptions.
Assumption 3.3. Let C : R2 → R2 be a map. We assume that

(i) The map x ∈ R2 7→ C(x) ∈ R2 is uniformly continuous bounded;
(ii) The map x ∈ R2 7→ C(x) ∈ R2 is supposed to be a C1 function;
(iii) For i = 1, 2, the map x 7→ ∂xiC(x) is bounded and uniformly continuous.
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Assume that Cy satisfies the above assumption. Then the map x ∈ R2 7→ Cy(x) ∈
R2 is Lipschitz continuous, and the flow on R2 generated by{

∂tΠy(t)z = Cy (Πy(t)z) ,∀t ∈ R,

Πy(0)z = z ∈ R2,
(3.6)

is well defined. Moreover we have the following property.
Lemma 3.4. Assume that Cy satisfies Assumption 3.3.We have

det ∂zΠy(t)z = exp

(∫ t

0

∇x ·Cy (Πy(σ)z) dσ

)
,∀t ≥ 0, (3.7)

and

det ∂zΠy(−t)z = exp

(
−
∫ t

0

∇x ·Cy (Πy(−σ)z) dσ

)
,∀t ≥ 0. (3.8)

Proof. Define U(t) := ∂zΠy(t)z ∈M2 (R). We know that

dU(t)

dt
= ∇xCy (Πy(t)z)U(t), and U(0) = I.

For any matrix-valued C1 function A : t 7→ A(t) the Jacobi’s formula reads

d

dt
detA(t) = detA(t) tr(A−1(t)

dA(t)

dt
)

and by using the property of the trace tr (AB) = tr (BA), we deduce that

d

dt
detU(t) = detU(t) tr(

dU(t)

dt
U(t)−1) = detU(t) tr(∇xCy (Πy(t)z))

and the result follows from the fact that

tr(∇xCy (Πy(t)z)) = ∇x ·Cy (Πy(t)z) .

Consider now Π̂y(t)z = Πy(−t)z. Then ∂tΠ̂y(t)z = −Cy

(
Π̂y(t)z

)
,∀t ∈ R,

Π̂y(0)z = z ∈ R2.
(3.9)

Therefore (3.8) follows from (3.7). �

Assume first that the solution of (3.5) is C1. That is

v ∈ C1
(
R× R2,R

)
.

10



Then the right hand side of (3.5) can be expended, and (3.5) reads as

∂tv(t, x) = −Cy(x) · ∇xv(t, x)− v(t, x)∇x ·Cy(x),

where ∇xv(x) is the gradient of x 7→ v(x) which is defined by

∇x v(x) =

(
∂x1

v(x)
∂x2

v(x)

)
.

Moreover, we have

d

dt
v(t,Πy(t)z) = ∂tv(t,Πy(t)z) +∇xv(t,Πy(t)z) · ∂tΠy(t)z

= −Cy(Πy(t)z) · ∇xv(t,Πy(t)z)− v(t,Πy(t)z)∇x ·Cy(Πy(t)z)

+∇xv(t,Πy(t)z) ·Cy (Πy(t)z) ,

and we obtain
d

dt
v(t,Πy(t)z) = −v(t,Πy(t)z)∇x ·Cy(Πy(t)z)

Therefore

v(t,Πy(t)z) = exp

(
−
∫ t

0

∇x ·Cy(Πy(σ)z) dσ

)
v(0, z)

by choosing z = Πy(−t)x we obtain the following explicit formula for the solutions

v(t, x) = exp

(
−
∫ t

0

∇x ·Cy(Πy(σ − t)x)dσ

)
v0 (Πy(−t)x) ,

or equivalently

v(t, x) = exp

(
−
∫ t

0

∇x ·Cy(Πy(−σ)x)dσ

)
v0 (Πy(−t)x) .

We consider the family of bounded linear operator
{
TBy (t)

}
t≥0
⊂ L

(
L1
(
R2
))

defined
by

TBy (t) (v0) (x) = exp

(
−
∫ t

0

∇x ·Cy(Πy(−σ)x)dσ

)
v0 (Πy(−t)x) . (3.10)

Similarly to the diffusion we also have the following result.
Lemma 3.5. Assume that Cy satisfies Assumption 3.3. There exists a closed linear
operator By : D(By) ∈ L1

(
R2
)
→ L1

(
R2
)
the infinitesimal generator of a strongly

continuous semigroup
{
TBy (t)

}
t≥0
⊂ L

(
L1
(
R2
))

of positive bounded linear operator
on L1

(
R2
)
defined by (3.10).
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We observe that we have the following conservation of the number of individuals
is preserved. That is, for each Borelian set Ω ⊂ R2,∫

Ω

TBy (t) (v0) (x) =

∫
Ω

exp

(
−
∫ t

0

∇x ·Cy(Πy(−σ)x)dσ

)
v0 (Πy(−t)x) dx

and by using (3.8), we obtain∫
Ω

TBy (t) (v0) (x) =

∫
Ω

v0 (Πy(−t)x) det ∂zΠy(−t)xdx,

therefore by making a change of variable z = Πy(−t)x, we obtain∫
Ω

TBy (t) (v0) (x) =

∫
Πy(−t)Ω

v0 (z) dz,∀t ≥ 0.

When Ω = R2, we deduce that the total mass of individuals is preserved. That is,∫
R2

TBy (t) (v0) (x)dx =

∫
R2

v0 (x) dx,∀t ≥ 0. (3.11)

By using the semi-explicitly formula (3.10) that
{
TBy (t)

}
t≥0
⊂ L

(
L1
(
R2
))

is a
strongly continuous semigroup on L1

(
R2
)
, and

‖TBy (t)v0‖L1(R2) = ‖v0‖L1(R2),∀t ≥ 0. (3.12)

Moreover, one has

lim
t↘0

TBy (t)v0 − v0

t
= −∇x · (v0(x)Cy(x)) ,∀v0 ∈ C1

(
R2
)
∩W 1,1

(
R2
)
,

where

C1
(
R2
)
∩W 1,1

(
R2
)

=
{
v ∈ C1

(
R2
)
∩ L1

(
R2
)

: x 7→ ∂xiv(x) ∈ L1
(
R2
)
,∀i = 1, 2

}
.

It follows that,
C1
c

(
R2
)
⊂ C1

(
R2
)
∩W 1,1

(
R2
)
⊂ D(By),

where C1
c

(
R2
)
is the space of C1 with compact support.

