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Special Issue: The Future of BSE Assessments

Influence of Routine Slaughtering on the Evolution
of BSE: Example of British and French Slaughterings

Christine Jacob1∗ and Pierre Magal2

The aim of this article is to build a methodology allowing the study and the comparison of
the potential spread of BSE at the scale of countries under different routine slaughtering
conditions in order to evaluate the risk of nonextinction due to this slaughtering. We first
model the evolution in discrete time of the proportion of animals in the latent period and
that of infectives, assuming a very large branching population not necessarily constant in
size, two age classes, less than 1-year-old animals, and adult animals. We analytically derive a
bifurcation parameter ρ0 allowing us to predict either endemicity or extinction of the disease,
which has the meaning of an epidemiological reproductive rate. We show that the classical
reproductive number R0 cannot be used for prediction if the size of the population, when
healthy, does not remain stable throughout time. We illustrate the qualitative results by means
of simulations with either the British routine slaughtering probabilities or the French ones,
the other conditions being assumed identical in both countries. We show that the French
probabilities lead to a higher risk of spread of the disease than the British ones, this result
being mainly due to a smaller value of the routine slaughtering probability of the adult animals
in France than in Great Britain.

KEY WORDS: Basic reproductive number; BSE; endemicity; extinction; incubation; reproductive rate;
risk; slaughtering.

1. INTRODUCTION

It is well recognized that measures that aim to de-
crease the exposure level, or to remove the animals at
risk, may have an important influence on the spread
of BSE. Since the beginning of the BSE epidemic first
diagnosed in England in November 1986, though it
has been retrospectively recognized that a clinically
affected animal examined in 1985 was suffering from
BSE, successive measures were taken first in Great
Britain and then in every country where occurrence
of BSE seemed possible. But the importance of the
influence of the routine culling itself on the spread of
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the disease is unknown and the crucial question is: Are
there any routine slaughterings more risky than oth-
ers? Our main goal in this article is to build a method-
ology for being able to study this influence according
to different survival functions, assuming identical in-
fection parameters in the compared countries. The
method is illustrated by comparing this influence un-
der the British routine slaughtering and the French
one, the difference between the two countries’ condi-
tions consisting in culling the calves at a much larger
probability in France than in Great Britain and culling
the older animals at a smaller probability in France
than in Great Britain.

For this study, we assume that BSE is a SEIR
disease.

In Section 2, we model the evolution of the pro-
portion of animals in the state h ∈ {S, E, I}, when the
population is very large, by a model in discrete time
with two age classes, the calves (less than 1-year-old
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Fig. 1. Evolution of the health status of a healthy animal when it
catches the disease.

animals) and the adult animals. The time unit cho-
sen is 1 year for eliminating all seasonal effects due
to calving or other breeding practices. The transmis-
sion routes are either horizontal or vertical (from the
dam to its calf), and the transition probabilities are as-
sumed identical for all animals of the same age class
and, moreover, homogeneous in time, which means
that one type of breeding is considered and succes-
sive control measures throughout the time are not
taken into account. Two models are considered. The
first model assumes that all individual transitions are
Markovian, which means that the probability for an
animal to undergo at the next time the transition h
→ k with h ∈ {S, E, I} and k ∈ {S, E, I, R}, is in-
dependent of the time already past in h. According
to this assumption, the time for an animal to achieve
the transition follows a geometric probability distri-
bution (corresponding to an exponential distribution
in continuous time). Concerning the infection and the
slaughtering, it is shown to be an acceptable assump-
tion. But it seems a priori much less realistic concern-
ing the incubation period law, which is generally con-
sidered as a unimodal law. Consequently, we also de-
rive a model assuming that the incubation time follows
a dirac distribution at T (all animals becoming infec-
tious, achieve their latent period in exactly T years).
This simple model is used for validating the quali-
tative prediction given in the Markovian setting by
comparison to that given by this model.

Analytical results are given in Section 3. They are
first given in the Markovian frame. This frame leads to
some analytical results on the behavior of the model
that could be more difficult or impossible to get in
a more general semi-Markovian frame allowing any
type of distribution for the transition times. We first
derive a bifurcation parameter ρ0 (thus allowing to
predict the qualitative behavior of the disease), which
is defined as an initial reproductive rate in the particu-
lar direction i1 = i0, where in is the proportion of infec-
tives at time n. We compare it to the classical repro-
ductive number R0 (expected number of secondary
cases produced by a primary case in a “virgin” pop-
ulation(12)) and show that R0 is equivalent to ρ0 and

therefore may be used for prediction if and only if the
population when healthy remains stable throughout
time.

Moreover, since the models are nonlinear, the ex-
tinction predicted by ρ0 (or equivalently by R0 when
the population when healthy remains stable through-
out time) is local, that is, the disease dies out for ρ0

< 0 only if the current (and unknown) proportion of
infected animals is small enough, which is never guar-
anteed since the animals in the incubation stage are
not observed and may be much more numerous than
the clinical cases (see the simulations). Consequently,
we also give conditions based on the current repro-
ductive rate that lead to the extinction of the disease
starting from any level of infectivity (global stability
of the disease-free state).

We supplement these qualitative results by simu-
lations (Section 4) in order to compare the influence
of routine slaughtering in Great Britain with that in
France, all other factors remaining identical in both
countries. For simulating the model we must be able
to estimate the unknown parameters of the model
from data. Dynamical parameters are easily estimable
from the observed survival curves but the probability
PE,I

a of the transition E → I is not directly observable.
Therefore, we first define the mean intrinsic latent
time TRc of the censored Markovian transition E → I
defined in such a way that E → R is forbidden. Indeed,
TRc is, by construction, independent of the survival
function, and therefore depends only on the disease
at the opposite of the observed mean incubation pe-
riod T in a given country, which depends strongly on
the slaughtering ages in this country. We show that the
probability to achieve the censored transition is equal
to T−1

Rc , implying that PE,I
a is function of TRc . But TRc is

unobservable. So for calculating TRc from the observ-
able mean incubation period T and in addition for val-
idating the Markovian assumption with respect to the
semi-Markovian one, we prove in Subsection 6.4 that,
for any given value of T, there exists a unique value
of TRc independent of the transmission probabilities
and such that the qualitative asymptotic behavior (en-
demicity/extinction) of the disease in the Markovian
setting is the same as in the semi-Markovian one when
the incubation period distribution is a dirac law at T.
Moreover, TRc is a function of T and of the routine
dynamical parameters, which are all easily estimable.
The simulations are done under either the French sur-
vival curve based on routine slaughtering or under the
British one. To avoid confounding effects due to other
factors, we assume that the other factors (TRc , infec-
tion parameters, stability of the population size) are
identical in both countries, and we assume that the
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control measures do not change with time. The value
of TRc is calculated from T, which itself is roughly
estimated from the British epidemic used as a refer-
ence data set since it is the most informative. Simu-
lations are done with the probability 0.1 for a calf to
be infected by the vertical route, the mean incubation
time T = 5, and under different levels of the hori-
zontal transmission in order to get different types of
behavior.

We also study the influence of the slaughtering
of each calf whose mother is infectious and show
that this control slaughtering has a negligible influ-
ence on the disease, leading to the extinction of the
disease only when the value of ρ0, under the rou-
tine slaughtering, is already closed to the bifurcation
threshold 0.

