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TWO-GROUP INFECTION AGE MODEL INCLUDING AN
APPLICATION TO NOSOCOMIAL INFECTION*

PIERRE MAGALT AND CONNELL MCCLUSKEY*

Abstract. In this article we analyze the global asymptotic behavior of a two-group SI (susceptible—
infected) epidemic model with age of infection. We prove that the model exhibits the traditional
threshold behavior where the disease-free equilibrium is globally asymptotically stable if the basic
reproduction number is less than one, and the endemic equilibrium is globally asymptotically sta-
ble if the basic reproduction number is greater than one. We conclude the paper by presenting an
application to nosocomial infections. Moreover some numerical simulations are presented for this
application.
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1. Introduction. The modeling of epidemics began with Daniel Bernoulli [7]
in 1760 to evaluate the effectiveness of variolation, which was being introduced to
Europe as a means of conferring immunity to smallpox. Bernoulli’s model included
age-dependent mortality, with the goal of determining the change in life expectancy
that would occur if smallpox were eliminated (see Dietz and Heesterbeek [18]). In
1916, Ross [49] studied a system of ordinary differential equations in order to build a
theoretical framework for the mathematical analysis of epidemics of malaria; this was
the origin of the modern susceptible—infected—recovered (SIR) compartmental model.
In 1927, Kermack and McKendrick [32, 33, 34] extended Ross’s ideas, proposing the
cross quadratic term BSI. This linked the incidence to the sizes of the susceptible
(S) and infective (I) populations and was based on a probabilistic analysis of the
interactions between infective agents, or vectors, and hosts.

Epidemic models have been extended in several direction. We refer to Bailey [5],
Brauer and Castillo-Chavez [8], Busenberg and Cooke [9], Capasso [10], Diekmann
and Heesterbeek [16], Hethcote [29], Murray [47], Thieme [56], and the references
cited therein for an overview of the topic.

The main body of our paper is devoted to the global analysis of a two-group
version of the Kermack—McKendrick model, where both infectivity and recovery can
depend on the duration of infection. As in the pioneer work of Kermack and Mc-
Kendrick [32] (see Anderson [1] for a nice survey on Kermack—McKendrick models),
we assume that each subgroup is divided into three classes: susceptible, infected, and
recovered. For the infected population, we consider the age of infection, which is the
time since individuals get infected. We consider a two-group model, where S;(¢) and
R;(t) give the number of susceptible and recovered individuals in group j at time ¢.
The density of infected individuals in group j at time ¢ that have been infected for
duration a is given by i;(t, a).
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For j = 1,2, the entering flux of new individuals into the jth group is A;, with
all new individuals being susceptible, and the exit rate of individuals in group j is d;.
For infected individuals, a > 0 is the age of infection (i.e., the time since individuals
were infected). For j = 1,2, the recovery rate at infection age a is m;(a).

The primary motivation for the model being studied is nosocomial infection (i.e.,
infections taking place in a hospital setting), where the infection or contamination is
passed between two groups: patients and health care workers (HCW), with no direct
transmission within each group. For nosocomial infections, there are no recovered
classes; however, we derive a separate model for nosocomial infections and show how
that system can be transformed into a special case of the one studied in the main
body of the paper. Our results demonstrate how different infection-age-dependent
intervention strategies can be analyzed for effectiveness. This application is discussed
in detail in section 7.

With the application to nosocomial infections in mind, we consider a criss-cross
contamination process. Using mass action, new infections/contaminations in group j
occur at incidence rate S;(t) 0+°° Br(a)ig(t,a)da, where j, k = 1,2 are distinct. The
transfer flux is summarized in Figure 1.

m,(a)

m,(a)

Fic. 1. Diagram fluzes.

We have the following two-group model with age of infection:

%ﬁt) = A — DS(t) — diag (S(t)) [."*° B(a)i (t,a) da,
8@(;2; @) + ai((at(;a) = —[M(a)+ D]i(t,a) for a > 0,
i(t,0) = diag (S(1)) f,F*° B(a)i (t,a) da,
(1) dR() oo
5 = Jo M(a)i(t,a)da — DR(t),
S(O) =5 € R%’_,
i(0,.) = ip (.) € LL ((0, +00) ,R)?,
R(O) =Ry € R%’_,

where
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and the criss-cross transmission of the pathogen is described by

Bla) = ( S0 )

We make the following assumption on the parameters.

ASSUMPTION 1.1. We assume that

(i) Br, B2 € LT ((0,+00) ,R) \ {0z };

(11) A1, A2 > 05

(111) dy,dy > 0;

(iv) m1,mo € L ((0,4+00),R).

The function f;(a) can be regarded as the scaled probability of transmitting the
contaminant to the other group for an individual that has been infected for a period
of time a > 0. This function can have various shapes, and two prototype examples
are presented in Figure 2.

