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1. INTRODUCTION

In this paper, we consider the problem of finding nontrivial periodic
solutions for a state dependent delay differential equation. The equation
under consideration was introduced in Arino et al. [2]. We also refer the
reader to Nussbaum [12, 13], Alt [1], Kuang and Smith [6, 7], and
Mallet-Paret and Nussbaum [10, 11], who consider different classes of
state dependent delay equations. The equation reads

{x* (t)=&f (x(t&{(t))),
{* (t)=h(x(t), {(t)),

(1)

where f : R � R and h: R_[{1 , {2] � R (with 0<{1<{2) are C1 maps. The
existence of nontrivial slowly oscillating periodic solutions was shown in
[2] by application of the ejective fixed point theorem. In [2], a slowly
oscillating solution means a solution whose distance between two con-
secutive zeros is not less than the maximum delay {2 . Here, we will con-
sider two types of slow oscillations: we will use the notation {&slow
oscillating solution (with {={1 or {2) to denote a solution whose distance
between two consecutive zeros is not less than { (for a more precise defini-
tion, see Definition 2.3). In [2], a Poincare� map is defined on a set of
initial values

X={(., {0) # Lip([&{2 , 0])_[{1 , {2] : . is non-decreasing on [&{2 , 0]
and .(%)=0, for some % # [&{2 , 0]= ,
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where {2 is the maximum delay. Conditions on f and h imply that the sub-
set [0]_[{1 , {2] is an invariant stable manifold for the Poincare� map.
Therefore the trivial solution of the equation is not ejective. Thus, the
authors introduce a cone of the type

K=[(., {0) # X : |{&{*|�K &.&�],

and by restricting the Poincare� operator to this cone, they were able to
prove the ejectivity of the trivial fixed point.

Here, we use another approach to apply this method. We first take the
initial values of the problem in the set

E0=[(., {0) # C1 ([&{2 , 0])_[{1 , {2] : .$(s)�0

\s # [&{0 , 0], .(&{0)=0, .$(0)=0].

As t&{(t) is increasing, the solution starting from such initial values will
only depend on the value of . on [&{0 , 0]. From this remark, we deduce
that the fixed point problem that we need to solve only concerns the part
of . on [&{0 , 0]. By identifying . restricted to [&{0 , 0] to a certain func-
tion � on [&1, 0], we then obtain a Poincare� operator defined on

E1=[(�, {0) # C1 ([&1, 0])_[{1 , {2] : �$(s)�0

\s # [&1, 0], �(&1)=0, �$(0)=0].

As in Arino et al. [2], the problem is the non ejectivity of the trivial fixed
point of the Poincare� operator. To overcome this difficulty, we apply a
semi-ejective fixed point theorem (see Theorem 1.1 in Magal and Arino
[9]) to the Poincare� operator, and we obtain the existence of a nontrivial
periodic solution of Eq. (1).

We now present the main result of this paper, for which we need to make
the following assumptions.

(H1) f (x) x>0, for all x{0.

(H2) h(x, {)� L
L+1 , for a certain L>0, for all (x, {) # R_[{1 , {2].

(H3) h(x, {1)>0, h(x, {2)<0, for all x # R.

(H4) [_m>0, _G�0, such that \(x, {) # R_[{1 , {2], �h
�{ (0, {)�&m

and | �h
�x (x, {)|�G.

(H5) _r>0, _$> 1
{1

, such that | f (x)|�$ |x|, if |x|<r
(H6) | f (x)|�M, | f $(x)|�M$, for all x # R.

(H7) ({2&{1) | f (x)|�|x|, for all x # R.

Looking at (H3) and (H4) we can see that the equation h(0, {)=0 has a
unique root, which we will denote {*. Then, it is clear that (0, {*) is an
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equilibrium solution of Eq. (1). The problem that we are interested in is
finding another periodic solution.

The main result of this paper will depend first on the previous assump-
tions and then on some relation between {1 , {2 , {*, and m. For example in
Arino et al. [2] one crucial assumption was {2<2{1 , which will be
weakened here to {2<2{*. One can note that these parameters are
associated to the map h. Two different sets of relationships will be con-
sidered each of them corresponding, to a specific class of functions h.

Let us denote by h� {1
=h� {1

(!0 , l0 , l1 , !1 , !2) the class of C1 maps
h: R_[{1 , {2] � R, satisfying assumptions (H2), (H3), (H4), where the
parameters {1={1 (h), {2={2 (h), {*={*(h), and m=m(h) may depend on
h and, moreover, satisfy the inequalities

{2+
!0

{ l0
1

�2{*�l1{1 . (2)

Here, !0>0, l0�0, l1>0 are fixed constants, and

m�!1{!2
1 (3)

where !1>0, 0�!2> &1 are fixed constants.
The other class denoted by h� m=h� m (!0 , l0 , l1 , !1 , !2 , !3 , !4) is obtained

by changing condition (3) to

!1 m!2�{1�!3 m!4, (4)

where !1>0, 0�!2> &1, !3>0, !4�0 are fixed constants.
The following theorem is the main result of this paper.

Theorem 1.1. Under assumptions (H1)�(H4) and (H6), let h� {1
(respec-

tively h� m) be a class of maps h defined as above. Then there exists {1*>0
(respectively, m*>0) such that for all h # h� {1

(respectively, h # h� m) if

{1 (h)>{1* (respectively, m>m*),

and

{*(h) f $(0)>
?
2

, f $(0) {1 (h)>1,

then Eq. (1) has a {1-slowly oscillating periodic solution (x, {) with
x{0, |x(t)|�{2 (h) M, {(t) # [{1 (h), {2 (h)], and the period is exactly the
total length of two consecutive maximal intervals where the solution is
positive and then negative. If, in addition, (H7) holds, then this periodic solu-
tion is {2-slowly oscillating.
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Remarks. One can note that if f $(0) {1 (h)>1, then the assumption
(H5) holds. Moreover, from assertion (2) we have {2<2{*.

We now present some examples of applications in both cases, i.e., when
h # h� {1

, and h # h� m . We start with the following system of equations where
{* is understood as a parameter taken large enough.

{x* (t)=&f (x(t&{(t))),
{* (t)=h0 (x(t), {(t)&{*).

(5)

Here the parameter is {*, and as a direct application of Theorem 1.1, with
h # h� {1

, one has the following corollary, which extends Theorem 1.1 in
Arino et al. [2].

Corollary 1.2. Consider Eq. (5), in which f : R � R, h0 : R_[a, b]
� R, a<0<b, and f and h0 are C1-functions and satisfy the following assump-
tions: for some M, M$, G�0, L, m>0,

(i) f (x) x>0, \x{0.

(ii) | f (x)|�M, | f $(x)|�M$, f $(0)>0.

(iii) h0 (x, {)� L
L+1 , (x, {) # R_[a, b].

(iv)
�h0

�{ (0, {)�&m, |
�h0

�x (x, {)|�G.

(v) h0 (x, a)>0, h0 (x, b)<0, h0 (0, 0)=0.

Then, there exists {~ *>0, such that for each {*�{~ * and each pair (a, b)
verifying the above conditions, Eq. (5) has a {1-slowly oscillating nontrivial
periodic solution (x, {), with x{0 and the delay {(t) # [{*+a, {*+b]. If in
addition f satisfies

(vi) (b&a) | f (x)|<|x|, for x{0,

then this periodic solution is {2-slowly oscillating.

Proof. Corollary 1.2 is a consequence of Theorem 1.1, with {1 (h)=
{*+a, {*(h)={*, {2 (h)={*+b, and m(h)=m, and the class h� {1

, with
l0=0, l1=3, !0>0, !1>0, !2=0. K

Let us now consider another parametric example which corresponds to
the case when h # h� m .

{x* (t)=&f (x(t&{(t))),
{* (t)=h0 (x(t), :({(t)&{*)).