Moreover,

Byv = −∇x · (v(x)Cy(x)) ,∀v ∈ C1
(
R2
)
∩W 1,1

(
R2
)
,

and since C1
c

(
R2
)
is dense in L1

(
R2
)
, it follows that the graph of By is the closure of

the graph of v 7→ −∇x · (v(x)Cy(x)) considered a linear operator from C1
c

(
R2
)
into

L1
(
R2
)
.
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3.3 Existence of mild solutions for the full problem with both
diffusion and convection

In this section, we consider the full equation (3.1){
∂tv(t, x) = ε2 4x v(t, x)−∇x · (v(t, x)Cy(x)) ,

v(0, x) = v0(x) ∈ L1
(
R2
)
.

(3.13)

By using the notations introduced in the previous sections, this problem rewrites as
the following abstract Cauchy problem{

v′(t) = (A+By)v(t), for t ≥ 0,

v(0) = v0 ∈ L1
(
R2
)
.

(3.14)

In order to define the mild solutions of (3.13) as a continuous function t ∈ [0,∞) 7→
v(t) ∈ L1

(
R2
)
, a mild solution

v(t) = Tε24x(t)v0 +

∫ t

0

Tε24x(t− σ)By v(σ) dσ. (3.15)

The existence of the solutions follows by considering the following system{
v(t) = Tε24x(t)v0 +

∫ t
0
Tε24x(t− σ)w(σ) dσ,

w(t) = ByTε24x(t)v0 +
∫ t

0
ByTε24x(t− σ)w(σ) dσ.

(3.16)

We observe that

∇x · (w(t, x)Cy(x)) = Cy(x) · ∇xw(t, x) + w(t, x)∇x ·Cy(x), (3.17)

where ∇xw(t, x) is the gradient of x 7→ w(t, x) which is defined by

∇x w(t, x) =

(
∂z1w(t, x)
∂z2w(t, x)

)
.

Lemma 3.6. Assume that Cy satisfies Assumption 3.3. Let y ∈ R2. There exists a
constant κ > 0 such that for each u ∈ L1

(
R2
)
,

Tε24z (t)u ⊂ C1
(
R2
)
∩W 1,1

(
R2
)
⊂ D (By) ,∀t > 0, (3.18)

and
‖ByTε24z (t)u‖L1(R2) ≤ κ

(
1√
ε2t

+ 1

)
‖u‖L1(R2),∀t > 0. (3.19)
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Proof. We observe that

K(t, x) =
1

4πε2t
e−

x21+x22
4ε2t = K1(t, x1)K1(t, x2).

where
K1(t, x) =

1√
4πε2t

e−
x2

4ε2t .

Moreover ∫
R
|∂xK1(t, x)|dx =

2√
4πε2t

∫ ∞
0

2x

4ε2t
e−

x2

4ε2t dx =
1√
πε2t

.

We observe that

∂x1
Tε24x(t) (u) (x1, x2) =

∫
R ∂xK1(t, x1 − σ1)

∫
RK1(t, x2 − σ2)u(σ1, σ2)dσ2dσ1,

and it follows

‖∂x1
Tε24x(t) (u) ‖L1(R2) ≤

∫
R
|∂xK1(t, x)|dx

×
∫
R

∫
R
K1(t, x2 − σ2)u(σ1, σ2)dσ2dσ1,

and the proof is completed. �

By using the previous result, we deduce the following result.
Proposition 3.7. Assume that Cy satisfies Assumption 3.3. We have

D (By) ⊂ D(A), (3.20)

and

‖By (λI −A)
−1 ‖L(L1(R2)) ≤

∫ ∞
0

e−λtκ

(
1√
ε2t

+ 1

)
dt, ∀λ > 0. (3.21)

Proof. Let λ > 0. We have

D(A) = (λI −A)
−1

L1
(
R2
)
,

and
(λI −A)

−1
u =

∫ ∞
0

e−λtTε24z (t)udt,∀u ∈ L1
(
R2
)
.

Since By is a closed linear operator, we have

By (λI −A)
−1
u =

∫ ∞
0

e−λtByTε24z (t)udt,∀u ∈ L1
(
R2
)
,

14



and by (3.19) we deduce that the right hand-side of the above equality is integrable,
and (3.20) follows, and

‖By (λI −A)
−1
u‖L1(R2) ≤

∫ ∞
0

e−λtκ

(
1√
ε2t

+ 1

)
dt‖u‖L1(R2).

�

Since D(By) ⊂ D(A), the linear operator (A+By) : D(A) ⊂ L1
(
R2
)
→ L1

(
R2
)

is well defined by
(A+By)u = Au+Byu,∀u ∈ D(A).

Definition 3.8. We will say that a continuous map u ∈ C
(
[0,∞),L1

(
R2
))

is a mild
solution of (3.14) if and only if∫ t

0

v(s)ds ∈ D(A),∀t ≥ 0,

and

v(t) = v0 + (A+By)

∫ t

0

v(s)ds.

We observe that

Γ (α) = κ

∫ ∞
0

e−ασ
(

1√
ε2t

+ 1

)
dσ <∞,∀α > 0,

and
lim

α→+∞
Γ (α) = 0.

We consider the weighted space of integrable function L1
α

(
(0,∞) ; L1

(
R2
))

which is
the space of Bochner measurable function t 7→ f(t) from (0,∞) to L1

(
R2
)
satisfying∫ ∞

0

e−αt‖f(t)‖L1(R2)dt < +∞.

Then L1
α

(
(0,∞) ; L1

(
R2
))

is a Banach space endowed with the norm

‖f‖L1
α

=

∫ ∞
0

e−αt‖f(t)‖L1(R2)dt.

Let α0 > 0 such that K (α0) < 1. Then for each v0 ∈ L1
(
R2
)
, by applying the Banach

fixed theorem, we deduce that there exists a unique solution w ∈ L1
α0

(
(0,∞) ; L1

(
R2
))

satisfying the fixed point problem

w(t) = ByTε24x(t)v0 +

∫ t

0

ByTε24x(t− σ)w(σ) dσ. (3.22)
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By using the same arguments as in Ducrot, Magal, and Prevost [14, Theorem 4.8], we
obtain the following result.
Theorem 3.9. Assume that Cy satisfies Assumption 3.3. Let α0 > 0 such that
Γ (α0) < 1. The linear operator (A+By) : D(A) ⊂ L1

(
R2
)
→ L1

(
R2
)
is the infinites-

imal generator of an analytic semigroup. Moreover, for each v0 ∈ L1
(
R2
)
, the Cauchy

problem (3.14) admits a unique mild solution t→ TA+By (t)v0. Furthermore, the map
t→ v(t) = TA+By (t)v0 satisfies

v(t) = Tε24x(t)v0 +

∫ t

0

Tε24x(t− σ)w(σ) dσ, ∀t ≥ 0,

where w ∈ L1
α0

(
(0,∞) ; L1

(
R2
))

is the unique solution the fixed point problem (3.22).