(A) ‘ ‘ (B)
1 1
08} 1 08t
S o6 S o0
04t 1 04f
02f 1 02f
0 0
0 20 40 60 80 0 20 40 60 80
a a

Fic. 2. The function B;(a) describes the ability that infected individuals in group i have to
transmit the contaminant to individuals in the other group. (A) corresponds to individuals that
become infectious after a fized period and remain infectious as long as they are present. (B) is similar
but corresponds to scenarios in which individuals lose their infectiousness after a given duration.

We now present important special cases that illustrate the utility of such systems.
Special case 1: Ordinary differential equations. Suppose
0 B
B(a) = B :=
=5 5 ]

and
M(a) = M := diag (m1, m2)

for all @ > 0, with 81, 82 > 0 and mq, mo > 0. Then we obtain the ordinary differential
equation model

%(:) — A~ DS(#) — diag (S(8)) BI(2),
. dz—it) — diag (S(t)) BI(t) — [M + D] I(t),
di—f) — MI(t)— DR(1),
S(0) = So € R2, 1(0) = I € R%, R(0) = Ry € R,
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where

+oo
I(t) :== /0 i(t,a)da.

The global asymptotic behavior of system (1.2) (and the n group case) has been
studied in [25].
Special case 2: Delay. Suppose that for j = 1,2 there exists 7; > 0 such that
Bi(a) = Bilir, +o0)(a)  for almost every a > 0

and

M(a) = M = diag (m1,m2) Va >0,
with 81,82 > 0 and mq,mo > 0. The total number of infectious individuals in group
J is given by

—+o0
Ij(t):/ ij (t,a)da for j=1,2.

For each ¢t > max {71, 2}, we obtain the following system of delay differential equa-
tions:

dS;t(t) =\ — d1Sy (1) — BaSi(t)In(t),
%t(t) — Xa — daSa(t) — B1Sa(t) 1 (1),

(1.3) Z?Z,Et) = foe” (MAIITS, (t — 1) [o(t — 1) — (1 +d1) L1 (1),
% = Pre” RISy (t — ) [1(t — 72) — (m2 + d2) In(2),
dlzlt(t) =my I (t) — dy Ry (t),
dli;zt(t) = maly(t) — daRa(t).

Further specializations of the delay case include the Ross—MacDonald model with
delay, when the size of the kth group is constant, and an extended Ross—MacDonald
model with delay. The above model is similar to the one found in Ruan, Xiao, and
Beier [51].

One of the earliest multigroup epidemic models was proposed by Lajmanovich
and Yorke [35] for the transmission of gonorrhea. The asymptotic stability of the
endemic equilibrium for various multigroup epidemic models was analyzed in [6, 28,
30, 31, 38, 53, 56]; typically, however, the global behavior is not resolved for the full
parameter space.

More recently, the global asymptotic behavior of certain multigroup models with-
out age of infection has been completely resolved. In [25], Guo, Li and Shuai studied
the behavior of a multigroup SIR model formulated in terms of ordinary differential
equations. They perform a delicate analysis involving the weighted graph structure
induced by the connections between the groups. Using arguments coming from the
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theory of positive linear operators (i.e., properties of irreducible linear Cy-semigroups),
Thieme [57] extended this to allow for a continuum of groups, as would be the case
for a nonmoving population spread over a spatial domain. Section 3 of this article is
also devoted to the analysis of the linear problem.

In [36], Li and Shuai study coupled systems on networks, including a multi-
group susceptible-infected (SI) distributed delay model. In [37], Li, Shuai, and Wang
studied a model which is a multigroup analogue of the susceptible—exposed—infective—
recovered (SEIR) age of infection model given by Rost and Wu in [50]; that model
reduces to an infinite delay susceptible—exposed (SE) model. In each of these works,
a Volterra-type Lyapunov functional is used to demonstrate that the endemic equilib-
rium is globally attracting (within an appropriate set) when it exists. These Lyapunov
functionals are based on the ones used by McCluskey in [45] and [46] for single group
models.

A single-group age of infection epidemic model was first considered by Kermack
and McKendrick in [32]. The analysis of the local and the global asymptotic behavior
of that and similar SI models has been studied in [14, 40, 58, 59]. In [42], the global
behavior of a single-group age of infection model was fully resolved for all parameter
values. It was shown that the model exhibits the traditional threshold behavior where
the disease-free equilibrium is globally asymptotically stable if the basic reproduction
number is less than one, and the endemic equilibrium is globally asymptotically stable
if the basic reproduction number is greater than one. A key tool was a Volterra-type
Lyapunov functional that included an integral over all infection ages, similar to the
functionals used in [45, 46].

As for the single-class model, the Lyapunov functional used here is not defined
on the entire state space. One may observe that similar difficulty also arises in [14,
42, 45, 57]. To circumvent this difficulty, we only use the Lyapunov functional on
the global attractor for the semiflow restricted to the interior region. In general such
a global attractor exists only in the sense of Magal and Zhao [44], and the uniform
persistence property is required. Here we prove the uniform persistence by applying
Theorem 4.2 in Hale and Waltman [27]. We also refer the reader to the books of Zhao
[65] and Smith and Thieme [52] for more results on uniform persistence.