Some details of the model elaboration and of
the analytical results are given in the Appendix
and all the proofs may be found in References 1
and 2.

2. MATERIALS AND METHODS

2.1. Hypotheses

The following hypotheses are assumed for elabo-
rating the models.

� H1: We assume two age classes for the slaugh-
tering probabilities, the infection probabilities,
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Fig. 2. Survival probabilities of cattle in
Great Britain and in France.

and the transition probability from E to I.
This leads to two subpopulations, the calves
at most 1 year old, and the other animals,
called “adults.” Concerning slaughtering, this
assumption is consistent with the survival func-
tion {Sa} when it may be assumed exponential
for a ≥ 1 since in this case the probability for an
animal to survive from age a to age a + 1, de-
fined by 1 − PS,R

a = Sa+1 S−1
a , is constant for all

a ≥ 1. The approximation of the survival func-
tion from a = 1 by an exponential function is
a reasonable assumption considering the ob-
served survival curves in Great Britain and in
France (Fig. 2). Concerning the infection, the
two age classes assumption is consistent with
previous studies on ages at risk. In Reference
3, British dairy cattle were estimated at risk in
the first 6 months of life, adult cattle were at
relatively low risk of infection, and between
6 and 24 months of age, risk profiles reflected
feeding patterns of proprietary concentrates in
each of the autumn- and spring-born cohorts.
In France, the peak risk of bovine infection
was estimated between 6 and 12 months of
age.(4) Now concerning the probability PE,I

a of
the transition E → I for an animal infected
at age a, it is easy to show that the probabil-
ity PE,I

a (1 − PE,R
a )−1 of the censored transition

E → I, which, assumes that slaughtering an
animal in the state E is forbidden, is equal to
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T−1
Rc , where TRc is the mean time of this cen-

sored transition (see Section A.4). Therefore,
TRc is the mean intrinsic incubation time in-
dependent of the slaughtering. Moreover, we
assume that TRc is independent of the age a ≥
1 of infection leading to PE,I

a constant for all
a ≥ 1. We denote b the calves class and a the
adult class.

� H2: Two general routes of transmission are
considered: a vertical (maternal) route with
probability q̄ from an infectious dam to its calf,
the source of which, in utero or at birth or
both, does not need to be known, since these
two types of vertical transmission are not sep-
arately identifiable in the model,(1) and a hor-
izontal transmission route that cumulates all
the possible sources of such route. Direct in-
gestion of the infectious BSE agent via meat
and bone meal (MBM) is commonly regarded
as the main route of infection for cattle. Un-
til 1988 in Great Britain and 1990 in France,
MBM was incorporated to the ruminant food.
Afterward, until 1996, cross-contamination of
this food by contaminated food for other farm
animals was possible. Infection due to the in-
gestion of disseminated pathogenic agents in
the environment has also been envisaged. In
Reference 5, another plausible route of in-
fection is proposed, namely, the ingestion of
MBM by mother animals who subsequently
pass on the infectious agent in their colostrum
and thus infect their offspring. According to
the author, this theory could explain why, al-
though infection is thought to occur at very
early stages in life, many BSE animals had not
received feeds containing MBM when calves.
This route is considered here as a horizontal
one if the dam is not yet infectious when infect-
ing its calf, and otherwise as a vertical route.
We assume that the probability for a suscep-
tible adult to be infected during the year n
+ 1, when it survives during this year, is the
same for all animals, depends on the past in-
fection only through the proportion in of infec-
tives at time n, and depends on the time only
through the value taken by in. We denote it
ā(in). These hypotheses mean that the expo-
sure of a susceptible animal to contaminated
material that dates of more than one year is
negligible, and only one type of breeding (clas-
sically the dairy ones) is considered (in Refer-
ence 6, the odds of a dead cow being a BSE
case among all dead cattle was found 3.2 times

higher for dairy breeds compared to beef suck-
ler breeds, which confirmed British findings).
The different sources of the horizontal trans-
mission route do not need to be specified. The
function ā(·) is assumed to be continuous with
at least a first derivative in a neighborhood
of 0, and increasing with ā(0) = 0. The quan-
tity ā(1) represents the susceptibility/exposure
parameter (probability for a S adult of being
infected during a year) when the remaining
population is assumed totally infectious at the
previous year. The same hypotheses are as-
sumed for the probability b̄· for a calf to be
infected via a horizontal route. A simple ex-
ample of such functions is ā(i) = 1 − ai , b̄(i) =
1 − bi , a, b ∈ [0, 1]. The exponential law can be
obtained, for example, under the assumption
of Reed-Frost type (Section A.1). The expo-
nential function leads to the highest risks since
infection may occur even for very small val-
ues, of in. But other forms could be chosen,
especially for ā(·), such as sigmoid functions
allowing threshold of infection since the theo-
retical results are valid for a very large class of
functions.(1,2) An example of a simple increas-
ing sigmoid function on [0, 1] satisfying ā(0) =
0 is ā(i) = (1 − ai )l , i ∈ [0, 1], a ∈ [0, 1], l ≥
2.

� H3: Let h ∈ {S, E, I}, k ∈ {S, E, I, R}. Denote
Ph,k

a (i) the probability for an adult to undergo
the transition h → k and Ph,k

b (i) the probabil-
ity for a calf with dam in state h to be k at
the end of the first year of its life, when the
proportion of infectives is i. All calves are as-
sumed to be susceptible at birth since the trans-
mission before birth by an infectious dam and
that after birth are not separately identifiable
in the model. Therefore, Ph,k

b (i) = PS,k
b,mh(i),

where PS,k
b,mh(i) is the probability for a S calf

the mother of which is h to undergo the tran-
sition S → k during its first year of life. The
adult animals, whether they are susceptible or
in incubation, are assumed to have the same
strictly positive probability PS,R

a = PE,R
a in-

dependent of i to be slaughtered, and in the
same way, the calves the dam of which are ei-
ther susceptible or in incubation are assumed
to have the same probability PS,R

b,mS = PS,R
b,mE

independent of i to be slaughtered during the
first year. We assume, moreover, that the con-
trol slaughtering probability is higher than the
routine slaughtering: PI,R

a ≥ PS,R
a > 0, PS,R

b,mI ≥
PS,R

b,mS ≥ 0.
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� H4: Importations of animals are not taken into
account; the influence of other cattle diseases
are not considered either.

2.2. Models (See Section A.2)

First assume Markovian individual transitions.
Their probability to be achieved during the year n +
1 given the proportion in of infectives at the previous
year are the following:

� For the adults:

S
PS,E

a (in) = ā(in)
(
1 − PS,R

a

)
————————————— >

E
PE,I

a = T−1
Rc

(
1 − PE,R

a

)
————————— > I

PI,R
a———- > R

E
PE,R

a——————————— > R

S
PS,R

a————————————————- > R
� For the calves with dam in the state h ∈ {S, E}:

S
Ph,E

b (in) = PS,E
b,mh(in) = b̄(in)

(
1 − PS,R

b,mh

)
—————————————————- > E

Ph,R
b = PS,R

b,mh———————- > R
� For the calves with dam in the state I:

S
PI,E

b (in) = PS,E
b,mI (in) = (1 − qb(in))(1 − PS,R

b,mI )
————————————————– > E,

PI,R
b = PS,R

b,mI———————- > R

where q = 1 − q̄, b(·) = 1 − b̄(·).