(6)

Here the parameter is :. As a direct application of Theorem 1.1, with
h # h� m , we obtain the following corollary. The latter situation is in fact a
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small perturbation of the constant delay case as will be explained together
with several comparison remarks, in the conclusion of the paper.

Corollary 1.3. Consider Eq. (6), in which f : R � R, h0 : R_[a, b] � R,
a<0<b, and f and h0 are C 1-functions and satisfy the assumptions: for
some M, M$, G�0, L, m>0,

(i) f (x) x>0, \x{0.

(ii) | f (x)|�M, | f $(x)|�M$, f $(0)>0.

(iii) h0 (x, {)� L
L+1 , (x, {) # R_[a, b].

(iv)
�h0

�{ (0, {)�&m, |
�h0

�x (x, {)|�G.

(v) h0 (x, a)>0, h0 (x, b)<0, h0 (0, 0)=0.

Then, there exists :~ >0, such that for each :�:~ and each pair (a, b) verify-
ing the above conditions, and f $(0) {*> ?

2 , Eq. (6) has a nontrivial {1-slowly
oscillating periodic solution, (x, {), with x{0 and the delay {(t) #
[{*+ a

: , {*+ b
:]. If, in addition, f satisfies

(vi) (b&a) | f (x)|<|x|, for x{0,

then this periodic solution is {2 -slowly oscillating.

Proof. Corollary 1.3 is a consequence of Theorem 1.1, when {1 (h)=
{*+ a

: , {*(h)={*, {2 (h)={*+ b
: , and m(h)=:m, and of the class h� m , with

l0=0, l1=2, !0>0, !1<{*, !2=0, !3>0, and !4>0. K

2. EXISTENCE OF OSCILLATING SOLUTIONS

In the following, we consider solutions starting from initial values in the
set

E=[(., {0) # Lip([&{2 , 0])_[{1 , {2] : .(&{0)=0

and . is non-decreasing on [&{0 , 0]].

This special class of initial values was already introduced in the paper by
Kuang and Smith [7].

The following result is proved in Arino et al. [2, Proposition 2.3].

Proposition 2.1. Under assumptions (H2) and (H3), for each (., {0) # E
there exists a unique solution (x(t), {(t)) of Eq. (1) such that x(s)=.(s) on
[&{2 , 0] and {(0)={0 . Moreover, {(t) # [{1 , {2], for all t�0, and t&{(t)
is increasing on R+ .
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Let (., {0) # E. We then denote t0=&{0 , t0*=0, and

t1=t1 (., {0)=inf[{>0 : x(., {0)(t)=0].

The following lemma is an adaptation of proposition 5.18 in Arino et al.
[2].

Lemma 2.2. Assume (H1), (H2), (H3), and (H5).

Let (., {0) be given in E. Then, if .(0)�R (with R�r) one has

t1 (., {0)�T(R),

where T(R)=3{2+(R&r)�Cr, R and Cr, R=inf[ f (s) : s # [r, R]]>0.

Definition 2.3. Let x be a function defined on some interval [t0 , +�[.
We will say that x is {-slowly ({={1 or {2) oscillating if the set of zeros of x
is a disjoint union of closed intervals, the distance between the left end of two
successive intervals being not less than {, and x is alternatively >0 and <0
in between such intervals.

By adapting the proof of theorem 3.9 in Arino et al. [2], we obtain the
following theorem.

Theorem 8. Assume (H1), (H2), (H3) and (H5). Let = # [&1, 1] and let
(x(t), {(t)) be the solution of Eq. (1), with (=., {0) # E as its initial value.
Then we can define two sequences [ti*] i�0 and [t i] i�0 , such that for all
i�0,

t0=&{0 , t0*=0, t i*�t i+1 , ti=ti*&{(ti*),

and =(&1) i+1 x(t) is non increasing on [t i*, t*i+1], with x(t i)=0 and
x(ti*){0 if .(0){0.

So (=(&1) i+1 xti*
, {(ti*)) # E, for i�0, and x(t) is {1-slowly oscillating.

Moreover, if in addition we assume (H7) and .(0){0, then x is {2-slowly
oscillating.

3. COMPLETE CONTINUITY OF THE POINCARE� OPERATOR

From now on, we will use a different approach compared with Arino et
al. [2]. To construct the Poincare� operator we will first prove the following
lemma, which says that (x(., {0)(t), {(., {0)(t)) depends only on the value
of . on [&{0 , 0].
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Lemma 3.1. Under assumptions (H2) and (H3), let (., {0) # E, then for
all t�0,

(x(., {0)(t), {(., {0)(t))=(x(.+, {0)(t), {(.+, {0)(t))

where .+ (s)=.(s), \s # [&{0 , 0], and .+ (s)=0, \s # [&{2 , &{0].

Proof. As t&{(t) is increasing, one has

&{0�t&{(t)�0, \t # [0, {1],

So, for all t # [0, {1],

x(., {0)(t)=.+ (0)+|
t

0
& f (.+ (s&{(., {0)(s))) ds,

and

{(., {0)(t)={0+|
t

0
h(x(s), {(., {0)(s)).

Since, by construction, (x(.+, {0)(t), {(.+, {0)(t)) is the unique solution
satisfying the previous integral equation, one has

(x(., {0)(t), {(., {0)(t))=(x(.+, {0)(t), {(.+, {0)(t)), \t # [0, {1].

The proof for all t�0 follows by induction on k�1 by considering the
intervals of the form [0, k{1]. K

From Lemma 3.1, in order to have existence of a nontrivial periodic
solution of Eq. (1), it is sufficient that there exist p0�1, and (., {0) # E,
.(0)>0, such that

{0={(., {0)(t*2p0
)

and (7)

.(s)=xt*2p0
(., {0)(s), for all s # [&{0 , 0].

The fixed point problem (7) can be rewritten in the following manner.
Consider the spaces

X0=C 1 ([&{2 , 0])_[{1 , {2], and X1=C1 ([&1, 0])_[{1 , {2].

In the following, X0 and X1 will be supposed to be respectively endowed
with the metrics induced by the norms

&(., {0)&0=&.&�, [&{2 , 0]+&.* &�, [&{2 , 0]+|{0 |, for all (., {0) # X0
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and

&(�, {0)&1=&�&�, [&1, 0]+&�4 &�, [&1, 0]+|{0 | , for all (�, {0) # X1 .

We then denote

E0=[(., {0) # X0 : .$(s)�0 \s # [&{0 , 0], .(&{0)=0, and .$(0)=0],

E &
0 =[(., {0) # X0 : (&., {0) # E0],

and

E1=[(�, {0) # X1 : �$(s)�0 \s # [&1, 0], �(&1)=0, and �$(0)=0],

E &
1 =[(�, {0) # X1 : (&�, {0) # E1]

For each j�1, denote by Pj , the Poincare� operator defined on E0 by

Pj (., {0)=(xt*j
(., {0), {(., {0)(t j*)),

and

P+
j (., {0)=((&1) j xt*j

(., {0), {(., {0)(t j*)).

We remark that, by construction if (., {0) # E0 then x(., {0)(t) is con-
tinuously differentiable on [&{2 , +�[, since .$&(0)=0, and 0=
f (.(&{0))=x$+(., {0)(0). From this remark and by using Theorem 2.4,
we deduce that

P+
p0

: E0 � E0 , for p0�1.

So, in particular, P2p0
: E0 � E0 , for p0�1.