In sections 4 and 5 we analyze the extinction and uniform persistence based on
comparison arguments for the i-equation with a linear system. Therefore, the first
main difficulty for a system with age of infection is to understand the behavior (i.e.,
the spectral properties) of the linear system

di(t,a) n Qi(t,a)
ot oa

i(t,0) = diag (S) [,"* B(a)i (t,a) da,

i(0,.) =0 (.) € L% ((0, +00) ,R)?,

= —[M(a) + D]i(t,a) for a > 0,

where
S = (?1,?2) S (O,OO)2

is fixed.

One may observe that the analysis of the linear problem is more intricate than
for a single-group model. A similar question was considered for chronological age by
Feng and coauthors [21, 22, 23]. However, the current problem is not the same since
we are considering infection age, and so it is necessary to provide a new analysis of the
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spectral properties of the above linear system. Also, in order to apply the Lyapunov
techniques, we need more detailed analysis than just the irreducibility of the linear
semigroup (see section 3), making the linear problem even more delicate to analyze.

For an n group system, our analysis can be extended to the case where B(a) has
the Leslie matrix form

[0 0 0 Bnla) ]

Bi1(a) 0 cee 0 0

0 ﬁg(a) 0 0

Bla)=1 0 :
0 o e 0 Bl 0

But since this article is motivated by an application to nosocomial infections
(section T), we restrict ourselves to the case where n = 2. Nevertheless, we basically
provide the main ingredients for the linear problem described in section 3, as well
as the Lyapunov function described in section 6, and our analysis can be extended
to the case of an n group system having the above Leslie matrix form. This article
can be regarded as a first step in analyzing multigroup systems with age of infection;
further analysis is needed to understand the general case (i.e., with a full coupling in
the matrix B(a)).

The plan of the paper is the following. In section 2, we reformulate the system
as a Volterra equation and as a nondensely defined semilinear Cauchy problem (in
order to apply integrated semigroup theory). We show that the system is dissipative,
and we find the equilibria. In section 3, we study the irreducibility and some spectral
properties of the linear problem. In section 4, we show that the disease dies out of
the population if the basic reproduction number is less than one, and we show in
section 5 that the disease is uniformly persistent if the basic reproduction number
is greater than one. In section 6, we show that the endemic equilibrium is globally
asymptotically stable when it exists. In section 7, we apply the results of the analysis
to a model of nosocomial infection, where pathogens are transmitted back and forth
between patients and HCWs.

2. Preliminary.

Dissipativity of the system. Let I(t) = fooo i(t,a)da. By integrating the i-
equation of system (1.1) with respect to the age a, we obtain

+oo +o0
d;(tt) = diag(S(t)) B(a)i(t,a)da — M(a)i(t,a)da — DI(t).
0 0

Letting
N(t) = S(t) + I1(t) + R(t),
we deduce that N (t) satisfies the ordinary differential equation

(2.1) dzz_p =A—DN(t)

and therefore

lim N(t) = DA,

t——+oo
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Furthermore, if N(t) < D~!A is satisfied for some t = ¢y € R, then it is satisfied for
all ¢ > .

Since the R-equation can be decoupled, from here on we focus on the vector-valued
SI model with age of infection:

%Et) = A= DS(t) - diag(S(1)) J,"~ B (a)i(t, a)da,

(Or + Do) i(t,a) = — [D + M(a)]i(t,a),

i(t,0) = diag(S(t)) [, B (a)i(t, a)da,

S(O) = SO (S R%r,
i(0,.) =g € L} ((0,+00) ,R?).

(2.2)

This system leaves the set
+oo
%&neRixmjmﬁmmR%:S+/ imma<D1A}
0

positively invariant.

Equation (2.2) can be reformulated as a Volterra equation and as an integrated
semigroup. Each of these approaches is useful as there are many results pertaining to
each formulation.

Volterra formulation. We write the problem as the following Volterra-type
equation:

ﬁﬂQ:A_DﬂU—&%@@)+mB@ﬂ@@W’
dt 0

i(t,a) = e ffftDJrM(l)dlio(a —t)ifta—t>0,
) e Jo MWl (p — ) ifa—t <0,

where the mapping ¢t — W(t) for ¢ > 0 is the unique continuous solution of the
nonlinear Volterra integral equation

+oo
W) = ding(S@) | [ Blaye P ONinta —
(2.3) t .
+ / B(a)e~ Jo PHMOdlyy 4 a)da} .
0
This is derived using
+oo
W(t) = diag(S(t)) B(a)i(t,a)da = i(t,0)
0

for all ¢ > 0. We note that solutions to (2.3) exist since B € LY, ig € L, and D+ M
is a diagonal matrix with diagonal entries bounded away from 0 so that e~ J D+M(bydl

is of exponential order.
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Integrated semigroup formulation. We now use the approach introduced by
Thieme in [54] to reformulate the problem as a semilinear Cauchy problem. In order
to take care of the boundary condition, we extend the state space by considering