The elaboration of the model is explained in the
Appendix (see also References 1, 2, 9). Denote en

(resp. in) the probability for an animal in a very large
branching population to be in the state E (resp. I) at
time n. Assuming (e0, i0) �= (0, 1) with e0 + i0 < 1, the
dynamical system on the probabilities sequence {en,
in}n is:

(en+1, in+1) = F(en, in) = (F1(en, in), F2(en, in)),

where

en+1 = F1(en, in) = [
M(in)]−1[(1 − (en + in))g(in)

+ en
[
1 − PE,R

a − PE,I
a + m̃b̄(in)

(
1 − PS,R

b,mE

)]
+ in

[
m̃(1 − qb(in))

(
1 − PS,R

b,mI

)]]
in+1 = F2(en, in) = [

M(in)]−1
[
en PE,I

a + in
(
1 − PI,R

a

)]

with the notations

g(in) = ā(in)
(
1 − PS,R

a

) + m̃b̄(in)
(
1 − PS,R

b,mS

)
(1)

M(in) = lim
N0→∞

Nn+1

Nn
= 1 + m̃ − γS − in(γI − γS)

γh = Ph,R
a + m̃PS,R

b,mh, h ∈ {S, I}, (2)

where m̃ is the mean number of calves per year and
per cow. In the particular case of M(0) = 1 (stable
population size when healthy), we get:

m̃ = PS,R
a

1 − PS,R
b,mS

.

Now assume the following semi-Markovian setting:
the time to achieve the latent period (transition E →
I) follows a dirac distribution δT , which means that
an infected animal becoming infectious achieves its
latent period in exactly T time units. The other tran-
sitions are assumed to have the same probabilities
as previously. The model is, therefore, for n ≥ 0 and
(�e0, i0) �= (�0, 1) with i0 + ∑

j e j
0 < 1,

(�en+1, in+1) = G(�en, in)

= (G1(�en, in), . . . , GT(�en, in), GT+1(�en, in))

with

e1
n+1 = G1(�en, in) = [

M(in)]−1[(1 − (en + in))g(in)

+ en
[
1 − PE,R

a − P̃E,I
a + m̃b̄(in)

(
1 − PS,R

b,mE

)]
+ in

[
m̃(1 − qb(in))

(
1 − PS,R

b,mI

)]]
e j

n+1 = G j (�en, in) = [
M(in)]−1[e j−1

n P̃E,I
a

]
, j = 2, T

in+1 = GT+1(�en, in) = [M(in)]−1

× [eT
n P̃E,I

a + in
(
1 − PI,R

a

)]
,

where P̃E,I
a = (1 − PE,R

a ), en = ∑T
j=1 e j

n.

3. ANALYTICAL RESULTS

3.1. Bifurcation Parameters and Reproductive
Parameters (See Section A.3)

Assume first the Markovian model (all the
times of transition, including E → I, have geometric
distributions).

In the theory of dynamical systems, the asymp-
totic behavior of the model (persistence vs. extinc-
tion) is given by the bifurcation parameter λ, defined
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as the largest eigenvalue of the system linearized at 0.
We get:

λ = [2M(0)]−1
[
PE,E

a + 1 − PI,R
a

+
√(

PE,E
a − (

1 − PI,R
a

))2 + 4CCPE,I
a

]
, (3)

where

CC
def.= M(0)

∂ F1

∂i
(0, 0) = g′(0) + m̃q̄

(
1 − PS,R

b,mI

)
,

g′(0) = ā′(0)
(
1 − PS,R

a

) + m̃b̄′(0)
(
1 − PS,R

b,mS

)
represents, for CC, the total infection capacity when
the disease starts (mean number of newly infected an-
imals produced by an infective per time unit), and for
g′(0) (first derivative of g(·) at 0), the infection capac-
ity by the horizontal route when the disease starts. We
see from Equation (3) that λ has no obvious epidemi-
ological meaning. Then according to the classical the-
ory of dynamical systems, when λ > 1, the disease-free
equilibrium (0, 0) is unstable which means the persis-
tence of the disease, while when λ < 1, it is asymptoti-
cally locally stable, which means the extinction as the
time tends to infinity, starting from a neighborhood
of (0, 0). Here, extinction and persistence concern the
behavior of the proportions {en, in} with respect to
the total size of the population.

In the theory of epidemiological models, the usual
quantity used for prediction is the basic reproductive
ratio R0, defined as the expected number of secondary
cases produced by a primary case in a “virgin” pop-
ulation.(12) But this quantity is shown to behave as
a bifurcation parameter only in some simple mod-
els expressed in terms of successive generations of
infectives, and no proof exists in more general con-
texts, including overlapping generations of infectives,
nonstable population sizes, or a nonnegligible incu-
bation period. In particular, the link between λ and
R0 is generally not analyzed. Consequently, in order
to get a quantity that is a bifurcation parameter with
an epidemiological meaning, we analytically derived
in References 1 and 2 the following reproductive rate
ρ0:

ρ0 = lim
i0→0,i1=i0

(e1 − e0)i−1
0 , (4)

which allows the study of the fixed points (e1, i1) =
(e0, i0) of the Markovian dynamical system modeling
the spread of the disease. We get:

ρ0 = [M(0)]−1ρ̃0, ρ̃0 = CC − SC, (5)

where
SC = [

PI,R
a − PS,R

a + m̃
(
1 − PS,R

b,mS

)]
× [

1 + m̃
(
1 − PS,R

b,mE

)[
PE,I

a

]−1]
= [

PI,R
a − PS,R

a + m̃
(
1 − PS,R

b,mS

)]
×

[
1 + m̃

(
1 − PS,R

b,mE

)
TRc

1 − PE,R
a

]
(6)

represents some capacity for renewing the susceptible
population in spite of the disease and is increasing
with PI,R

a and TRc . We get (Section A.3):

sign(ρ0) = sign(λ − 1),

which means that ρ0 is equivalent to λ for predicting
the spread of the disease.

Compare now the reproductive number R0 and
ρ0. First we have:

R0 = PE,I
a

PI,R
a

(
PE,I

a + PE,R
a

)CC,

which implies (Section A.3):

sign(R0 − 1) = sign(ρ0)

⇐⇒ lim
e0+i0=0,N0→∞

Nn+1 N−1
n = 1, (7)

which means that in the case of a stable population
size, R0 may be used for predicting the evolution of the
disease leading to the local asymptotic stability of the
healthy state (0, 0) when R0 <1. Therefore, the disease
will die out if the total number of infected animals
(including those in incubation) is small enough. The
restriction of Equation (7) is due to the fact that the
model concerns proportions instead of numbers.

But when M(0) �= 1, then R0 is generally not a
bifurcation parameter. For example, assume M(0) >

1 (increasing population when healthy). Then C2ρ0 <

R0 − 1, which implies that the extinction predicted by
R0 when R0 < 1 is valid because in this case ρ0 < 0.
But the persistence predicted by R0 when R0 > 1 may
be false since we may have at the same time ρ0 < 0.
Conversely, assume M(0) < 1 (decreasing population
size), then R0 − 1 < C2ρ0. Consequently, we may have
at the same time ρ0 > 0, indicating the persistence
of the disease, and R0 < 1, which may be dangerous
if the predicted extinction according to this value of
R0 leads to remove the control regulations while the
disease persists.