Let λ ≥ α0. Since By is a closed linear operator, we have

By (λI −A)
−1

=

∫ ∞
0

e−λtByTε24x(t)dt,

and

‖By (λI −A)
−1 ‖L(L1(R2)) ≤ κ

∫ ∞
0

e−λσ
(

1√
ε2t

+ 1

)
dσ = Γ (λ) ≤ Γ (α0) < 1.

Let u ∈ D(A) and v ∈ L1
(
R2
)
. We have

(λI −A−By)u = v ⇔
[
I −By (λI −A)

−1
]

(λI −A)u = v

⇔ u = (λI −A)
−1
[
I −By (λI −A)

−1
]−1

v

We obtain the following lemma.
Lemma 3.10. Let Assumption 3.3 be satisfied. We have

(α0,+∞) ⊂ ρ(A+By),

the resolvent set of A+By, and for each λ > α0,

(λI −A−By)u = v ⇔ u = (λI −A)
−1
∑
k≥0

[
By (λI −A)

−1
]k
v.

An alternative approach to prove Theorem 3.9 consists in using the fractional
power of the Laplacian A = ε24x (see Pazy [34, Sections 2.5 and 3.2]), and use
the Gagliardo-Nirenberg inequalities (See Brezis and Mironescu [6]) to obtain some
estimations similar to (3.21).
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3.4 Positivity of the solutions for the full problem with both
diffusion and convection

In this section, we reconsider the positivity of the solutions by using only abstract
argument. Such a problem was study by Protter and Weinberger [36] by using maxi-
mum principle. Here we use the fact that A and By are both the infinitesimal generator
of positive semi-groups, together with some suitable estimation on ByTA(t),∀t > 0.

Recall that the Hille-Yosida approximation of By is defined by

Bλy = λBy (λI −By)
−1
,∀λ > 0. (3.23)

Then we have
Bλy = −λI + λ2 (λI −By)

−1
,∀λ > 0. (3.24)

Recall that
lim

λ→+∞
λ (λI −By)

−1
u = u, ∀u ∈ L1

(
R2
)
,

we deduce that
lim

λ→+∞
Bλyu = Byu, ∀u ∈ D (By) .

The idea of this section is to approximate the problem (3.15)

v(t) = Tε24x(t)v0 +

∫ t

0

Tε24x(t− σ)Byv(σ) dσ.

by using the Hille-Yosida approximation of By. That is,

vλ(t) = Tε24x(t)v0 +

∫ t

0

Tε24x(t− σ)Bλy vλ(σ) dσ.

3.4.1 Convergence of the approximation

Let v0 ∈ D(A). Define
wλ(t) = Bλy vλ(t),

which satisfies

wλ(t) = BλyTε24x(t)v0 +

∫ t

0

BλyTε24x(t− σ)wλ(σ) dσ.

By computing the difference between the above equation and (3.22), we obtain

wλ(t)− w(t) =
[
λ (λI −By)

−1 − I
]
ByTε24x(t)v0

+

∫ t

0

[
λ (λI −By)

−1 − I
]
ByTε24x(t− σ)w(σ) dσ

+

∫ t

0

λ (λI −By)
−1
ByTε24x(t− σ) (wλ(σ)− w(σ)) dσ,

(3.25)
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Let τ > 0. By using the fact that t→ ByTε24x(t)v0 maps bounded interval [0, τ ] into
a compact subset of L1

(
R2
)
, and (t, σ)→ ByTε24x(t−σ)w(σ) maps bounded subsets

{(t, σ) ∈ [0, τ ] : t ≥ σ} into a compact subset of L1
(
R2
)
, we deduce that

lim
λ→+∞

sup
t∈[0,τ ]

‖
[
λ (λI −By)

−1 − I
]
ByTε24x(t)v0‖L1(R2) = 0, (3.26)

and

lim
λ→+∞

sup
t∈[0,τ ]

‖
∫ t

0

[
λ (λI −By)

−1 − I
]
ByTε24x(t− σ)w(σ) dσ‖L1(R2) = 0. (3.27)

Moreover we have
‖λ (λI −By)

−1 ‖L(L1(R2)) ≤ 1,∀λ > 0,

hence

‖
∫ t

0

λ (λI −By)
−1
ByTε24x(t− σ) (wλ(σ)− w(σ)) dσ‖L1(R2)

≤ κ
∫ τ

0

(
1√
ε2σ

+ 1

)
dσ sup

σ∈[0,τ ]

‖wλ(σ)− w(σ)‖L1(R2).

(3.28)

Lemma 3.11. Assume that Cy satisfies Assumption 3.3.Let τ > 0 small enough to
satisfy

κ

∫ τ

0

(
1√
ε2σ

+ 1

)
dσ < 1.

Then for each v0 ∈ D(A), and each τ > 0, we have

lim
λ→+∞

sup
t∈[0,τ ]

‖vλ(t)− v(t)‖L1(R2) = 0.

3.4.2 Positivity

By using (3.24), we deduce that

vλ(t) = Tε24x−λI(t)v0 +

∫ t

0

Tε24x−λI(t− σ)λ2 (λI −By)
−1
vλ(σ) dσ, (3.29)

where
Tε24x−λI(t) = e−λtTε24x(t).

If u0 ∈ D(A) ∩ L1
+

(
R2
)
, since (λI −By)

−1 is a positive bounded linear operator, we
deduce that

vλ(t) ≥ 0,∀t ≥ 0. (3.30)
To obtain the positivity is sufficient to use the fact that D(A) ∩ L1

+

(
R2
)
is dense in

L1
+

(
R2
)
, which follows from the following observation

λ (λI −A)
−1
v0 ∈ D(A) ∩ L1

+

(
R2
)
,∀v0 ∈ L1

+

(
R2
)
,∀λ > 0,
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and
lim
λ→∞

λ (λI −A)
−1
v0 = v0,∀v0 ∈ L1

(
R2
)
.