X =R>xR* x L' ((0,400),R?),
endowed with the usual product norm, and set

XO = Rz X {0R2} X Ll ((O,"’OO) 7R2) I
Xy :=RL xRY x LY ((0,400),R?),

and
X0+ = XQ N X+.
We consider the linear operator A : Dom(A) C X — X defined by

S -DS

) )t

Dom(A) = R? x {0g2} x W1 ((0,+00),R?),

with

where W11 is a Sobolev space, and we define F : Xy — R? by

g A — diag(S(t)) [,7°° B (a)i(t, a)da
F ( O ) = diag(S()) f;F*° B (a)i(t, a)da
¢ 071
Then by defining
S(t)

L))

we can reformulate the partial differential equation problem (2.2) as the following
abstract Cauchy problem:

du(t)

(2.4) e Av(t) + F (v(t)) fort >0 and v(0) =x € Xp,.

By using the results in Thieme [54] and Magal [39] (see Magal and Ruan [41] for
more results), we derive the existence and the uniqueness of the semiflow {U(?)},-,
on Xoy. By identifying (S(t), 0gz,i(t,.)) with (S(¢),i(¢,.)) it can be proved that this
semiflow coincides with the one generated by using the Volterra integral formulation.
Moreover, by using (2.1), we deduce that the set

- o o0
B = < Og2 ) S X(H- : S+/ z(a)da < DA
7 0
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is a positively invariant absorbing set under U, that is to say that
U(t)B C B,
and for each x = (Sp, Ogz,19) € Xot,

d (U(t)x, E) = inf [[U(t)e —yl = 0 ast — +oo.
Yy

It follows that {U(t)},~ is bounded dissipative on Xy (see Hale [26]). Furthermore,
the semiflow is asymptotically smooth (see Webb [61], Magal and Thieme [43], and
Thieme and Vrabie [60]). As a consequence of the results on the existence of global
attractors in Hale [26], we obtain the following theorem.

THEOREM 2.1. Let Assumption 1.1 be satisfied. Problem (2.4) generates a unique
continuous semiflow {U(t)},~, on Xoy that is asymptotically smooth and bounded
dissipative. Therefore, U has a global attractor A in Xoi (which attracts the bounded
sets of Xog ).

The attractor A consists of complete orbits of U, meaning that for any point
(S0, 0gz,1i9) € A, there is a solution {(S(¢),0rz,i(t,.)) : t € R} of (2.4) which passes
through (Sp, Ogz, i) at time ¢ = 0.

Further estimate. Without loss of generality, we may restrict ourselves to the
subdomain B. Hence, we may assume that

S(t)+I(t) <D 'A Vt>0.

Then we obtain

dfzit) = A — DS(t) — diag(5(t)) g (a)i(t, a)da
0
> A — DS(t) — || Bl diag(S(£))PI(2),

where

0 1
P=({0) md 1Bl = w5l

Since I(t) < D71A, we find

%ﬁﬂ > A — DS(t) — ||B||, diag(S(t))PD'A
= A — DS(t) — || B|| , diag (PD~"A) S(2).
Letting
D := D +|B|, diag (PD~'A),
we obtain
(2.5) %(f) > A — DS(t),

and hence we obtain the following result.
LEMMA 2.2. Let Assumption 1.1 be satisfied. The domain

S +o0
B = ( Op2 > €Xoy :S>D'A and S +/ i(a)da < DA
i 0

is positively invariant and is an absorbing set for U restricted to B. Furthermore,
AC B.
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Equilibrium solution. An equilibrium (S,7) € R? x W ((0,400),R?) with
S >0 and 7 > 0 must satisfy the following system:

0=A-DS- diag(S) B (a)(a)da,
(2.6) V(a) = —[D+ M(a )]f( )
2(0) = diag(S fo 2(a)da.

By using the second equation of system (2.6), we have
7(a) = e~ Jo PHMDdlZ(),

Substituting into the third equation of system (2.6), we obtain

“+o0

7(0) = diag(S) ( B(a)e Jo D+M<l>dlda> 7(0).

0

On the other hand, by combining the third and first equations of system (2.6) and
solving for S, we obtain

S=D"1(A—1%0)).

Thus, we obtain the fixed point problem 7(0) € RZ,

= 1(0) = diag (D™ (A —7(0))) G7(0),
where
+oo ,
G = B(a)e™ Jo DML g,
0
- +oo 0 a f0+00 52 (CL) e Iy d2+m2(l)dlda
0 B1(a)e” Jor ditma(dl g, 0

In order to give the equilibria, we first state the basic reproduction number R, which
can be calculated using the next generation method of [17]. We have

(2.8) Ro = VR1Ra,

where

N f0+oo Bi (a) e Jo ditms(Ddl gq,
- :

R;: fori=1,2.