In the semi-Markovian setting, which assumes
that the incubation time distribution is a dirac law at
T, since the model with intermediate states {Ej}j is of
the Markovian type, the usual bifurcation parameter



Influence of Routine Slaughtering 1157

is calculated in the same way as previously. In the par-
ticular case PI,R

a = 1, the largest eigenvalue of the
system linearized at 0 has an analytical form (which
does not exist if PI,R

a �= 1):

[λ(δT)]T+1 = CC
(
1 − PE,R

a

)T
M(0)−(T+1).

This implies that the following quantity ρ̃0(δT) is also
a bifurcation parameter under PI,R

a = 1,

ρ̃0(δT)
def.= (

[λ(δT)]T+1 − 1
) M(0)T+1(

1 − PE,R
a

)T

= CC − M(0)T+1(
1 − PE,R

a
)T . (8)

Consequently,

ρ̃0(δT) = ρ̃0 + �2; �2 = SC − M(0)T+1(
1 − PE,R

a
)T . (9)

Notice that if we assumed PI,R
a �= 1 or another in-

cubation law such as a gamma distribution, then in
general there would no more exist any explicit ana-
lytical expression for the bifurcation parameter in the
semi-Markovian setting.

Next the calculus of the reproductive ratio R0(δT)
in this semi-Markovian frame, done in the same way
as in the Markovian one, leads to:

R0(δT) =
(
1 − PE,R

a

)T

PI,R
a

CC. (10)

Therefore, under PI,R
a = 1 and according to Equations

(8) and (10), we have (Section A.3):

sign(R0(δT) − 1)

= sign(ρ̃0(δT)) ⇐⇒ lim
e0+i0=0,N0→∞

Nn+1 N−1
n = 1.

According to Equation (9), the reproductive
rates ρ̃0, ρ̃0(δT) calculated in the Markovian set-
ting or the semi-Markovian one are generally not
equivalent. But �2 being independent of the infec-
tion probabilities, we may determine TRc by �2 =
0, which leads to the same qualitative behavior in
the two models, whatever the infection probabil-
ities. We get TRc = [(M(0))T(1 − PE,R

a )−T − 1](1 −
PE,R

a )[m̃(1 − PS,R
b,mE)]−1 (see Section A.4).

3.2. Asymptotic Behavior of the Disease
(See Section A.5)

In a linear model such as (en, in) = (en−1, in−1)M,
if the largest eigenvalue λ of M satisfies λ < 1, then

for any value of e0 + i0, limn(en, un) = (0, 0) since
(en, in) = (e0, i0)Mn, which implies (en, in)u = (e0,
i0)Mn−1Mu = (e0, i0)Mn−1λu = · · · = (e0, i0)λnu,
where u = (u1, u2)t is the right eigenvector of M as-
sociated to λ. But this property is no more checked
in a nonlinear model, and for λ < 1, where λ is the
largest eigenvalue of the system linearized at (0, 0),
we get only the local stability of the healthy state (0,
0), which means that the disease dies out only when
starting from a sufficiently low level of the current in-
fection. Since this level is unknown and, moreover, the
animals in incubation are nonobserved, the extinction
of the disease is predicted in a sure way if the healthy
state is globally asymptotically stable,(10) that is, the
extinction of the disease occurs whatever the initial
level of infection. But this property is generally diffi-
cult to obtain analytically in nonlinear models. In this
section, we give some sufficient conditions leading to
this property, which are derived from the properties
of the current reproductive rate.

From now on let us assume PI,R
a = 1, and denote

ρ̃0 instead of ρ̃0(δT) since we assumed their equality
(�2 = 0). Let us recall that ρ̃0 is given by Equation
(5), g(in) is given by Equation (1). Let us denote D
= γ I − γ S, i M,0 = PE,I

a D−1, and let us define some
simplified functions of the reproductive rate:

r̃1(i) = (g(i) − i D)(1 − i) − m̃b(i)iq
(
1 − PS,R

b,mI

)
(11)

r̃2(i) = g(i) − i D (12)

ρ̃1 = lim
i→0

r̃1(i)i−1 = g′(0) − D − m̃q
(
1 − PS,R

b,mI

)
(13)

ρ̃2 = lim
i→0

r̃2(i)i−1 = g′(0) − D. (14)

We have ρ̃2 ≥ ρ̃1 ≥ ρ̃0 with equality only in a closed
population (which is not the case in the BSE setting
since the spread of the disease takes a much longer
time than the birth frequency).

PROPOSITION 1: Assume g(·) = 0 (no transmission of
the horizontal type). Then the extinction is guaranteed
in both models starting from any level of the epidemic
(global asymptotic stability of (0,0)) and the sequence
{en + in}n of the total proportion of infected animals
at each time, is decreasing to 0.

This result shows that the only vertical transmission
always leads to the extinction of the epidemic.

Let f ′′ (i) and f ′′′ (i) denote the respective second
and third derivatives at i of any function f (i).
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PROPOSITION 2: Assume g(·) �= 0 (there exists a trans-
mission of the horizontal type). Then in both models

1. if ρ̃0 > 0, the disease is endemic ((0,0) is unsta-
ble implying that the extinction is not possible);

2. if ρ̃0 < 0, the disease dies out when start-
ing from a very (unknown) low level of the
epidemic ((0, 0) is (locally) asymptotically
stable);

3. if ρ̃1 < 0 with r̃ ′′′
1 (·) ≥ 0, or if ρ̃2 < 0 with either

g′′(·) ≤ 0 or g′′′(·) ≥ 0, then the disease dies out
when starting from any level of the epidemic
((0,0) is globally asymptotically stable) and
{en + in}n is decreasing to 0).

Conditions g′′(·) ≤ 0, g′′′(·) ≥ 0, and r̃
′′′
1 (·) ≥ 0 are sat-

isfied when ā(i) = 1 − ai and b̄(i) = 1 − bi , for any
values of all parameters, or when b̄(i) = 1 − bi with
ā(·) modeled by the sigmoid function (1 − c ∗ ai)l, c ∈
(0, 1), a ∈ (0, 1), l ≥ 2 depending on the values of b
and of the other parameters.

Fig. 3. For a = b = 0.0001, the disease
persists both in Great Britain and in
France, with a higher level in France than
in Great Britain.

The second item of Proposition 2 is valid only
when e0 + i0 is small enough. But since the propor-
tion e0 of animals in incubation is unobservable and,
moreover, much larger than i0, this result is not suf-
ficient for ensuring the future extinction of the dis-
ease based on the only observation of a low level of
the infectives. The third item of Proposition 2 and
the following proposition give sufficient conditions
ensuring this extinction starting from any value of
(e0, i0).

Let us define r(i) = −a(i)(1 − iTRc ) + (1 −
i)(1 − i i−1

M,0). Then r(·) has the same sign as the
current reproductive rate under ā(·) = b̄(·).