Lemma 3.1 shows that we can restrict our attention to pairs (., {0) with
. defined on [&{0 , 0]. It will be convenient to represent the function . in
terms of functions defined on a fixed interval. We will use functions defined
on [&1, 0]. On the other hand, E0 is not convex (because of the condition
.(&{0)=0), so in order to apply fixed point techniques, we really need to
identify E0 with E1 . To do this, we introduce Q: X1 � X0 the operator
defined by

Q(�, {0)=(., {0),

where

.(s)=� \ s
{0+ , for all s # [&{0 , 0],
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and

.(s)=.$+(&{0)(s&{0)=
�$+ (&1)

{0

(s&{0), for all s # [&{2 , &{0],

and we introduce L: X0 � X1 , the operator defined by

L(., {0)=(�, {0),

where

�(s)=.({0s) for all s # [&1, 0].

We then have

Q(E1)/E0 , Q(E &
1 )/E &

0 , L(E0)/E1 , and L(E &
0 )/E &

1 .

With the previous notations the fixed point problem (7) can be rewritten
as follows: Find (�, {0) # E1 , with �(0)>0 satisfying

(�, {0)=F2p0
(�, {0) (8)

for a certain p0�1, where F2p0
: E1 � E1 , p0�1, and F2p0+1 : E1 � E &

1 ,
p0�1, are defined by

Fp0
=L b Pp0

b Q.

Lemma 3.2. Under assumptions (H2) and (H3), one has

Fp0
=F p0

1 ,

where F m
1 is defined by F m+1

1 =F1 b F m
1 , for m�1, and F 1

1=F1 .

Proof. This result follows directly from Lemma 3.1 and from the
definitions of Fp0

, L, and Q. K

From the previous lemma, we deduce that it is sufficient to study the
compactness of F2 to deduce the compactness of F2p0

.

Proposition 3.3. Under assumptions (H1) through (H6), F2 (E1) is
relatively compact in E1 .

Proof. Let (�� , {~ 0) # E1 . Denote by (x(t), {(t)) the solution of Eq. (1)
with initial value (., {~ 0)=L(�� , {~ 0). Consider now (�, {0)=F2 (�� , {~ 0). One
has

{0={(., {~ 0)(t2*), and �(s)=x(., {~ 0)({0s+t2*) on [&1, 0].
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So

�4 (s)={0x* ({0s+t2*)=&{0 f (x({0s+t2*&{({0s+t2*))),

and since {0�{2 ,

&�4 &�, [&1, 0]�{2M.

Since �(&1)=0, one has

�(0)=&{0 |
0

&1
f (x({0s+t2*&{({0s+t2*))) ds,

so

&�&�, [&1, 0]�{2M.

On the other hand,

�4 (s)=&{0 f (x({0 s+t2*&{({0s+t2*)))

and {0s+t2* # [t2 , t2*], \s # [&1, 0].
Moreover, we have by definition

t2*&{(t2*)=t2 , and t1*&{(t1*)=t1 ,

and as t2>t1* , we deduce from the monotonicity of t&{(t) that

t2�t&{(t)�t1 , \t # [t2 , t2*].

So, we deduce that

x* (t&{(t))=&f (x(t&{(t)&{(t&{(t)))), \t # [t2 , t2*].

So, we deduce that �4 is differentiable, and

�� (s)={2
0 f $(x(s1)) f (s1&{(s1))(1&h(x({0s+t2*), {({0 s+t2*)))

where s1={0 s+t2*&{({0s+t2*).
Finally, we have

&�� &�, [&1, 0]�({2)2 MM$ sup
| y|�{2M, { # [{1, {2]

|1&h( y, {)|,

and the conclusion on compactness follows by standard Ascoli�Arzela
arguments. K
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The remainder of this section is devoted to proving the continuity of F2p0
.

Lemma 3.4. The operators Q: X1 � X0 , L: X0 � X1 are continuous.

Proof. We will not detail this proof. K

Lemma 3.5. Assume (H1) through (H6) hold. Let (�� , {~ 0) # E1 and denote
(.~ , {~ 0)=Q(�� , {~ 0). Assume that the function (., {0) � t1*(.~ , {~ 0) is continuous
at (.~ , {~ 0) in E0 . Then F1 is continuous at (�� , {~ 0).

Proof. This result is a direct consequence of the continuous dependence
of the system on its initial values. K

The following proposition corresponds to proposition 4.12 in Arino et al.
[2].

Proposition 3.6. Assume (H1) through (H6) hold. Then, the operator F2

is continuous at each (�� , {~ 0) # E1 such that �� (0)>0.

Proof. By using Lemma 3.5 and the continuous dependence of the solu-
tions with respect to its initial values, one can adapt the proof of Proposi-
tion 4.12 in Arino et al. [2] and the result follows. K

The only problem for the continuity of F2p0
is for the second component

of F2p0
when (�, {0) � (0, {~ 0) with {~ 0 {{*. This problem comes from the

fact that we do not know if lim(�, {0) � (0, {~ 0) t*2p0
(., {0) exists when {~ 0 {{*.

To encompass the difficulty, we will transform the map F2p0
.

Denote for p0�1, F 1
2p0

: E1 � 11 , and F 2
2p0

: E1 � [{1 , {2], the operators
defined for (�, {0) # E1 by

F 1
2p0

(�, {0)(s)=xt*2p0
(., {0) (., {0)({(., {0)(t*2p0

(., {0)) s), on [&1, 0]

and

F 2
2p0

(�, {0)={(., {0)(t*2p0
(., {0))

where (., {0)=Q(�, {0).
Then by definition of F2p0

, one has

F2p0
(�, {0)=(F 1

2p0
(�, {0), F 2

2p0
(�, {0)), \(�, {0) # E1 .

Lemma 3.7. Assume (H1) through (H6) hold. Then, one has

lim
(�, {0) � (0, {~ 0)E1

&F 1
2p0

(�, {0)&1, [&1, 0]=0
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and

lim
(�, {0) � (0, {~ 0)E1

F 2
2p0

(�, {0)={*.

Proof. Let [(�n, {n
0)]n�0 be a sequence in E1 which converges to

(0, {~ 0) # E1 as n � +�. Then as Q is continuous, if we denote
(.n, {n

0)=Q(�n, {n
0), we have

F 1
2p0

(�n, {n
0)=xt*2(., {0) (.n, {n

0)({(.n, {n
0)(t*2p0

(.n, {n
0)) s)| [&1, 0] ,

and as Q is continuous we also have &.n&1, [&{2 , 0] � 0.
From Lemma 2.2, one has for a certain R>r,

t*2p0
(., {0)�2p0 ({2+T(R))=t*,

and

&F 1
2p0

(�n, {n
0)&�, [&1, 0]�&xt*2 (., {0) (.n, {n

0)&�, [0, t*] .

So from the continuous dependence of the solutions with respect to its
initial values, one has

lim
(�, {0) � (0, {~ 0)

&xt*
2
(., {0) (.n, {n

0)&�, [0, t*]=0.

Moreover,

&xt*
2
(., {0) (.n, {n

0)({(.n, {n
0)(t*2p0

(.n, {n
0)) } )$&�, [&1, 0]

�{2M$ &xt*2 (., {0) (.n, {n
0)&�, [&{2, t*] ,

so one has

lim
n � +�

&xt*2 (., {0) (.n, {n
0)&�, [&{2 , t*]=0,

from which we deduce that

lim
n � +�

&F 1
2p0

(�n, {n
0)&1, [&1, 0]=0.

For the second limit, we note first that {(0, {*)(t)={*, for all t�0, so

|{*&{(.n, {n
0)(t*2p0

(.n, {n
0))|�|{(0, {*)(t*2p0

(.n, {n
0))&{(.n, {n

0)(t*2p0
(.n, {n

0))|

�&{(0, {*)&{(.n, {n
0)&�, [0, t*] ,
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and, once again using continuous dependence with respect to the initial
values on bounded time interval, one deduces that

lim
n � +�

{(.n, {n
0)(t*2p0

(.n, {n
0))={*. K

Denote for =>0, F� 2p0 , = : E1 � E1 the map defined by

F� 2p0 , = (�, {0)=(F 1
2p0

(�, {0), F� 2
2p0 , =(�, {0)), \(�, {0) # E1 ,

where

F� 2
2p0 , =(�, {0)={, \ &�&1

= |{0&{*|+ F 2
2p0

(�, {0)+\1&,\ &�&1

= |{0&{*|++ {*, if {0 {{*,

{*, if {0={*,

and ,: R+ � R+ is a continuous map satisfying

,(s)=1, \s�1, ,(s) # [1, 0], \s # [1, 0], ,(0)=0.