We obtain the following result.
LEMMA 2.3. We have the following alternative:
(i) If Ro < 1, then the disease-free equilibrium

Ep=(Sp,7r) = (DA, 011(0,100))

is the unique equilibrium.
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(ii) If Ro > 1, then there are two equilibria: the disease-free equilibrium
Ep=(Sp,7r) = (D7'A,011(0,100))

and the endemic equilibrium
B = (S*,Z*) _ (D71 (A . l*(O)) e Iy D+M(l)dli*(0)) 7

where i*(0) € (0,+00)” is the unique positive solution of system (2.7).
Proof. To prove the result, it is sufficient to observe that system (2.7) is equivalent
to finding (¢7(0),45(0)) € (0, A1) x (0, A2) such that

+o0 -1
_ [a d Z (0) .
J§ dama(V)dl g ) 107 — (0
([ e PABTEHOR

and

+o00o -1 <3
_ fa d 1 (0) .
j d1+m1(l)dld 209 — g% O .
([ e ) 5 =0

On considering these curves in the ¢}(0)i3(0)-plane, and searching for intersections,
the result follows. 0

3. The linear problem. In this section, we investigate some properties of the
i-equation whenever the mapping ¢ — S(t) is constant. Therefore, we consider the
linear age-structured system

(8,5—1—3 ) i(t, ): —[D—l—M(a)]i(t,a) for a > 0,
(3.1) =5 f i(t,a)da,
i(O, .) =ig € Ll+ ((0,+oo) ,R)?,
where
(3.2) s= % Dl with $.% >0
0 Sy

We need to study certain properties of system (3.1) in order to apply comparison
arguments in section 5, which deals with uniform persistence. We consider the Banach
space

Y:=R*x L' ((0,+00),R?),
endowed with the usual product norm, and
Vo := {0z} x L' ((0,+00) ,R?).
We also consider the usual positive cone
Yot :={0g2} x L} ((0,+00),R?).

Let A : Dom(A) C Y — Y be the linear operator defined by

‘Z< OHSQ ): < —i’—_[go—i)—M]i )
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with
Dom(A) = {0g2} x W ((0, +00) ,R?) .

Then

=

DOIH(A) = yg.
Let L : Dom(A) — Y be the linear operator defined by

L( O ) _ ( S [7°° B (a)i(a)da )

2 OLI

Then by defining u(t) = ( 1?f2) ), we can rewrite system (3.1) as the following abstract
Cauchy problem:
du(t) e

= (A\—i— L) u(t) for t >0 and u(0)==x¢€ Dom(A\).

Note that [20] provides a discussion of how the notion of solutions to this Cauchy
problem can be extended from Dom(A) to its closure Dom(A).
Let (.;1\—1— L)O be the part of A + L in Dom(ﬁ). Recall that (A\—i— L)o is the

restriction of A + L to those elements whose image is in Yj; that is,

(EJFL)O( Olfz >: ( —z"—[()bR2+M]z' )

and

+oo

pom ((A+2) ) ={( %) € Dom() i(0) =

Similar to the case of the nonlinear system (2.2), we now state a Volterra integral
equation which is closely related to (3.1). This will allow us to connect (ﬁ + L) 0
to a semigroup on ) in the proposition that follows. Given ig € L* ((0,400),R?),
consider

B(a) i(a)da} .

0

(33)  W(t)=F(t)+ S/Ot B (a) exp (— /Oa [D+ M(l)] dl) W(t — a)da,

where

(3.4) F(t) = s/joo B (a) exp (— /aat D+ M(1)] dl) iola — t)da

for t > 0. The following proposition is well known in the context of age-structured

models (see Webb [61] for a detailed discussion of this topic, or see [39, section 6]).
PROPOSITION 3.1. Let Assumption 1.1 be satisfied. The linear operator (121\—1— L)O

is the infinitesimal generator of a strongly continuous semigroup {T(X+L)O(t)}t>o of

bounded linear operators on Y. Moreover,

Op2 N Og2
a0 %) = ( T(ayr, (0) (o) )
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7 Vg = d =P (— [, D+ M) dl) io(a —t)da if a > t,
(A+L)O(t) (o) (@) exp (— [y [D+ M(1)]dl) W(t—a)da if a <t,

where W(t) is the unique solution of (3.3).
For clarity, we state that the unique mild solution to (3.1) is

~

i(t,a) = T(3+L)O(t) (o) (a) for almost every a > 0 and all ¢t > 0,

and the mapping ¢ — i(t,-) belongs to C([0,+0o0), L*(0,+00)). Furthermore, the
Volterra equation (3.3) is derived by using

— _ [t
W(t) = S’/ B (a)i(t,a)da = i(t,0)
0
for all ¢ > 0. This is easily seen to be well-defined for each ¢ since S is constant, B(-)

is bounded, and i(¢, ) € L*.

3.1. Preliminary. In order to define the invariant sets for the uniform persis-
tence analysis, we define

(3.5) ay, :=sup {a > 0 : support(B;) N (a, c0) has positive measure}

for k = 1,2, allowing that @5 may be infinite. Note that by Assumption 1.1, we have
@1,as > 0. Let

(3.6) Mo = {( 2 ) e L1 ((0,+00);R)* : /061 i1(a)da > 0 or /062 is(a)da > o}.