PROPOSITION 3: Assume the Markovian model. As-
sume ā(·) = b̄(·) (identical exposure/susceptibility for
the calves and the adults) with either r′′′ (i) > 0
or r′′(i)< 0, for all i ∈]0, iM,0[. Then, for PS,R

b,mI � 1,

1. if ρ̃0 < 0, the disease dies out when starting
from any level of the epidemic ((0,0) is glob-
ally asymptotically stable);
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2. if ρ̃0 > 0, the disease is endemic with an asymp-
totic stationary law for any value of e0 + i0
provided that e0 + i0 �= 0 (there exists a unique
equilibrium point and it is globally asymptoti-
cally stable from any (e0, i0) �= (0, 0)).

The condition r′′′(i) > 0 is satisfied at least for b̄(i) =
ā(i) = 1 − ai , for any values of the parameters in-
volved in r′′′ (·).

4. SIMULATIONS

Consider simulations under either the French
routine slaughtering conditions or the British ones, all
other conditions, ā(·), b̄(·), q̄, TRc , M(0), being identi-
cal in both countries. Let in addition the following
assumptions:

� We assume PI,R
a = 1 since the duration of the

clinical state is at most several months and that
of the infectious incubation period is of order
6 months.

Fig. 4. For a = 0.0001, b = 1 (the calves
cannot be infected via a horizontal
route), the disease dies out in Great
Britain (first two lines of graphs) while it
persists in France (third line). The control
slaughtering PS,R

b,mI = 1 of the calves with
infectious mothers has not a significant
effect (right-hand graphs) with respect to
the routine slaughtering of these calves
(left-hand graphs).

� We assume either PS,R
b,mI = PS,R

b,mS (routine
slaughtering for all calves) or PS,R

b,mI = 1
(slaughtering of the calf the mother of which
is infectious). Notice that this implies PE,I

a < D
i.e., iM,0 < 1.

� Denoting Sa′ the probability for an appar-
ently healthy animal to survive at age A ≥
a′, the probability 1 − PS,R

b,mS of surviving 1
year more for a calf the mother of which is
infectious is equal to S1/S0, and the proba-
bility 1 − PS,R

a′ of surviving 1 year more for
an adult aged a′ is similarly Sa′+1/Sa′ . Con-
sequently, the probability 1 − PS,R

a of survi-
ving 1 year more for an adult is estimated

by the expectation EA(SA/SA−1)
def.= ∑

a′≥2 ×
(Sa′/Sa′−1)(Sa′ − Sa′+1)][

∑
a′≥2(Sa′ − Sa′+1)]−1

(equal to Sa′/Sa′−1, for all a′ ≥ 1 if {Sa′ }a′≥1 is
exponential). We use estimates of the survival
probabilities {Sa} produced in Reference 4,
which leads to PS,R

a = 0.3127, PS,R
b,mS = 0.03 in
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Great Britain, and PS,R
a = 0.2505, PS,R

b,mS = 0.49
in France.

� We set the mean number m̃ of calves per dam
each year in order to get a stable total size
of the population in each country when this
population is healthy, that is, M(0) = 1, which
is equivalent to m̃ = PS,R

a (1 − PS,R
b,mS)−1. This

leads to the estimations ̂̃m = 0.32239 in Great
Britain and ̂̃m = 0.49118 in France.

� Using (24) and the estimations of the British
dynamical parameters, we get T̂Rc = 12.1346,
and then using TRc = [PE,I

a (1 − PE,R
a )−1]−1, we

get the estimations of PE,I
a under the British

conditions and the French ones, leading to

P̂E,I
a = 0.0566 in Great Britain and P̂E,I

a =
0.0618 in France.

� Concerning the infection probabilities, we set
q̄ = 0.1, which is the maximum reasonable ver-
tical infection probability usually assumed in
BSE,(7) and we assume ā(i) = 1 − ai , b̄(i) =

Fig. 5. For a = 1, b = 0.0001 (the adults
cannot be infected), the disease dies out
rapidly in Great Britain and in France.
Comparing this figure to Fig. 4, we
deduce that infection of the adults is
much more essential than that of the
calves for persistence of the disease.

1 − bi . The values of a and b are chosen for
showing different levels of infection and there-
fore different types of behavior, but since they
are not estimated from data, they do not cor-
respond to real situations.

� We assume the same initial conditions in all
the simulations: PI

0 = 0 and PE
0 = 10−7,

with in addition PE1
−4 = PE1

−3 = PE1
−2 = PE1

−1 =
PE1

0 = 3.693710−8 in the semi-Markovian set-
ting (identical infection for each of the 5 years
before the occurrence of the first case). The
number of simulated years is 200.

In each figure, the first two lines of graphs cor-
respond to the British conditions, the first line being
relative to the semi-Markovian frame, and the sec-
ond one to the Markovian frame. The third line cor-
responds to the French conditions in the Markovian
frame. On each line, the left-hand graph corresponds
to the routine slaughtering PS,R

b,mI = PS,R
b,mS of the calf

the dam of which is infectious, and the right-hand
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graph concerns the control slaughtering PS,R
b,mI = 1.

In each graph, {en}n≤200 is represented by a dashed
line and {in}n≤200 is represented by a continuous line.
Above each graph in the Markovian setting, the value
of ρ̃0 and ρ̃1 are given. Since we assume for these sim-
ulations M(0) = 1, then sign(ρ̃0) = sign(R0).

Some interesting general features are highlighted
by the simulations. The general tendency of the
spread of the disease in the semi-Markovian setting
is similar to that in the Markovian setting, but its
rate of increase or decrease may be slightly differ-
ent from the rate in the Markovian frame and os-
cillations due to the incubation distribution (dirac
law) exist in the semi-Markovian setting (first line
of graphs for each figure) contrary to the Marko-
vian one. The results of global stability under ā(·) =
b̄(·), which means that the disease tends to a con-
stant level independent of the initial infection, seem
to be generalizable to ā(·) �= b̄(·). The E individu-
als are much more numerous than the infectives; the

Fig. 6. For a = 1, b = 9 10−10 (an adult
cannot be infected and the probabilty for
a calf to be infected via a horizontal route
is much greater here than in Fig. 5), the
disease persists in Great Britain under
the usual slaughtering PS,R

b,mI = PS,R
b,mS of

the calves (left graphs of the first two
lines of graphs) and dies out under the
control slaughtering PS,R

b,mI = 1
(right-hand graphs of the first two lines of
graphs), while it always persists in France
(last line of graphs).

systematic slaughtering of calves of infectious dams
has generally a negligible influence on the spread
of the disease. It may lead to extinction only when
the infection via a horizontal route is low enough,
especially concerning the adults (Figs. 6 and 7).
The routine slaughtering has a very large influence
on the behavior of the disease, leading to a much eas-
ier spread of the disease under the French conditions
than the English ones, when assuming in both coun-
tries the same infection parameters a, b, q, and the
same value of TRc . Since this result is valid even when
a = 1 with b �= 1 or b = 1 with a �= 1, i.e., as soon
as some horizontal route exists, we conclude that its
main cause is the fact that the probability to achieve
the transition E → I is larger in France than in Great
Britain, which is due to a smaller value of PE,R

a in
France than in Great Britain. The adult infection pa-
rameter a has a much larger influence than the young
one (Fig. 4 compared to Fig. 5). In particular, when
a = 1 (no possible infection of the adults), the increase
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Fig. 7. For a = 1, b = 1.8 10−9 (an adult
cannot be infected and the probability for
a calf to be infected via a horizontal route
is a bit smaller here than in Fig. 6), the
disease dies out in Great Britain; it
persists in France under the usual
slaughtering PS,R

b,mI = PS,R
b,mS and dies out

very slowly under the control
slaughtering PS,R

b,mI = 1. The number of
cases seems almost constant in both cases
in France.

of the disease is possible in Great Britain only for
b ≤ 9 10−10 (Fig. 6) while in France it is possible for
b ≤ 1.8 10−9 (Fig. 7), which is around twice the British
value. When there is no horizontal route or this one is
very weak (Fig. 5), the disease dies out very quickly.