The following theorem summarizes the previous results.

Theorem 3.8. Assume (H1) through (H6) hold. For each =>0, the
operator F� 2p0 , = : E1 � E1 is completely continuous and F� 2p0 , = (E1) is relatively
compact.

4. EXISTENCE OF NONTRIVIAL PERIODIC SOLUTIONS

In this section we use a new technique to prove the existence of non-
trivial periodic solutions. Compared to [2], the authors consider the map
denoted here by F2 : E1 � E1 . Their idea was to apply the Browder ejective
fixed point theorem [3]. Let us recall that

E1=K1_[{1 , {2],

with

K1=[� # C1 ([&1, 0]) : �$(s)�0, \s # [&1, 0], �(&1)=0, and �$(0)=0].

The difficulty that one has to encompass to apply the Browder ejective
fixed point theorem is the lack of ejectivity of 0 in the set [0]_[{1 , {2].
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In [2], in order to encompass this difficulty, the authors first proved the
existence of a subcone K:=[(�, {0) # K1_[{1 , {2] : &�&1�: |{0&{*|],
such that F2 (K:)/K: for a certain :>0. Then, by showing that 0 is an
ejective fixed point of F2 |K:

, the authors were able to prove the existence
of a nontrivial fixed point of F2 .

Here, we use a different approach. We first remark that F� 2p0 , = has the
following properties:

(i) F� 2p0 , = (0)=0

(ii) F� 2p0 , = ([0]_[{1 , {2])/[0]_[{1 , {2].

Moreover, we will prove that

(iii) for each M>0, there exists C>0 and 0�#<1, such that for all
(�, {0) # K1 _[{1 , {2], with &�&1+|{0 |�M and &�&1�C |{0&{*|,

|F� 2
2p0 , =(�, {0)&{*|�# |{0&{*|,

where F� 2
2p0 , =(�, {0) denotes the second component of F� 2p0 , = (�, {0).

One can see that under (ii) and (iii), the trivial fixed point 0 can not be
ejective, because for all (�, {0) # [0]_[{1 , {2],

lim
m � +�

F� m
2p0 , =(�, {0)={*.

In order to circumvent this problem, we will use a notion weaker than
ejectivity, namely semi-ejectivity as defined in [8]. Let C be a subset of a
Banach space (X, &.&), f : C � C be a map, A/C, and let x0 # �C A be a
fixed point of f. We will say that x0 is a semi-ejective fixed point of f on
C"A if there exists a neighborhood V of x0 in C such that for all y # V"A,
there exists an integer m # N, with f m ( y) # C"V. One can see that the
notion of semi-ejectivity coincides with the notion of ejectivity when
A=[x0].

For the following theorem we refer to Magal and Arino [9, Theorem
1.1].

Theorem 4.1. Let (X1 , &.&1) and (X2 , &.&2) be two Banach spaces, K1 a
cone of (X1 , &.&1), and C2 a bounded closed convex subset of X2 containing
0X2

. Let C=B� K1
(0, r1)_C2 , and let f : C � C be a compact map satisfying

f (0)=0.
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Assume in addition that:

(i) 0 is a semi-ejective fixed point of f on C"A, with A=[0X1
]_C2 .

(ii) There exists r0>0, '>0, and 0<#<1, such that for all
(x1 , x2) # C, with &x~ 1 &1+&x~ 2&2�r0 , and &x~ 1 &1�' &x~ 2 &2 it holds that

& f2 ((x1 , x2))&2�# &x2&2 ,

where f2 ((x1 , x2)) is the second component of f ((x1 , x2)).

(iii) f (C"A)/C"A.

Then f has a fixed point x� # C"[0].

We will verify that assumptions (i)�(iii) of Theorem 4.1 are satisfied for
F� 2p0 , =0

for a certain =0>0 small enough with U=0
=[(�, {0) # E1 :

&�&1<=0 |{0&{*|]. So, in view of Theorem 9, F� 2p0 , =0
will have a non trivial

fixed point. To conclude, we will have to verify that this nontrivial fixed
point (�� , {� 0) is also a fixed point for F2p0

. But under assumption (ii) of
Theorem 4.1, and since F2p0

coincides with F� 2p0 , =0
on E1"U=0

(with
U=0

=[(�, {0) # E1 : &�&1<=0 |{0&{*|]), this latter fact will be automati-
cally verified.

We now prove that Theorem 4.1 applies to F� 2p0 , =0
for p0=1, with X1=

C1 ([&1, 0]), X2=R, and C2=[{1 , {2].

Lemma 4.2. Assume (H1) through (H6) hold. Then, for each integer
p0�1 and each =>0,

F� 2p0 , = (E1)/B� 11
(0, r1)_[{1 , {2],

with r1={2[M+M$].

Proof. By construction of F2 one has

F2 (E1)/B� 11
(0, r1)_[{1 , {2],

with r1={2[M+M$] (see the proof of Proposition 3.3).
Moreover, from Lemma 3.2 we have F2p0

=F p0
2 , so

F2p0
(E1)/B� 11

(0, r1)_[{1 , {2]. K

In the following we denote

C=B� 11
(0, {2[M+M$])_[{1 , {2], and A=[0]_[{1 , {2].

The following lemma shows that Assumption (iii) of Theorem 4.1 is
satisfied.
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Lemma 4.3. Assume (H1) through (H6) hold. Then for each integer
p0�1 and each =>0,

F� 2p0 , = (C"A)/C"A.

Proof. Let (�, {0) # C with �(0)>0, and denote (., {0)=Q(�, {0).
Then .(0)=�(0)>0, and from Theorem 2.4 we have x(., {0)(t*2p0

(., {0))
>0. K

In the following, we will assume that

f $(0) {2>1,

so this will imply that

M${2>1.

Moreover, we will always take (., {0) # E0 such that 0<.(0)<r1 . We
remark that the constant r in Assumption (H5) can be chosen in order to
satisfy

r<r1={2[M+M$],

and from Lemma 2.2, we will have for all integers i�0

ti+1 (., {0)&t i*(., {0)�T(r1).

Lemma 4.4. Assume (H1) through (H6) hold and f $(0) {2>1. Then for
each (., {0) # E0 , for all t # [0, t*2p0

(., {0)],

|x(., {0)(t)|�({2 M$)2p0 |.(0)|

and

|{(., {0)(t)&{*|�e&mt |{0&{*|+
1

mG
({2M$)2p0 |.(0)|.

Proof. Let (., {0) # E0 with 0<.(0)<r1 . We have by construction

x(., {0)(t1*(., {0))=|
t1*

t1

& f (x(s&{(s))) ds,

and since t&{(t) is increasing we have

|x(., {0)(t1*(., {0))|�(t1*&t1) M$ |x(0)|�{2M$ |.(0)|.
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Using the same argument, we also have

|x(., {0)(t*i+1(., {0))|�{2M$ |x(., {0)(ti*(., {0))|,

and so

|x(., {0)(ti*)|�({2M$)2p0 |.(0)|, \i=1, ..., 2p0 ,

and the first inequality is proved.
Under assumption (H4), we have for almost every t # [0, t*2p0

(., {0)],

d
dt

|{(., {0)(t)&{*|�&m |{(., {0)(t)&{*|+G |x(., {0)(t)|,

so

d
dt

|{(., {0)(t)&{*|�&m |{(., {0)(t)&{*|+G({2M$)2p0 |.(0)|

and

|{(., {0)(t)&{*|�e&mt |{0&{*|+|
t

0
e&m(t&s)G({2 M$)2p0 |.(0)| ds

|{(., {0)(t)&{*|�e&mt |{0&{*|+
1

mG
({2M$)2p0 |.(0)|. K

The following proposition shows that Assumption (ii) of Theorem 4.1 is
satisfied and that all the nontrivial fixed points of F� 2p0 , =0

are also nontrivial
fixed points of F2p0

when =0>0 is suitably chosen.