By using Lemma 3.11, we obtain the following theorem.
Theorem 3.12 (Positivity). Assume that Cy satisfies Assumption 3.3. For each v0 ∈
L1

+

(
R2
)
, the solution of Cauchy problem (3.14) non-negative. That is

TA+By (t)v0 ≥ 0,∀t ≥ 0. (3.31)

As a consequence of Theorem 3.12, we obtain an abstract proof of the result of
Protter-Weinberger [36].
Corollary 3.13. Assume that C : R2 → R2 satisfies Assumption 3.3. Let χ : R2 → R
be bounded and uniformly continuous map. Consider the system

∂tv(t, x) = ε2 4x v(t, x)

−C(x)1 ∂x1
v(t, x)−C(x)2 ∂x2

v(t, x)

+χ(x)v(t, x),

v(0, x) = v0(x) ∈ L1
+

(
R2
)
.

(3.32)

Then the system (3.32) has a unique non-negative mild solution.

Proof. It is sufficient to observe that the system (3.32) is equivalent to
∂tv(t, x) = ε2 4x v(t, x)−∇x · (v(t, x)C(x))

+ (χ(x) + ∂x1
C(x)1 + ∂x2

C(x)2) v(t, x),

v(0, x) = v0(x) ∈ L1
+

(
R2
)
,

and the result follows from Theorem 3.12, and by using the variation of constant
formula for λ > 0 large enough

v(t) = TA+B−λI(t)v0 +

∫ t

0

TA+B−λI(t− σ) (L+ λI) v (σ) dσ,

where L is the multiplicative operator

Lv(x) = (χ(x) + ∂x1
C(x)1 + ∂x2

C(x)2) v(x).

�

We could obtain a stronger positivity result of

v(t, x) = TA+By (t)(v0)(x)
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by using the strong maximum principle for elliptic equations in the book of Gilbarg
and Trudinger [18], and by considering the resolvent of A+By

w0 := (λI−(A+By))−1v0 =

∫ ∞
0

e−λσTA+By (σ)(v0)(x)dσ ⇔ [λI − (A+By)]w0 = v0,

where the Laplace transform of the semi-group is well defined for all λ > 0 large
enough.

Alternatively, we could have used the Harnack inequality for second-order parabolic
equations obtained by Ignatova, Kukavica, and Ryzhik [24] to prove the strict posi-
tivity of the solution for all t > 0 (by contradiction). But the simple arguments used
above are sufficient to establish the convergence result of the entire system.

3.4.3 Conservation of the total mass of individuals

Moreover by using again the formula (3.29), we obtain∫
R2

vλ(t, x)dx = e−λt
∫
R2

v0(x)dx+

∫ t

0

e−λ(t−s)λ

∫
R2

vλ(s, x)dxds,

that is
d

dt

∫
R2

vλ(t, x)dx = −λ
∫
R2

vλ(t, x)dx+ λ

∫
R2

vλ(s, x)dx = 0,

therefore ∫
R2

vλ(t, x)dx =

∫
R2

v0(x)dx,∀t ≥ 0.

By using Lemma 3.11, we obtain the following theorem.
Theorem 3.14 (Conservation of the total mass of individuals). Assume that Cy

satisfies Assumption 3.3. For each v0 ∈ L1
+

(
R2
)
, the Cauchy problem (3.14) conserves

of the total mass of individuals. That is∫
R2

v(t, x)dx =

∫
R2

v0(x)dx,∀t ≥ 0,

with
v(t) = TA+By (t)v0,∀t ≥ 0.

4 Asymptotic behavior of the return-to-home model
In this section, for simplicity, we drop the subscript y notation, and we consider the
entire system u′(t) = χ

∫
R2 w(t, x)dx− γ u(t),

v′(t, x) = (Ay +By) v(t, x)− α v(t, x) + γ g(x− y)u(t),
w′(t, x) = α v(t, x)− χw(t, x),

(4.1)
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with initial distribution

u(0) = u0 ∈ R+, v(0) = v0 ∈ L1
+(R2), and w(0) = w0 ∈ L1

+(R2). (4.2)

4.1 Abstract Cauchy problem
We consider the space

X = R× L1
(
R2
)
× L1

(
R2
)
,

which is a Banach space endowed with the standard produce norm

‖(u, v, w)‖ = |u|+ ‖v‖L1(R2) + ‖w‖L1(R2).

We consider the positive cone of X

X+ = R+ × L1
+

(
R2
)
× L1

+

(
R2
)
.

The system (2.1) we can rewritten as an abstract Cauchy problem u′(t)
v′(t)
w′(t)

 = (Ay + Cy)

 u(t)
v(t)
w(t)

 , for t > 0, (4.3)

with initial value  u(0)
v(0)
w(0)

 =

 u0

v0

w0

 ∈ R× L1
(
R2
)
× L1

(
R2
)
. (4.4)

The linear operator Ay : D (Ay) ⊂ X → X is defined by

Ay

 u
v
w

 =

 −γ u
(A+By) v − α v

αv − χw


with the domain

D (Ay) = R×D(A)× L1
(
R2
)
.

The semigroup generated by Ay is explicitly given by

TAy (t)

 u0

v0

w0

 =

 e−γt u0

TA+By−αI(t)v0

e−χtw0 +
∫ t

0
e−χ(t−s)αTA+By−αI(s)v0 ds

 , (4.5)

where
TA+By−αI(t) = e−αtTA+By (t),∀t ≥ 0.
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We also consider the compact bounded linear operator Cy : X → X,

Cy

 u
v
w

 =


χ
∫
R2 w(x)dx

+γg(x− y)u

0L1(R2)

 .

Theorem 4.1 (Existence and uniqueness of solutions). Assume that Cy satis-
fies Assumption 3.3. Then for each y ∈ R2, the system (2.1) generates a strongly
continuous semigroup

{
TAy+Cy (t)

}
t≥0

of bounded linear operator on X. We recall that u(t)
v(t)
w(t)

 = TAy+Cy (t)

 u0

v0

w0


is the unique mild solution satisfies the variation of constant formula u(t)

v(t)
w(t)

 = TAy (t)

 u0

v0

w0

+

∫ t

0

TAy (t− σ) Cy

 u(σ)
v(σ)
w(σ)

 dσ, ∀t ≥ 0, (4.6)

or equivalently
u(t) = e−γtu0 +

∫ t
0
e−γ(t−σ)χ

∫
R2 w(σ, x)dx dσ,

v(t) = TA+By−αI(t)v0 +
∫ t

0
TA+By−αI(t− σ)γg(.− y)u(σ) dσ,

w(t) = e−χtw0 +
∫ t

0
e−χ(t−s)αv(t, σ) dσ.