Notice that the same qualitative results are ob-
tained assuming an identical m̃ = 0.37 in both coun-
tries, which leads to a slowly increasing population
size in Great Britain and a slowly decreasing pop-
ulation size in France.(1) But in this case, R0 is not
equivalent to the bifurcation parameter ρ0.

5. CONCLUSIONS

We built a rigorous methodology allowing the
study and the comparison of the potential spread of
the disease at the scale of countries under different
slaughtering conditions. We rigorously defined the re-
productive rate behaving like a bifurcation parame-
ter, allowing us to predict endemicity or extinction
of the disease according to its sign. We also proved

that this reproductive rate is equivalent to the classi-
cal reproductive ratio R0 defined as the total number
of secondary cases produced by an infective in a sus-
ceptible population(11,12) if and only the population
size remains stable. This result is due to the fact that
proportions instead of numbers are modeled.

Using this methodology, we showed that routine
slaughtering may have an important influence on the
spread of the disease, the French conditions being
much more favorable to the spread of the disease
than the British ones, this result being due to a smaller
value of PE,R

a in France than in Great Britain, leading
to a larger value of the probability PE,I

a to become in-
fectious when infected in France than in Great Britain.
Under the same infection conditions, the French rou-
tine slaughtering may lead to endemicity while the En-
glish ones lead to extinction. The control slaughtering
of a calf the dam of which is infectious has generally
a negligible effect, leading to a very slow extinction
of the disease only when the disease when noncon-
trolled is already close to this extinction. The number
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of animals in a noninfectious stage of incubation is
much larger than the number of infectious animals,
especially the equilibrium value of the first population
is much larger (when nonnull) than the second one.
This is due to slaughtering, which embeds a large pro-
portion of animals in incubation to become infectious.
The maternal transmission when alone always leads to
a very rapid extinction but as soon as some horizon-
tal route exists, the apparent nonincreasing number
of observed cases in some countries for a given pe-
riod of time is not a guarantee of the extinction of the
epidemic.

APPENDIX

A.1. Transmission Probability Under the
Reed-Frost Assumption

Let NI
n be the number of infectives at time

n, în = NI
n N−1

n , be the proportion of infectives at
this time. Let γ be the expected number of infec-
tious doses produced by an infectious animal either
by excretion when alive or contained in the animal
when dead, where an infectious dose is is defined
here as the minimum amount of pathogenic agents
such that the probability for an animal ω to be-
come infectious after eating such a dose is is nonnull.
Assuming (Reed-Frost assumption) that the events
{ω is not infected by a dosis d}d are mutually indepen-
dent and have each the same probability given the
survival of ω at n + 1, we get at time n + 1,

a(în)
definition= P(ω is not infected by γ NI

n

∣∣ ω
survives at n + 1)

assumption= (1 − P(ω is infected by a dosis | ω
survives at n + 1))γ NI

n

assumption= (
1 − φN−1

n

)γ în Nn

large Nn� exp(−φγ în) = âin,

where ln a = −φγ < 0 and therefore 0 < a < 1, and
similarly for b(·).

A.2. Elaboration of the Models(9)

Let us first consider the Markovian setting (the
distributions of the times of transition are all geo-
metric (corresponding to exponential distributions in
continuous time)). The dynamical system on the prob-
abilities �Pn = (sn, en, in) for an animal to be in S, E,

and I is derived from a Markovian density-dependent
branching process on the corresponding countings−→Nn = (NI

n , NE
n , NI

n )(9): for k ∈ {S, E, I},

Nk
n =

∑
h∈{S,E,I}

Nh
n∑

i=1

Yh,k
n+1,i

E
(
Yh,k

n+1,i

∣∣ �Nn
) = Ph,k

a (în) + m̃Ph,k
b (în)

notation= Qh,k(în), h ∈ {S, E, I},
where Yh,k

n+1,i is the number of animals in state k “pro-
duced” at time n + 1, i.e., during the year n + 1, by
the animal i in state h at n, m̃ is the mean number
of calves at birth per year and per cow, assumed to
be independent of the state of the dam and of time,
Ph,k

a (în) is the probability for an “adult” (animal ex-
isting at the previous time) to realize the transition
h → k, assumed to depend only on the percen-
tage în = NI

n /Nn of infectives at n, and Ph,k
b (în) =

PS,k
b,mh(î n) (see Section 2.1) is the probability for a calf

with mother in state h for becoming k, also assumed
to depend only on în.

Then using the transition probabilities given in
Section 2.2, normalizing the branching process by the
total size Nn of the population at each time in order
to get the proportions of animals in each state, we get
the limit model on probabilities, as N0 → ∞:

M(in)sn+1 = sn QS,S(in) + en QE,S(in) + in QI,S(in)

M(in)en+1 = sn QS,E(in) + en QE,E(in) + in QI,E(in)

M(in)in+1 = sn QS,I(in) + en QE,I(in) + in QI,I(in),

where

M(in) = lim
N0→∞

Nn+1 N−1
n

= 1 − PS,R
a + m̃

(
1 − PS,R

b,mS

) + in
[
PS,R

a − PI,R
a

+ m̃
(
PS,R

b,mS − PS,R
b,mI

)]
= 1 + m̃ − γS − in(γI − γS). (A.1)

Therefore, using the assumptions on {Ph,k
a (in)} and

{Ph,k
b (in)} (Section 2.1),

M(in)sn+1 = sn
[
a(in)

(
1 − PS,R

a

) + m̃b(in)
(
1 − PS,R

b,mS

)]
+ en

[
m̃b(in)

(
1 − PS,R

b,mE

)]
+ in

[
m̃qb(in)

(
1 − PS,R

b,mI

)]
(A.2)
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M(in)en+1 = sn
[
ā(in)

(
1 − PS,R

a

) + m̃b̄(in)(1 − PS,R
b,mS)]

+ en
[
1−PE,R

a − PE,I
a m̃b̄(in)

(
1 − PS,R

b,mE

)]
+ in

[
m̃(1 − qb(in))

(
1 − PS,R

b,mI

)]
(A.3)

M(in)in+1 = en PE,I
a + in

(
1 − PI,R

a

)
. (A.4)

Since sn+1 + en+1 + in+1 = 1, the system given by
Equations (A.2), (A.3), and (A.4) is equivalent to
the system given by Equations (A.3), and (A.4) when
M(in) > 0:

(en+1, in+1) = F(en, in) = (F1(en, in), F2(en, in)).