Proposition 4.5. Assume (H1) through (H6) hold. Then for each integer
p0�1, there exist =0==0 ( p0)>0 and 0�#=#( p0)<1 such that for all
(�, {0) # C,

&�&1, [&1, 0]�=0 |{0&{*| O |F� 2
2p0 , =0

(�, {0)&{*|�# |{0&{*|,

where F� 2
2p0 , =0

(�, {0) is the second component of F� 2p0 , =0
(�, {0).

Proof. Since

F� 2
2p0 , =0

(�, {0)=:F 2
2p0

(�, {0)+(1&:) {*

for a certain : # [0, 1], it is sufficient to prove the result by replacing F� 2
2p0 , =0

by F 2
2p0

.
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But

F 2
2p0

(�, {0)={(., {0)(t*2p0
(., {0))

where (., {0)=Q(�, {0).
Now, from Lemma 4.4, we have

|{(., {0)(t*2p0
)&{*|�e&mt*2p0 |{0&{*|+

1
mG

({2M$)2p0 |.(0)|,

and as t*2p0
�2p0{1>0, we have

|{(., {0)(t*2p0
)&{*|�e&m2p0{1 |{0&{*|+

1
mG

({2M$)2p0 |.(0)|.

Now taking =0>0 small enough to have

#=e&m2p0{1+
1

mG
({2 M$)2p0 =0<1

and assuming that |.(0)|�=0 |{0&{*|, we obtain

|{(., {0)(t*2p0
)&{*|�# |{0&{*|. K

From now on, we are interested in proving the semi-ejectivity of the tri-
vial fixed point (0, {*). To prove this, we first need to obtain some estima-
tions locally around (0, {*).

In the following lemma we use classes of maps h� {1
and h� m , as defined in

Section 1.

Lemma 4.6. Assume (H1) through (H6) hold, f $(0) {2>1, and 2{*>{2 .
Then for each p0�1 there exists =1==1 ( p0)>0, and C1>0 such that;

\(., {0) # E0 , |{0&{*|+|.(0)|�=1

O |.(0)|�C 2p0
1 |x(., {0)(t*2p0

(., {0))|.

Moreover, there exists {1*={1*(!0 , l0 , l1 , !1 , !2)>0 such that for all h # h� {1

{1>{1* O e&m{1C1<1,

and there exists m*=m*(!0 , l0 , l1 , !1 , !2 , !3 , !4)>0 such that for all h # h� m

m>m* O e&m{1C1<1.

Remark 1. In the previous lemma the delay is characterized by the
class h� {1

, or h� m , of map h, and the map h can be any function in this class.
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By contrast, the map f remains the same and so all the parameters corre-
sponding to this map remain constant.

Remark 2. In comparison with the paper by Arino et al. [2] (see
Proposition 5.19), semi-ejectivity allows us to replace the condition
{2<2{1 by the weaker condition {2�2{*. This is possible, because we will
only need the previous estimations for small values of |{0&{*|+|.(0)|.

Proof of Lemma 4.6. Let us start by noting that since f $(0)>0, and
under assumption (H1), there exists $$>0 such that

| f (x)|�$$ |x|, \x # [&r1 , r1], (9)

where r1={2[M+M$]. Using Lemma 4.4, one can see that to prove
Lemma 4.6 it is sufficient to show that there exists =1 # ]0, r1] and C1>0
such that for all (., {0) # E0 ,

|{0&{*|+|.(0)|�=1 O |.(0)|�C1 |x(., {0)(t1*(., {0))|.

In fact, it is clear that from lemma 9, given an integer p0�1, we may
choose =2>0 small enough to have

|{0&{*|+|.(0)|�=2

O |x(., {0)(t)|+|{(., {0)(t)&{*|�=1 , \t # [0, t*2p0
(., {0)],

and Lemma 4.6 follows by induction. Let =1 # ]0, r1] be fixed such that

_1+
1

mG
({2 M$)4& =1�', with 0<'<

[2{*&{2]
4

.

Let (., {0) # E0 , with |{0&{*|+|.(0)|�=1 . Denote by (x(t), {(t)) the
solution of Eq. (1) with initial condition (., {0). Then from Lemma 4.4, we
have for all t # [0, t4*],

|x(t)|�({2M$)4 |.(0)|�',

and (10)

|{(t)&{*|�e&mt |{0&{*|+
1

mG
({2 M$)4 |.(0)|�'.

Moreover since 0�.(0)�r1 , we deduce that |x(t)|�r1 , \t�0, because
|x(t)|�sup i # N |x(ti*)|, \t�0, and {2M�r1 .
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We either have x(t)�x(0)�2, for &{1 �2�t�0, or .(&{1 �2)�x(0)�2.
In the latter case, 0�x(t)�x(0)�2, for &{0�t�&{1 �2, so for all
t # [0, {1 �2] and for all M"�M$

x* (t)=&f (x(t&{(t)))� &M"
x(0)

2
,

and by integration we obtain

x(t)�x(0)&
M"
2

x(0) t, for t # _0,
{1

2 & and all M"�M$,

and

x(t)�
x(0)

2
, for t # _0,

1
M"& .

Putting the two cases together, we have x(t)�
x(0)

2 in some interval of
length

l=min \ 1
M"

,
{1

2 + ,

contained in [&{1 �2, {1 �2]. We denote by [t (0)
1 , t (0)

2 ] such an interval. We
denote by ai , i=1, 2, the solutions of the equation t (0)

i =a i&{(ai). We have

a2&a1�
t (0)

2 &t (0)
1

L+1
=

l
L+1

; a1�
{1

2
,

where L is the constant introduced in assumption (H2).
For t # [a1 , a2], we have t&{(t) # [t (0)

1 , t (0)
2 ], so from ( 9) we have

|x* (t)|=| f (x(t&{(t)))|�$$ |x(t&{(t))|�$$
x(0)

2
, for t # [a1 , a2].

By integration of the above inequality, we deduce that there exists an interval
of length l�4(L+1) on which

|x(t)|�
l

4(L+1)
$$

x(0)
2

.

Set

/=
1

4(L+1)
.
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With the above notations, we have |x(t)|�/l$$
x(0)

2 for each t in an interval
of length /l to the right of {1�2.

Let [t (1)
1 , t (1)

2 ] be such an interval. Again, we denote by a i , i=1, 2, the
solutions of the equation t (1)

i =a i&{(a i), and we have a1�a2 and a1�
t(1)

1 +{1�3{1 �2. Moreover, a2&a1�/l�(L+1), and for each t # [a1 , a2]
we have t&{(t) # [t (1)

1 , t (1)
2 ], so from (9) we have

|x* (t)|=| f (x(t&{(t)))|�$$ |x(t&{(t))|

�($$)2 /l
x(0)

2
, for t # [a1 , a2].

By the same arguments, we deduce that there exists an interval [t (2)
1 , t (2)

2 ]
/[a1 , a2], t (2)

1 �3{1 �2, such that |x(t)|�/3l2$$2 (x(0)�2), for t # [t (2)
1 , t (2)

2 ],
with t (2)

2 &t (2)
1 =/2l.