(4.7)

By Theorem 3.12, we have the following result.
Theorem 4.2 (Positivity). The semigroup

{
TAy+By (t)

}
t≥0

is positive. That is

TAy+By (t)X+ ⊂ X+,∀t ≥ 0. (4.8)

By using Theorem 3.14 and (4.7), we have the following result.
Theorem 4.3 (Conservation of the total mass). Define

V (t) =

∫
R2

v(t, x) dx, and W (t) =

∫
R2

w(t, x) dx.

Then t 7→ (u(t), V (t),W (t)) satisfies the system of linear ordinary differential
equations  u′(t) = χW (t)− γu(t),

V ′(t) = −αV (t) + γu(t),
W ′(t) = αV (t)− χW (t),

(4.9)
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with initial distribution

u(0) = u0, V (0) =

∫
R2

v0(x) dx, and W (0) =

∫
R2

w0(x) dx. (4.10)

The density of individuals per house remains constant with time. That is

n(y) = u(t) +

∫
R2

v(t, x)dx+

∫
R2

w(t, x)dx, ∀t ≥ 0,∀y ∈ R2, (4.11)

where n(y) is the density of home in R2.
Definition 4.4. Let T ∈ L (X) . Then the essential semi-norm ‖T‖ess of T is defined
by

‖T‖ess = κ (T (BX(0, 1))) ,

where BX (0, 1) = {x ∈ X : ‖x‖X ≤ 1} , and for each bounded set B ⊂ X,

κ (B) = inf {ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}

is the Kuratovsky measure of non-compactness.
By using, Webb [45] (see Magal and Thieme [29, Theorem 3.2.] for more results),

we deduce that

x 7→
∫ t

0

TAy (t− σ)CyTAy+Cy (σ)xdσ,

is compact, and the Lemma 4.5 below follows.

Next, we are using the essential growth rate of semigroups. We refer to Engel and
Nagel [15], or Magal and Ruan [28] for more results on this topic.
Lemma 4.5. Assume that Cy satisfies Assumption 3.3. The essential growth rate of
the semigroup

{
TAy+By (t)

}
t≥0

satisfies the following estimation

ωess (Ay + Cy) := lim
t→∞

‖TAy+Cy (t) (BX (0, 1)) ‖ess ≤ −min(γ, α, χ).

Thanks to the negative essential growth rate and since the positive orbits are
bounded, we deduce that the positive orbits are relatively compact (i.e., their closure
is compact), and we obtain the following theorem.
Proposition 4.6. Assume that Cy satisfies Assumption 3.3. The omega-limit set of
each trajectory is defined by

ω

 u0

v0

w0

 :=
⋂
t≥0

⋃
s≥t

TAy+Cy (s)

 u0

v0

w0


is a non-empty compact subset of X and is contained in{

(u0, v0, w0) ∈ X+ : u+

∫
R2

v(x)dx+

∫
R2

w(x)dx = n(y)

}
. (4.12)
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4.2 Equilibria
An equilibrium solution of the model (2.1) will satisfy

0 = χ
∫
R2 w(x)dx− γu(y),

0 = ε2∆xv(x)−∇x · (v(x)Cy(x))− αv(x) + γg(x− y)u(y),

0 = αv − χw,
(4.13)

From the first and the equation of (4.13), we deduce that

wy(x) =
α

χ
vy(x), and u(y) =

χ

γ

∫
R2

wy(x)dx. (4.14)

By using the conservation of the total number of individuals in each house, we have

u(y) +

∫
R2

vy(x)dx+

∫
R2

wy(x)dx = n(y),

and by using (4.14), we deduce that

u(y) =
τ

γ
n(y) =

1(
1 +

γ

α
+
γ

χ

)n(y), (4.15)

where
τ =

1(
1

γ
+

1

α
+

1

χ

) .
By plugging (4.15) into the v-equation of (4.13), we deduce that

0 = ε2∆xvy −∇x · (vyCy)− αvy + τg(x− y)n(y),

which is equivalent

αvy − ε2∆xv +∇x · (vyCy) = τg(x− y)n(y).

Therefore

vy(x) =

(
αI −A−By

)−1(
τg(· − y)n(y)

)
,

or equivalently

vy(x) = τn(y)

∫ +∞

0

e−αtTA+By (t) (g(.− y)) (x) dt. (4.16)
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4.3 Asymptotic behavior
By integrating in x v(t, x) and w(t, x) and by using u′(t) = χ

∫
R2 w(t, x)dx− γu(t),

v′(t) = (Ay +By) v(t)− αv(t) + γg(.− y)u(t),
w′(t) = αv(t)− χw(t),

(4.17)

with initial distribution

u(0) = U0 ∈ R+, v(0) = v0 ∈ L1
+(R2), and w(0) = w0 ∈ L1

+(R2). (4.18)

By using Perron-Frobenius theorem applied to the irreducible system (4.9) we
obtain the following theorem. We refer to Ducrot, Griette, Liu, and Magal [12,
Theorem 4.53] for more result on this subject.
Lemma 4.7. Assume that α > 0 γ > 0 and χ > 0. Then the solution of system (4.9)
satisfies

lim
t→∞

u(t) = u, lim
t→∞

V (t) = V , and lim
t→∞

W (t) = W, (4.19)

where
u

(
1 +

γ

α
+
γ

χ

)
= n(y),

V

(
α

γ
+ 1 +

α

χ

)
= n(y),

and
W

(
χ

γ
+
χ

α
+ 1

)
= n(y).