We have M(in) = 0 if and only if γI = 1 + m̃ (i.e.,
PI,R

a = 1 and PS,R
b,mI = 1), with in = 1, which never

occurs when i0 + e0 < 1.(1) Therefore, the system is
always defined under i0 + e0 < 1.

Now assume the semi-Markovian setting. We
elaborate the model in the same way as previously
using the intermediate states {Ej}j≤T such that the
transition from S to I is now obtained by the sequence
of transitions S → E1 → · · · → ET → I, where Ej cor-
responds to the jth time in the incubation state. We
assume PEj ,Ej+1

a = 1 − PEj ,R
a = 1 − PE,R

a , j ≤ T − 1,
and PET ,I

a = 1 − PET ,R
a = 1 − PE,R

a . This implies that
PEj ,Ej

a = 0, j ≤ T, and the probability to achieve the
transition E1 → I for an E1 animal, is the probability
(1 − PE,R

a )T that it survives during T time units from
the state E1. So now the state variable of the dynami-
cal system is (�en, in), where �en = (e1

n, . . . , eT
n ), e j

n being
the probability for an animal to be in Ej at time n. We
get:

M(in)sn+1 = sn QS,S(in) +
T∑

j ′=1

e j ′
n QEj ′ ,S(in)

+ in QI,S(in)

M(in)e j
n+1 = sn QS,Ej (in) +

T∑
j ′=1

e j ′
n QEj ′ ,Ej (in)

+ in QI,Ej (in)

M(in)in+1 = sn QS,I(in) +
T∑

j ′=1

e j ′
n QEj ′ ,I(in)

+ in QI,I(in).

A.3. Bifurcation

In the Markovian setting (all the transitions, in-
cluding E → I, are Markovian), let λ be the largest
eigenvalue of the derivative L at 0 of F(x, y):

L
def.=


∂ F1

∂e
(0, 0)

∂ F1

∂i
(0, 0)

∂ F2

∂e
(0, 0)

∂ F2

∂i
(0, 0)


= 1

M(0)

(
PE,E

a CC

PE,I
a 1 − PI,R

a

)
,

where

CC
def.= M(0)

∂ F1

∂i
(0, 0)

= ā′(0)
(
1 − PS,R

a

) + m̃b̄′(0)
(
1 − PS,R

b,mS

)
+ m̃q̄

(
1 − PS,R

b,mI

)
represents the infection capacity when the disease
starts (mean number of newly infected animals pro-
duced by an infective per time unit). We get:

λ = [2M(0)]−1
[
PE,E

a + 1 − PI,R
a

+
√(

PE,E
a − (

1 − PI,R
a

))2 + 4CCPE,I
a

]
.

Then, according to sign(λ − 1), the healthy state (0, 0)
is either locally asymptotically stable or unstable.(10)

Now let Cn = en + in and define the current re-
productive rate by:

ρ(in) = (cn+1 − cn)i−1
n under the condition in+1 = in

= (en+1 − en)i−1
n under the condition in+1 = in

and the initial reproductive rate by:

ρ0 = lim
i0→0,i1=i0

ρ(i0) = lim
i0→0,i1=i0

(e1 − e0)i−1
0 ,

which, according to Equation (A.4), is equivalent to:

ρ0 = lim
i0→0,e0=l(i0)

(e1 − e0)i−1
0

l(i0) = i0
[
M(i0) − (

1 − PI,R
a

)][
PE,I

a

]−1
.

Then ρ0 = [M(0)]−1 (CC − SC), where SC = [PI,R
a −

PS,R
a + m̃(1 − PS,R

b,mS)][1 + m̃(1 − PS,R
b,mE)[PE,I

a ]−1]. In
the particular case of a stable population size (M(0) =
1 ⇐⇒ m̃ = PS,R

a

(
1 − PS,R

b,mS

)−1), SC becomes SC =
PI,R

a

(
1 − PS,R

a

)−1(1 + PS,R
a (TRc − 1)). Of course, ρ0 is

function of λ. Using√(
PE,E

a − (
1 − PI,R

a
))2 + 4CCPE,I

a

= 2M(0)λ − (
PE,E

a + 1 − PI,R
a

)
and the assumption PE,R

a = PS,R
a , PS,R

b,mE = PS,R
b,mS, we

get:

sign(ρ0) = sign(λ − 1).

Let us calculate now the classical reproductive
number R0, which is defined for a starting epidemic.
Consider the linearized system at (0, 0) and write this
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system on countings {En, In}n instead of probabilities.
Define En = Nnen, In = Nnin. Then for E0 + I0 small
enough, we have, using Taylor’s development at order
one, (E1, I1) = M(i0)(F1(E0, I0), F2(E0, I0)) � (E0,
I0)M(0)Lt , that is:

E1 � PE,E
a E0 + CCI0

I1 � PE,I
a E0 + (

1 − PI,R
a

)
I0.

Then using this model, we get:

R0 =
[

CC
∑
k≥0

(k + 1)
(
PI,I

a

)k
PI,R

a

]

×
[ ∑

k≥0

(
PE,E

a

)k
PE,I

a

]
since CC represents the mean number of newly in-
fected animals produced by one infective during a
time unit,

∑
k≥0(k + 1)(PI,I

a )kPI,R
a is the mean life du-

ration of an infective (equal to 1 when PI,R
a = 1),

and
∑

k≥0(PE,E
a )kPE,I

a represents the mean number
of infectives resulting from one newly infected an-
imal. Using

∑
k≥0(k + 1)ck = [c

∑
k≥0 ck]′,

∑
k≥0 ck =

(1 − c)−1, for c ∈ [0, 1[, 1 − PE,E
a = PE,I

a + PE,R
a , and

PI,I
a = 1 − PI,R

a , we get:

R0 = PE,I
a

PI,R
a

(
PE,I

a + PE,R
a

)CC

and therefore:

R0 − 1 = PE,I
a

PI,R
a

(
PE,I

a + PE,R
a

) (CC − SCR0 ), (A.5)

where SCR0 = PI,R
a (PE,I

a + PE,R
a )(PE,I

a )−1. The sign
of R0 − 1 has to be compared to the sign of ρ0, which
is equal to the sign of CC − SC. Let

� = SC − SCR 0

=
[

PI,R
a − PS,R

a + m̃
(

1 − PS,R
b,mS

)] [
PE,I

a + m̃
(

1 − PS,R
b,mE

)]
− PI,R

a

(
PE,I

a + PE,R
a

)
PE,I

a
.

(A.6)
Then using Equations (5), (A.5), and (A.6), we get:

R0 − 1 = PE,I
a

PI,R
a

(
PE,I

a + PE,R
a

) [M(0)ρ0 + �]

= C2ρ0 + PE,I
a

PI,R
a

(
PE,I

a + PE,R
a

)�

C2 = M(0)
PE,I

a

PI,R
a

(
PE,I

a + PE,R
a

) .