Then M\O consists of the distributions 7 that generate new infectives either now or at
some time in the future. Set

OM, = L (0, +00) ;R)*\ My
and
dpmin = min {dy, da}.
PropoSITION 3.2. Let Assumption 1.1 be satisfied. For each ig € 8M\0, the
solution of (3.1) satisfies
“+o0
B(a)i(t,a)da =0 V¥t >0,
0

and therefore i(t,a) is also a solution of the system
(0 4 04)i(t,a) = — [D + M(a)]i(t,a) for a >0,

i(t,0) =0,
i(0,.) = ip € LY ((0,+00) ,R)?
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and satisfies
[i(t, )] < e” Pt |lig]| V¢t > 0.

Proof. Let W(t) be the solution of the Volterra integral equation (3.3). We begin
by showing that F' (given in (3.4)) is identically zero. Using ig; and g2 to denote the
components of ig, we observe that

+oo -
F(t)=S5 / B (a) e i PHMOdL (4 _ )da
t

_3 ( O+oo 52 (CL + t) e~ f;-H d2+m2(l)dli02(a)da ) .

N OJFOO Bl (a+t) e~ ff+t d1+m1(l)dli01 (a)da

Since i € OMo, we deduce that F is identically zero. Thus, (3.3) becomes
t
W(t) =58 / B(a)e™ Jo DMWYy (4 _ 4)da,
0

which has the unique solution
W(t)=0 Vt>0.

It now follows from Proposition 3.1 that i(t,a) = 0 for 0 < a < t. In particular, this
holds for @ = 0 and so ¢ is a solution of the system given in the statement of this
proposition. For ¢ < a, we have

i(t,a) = exp (— /aat [D+ M(1)] dl) io(a — t)da < e~ Dmintio(aq — t).

It follows that [|i(2,.)|| < e~@mint ||ig|| for all £ > 0. O
For k= 1,2, let

ay = sup{a >0: /aﬁk(s)ds = O}.
0

In the following result, and throughout the paper, we use the notation v > ¢ to denote
that each component of a vector v € R? is strictly greater than 6 € R.

LEMMA 3.3. Let Assumption 1.1 be satisfied. Let 7 > max{a},a3}. Suppose
there exists § > 0

(3.7) O+°° B(a)i(t,a)da> 6 Vit e [0,77].
Then

(3.8) /O " B)i(ta)da > 0

for allt > 0.

Proof. Since 7* > max {a}, a3}, the matrix

SV/T B(CL)€7 foa D+M(l)dlda
0
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is irreducible, and there exists € € (0,7*) such that
Q= 5’/ B(a)e~ Jo PHMDdl g,
€
is irreducible. For t > 7*, we have

( +S/ D+M(l)le( )da

Y

/ B( )6 Iy D+M(l)le( )da

*

S
( inf min{Wl(U),/ﬂvfg(U)}> S‘/ Bla)e  Jo D+M(l)dl< 1 )da
[t—r*,t—e] -
. . [T = 1
N (ae[tlrrl£7ta] mln{Wl(U), WQ(U)}) @ < 1 > ’
Considering t € [7%, 7% + ¢], we have
W > (it win {i(0), Wa(0)}) @ Nssof ).
— \o€lo,7¥] ’ 1 - 1
Recalling that f0+°°B(a)i(t,a)da = §-1i(t,0) = S~1W(¢), it follows that (3.8) is

satisfied for all ¢t € [7*,7* + £]. Using induction arguments, it follows that the result
holds on [7* + ne, 7" + (n + 1) €]. a

Y

3.2. Irreducibility property. Recall that the essential growth rate is a key no-
tion in applying spectral theory to a linear strongly continuous semigroup of bounded
linear operators (see Webb [61, 62] and Engel and Nagel [20]).

LEMMA 3.4. Let Assumption 1.1 be satisfied. Then the essential growth rate of

{T(A+L }t>0 satisfies

Wo,ess ((E-F L)o) < —dmin.

Proof. Since L is compact, bounded, and linear, it follows from [19, Theorem 1.2]
that

(3.9) Wo,ess ((A\"' L)O) < Wo,ess (A\O) < wp (A\o) = lim o (HT H)

t—+oo

where Ay is the part of A in the closure of its domain Dom(A\). Recall that Ay is the

infinitesimal generator of a strongly continuous semigroup {Tﬁo (t)} >0 of bounded

linear operators which is defined by
Ogz2 \ Oz
o (%)= (i )

-~ _J e amt DEMWdl; (o —¢) if a > t,
0 otherwise.

where
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Observe that

Combining this with (3.9), we deduce that

“lio (Il

nel) |, e
7< lim M:—dmm. a

(52 ) < 2

t——+oo t t——+oo t
Let
Q:={AeC:Re(N) > —dmin}-

By directly calculating the resolvent of E, we obtain the following lemma. N
LEMMA 3.5. Let Assumption 1.1 be satisfied. The resolvent set p(@ of A con-

tains 2, and for each X € ) the resolvent ofg s given by the formula
~ 1 « o 0R2
e (3)-()