Moreover, the convergence in (4.19) is exponential. That is, there exists a constant
M > 0 and δ > 0 such that for each t ≥ 0,

|u(t)− u| ≤Me−δt, |V (t)− V | ≤Me−δt, and |W (t)−W | ≤Me−δt. (4.20)

Proof. The matrix of system (4.9) is

L =

−γ 0 χ
γ −α 0
0 α −χ

.
Therefore the system (4.9) is strongly connected (i.e., L + δI is irreducible for all
δ > 0 large enough). The vector 1T = (1, 1, 1)T is a strictly positive left-eigenvector
associated with the eigenvalue 0. The Perron-Frobenius theorem shows that 0 is
the dominant eigenvalue of L (i.e., an eigenvalue with the largest real part). The
equilibrium of equation (4.9) corresponds to the right eigenvector. That is

χW = γu, αV = γu, αV = χW, (4.21)
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and since we must impose that

u+ V +W = n(y),

the proof is completed. �

Theorem 4.8. Assume that Cy satisfies Assumption 3.3. Assume that α > 0 γ > 0
and χ > 0. For each y ∈ R2, the solution of system (2.1) satisfies

lim
t→+∞

uy(t) = u(y), in R, (4.22)

lim
t→+∞

vy(t, x) = vy(x), in L1(R2), (4.23)

and
lim

t→+∞
wy(t, x) = wy(x), in L1(R2), (4.24)

and the convergence is exponential for each limit.

Proof. By Lemma 4.7, we already know the exponential convergence in (4.22). Let us
consider the exponential convergence in (4.23). We have

v(t, x) = TAy+By−αI(t)v0 +
∫ t

0
TAy+By−αI(t− σ)γg(.− y)u(σ) dσ,

and
v(x) = TAy+By−αI(t)v +

∫ t
0
TAy+By−αI(t− σ)γg(.− y)u(σ) dσ.

Therefore, we deduce that

v(t, x)− v(x) = TAy+By−αI(t) (v0 − v)

+
∫ t

0
TAy+By−αI(t− σ)γg(.− y) (u(σ)− u) dσ,

and we obtain
‖v(t)− v‖L1(R2) ≤ e−αt‖v0 − v‖L1(R2)

+
∫ t

0
e−α(t−σ)|u(σ)− u|dσ.

Now, by Lemma 4.7, we have |u(t)− u| ≤Me−δt,∀t ≥ 0, we obtain

‖v(t)− v‖L1(R2) ≤ e−ηt(1 + t)
(
‖v0 − v‖L1(R2) +M

)
where η = min (α, δ) > 0. The exponential convergence in (4.24) follows by using the
exponential convergence in (4.23) and using similar arguments to those above. �

Remark 4.9. The above result is relate to the irreducibility of the semigroup{
TAy+Cy (t)

}
t≥0

. The difficulty would be to prove the additional result for each φ ∈
L∞+

(
R2
)
, with φ 6= 0, we have∫

R2

φ(x)u(t, x)dx > 0,∀t > 0,
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where
u(t, x) = TA+By (t)(g(.− y))(x),∀t ≥ 0. (4.25)

The readers can find more result on this topic in the paper by Webb [46, Remark
2.2] (see also [2–4, 19, 21] for more on this subject) to prove infinite dimensional
Perron-Frobenius like theorem. Here, we propose a more direct approach to study the
asymptotic behavior of the system.

5 Hybrid formulation of a return to home model on
bounded domain

A major difficulty in applying such a model in concrete situations is the computation
time. Indeed the time of computation grows exponentially with the discretization step.
In the previous section, we introduced reduction technique, that could be used to run
the simulations of the return home model. Unfortunately such an idea does not apply
to the case of epidemic model. To circumvent this difficulty, we now introduce discrete
homes locations.
Assumption 5.1. Assume that we can find a sequence of point yi =

(
yi1, y

i
2

)
∈ R2,

and the index i belongs to a countable set I.
Remark 5.2. In the numerical simulations section, it will be convenient to use a
finite number of homes

I = {1, . . . , n} .
But, we could also consider a one dimensional lattice with I = Z or a two dimensional
lattice with I = Z× Z.

The model we consider now is the previous model in which we assume that

n(y) = u(t, y) +

∫
R

(v + w) (t, x, y)dy =
∑
i∈I

niδyi(y)

where y → δyi(y) is the Dirac mass at yi.

Instead of considering
u(t, y) =

∑
i∈I

ui(t)δyi(y),

it is sufficient to consider (u1(t), . . . , un(t)) ∈ Rn the numbers of individual staying at
home with their home located at y1, . . . , yn.

We define vi(t, x) (respectively wi(t, x)) the density of travelers (respectively work-
ers) with their home located at yi, and x 7→ Ci(x) the traveling speed of individual
coming from the home located at yi.

The return home model consists of a decoupled system of n sub-system of the
following form

∂tui(t) = χ
∫
R2 wi(t, x)dx− γui(t),

∂tvi(t, x) = ε2∆xvi −∇x · (viCi(x))− αvi + γg(x− yi)ui(t),
∂twi(t, x) = αvi(t, x)− χwi(t, x),

(5.1)
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with i = 1, . . . , n, t ≥ 0, x ∈ R2 is the spatial location individual, and yi ∈ R2, is their
home’s location, and the initial distribution at t = 0, and for i = 1, . . . , n,

ui(0) = ui0 ∈ [0,+∞),

vi(0, x) = vi0(x) ∈ L1
+

(
R2
)
,

and

wi(0, x) = wi0(x) ∈ L1
+

(
R2
)
.

(5.2)

Conservation of individuals: Total number of individual in each house i ∈ I is
preserved

ni = ui(t)︸︷︷︸
Number of

individuals

at home

+

∫
R2

vi(t, x)dx︸ ︷︷ ︸
Number of

travelers

+

∫
R2

wi(t, x)dx︸ ︷︷ ︸
Number of

workers

,

is the number of individuals in the home i at time t.

Equilibria: For each i ∈ I, we have a unique equilibrium

ui =
1(

1 +
γ

α
+
γ

χ

)ni,

vi(x) =

(
αI −A−Byi

)−1(
τg(· − yi)ni

)
,

and
wi(x) =

α

χ
vi(x).

As a consequence of Theorem 4.8.
Corollary 5.3. Assume that Ci satisfies Assumption 3.3. Assume that α > 0 γ > 0
and χ > 0. For each i ∈ I, the solution of system (5.1) satisfies

lim
t→+∞

ui(t) = ui, in R,

lim
t→+∞

vi(t, x) = vi(x), in L1(R2),

and
lim

t→+∞
wi(t, x) = wi(x), in L1(R2),

6 Numerical simulations of the hybrid model
In this section, we run a simulation of the model (2.1) on a bounded domain

Ω = [0, 1]× [0, 1].
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The model on bounded domain is presented in Appendix A. Here, we use the following
initial distribwhat are the distributionsution

ui(0) = ni, vi(0, x) = wi(0, x) = 0,∀i ∈ I.