By induction, we construct two sequences [t ( j )
i ] j # N , i=1, 2, such that

|x(t)|�+j
x(0)

2
, for all t # [t ( j )

1 , t ( j )
2 ],

with

+j+1=$$l/ j+1+j , +0=1 (11)

t ( j )
2 &t ( j )

1 =/ jl, t ( j )
1 �{1 ( 1

2+( j&1)) (12)

and

t ( j&1)
1 �t ( j )

1 &{(t ( j )
1 )�t ( j )

2 &{(t ( j )
2 )�t ( j&1)

2 . (13)

From (12) there exists j0 # N such that

t( j0&1)
1 �t1*�t ( j0)

1 .

So, either (t ( j0&1)
1 >t1or t ( j0)

1 <t2) or (t ( j0&1)
1 �t1 and t ( j0)

1 �t2). Let us first
examine the second situation, that is, t ( j0&1)

1 �t1 and t ( j0)
1 �t2 . We will

show that this situation cannot occur. Assume that this situation occurs,
we then have from (13)

t( j0&1)
1 �t1�t1+{1�t1*�t2�t ( j0)

1 �t ( j0&1)
2 +{(t ( j0)

1 )�t ( j0&1)
1 +l+{2 . (14)

Assuming that t2*�t ( j0)
1 , we would have from ( 10)

t ( j0)
1 &t ( j0&1)

1 �t2*&t2+t1*&t1�{(t2*)+{(t1*)�2{*&2'.
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On the other hand, from (14) we know that

t ( j0)
1 &t ( j0&1)

1 �{2+l={2+min \ 1
M"

,
{1

2 + ,

with M"�M$. We obtain

2{*&{2�2'+min \ 1
M"

,
{1

2 + ,

and since '<[2{*&{2]�4, we obtain a contradiction by taking

1
M"

=
[2{*&{2]

4q0

,

with q0�1 large enough.
So, we have t2*�t ( j0)

1 �t2 . In this case x* (t ( j0)
1 )�0, so f (x(t ( j0)

1 &{(t ( j0)
1 )))

�0, and we deduce that

x(t ( j0)
1 &{(t ( j0)

1 ))�0.

From this inequality, we deduce that t ( j0)
1 &{(t ( j0)

1 )�t2 , and as t ( j0)
1 �t1* we

have t ( j0)
1 &{(t ( j0)

1 )�t1 . So

t ( j0&1)
1 �t1�t ( j0&1)

2 ,

which yields a contradiction since x(t1)=0 while, by construction |x(t)| is
>0 at each point of [t ( j0&1)

1 , t ( j0&1)
2 ]. We conclude that the second situa-

tion can not occur.
In the first situation, we have t ( j0)

1 �t2 or t ( j0&1)
1 �t1 . Together with

t( j0&1)
1 �t1*�t ( j0)

1 , we have either

|x(t1*)|�|x(t ( j0&1)
1 )|�+j0&1

x(0)
2

,

or

|x(t1*)|�|x(t ( j0)
1 )|�+j0&1

x(0)
2

.

To conclude, it remains to remark that from Lemma 2.2 we have
t1*�{2+T(r1), and from (12), there exists an integer jmax # N such that
0� j0� jmax . Finally, by setting

C &1
1 = 1

2 min
0� j� jmax : t1

(j&1)
�t*1

+ j� min
0� j� jmax

+ j>0
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we have

x(0)�C1 |x(t1*)|.

It remains to prove the second part of the lemma. Let h # h� {1
. By con-

struction we have

C &1
1 = 1

2 min
0� j� jmax : t1

(j&1)
�t*1

+ j ,

and for 0� j� jmax such that t ( j&1)
1 �t1* we have

+j=
1
2($$) j l j/ ( j+1)+ j+( j&1)+ } } } +1= 1

2 ($$) j l j/( j+2)�2

with

/=
1

4(L+1)
,

l=min \ 1
M"

,
{1

2 + .

We can take M">0 large enough to have l= 1
M" and l�1; we also can

assume that $$�1. From Equation (12), we have

{1 ( 1
2+( j&2))�t ( j&1)

1 �t1*�{2+T(r1),

and since we have supposed that l1{1>{2 , we have

j�
{2+T(r1)

{1

+3�l1+
T(r1)

{1

+3�4l1+
1
{1

r1&r
Cr, r1

=}1 ({1),

where Cr, R=inf[ f (s) : s # [r, R]]>0. So, we have

em{1C &1
1 �em{1

1
2

($$) j \min \ 1
M"

,
{1

2 ++
j

\ 1
4(L+1)+

( j+2)�2

.

So for {1>0 large enough, and since 1�M"=[2{*&{2]�4q0 �!0 �4q0{ l0
1 ,

and as we have supposed that m�!1 {!2
1 , with !1>0, and !2>&1, we

have

em{1C &1
1 �e!1{1

1+!2 1
2

($$)}1({1) \ !0

4q0{ l0
1+

}1({1)

\ 1
4(L+1)+

(}1({1)+2)�2

. (15)
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Now it is not difficult to see that the right side of the previous inequality
goes to infinity when {1 goes to infinity. So, there exists a certain {1*>0
such that

{1>{1* O em{1C &1
1 >1.

Finally, using Eq. (15), it is not difficult to see that there exists m*>0,
such that for all h # h� m ,

m>m* O e&m{1C1<1. K

Lemma 4.7. Assume (H1) through (H6) hold, f $(0) {2>1, h # h� {1
(respec-

tively, h # h� m), and assume that {1>{1* (respectively, m>m*).

Then, for each p0�1, there exist =1>0 and C2>0 such that for each =0>0
and each (�(0), { (0)

0 ) # E1 satisfying

�(0) (0)>0, and |{(n)
0 &{*|+|�(n) (0)|�=1 , \n # N

(where (�(n), { (n)
0 )=F� n

2p0 , =0
(�(0), { (0)

0 )), there exists n1�0 such that

|{ (n+1)
0 &{*|�|{(.(n), { (n)

0 )(t*2p0
(.(n), { (n)

0 ))&{*|

�C2 |.(n+1) (0)|, \n�n1 ,

with (.(n), { (n)
0 )=Q(�(n), { (n)

0 ).

Proof. From Lemma 4.6, there exists =1>0 and C1>0 such that for all
(., {0) # E,

|{0&{*|+|.(0)|�=1 O |.(0)|�C 2p0
1 |x(., {0)(t*2p0

(., {0))|. (16)

Let (�(0), { (0)
0 ) # E1 , satisfying for each n # N

�(0) (0)>0, and |{ (n)
0 &{*|+|�(n) (0)|�=1 ,

where (�(n), { (n)
0 )=F� n

2p0 , =0
(�(0), { (0)

0 ),

and denote for each n # N

(.(n), { (n)
0 )=Q(�(n), { (n)

0 ).

From Lemma 4.4 we have

|{(.(0), {(0)
0 )(t*2p0

)&{*|�e&mt*2 p0 |{ (0)
0 &{*|+

1
mG

({2 M$)2p0 |.(0) (0)|,
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and by construction we have t*2p0
�2p0{1 and

|{(.(0), { (0)
0 )(t*2p0

)&{*|�e&m2p0{1 |{(0)
0 &{*|+

1
mG

({2M$)2p0 |.(0) (0)|. (17)

Let u� >0 such that

_C 2p0
1 e&m2p0{1

1
u�

+C 2p0
1

1
m

G({2M$)2p0&=
1
u�

.

Solving for u� is possible, since we have assumed that {1>{1* (respectively
m>m*), and so C 2p0

1 e&m2p0{1<1.
Then as .(0) (0)=�(0) (0)>0, there exists 0<#0�u� such that

#0 |{0&{*|�|.(0)|, and using (16�18), we have

|{(.(0), { (0)
0 )(t*2p0

)&{*|

�_e&m2p0{1
1
#0

+
1
m

G({2M$)2p0& C 2p0
1 |x(., {0)(t*2p0

(., {0))| .