<p(a) C e Jo )\I+D+M(l)dla i /a . Ie >\1+D+M(”dlw(s)ds
0

where

Consider the characteristic function A (M) defined by
— +OO a
(A):=1- S/ B (a) e o MADHMDdl g,
0
LEMMA 3.6. Let Assumption 1.1 be satisfied. The spectrum ofg—l—L in ) satisfies
o (A+1) ={req:det(A(N) =0}

Moreover, for each \ € Q with det (A (\)) # 0, the resolvent of A+ L is given by the

formula
(A - (E—FL))_I < " ) = ( 0(“;2 )

where

+oo r
(p(a) — e I AI+D+M(h)dl A (/\)—1 |:O[ +S B (T‘)/ e I )\I+D+M(l)dl’¢1(s)dsd7'
0 0

+/a oI AI+D+M(l)dlw(8)d8
0

Proof. Let A € Q. Then A\ — A is invertible and

MN—-A-L= <I—L(M—X)l> (M—E).
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Thus, A\ — A — L is invertible if and only if I — L(/\I — 1®_1 is invertible, with

(3.10) (/\I—E—L)il - (/\1—2)71 <I—L(M—E)l>

(I—L(AI—/T)l) ( ;’;i ): ( f;z )

—+o0
as = (I—S/ B(a)efoa)\I+D+M(l)dlda> ay
0

-1

Then ¥ = 1 and

“+oo a
o 51/ B(a)/ 67fSa)\I+D+M(l)dl’lb1(8)dea,
0 0

—+o0 r
=AM — S B (T‘)/ e~ JIAEDEMWdLy,, (&) dsdr.
0 0

Solving for a; and v, we deduce that I — L(/\I — E)fl is invertible if and only
if A(\) is invertible. Moreover, if A () is invertible, we have

~ 1 -t (6] aq
(-20-07) ()-(o)
_ < A()\)_l |:042 +SIO+OOB(T‘) for 6_f:)\I+D+M(l)dlw2(8)dsdr] ) '
o
The result follows. a
For each A € Q with det (A (X)) # 0,

-1 1
(3.11) AN = et
with
G [toee — [& A di+ma(D)dl
LA =1 & (4o _1“1)\ d z:iglz fo Bula)e™ e e
1 [ Bala)e f§ Aeasma( g 1
and
o —+o0 N —+oo N

det (A (/\)) -1-5,5, B (a)ef Is )\+d1+m1(l)dlda/ ﬂg(@)@i Js >\+d2+m2(l)dlda'

0 0

We observe that as A approaches infinity, the matrices A and I' approach the identity.
However, for any finite A, the entries of I' are strictly positive. Define

—+o0

+00 .
(3.12)  Ro(5) := 515, Bi(a)e™ Jo htmidlgq / Ba(a)e™ Jo d=tm2dl g,
0

0

LEMMA 3.7. Let Assumption 1.1 be satisfied. If Ro(S) > 1, then there exists a
unique Ao > 0 such that

det (A (Ao)) = 0.
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Proof. Suppose Ry(S) > 1. Then det (A(0)) < 0. On the other hand, as A tends
to infinity, det (A())) tends to 1. Thus, there exists Ag > 0 such that the determinant
is zero. Furthermore, calculation shows that < det (A())) is positive for A > 0. Thus,

Ao is unique. a
Let
A
(3.13) C) = ddet (A () S0
dX A=Xo

Then for \ sufficiently close to Ao we have the approximation

A= Ao

Rearranging, and combining with (3.11), we obtain

hm)\g))\o (A — AQ) A(}\)il = hm)\g))\o ()\ — )\0) ml—‘()\)

3.14
(3.14) = son=r T (0)-

This is used in the following lemma, along with the resolvent formula given in Lemma
3.6, to calculate a projector associated with \g. We refer to Yosida [64, Theorem 3,
p. 299] for more results about this topic.

LEMMA 3.8. Let Assumption 1.1 be satisfied. If Ro(S) > 1, then Ao is simple

eigenvalue of (E-q- L) and the corresponding projector on the generalized eigenspace

of (E—i— L) is given by
« o ORz
w(5)-(%)

- _ +o0 T -
o(a)=e~ Jo X TFDEMDAL o X )11 ()g) |:O¢+S/ B (7“)/ e~ JS A THDEMDdLy, (o) sy | |
0 0

where

Furthermore, if &« > 0 and ¥ > 0, and at least one is nonzero, then o(a) > 0 for all
a > 0.

Proof. Since C(Ag) > 0 and the nullspace of A(X\g) has dimension one, it follows
that Ao is a simple eigenvalue. Furthermore, the projector II, onto the generalized
eigenspace associated with \g is given by

o= lim (A — o) (/\I— (2+L>)71.