We assume that the convection is null. That is,

Ci(x) = 0.∀x ∈ Ω,∀i ∈ I.

It is essential to mention that the numerical results are obtained by using an Euler
integration method ∆x1∆x2

∑
j

∑
k wi(t, x

j
1, x

k
2) for

∫
Ω
wi(t, x)dx in the u-equation of

system (5.1). This method does not give a very good approximation of the integral, but
this approximation is preserved through the numerical scheme used for diffusion. For
example, the Simpson method does not work to compute the solution, and the errors
accumulate and produces a blowup of the solutions. In the numerical simulations, we
use a hybrid version of the model on a bounded domain presented in Appendix A. We
use a semi-implicit numerical method to compute the diffusive part of the system (see
Appendix B).

In Table 1, we list the parameters used in the simulations.

Table 1 List of parameters used in the simulations.
Symbol Interpretation Value Unit

ε Diffusion coefficient 1 none
1/γ Average time spent at home 12/24 day
1/α Average time spent traveling 2/24 day
1/χ Average time spent at work 10/24 day
σ Standard deviation for the function ρ(x1, x2) 0.05 none

In Figure 4, we plot the number of people per home with the location of each home.
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Fig. 4 In this figure, we plot bars with height ni located at yi, the number of individuals
with their home located at yi ∈ Ω. The number of individuals per home varies randomly
between 50 and 200 per home.

In Figure 5, we plot
x 7→

∑
i∈I

nig(x− yi)

which is the density of individuals leaving their homes at time t = 0. This figure gives
another representation of the density of individuals at home.

Fig. 5 In this figure, we plot the total density of people at home x 7→∑
i∈I nig(x−yi),

where Ni is the number of individuals in the home i, and yi is the location of the home
i. This density of population represents the distribution of individuals leaving their
homes.

In Figure 6, we observe that the numerical method preserves the number of
individuals.
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Fig. 6 We plot the total number of individuals at home t → U(t) =
∑

i∈I ui(t)
(blue), the total number of travelers t → V (t) =

∑
i∈I
∫

Ω
vi(t, x)dx (orange), and the

total number of workers t → W (t) =
∑

i∈I
∫

Ω
wi(t, x)dx (yellow), the total number

of individuals (purple). After one day, we observe the number of individuals in each
compartment remains constant.
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In Figure 7, we plot the number of people at home, travelers, and workers in each
home at time t = 2. That is

ui(2),

∫
Ω

vi(2, x)dx, and
∫

Ω

wi(2, x)dx,

and we draw a bar at their home location yi.

In Figure 7, we observe that each distribution is a multiple of the density of individ-
ual at home (y1, y2) 7→ n (y1, y2), and the individual are mixed subdivide in between
each compartments. The maximal value is 180 in (a), 15 in (b), and 70 in (c).
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Fig. 7 In this figure, we plot the number of individuals on day 2: 1) at home yi 7→ ui (2)
(on the top left) for each home i; 2) traveling yi 7→

∫
Ω
vi(2, x)dx (on the top right)

for each home i; 3) at work yi 7→
∫

Ω
wi(2, x)dx (on the bottom) for each home i. The

three figures look the same, but their amplitude is very different. The maximal value
is 150 on the top left, 15 on the top right, and 80 on the bottom.

In Figure 8, we plot∑
i∈I

vi(2, x1, x2), and
∑
i∈I

wi(2, x1, x2).

We observe numerically the equilibrium formula (4.14). That is,∑
i∈I

wi(2, x1, x2) =
α

χ

∑
i∈I

vi(2, x1, x2),∀(x1, x2) ∈ Ω.
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Fig. 8 In the figure, we plot the distribution of all the travelers (x1, x2) 7→∑
i∈I vi(2, x1, x2) (on the top), and we plot the distribution of all the workers

(x1, x2) 7→ ∑
i∈I wi(2, x1, x2) (on the bottom). Both figures, left and right, look the

same, and only the amplitude changes from the left to the right.

7 Conclusion
This article presents a new model, including a compartment for people at home,
traveling, and people at work. We study the model’s well-posedness and obtain a
convergence result to a stationary distribution. The numerical simulations have illus-
trated such convergence results, and we observed that only one day is necessary for
the solutions of the model to converge to the equilibrium distributions. Such a model
is essential because significant social differences exist between individuals depending
on their home location. Intuitively, the people living in the city’s center would travel a
short distance to work, while those living in the suburbs would travel a long distance
to their working places.

The model could be complexified in many ways. We could introduce multiple
groups to describe the different types of behavior for people at work. For example,
some people, like taxi drivers, never stop to travel while they are working. Conversely,
teleworking people stay at home to work but leave their homes to shop.

We could also consider multiple transport speeds Ck
y(x) for people leaving their

homes at y ∈ R2. Different speeds can match different means of transportation, car,
bus, subway, etc. Assuming, for example, that m-types of transport speed are involve,
then for each group k = 1, . . . ,m, we would have the following model to describe the
travelers {

∂tvk(t, x) = ε2 4x vk(t, x)−∇x ·
(
vk(t, x)Ck

y(x)
)
,

vk(0, x) = vk0 (x) ∈ L1
(
R2
)
.

(7.1)

Suppose we consider now an epidemic spreading in a city. In that case, the most
critical compartments are those staying at home and work, where most pathogens’
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transmissions occur. The return-to-home model could compute the distribution of
people at work and home depending on their home locations in a given city. Return-
to-home models could be used to study various phenomena in the cities. We can
extend this model to study air pollution, the spread of epidemics, and other important
problems to understand the population dynamics at the level of a single city.

Here we use a model to describe travelers’ movement, which is relatively simplistic.
For example, people travel on the roads, not through the buildings. Another question
would be how to include the streets or a map in such a model.

To conclude the paper, we should mention that animals also have a home. An
important example is the bee, and we refer to [30, 31] for more results on this
topic. Many species of animals live around their home, so modeling return-to-home is
probably essential to understand the dynamics of many leaving populations.