Moreover, by construction of F� 2p0 , =0
we have

{ (1)
0 =+{(.(0), { (0)

0 )(t*2p0
)+(1&+) {*

for a certain + # [0, 1] and

x(., {0)(t*2p0
(., {0))=�(1) (0).

We obtain

|{ (1)
0 &{*|�_e&m2p0{1

1
#0

+
1
m

G({2M$)2p0& C 2p0
1 |�(1) (0)|.

By induction, we obtain

|{ (n)
0 &{*|�

1
un

|� (n) (0)|.

where the sequence [un]n�0 is defined by

1
un+1

=_e&m2p0{1
1

un
+

1
m

G({2M$)2p0& C 2p0
1 , \n�0, with u0=#0 .
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The previous difference equation can be rewritten in the following manner:

un+1=
un

[%1+%2un]
, for all n�0, with u0=#0 , (18)

where %1=C2p0
1 e&m2p0{1, 0<%1<1, %2=C2p0

1
1
m G({2M$)2p0>0, and 0<#0�u� .

It is not difficult to see that since 0<%1<1, we have

lim
m � +�

un=u� .

So it is sufficient to take C2= u�
2 , and the result follows. K

The following lemma can be found in Hale [4].

Lemma 4.8. For each {*>0, such that {*f $(0)> ?
2 , the characteristic

equation associated to the linear equation

dx
dt

=&f $(0) x(t&{*) (19)

has roots with positive real part.

In the following, we will always assume that {*f $(0)> ?
2 , and from the

previous lemma the characteristic equation of (19) has two dominant roots,

*\=:\;,

with :>0, ;>0. We denote by U=vect[e:% cos(;%), e:% sin(;%)] the
corresponding eigenspace. Let us decompose C([&{*, 0])=U�V in the
usual manner, and let 6U be the usual projection on U. Let us denote

12=[. # C([&{*, 0]) : .(s)�0 on [&{*, 0] and . is non-decreasing].

The following lemma can be found in Hale [4].

Lemma 4.9. Assume that {*f $(0)> ?
2 . Then

inf
. # 12 , .(0)=1

|6U (.)|>0.

We denote

#1= inf
. # 12 , .(0)=1

|6U (.)| and #2= sup
. # C([&{*, 0]), &.&�=1

|6U (.)|.

The following result shows that (0, {*) is a semi-ejective fixed point of
F� 2p0 , =0

on C"[0]_[{1 , {2], and this completes the proof of Theorem 1.1.
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Proposition 4.10. Assume (H1) through (H6), f $(0) {2>1, and let
h # h� {1

(respectively h # h� m), and assume that {1>{1* (respectively m>m*).
Then for each ?0 # ]0, 1

C2
[, (0, {*) is a semi-ejective fixed of F� 2, =0

on
C"[0]_[{1 , {2].

Proof. Let h # h� {1
(respectively, h # h� m) and assume that {1>{1* (respec-

tively m>m*). Let =1>0, such that the conclusions of Lemmas 4.6 and 4.7
hold when p0=1, and when p0= p~ 0 with p~ 0�1 such that

#1

#2

e2:{1 p~ 0>1.

Assume that (0, {*) is not a semi-ejective fixed point of F� 2, =0
on C"[0]_

[{1 , {2]. Then for each = # ]0, =1], there exists (�(0), { (0)
0 ) # C, with &�(0)&1

+|{ (0)
0 &{*|�=, such that

d1 (F� n
2, =0

(�(0), { (0)
0 ), (0, {*))�=, \n # N. (20)

We set for each n # N

(�(n), {(n)
0 )=F� n

2, =0
(�(0), { (0)

0 ) and (.(n), {(n)
0 )=Q(�(n), { (n)

0 ).

Then from Lemma 4.6, there exists C1>0 such that

|.(n) (0)|�C 2
1 |.(n+1) (0)|, \n # N,

and from Lemma 4.7, there exists C2>0 and n1 # N such that

|{ (n)
0 &{*|�C2 |.(n) (0)|, \n�n1 .

In the following, we will assume that n1=0, and the problem is unchanged
because we can replace (�(0), { (0)

0 ) by (�(n1), { (n1)
0 ). Moreover, from Eq. (20),

we also have

|{ (n)
0 &{*|+|.(n) (0)|�=, \n # N. (21)

Moreover, since C1 , and C2 are fixed independently of =0>0, we can
choose =0 in ]0, 1

C2
[. In this case by definition of F� 2, =0

we have

|{ (n)
0 &{*|�C2 |.(n) (0)| O F� 2, =0

(�(n), { (n)
0 )=F2 (�(n), { (n)

0 ).

One can apply Lemma 3.2, and we deduce that for all p�1 and all n�0,

F� p
2, =0

(�(n), { (n)
0 )=F p

2(�
(n), { (n)

0 )=F2p (�(n), { (n)
0 ). (22)
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Denote for each n # N, m�1

x(n) (t)=x(.(n), { (n)
0 )(t), x (n)

+ (t)=x(. (n)
+ , { (n)

0 )(t), \t�&{2 ,

{(n) (t)={(.(n), { (n)
0 )(t), { (n)

+ (t)={(. (n)
+ , { (n)

0 )(t), \t�0,

and

t*2m, n=t*2m(.(n), { (n)
0 ).

From assertion (22), one has, for all n�0, m�0,

x (n)
+ (t*2m, n)=.(n+m) (0), (23)

where . (n)
+ is defined by

. (n)
+ (s)=0, on [&{2 , &{ (n)

0 ],

and

. (n)
+ (s)=.(n) (s), on [&{ (n)

0 , 0].

Then, from Lemma 3.1, we have

x(n) (t)=x (n)
+ (t), \t�&{ (n)

0 , and {(n) (t)={ (n)
+ (t), \t�0,

so

t*2, n=t2*(.(n), { (n)
0 )=t2*(. (n)

+ , { (n)
0 ), \n # N,

and

.(n+1) (0)=�(n+1) (0)=x (n)
+ (t*2, n), \n # N.

Moreover, \t�0,

dx (n)
+ (t)
dt

=&f (x (n)
+ (t&{ (n)

+ (t)))

dx (n)
+ (t)
dt

=&f $(0) x (n)
+ (t&{*)

+[ f $(0) x (n)
+ (t&{*)& f (x (n)

+ (t&{*))]

+[ f (x (n)
+ (t&{*))& f (x (n)

+ (t&{ (n)
+ (t)))].
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Then, by using Lemmas 4.4 and 4.6, one can prove that for all n�1 and
all 0�t�t*2p~ 0 , n ,

dx (n)
+

dt
(t)=&f $(0) x (n)

+ (t&{*)+o(.(n) (0)). (24)

From now on, we denote xt=x | [t&{*, t] . Then, by projecting x (n)
+t onto U,

and denoting y(n) (t)=6U x (n)
+t , the above equation leads to an ordinary

differential equation with a forcing term (see Hale [4]), namely,

dy(n)

dt
(t)=AU y(n)+o(.(n) (0)) 6U (X0),

where X0 is the integral of the Dirac distribution $0 (see Hale [4]). Select
a basis of U. Then the vectors of U are represented by their components
on the basis and AU by a (2_2)-matrix. We can choose the basis in such
a way that

AU=_:
;

&;
:& .

Using the canonical scalar product on R2 and taking the scalar product of
the above equation with y(n) (t), we then arrive at

d
dt

| y(n) (t)|2=2( y(n) (t), y* (n) (t))

=2: | y(n) (t)|2+o(.(n) (0)) 2( y(n) (t), 6U (X0)).

But we have \t # [0, t*2p~ 0 , n],

( y(n) (t), 6U (X0))�C5 |y(n) (t)|

�C5 #2 &xn
+t&�, [&{2 , t*

2 p~ 0 , n]�C5 #2 ({2M$)2p~ 0 |.(n) (0)|,

for a certain C5>0. So, \t # [0, t*2p~ 0 , n],

d
dt

| y(n) (t)|2=2: | y(n) (t)|2+o(.(n) (0)2).