Using PE,R
a = PS,R

a with PS,R
b,mE = PS,R

b,mS, and defining
µ = M(0) − 1 = −PS,R

a + m̃
(
1 − PS,R

b,mS

)
, we get:

� = µ
(
µ + PE,I

a + PS,R
a + PI,R

a

)
PE,I

a
. (A.7)

We have µ + PE,I
a + PS,R

a + PI,R
a = m̃

(
1 − PS,R

b,mS

) +
PE,I

a + PI,R
a > 0. Therefore, we have sign(�) =

sign(µ) with � = 0 if and only if µ = 0.
In the semi-Markovian setting the usual bifurca-

tion parameter is calculated in the same way as previ-
ously as the largest eigenvalue λ(δT) of L(δT), which
is the derivative at 0 of G(�e, y):

L(δT) =


∂G1

∂e1
(0, 0) . . .

∂G1

∂i
(0, 0)

. . . . . .

∂GT+1

∂e1
(0, 0) . . .

∂GT+1

∂i
(0, 0)

 .

The first line of M(0)L(δT) is (P̃E,E
a , . . . , P̃E,E

a , CC),
the diagonal below the main diagonal is
(P̃E,I

a , . . . , P̃E,I
a ), and the term at the intersec-

tion of the last line and last column is 1 − PI,R
a , where

P̃E,I
a = 1 − PE,R

a and P̃E,E
a = 1 − P̃E,I

a − PE,R
a = 0;

the other terms of the matrix are null. We get:

[λ(δT)]T

(
1 − PI,R

a

)
m − γS

− [λ(δT)]T+1

+ CC

(
1 − PE,R

a

)T

(m − γS)T+1
= 0,

which has generally no explicit solution. But in our
particular case PI,R

a = 1, we get the explicit solution:

[λ(δT)]T+1 = CC
(
1 − PE,R

a

)T
M(0)−(T+1).

Since the sign of λ(δT) − 1, and therefore the sign
of ([λ(δT)]T+1 − 1)α, are the only quantities determi-
nating the asymptotic behavior of the model, for any
α > 0, then under ([λ(δT)]T+1 − 1)α > 0, (0, 0) is unsta-
ble, and under ([λ(δT)]T+1 − 1)α < 0, (0, 0) is locally
asymptotically stable.(10)

In the same way as previously, the basic repro-
ductive number is:

R0(δT)=
[
CC

∑
k≥0

(k + 1)
(
1 − PI,R

a

)k
PI,R

a

](
1 − PE,R

a

)T

=
(
1 − PE,R

a

)T

PI,R
a

CC.

(A.8)
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Therefore, under PI,R
a = 1 and according to Equations

(8) and (A.8),

ρ̃0(δT) = [
1 − PE,R

a

]−T[R0(δT) − M(0)T+1],

and as in the Markov setting, we have

sign(R0(δT) − 1) = sign(ρ̃0(δT))

⇐⇒ lim
e0+i0=0,N0→∞

Nn+1 N−1
n = 1.

A.4. Intrinsic Incubation Time

Define the censored transition E → I such that
E → R is forbidden. Then the probability PE,I

a,c of this
transition is equal to PE,I

a,c = PE,I
a (1 − PE,R

a )−1. Define
in the same way PE,E

a,c = PE,E
a (1 − PE,R

a )−1. Then the
expectation TRc of the transition time of this censored
transition is:

TRc =
∑
k≥0

(k + 1)
(
PE,E

a,c

)k
PE,I

a,c

= PE,I
a,c(

1 − PE,E
a,c

)2 = [
PE,I

a,c

]−1
.

Since TRc and PE,I
a are both unobervable and more-

over in order to validate the prediction given in
the Markovian setting from that given in the semi-
Markovian one, at least from a qualitative point of
view, we determine TRc in order that both models have
the same qualitative behavior, that is:

ρ̃0 = ρ̃0(δT). (A.9)

Therefore, using Equations (5), (6), (8), and (A.9),
we get TRc as a function of the dynamical parameters,
which are estimable:

TRc = [
(M(0))T

(
1 − PE,R

a

)−T − 1
]

(
1 − PE,R

a

)[
m̃

(
1 − PS,R

b,mE

)]−1
. (A.10)

When the population size is stable, i.e., M(0) = 1,
equivalent to m̃ = PS,R

a (1 − PS,R
b,mS)−1, using the as-

sumption PE,R
a = PS,R

a with PS,R
b,mE = PS,R

b,mS,
then TRc is reduced to TRc = [(1 − PE,R

a )−T − 1](1 −
PS,R

a )(PS,R
a )−1.

A.5. Asymptotic Behavior

Let us define r̃1(·) and r̃2(·) according to Equa-
tions (11) and (12). Then:

r̃ ′′
1 (i)

= g′′(i)(1 − i) − 2(g′(i) − D) − m̃b′′(i)

× iq
(
1 − PS,R

b,mI

) − 2m̃b′(i)q
(
1 − PS,R

b,mI

)
= ā′′(i)

(
1 − PS,R

a

)
(1 − i) + m̃b̄′′(i)

× [
(
1 − PS,R

b,mS

)
(1 − i) + iq

(
1 − PS,R

b,mI

)
]

− 2[ā′(i)
(
1 − PS,R

a

) + m̃b̄′(i)
[(

1 − PS,R
b,mS

)
− q

(
1 − PS,R

b,mI

)]] + 2D

r̃ ′′′
1 (i)

= g′′′(i)(1 − i) − 3g′′(i) − m̃b′′′(i)iq
(
1 − PS,R

b,mI

)
− 3m̃b′′(i)q

(
1 − PS,R

b,mI

)
= ā′′′(i)

(
1 − PS,R

a

)
(1 − i) + m̃b̄′′′(i)

× [(
1 − PS,R

b,mS

)
(1 − i) + iq

(
1 − PS,R

b,mI

)]
− 3

[
ā′′(i)

(
1 − PS,R

a

) + m̃b̄′′(i)
[(

1 − PS,R
b,mS

)
− q

(
1 − PS,R

b,mI

)]]
.

Concerning the Markovian setting, the proofs of
Proposition 1 and Item 3 of Proposition 2 are done
in the equivalent model giving (in+1, cn+1) as a func-
tion of (in, cn), where cn = en + in, and are direct
consequences of the negative sign of M(in)(cn+1 − cn)
expressed as a function of (in, cn). Since this quan-
tity has also exactly the same expression in the semi-
Markovian model as in the Markovian model, the re-
sults are also valid in the semi-Markovian setting. The
first two items of Proposition 2 are just applications
of classical results on dynamical systems.(10)

Let us define r(in) = −a(in)(1 − inTRc ) + (1 −
in)(1 − in i−1

M,0) = G(in)[cn+1 − cn], where G(i) > 0 for
all i. Then r(·) has the same sign as the current repro-
ductive rate, and we have:

r ′′(i) = ā′′(i)(1 − iTRc ) − 2ā′(i)TRc + 2i−1
M,0

r ′′′(i) = ā′′′(i) − 3ā′′(i)TRc (1 − iTRc )−1.

Notice that 1 − iTRc ≥ 0 and 1 − ii−1
M,0, for all i < iM,0.

The detailed proof of Proposition 3 is given in
References 1 and 2 and is based on some monotony
properties of the model written as a system giving
(in+1, in) from (in, in−1) and on the unicity of the fixed
point of the system, which is guaranteed under the
assumption on ā(·) given in this proposition, thanks
to the properties of r(in).
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