This article considers the case where the model’s parameters are constant with
time. But, people mostly leave home in the morning, and the parameter γ must be
larger in the morning than the rest of the day. Similarly, since the people return home
late in the afternoon, the parameter χ must be larger during that period than during
the rest day. For each y ∈ R2, therefore, the return-to-home model with circadian
rhythm (one-day periodic parameters) reads as follows

∂tuy(t) = χ(t)
∫
R2 wy(t, x)dx− γ(t)uy(t),

∂tvy(t, x) = ε2∆xvy −∇x · (vyCy)− αvy + γ(t)g(x− y)uy(t),

∂twy(t, x) = αvy(t, x)− χ(t)wy(t, x),

(7.2)

where the function t→ γ(t) and t→ χ(t) are one-day periodic functions.

To conclude, we should insist on the fact that in the model, the individuals return
home instantaneously. So here, we use diffusion and convection processes to derive the
distribution of individuals at work from the distribution of individuals at home. In
most practical problems, such as epidemic outbreaks and others, the two distributions
will be sufficient to understand the major interactions between individuals.
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Appendix

A The return home model on a bounded domain
We consider the rectangle domain of R2

Ω = (a1, b1)× (a2, b2) = {(x1, x2) ∈ R2 : a1 < x1 < b1, and a2 < x2 < b2}.

The return home model with no flux at the boundary (i.e. with Neumann boundary
conditions) is the following

∂tu(t, y) = χ
∫

Ω
w(t, x, y)dx− γu(t, y),

∂tv(t, x, y) = ε2∆xv(t, x, y)− αv(t, x, y) + γρ(x, y)u(t, y),

∂tw(t, x, y) = αv(t, x, y)− χw(t, y),

(A.1)

with t ≥ 0, x ∈ Ω, y ∈ Ω, and in order to preserve the L1 norm in space, we impose
Neumann boundary conditions. As Ω is assumed to be a rectangle, that is{

∂x1
v(t, x, y) = 0, t ≥ 0, x1 = a1 or x1 = b1,

∂x2
v(t, x, y) = 0, t ≥ 0, x2 = a2 or x2 = b2,

(A.2)

the initial distribution at t = 0

u(0, y) = u0(y) ∈ L1
+(Ω,R),

v(0, x, y) = v0(x, y) ∈ L1
+(Ω× Ω,R),

and

w(0, x, y) = w0(x, y) ∈ L1
+(Ω× Ω,R).

(A.3)

In order to preserve the total number of individuals, we defined for x = (x1, x2) ∈ Ω,
and y = (y1, y2) ∈ Ω, as follows

ρ(x, y) =
g(x− y)

G(y)
,

where G(y) is a normalization constant, which is defined by

G(y) =

∫
Ω

g(x− y)dx, ∀y ∈ Ω.

Remark A.1. In the formula for ρ(x, y) we divide g(x−y) by G(y), in order to obtain∫
Ω

ρ(x, y)dx = 1,∀y ∈ Ω.
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In Figure 9 we plot the function (y1, y2)→ G(y1, y2) and we use the 2 dimensional
Simpson method to compute the integrals.

Fig. 9 In this figure we plot (y1, y2) → G(y1, y2). Here we use Ω = [0, 1] × [0, 1] and
the Gaussian function g(x1, x2) with σ = 0.05.

B Matrix form of the numerical scheme
From Appendix A, we know that the unknowns and equations are stored “naturally” as
components of a vector for the one-dimensional case. However, for the two-dimensional
case, we need to deal directly with the components of a matrix. Rearranging the values
as a column vector raises the delicate issue of grid point renumbering.

We define for each i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n1, and l = 1, · · · , n2,
and set

m1 = (j − 1)n1 + i ∈ [1, n1n2]⇔ i = mod(m1, n1), and j =
m1 − i
n1

+ 1,

and

m2 = (l − 1)n1 + k ∈ [1, n1n2]⇔ k = mod(m2, n1), and l =
m2 − k
n1

+ 1,

and

m = (m1−1)(n1n2)+m2 ∈
[
1, (n1n2)

2
]
⇔ m2 = mod(m,n1n2), and m1 =

m−m2

n1n2
+1.

We agree to note the grid points from “the left to the right” and from “the bottom to
the top”, i.e., according to the increasing order of the i, j and k, l indices, respectively.
Hence,m1 andm2 are the numbers corresponding to the points (x1i, x2j) and (y1k, y2l),
respectively.
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The vector v is then defined by its components

v(m1)n = v(tn, x1i, x2j), ∀i = 1, · · · , n1,∀j = 1, · · · , n2.

It follows from Appendix A that the discrete problem can be written in the vector
form as follows:

∆xv(tn, x1i, x2j) = Av(m1)n,

where A ∈Mn1×n2 (R) is the block tridiagonal matrix defined as

A =



B

∆x2
1

− I

∆x2
2

I

∆x2
2

0 0

I

∆x2
2

B

∆x2
1

− 2I

∆x2
2

I

∆x2
2

0 0
I

∆x2
2

B

∆x2
1

− 2I

∆x2
2

I

∆x2
2

0 0
I

∆x2
2

B

∆x2
1

− I

∆x2
2


,

where 0 is a n1 × n1 null matrix and I denotes the n1 × n1 identity matrix, and

B =



−1 1 0 0

1 −2
0

0

−2 1
0 0 1 −1


∈Mn1

(R) .

The matrix A rewrite as

A =



B

∆x2
1

+
I

∆x2
2

I

∆x2
2

0 0

I

∆x2
2

B

∆x2
1

I

∆x2
2

0 0
I

∆x2
2

B

∆x2
1

I

∆x2
2

0 0
2I

∆x2
2

B

∆x2
1

+
I

∆x2
2


− 2I

∆x2
2

.

Therefore, we deduce that for m2 fixed, we obtain a system of equations when m1

varies. Define
V nm2

=
[
v(m1)nm2

]m1=n1×n2

m1=1
,
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Rm2 = [ρ (xm1 , ym2)]
m1=n1×n2

m1=1 .

Then system (B) can be written as a semi-implicit numerical scheme
un+1
m2

= unm2
+ ∆t∆x1∆x2χ

∑
Wn
m2
−∆t γ unm2

,

V n+1
m2

= V nm2
+ ∆t εAV n+1

m2
−∆t α V nm2

+ ∆t γ diag (Rm2
)unm2

,

Wn+1
m2

= Wn
m2

+ ∆t α V nm2
−∆t χWn

m2
.

(B.1)

The complete problem with convection is more challenging to simulate. Nevertheless, it
is possible to use splitting methods in that case. We refer to Speth, Green, MacNamara,
and Strang [38] for more on this topic.
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