Thus, by integrating, we obtain \t # [0, t*2p~ 0 , n],

| y(n) (t)|2�e2:t | y(n) (0)| 2&|o(.(n) (0)2)| |
t

0
e2:(t&s) ds,

�e2:t _ | y(n) (0)|2&
1

2:
|o(.(n) (0)2)|& .
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Now, as . (n)
+ # 12 , we may apply Lemma 4.9 and we have

| y(n) (0)|2�#2
1 |.(n) (0)| 2,

so

| y(n) (t*2p~ 0 , n)| 2�e2:2p~ 0{1 _#2
1&

1
2:

|o(1)|& |.(n) (0)| 2.

Let us remark that

y(n) (t*2p~ 0 , n)=6U (x (n)
+t*

2p~ 0 , n
)=6U (z (n)

1 )+6U (z(n)
2 ),

with

z (n)
1 (s)=x (n)

+t*
2 p~ 0 , n

(s), on [&{*, 0] & [&{ (n)
+ (t*2p~ 0 , n), 0],

z (n)
1 (s)=0, elsewhere,

and

z (n)
2 (s)=x (n)

+t*
2 p~ 0 , n

(s)&z (n)
1 (s), on [&{*, 0].

We have

z(n)
1 # 12 , and z (n)

1 (0)=x (n)
+ (t*2p~ 0 , n),

so

|6U (z (n)
1 )|�#2 |x (n)

+ (t*2p~ 0 , n)|�#2 |.(n+ p~ 0) (0)| .

For convenience, we recall the formula of the formal dual product: for
� # C([0, {*]), . # C([&{*, 0]), we have

(�, .)=�(0) .(0)& f $(0) |
0

&{*
�(!+{*) .(!) d!.

By construction, we have z (n)
2 (0)=0, and the support of z (n)

2 (0) is contained
in an interval of length less than or equal to |{*&{ (n)

+ (t*2p~ 0 , n)|, so from the
form of the formal dual product, we deduce that

|6U (z (n)
2 )|�#2 |{*&{ (n)

+ (t*2p~ 0 , n)| &x (n)
+t*

2p~ 0 , n
&�, [&{2 , {

+
(n)(t*

2 p~ 0 , n)] ,

and as above, by using Lemmas 4.4, 4.6, and 4.7, we have

|6U (z (n)
2 )|=|o(.(n) (0))|.
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So, finally we obtain

[#2
2 |.(n+ p~ 0) (0)|2+|o(.(n) (0))|]2�e2:2p~ 0 {1 _#1&

1
2:

|o(1)|& |.(n) (0)|2.

Let n0�1 be fixed. Since the sequence [.(n0+qp~ 0) (0)]q�0 is bounded, for
each 1<C�2 there exists an integer q0 # N such that

C.(n0+q0p~ 0) (0)�.(n0+(q0+1) p~ 0) (0),

so we obtain for all 1<C�2,

[#2
2 C+o(1)]2�e2:2p~ 0{1 _#2

1&
1

2:
|o(1)|& ,

and when = � 0, C � 1, we obtain a contradiction with

#1

#2

e2:p~ 0 {1>1. K

5. CONCLUSION

In this paper, we have extended the result by Arino et al. concerning the
existence of slowly oscillating periodic solutions, thus providing a signifi-
cant improvement with respect to the assumptions made in [2]. The
improvements are mainly due to the use of two different types of
arguments. First, we consider solutions starting from initial values in the
subset

K=[(., {0) # C([&{2 , 0], R)_[{1 , {2] : .(&{0)=0,

and . is increasing on [&{0 , 0]].

This special class of initial values was already introduced in the paper by
Kuang and Smith [7]. Here, this remark is useful because t&{(t) is
increasing, and this allows us to consider the Poincare� operator on a subset
bigger than the one introduced in Arino et al. [2]. In this framework, we
are able to relax two fundamental restrictions made in Arino et al. [2] as
follows: (1) Assumption (H7) is only optional here and, is only necessary
if we want to ensure that the periodic solutions (whose existence is
ascertained by Theorem 1.1) are slowly oscillating. (2) The condition
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({2&{1)(H({*)+1)<1 given in Arino et al. [2] to ensure that the projec-
tion onto the linear unstable manifold is nondegenerate is not needed here
(see proposition 6.27 in Arino et al. [2]).

Another improvement in this paper concerns the technique used in prov-
ing the existence of the nontrivial fixed point of the Poincare� operator.
Here the main problem is the lack of ejectivity of the trivial fixed point. In
order to encompass this problem, we employ the notion of semi-ejectivity
which extends the previous notion of ejectivity. Finally, by applying a semi-
ejective fixed point theorem proved in Magal and Arino [9] we have
obtained the existence of a nontrivial fixed point for the Poincare� operator.

The values {1*>0 and m*>0 of Theorem 1.1 are given by the formula
(15). So those constants are fully specified. On the other hand, if we intro-
duce a multiplicative factor *>1 before f in Eq. (1), then the results are
unchanged. This result has to be compared with the constant delay case,

x$(t)=&*f (x(t&{*)),

in which slowly oscillating periodic solutions are shown to exist for all
*>(?�2)(1�{*f $(0)). Here we reach the same result. Indeed the constraints
given in the conclusion of Theorem 1.1 are related to the state dependent
delay. Also, when b&a goes to zero the statement obtained in Corollary
1.3 approaches the corresponding constant delay result.

In this paper we concentrated on explaining a technique that can be used
to prove the existence of periodic solutions, the semi-ejective fixed point
theorem. We left untouched all other dynamical aspects associated with the
system.

With regard the stability of the trivial equilibrium solution (0, {*), one
may verify that when *={*f $(0))< ?

2 the linearized equation is stable, and
the same holds for the state dependent delay equation.

Let us now consider the super-critical case for the Hopf bifurcation of
the fixed delay equation. In this situation, when *={*f $(0)> ?

2 (close
enough to ?

2) the fixed delay equation

x$(t)=&f (x(t&{*))

and the state dependent delay equation both have slowly oscillating solu-
tions. The point *={*f $(0)= ?

2 is a Hopf bifurcation point for both equa-
tions. Moreover, for *={*f $(0)> ?

2 (close enough to ?
2) both equations

have the same characteristics and the bifurcations are on the same side. So
we can conclude that if the bifurcating solution of the constant delay equa-
tion is stable, it is the same for the state dependent delay equation (and the
converse). But since we do not know that the bifurcation branch is the one
defined by the periodic solutions of Theorem 1.1 we cannot reach a conclu-
sion on the stability of these periodic solutions.
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Numerically, we have dealt with an example which verifies the assump-
tions of Theorem 1.1,

x$(t)=&f (x(t&{(t)))

{$(t)=10f (x(t))&100({(t)&{*),

where f (x)=xe&|x| and 1.5�{*.
For numerical simulations, we have used the initial values

x(t)=&cos(t)+Tr, \t # [&{2 , 0],

{(0)={*,

where Tr is a parameter representing a shift of the origin.
When *={*f $(0)={*> ?

2 , we observe globally stable periodic oscillating
solutions (see Figs. 1 and 2 where {*=10 and Tr=&3, 0, or 3).

We finally observe (see Fig. 3) that when *={*f $(0)={* � ?
2 the

nontrivial periodic solution tends to zero. It is possible to see that the
periodic solutions found are on the bifurcation branch and that the branch
is super-critical. In both the constant delay case and the time dependent
delay case one observes numerically a Hopf bifucation (see Fig. 3 in which
1.5�{*�10 and Tr=0).

FIG. 1. First component of the solution.
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FIG. 2. Time-dependent delay.

FIG. 3. Hopf bifurcation graph, each vertical line representing the periodic orbit reached
asymptotically from an arbitrary initial value.
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