A= Ao

Iy

Using (3.14) and the resolvent formula given in Lemma 3.6, we obtain the given
formula for ¢. Finally, the entries of I'()\g) are all strictly positive and each of the
other matrices in the formula for ¢ are nonnegative and have full rank, so ¢(a) > 0
for all @ > 0 if (a,1)” is nonnegative and nonzero. O

In order to prove that )\g is a dominant eigenvalue, we use a result for irreducible
semigroups. Whenever

min {@y, a2} < 400



1076 PIERRE MAGAL AND CONNELL MCCLUSKEY

the semigroup generated by problem (3.1) is not irreducible. The irreducibility prop-
erty is obtained by considering the following restricted problem:

(Or 4+ 0a) i1(t,a) = — [d1 + m1(a)]i1(t,a) for a € (0,a1),
(815 + 8a) iQ(t, ?) = — [dz + mQ(a)] ig(t, a) for a € (0,62) ,
il(t, 0) = 5’1 0a2 62 (CL) ig(t, a)da,

(3.15) 0
ig(t, 0) = SQ 0 ! 61 (CL) il(t, a)da,
7;1(07 ) = Zé € L}F ((Oaal) 7R)7
i2(0,.) = i2 € L ((0,@) ,R).

From the above resolvent formula, combined with results on irreducible positive semi-
groups in Banach lattices (see Webb [62]) applied to system (3.15), we obtain the
following theorem. We also refer the reader to Arino [3, 4], Nagel [48], and Thieme
[55] for more results about this topic.

THEOREM 3.9. Let Assumption 1.1 be satisfied. Suppose Ro(S) > 1. Then
Ao > 0 is a simple dominant eigenvalue of (g—i— L), or equivalently

T(ayr), (O =TTz ) (1) =Ty, V>0,

and there exist constants € > 0 and n > 0 such that

|T(are) O =0 < ne= )z — )| v >0,

As a consequence of the above theorem, we obtain the following result.
COROLLARY 3.10. Let Assumption 1.1 be satisfied. Let i(t,a) be a solution of

(3.1) with iy € Mo. If Ro(S) > 1, then there exists t* = t* (ig) > 0 such that

+oo
B (a)i(t,a)da>>0 Vt>t".

< Oz ) — 11, ( 032 )
¥ 20

Since i € /T/l\g, it follows from Lemma 3.8 that ¢(a) > 0 for all @ > 0. Thus,

0
Proof. Let

+oo

B (a) p(a)da > 0.
0

Also, using Theorem 3.9, we find that
() =m0 (%)
=Ty, O () + Ty, 0110 ()
= NI, ( OZPEZ ) + Ty, () (1= Tly) ( OZ!RQ )
_ ot < Off ) FT g, (0 (= Tia,) ( Ol!iz ) .

0
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Noting, from Theorem 3.9, that

- —Xot _
e
we obtain

—+o0 “+oo
lim e Aof B (a)i(t,a)da = B (a) ¢(a)da > 0.
t—+o00 0 0

The result follows. 0

3.3. Extra property. We start this subsection by showing that the conclusion
of Corollary 3.10 holds in the case Ro(S) < 1.
PROPOSITION 3.11. Let Assumption 1.1 be satisfied. Let i(t,a) be a solution of

(3.1) with ig € Mo. Then there exists t* = t* (i0) > 0 such that

+oo
B(a)i(t,a)da >0 Vt>t*.
0

Proof. Let i(t,a) be a solution of (3.1). Let
i(t,a) = e Di(t, a)
for all t,a > 0, where o > 0 is yet to be determined. Then
(8 + 0a)i(t,a) = e~V (8, + 8,)i(t,a) = — [D + M(a)]i(t, a)

and
—+oo +oo

i(t,0) = e°ti(t,0) = S B(a)i(t,a)da =S B (a) e““i(t, a)da.
0 0
Therefore, i(t,a) is a solution of the following system:
(at +0,)i(t, ) = [D + M(a)]i(t, a) for a > 0,
(3.16) it, Sf ) e9i(t, a)da,
?(o,.) =e %%y € L1 ((0 +00),R)%.

It is possible that B (a)e®® ¢ L*> ((0,4+00),M; (R)). However, we can always find
a >0 and @ > max{a;,as} such that

Ro(S) := 5’15*2/ B (a)e* e o' d1+m1(l)dlda/ Ba(a e~ Jo datma(Ddl g,
0

Then
(t a) > (t a),
where (£, a) is the solution of
(8 + 0a)i(t,a) = — [D + M(a)]i(t,a) for a >0,
(3.17) i(t,0) = S [T B (a)e™i(t, a)da,
i(0,.) = e~y € LY ((0,+00),R)”.
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Then, the result follows by applying Corollary 3.10 to system (3.17). 0
As a consequence of Proposition 3.11 we obtain the following invariance property.
COROLLARY 3.12. Let Assumption 1.1 be satisfied. Then

T(A+L)0(t) ({ORz} X M\o) - {ORz} X M\o Vvt > 0.

Proof. Let ig € M\O. Assume that there exists t; > 0 such that

Or2 -
T(A+L)O(tl) ( ZR > € {Og2} x OMo.

Then by Proposition 3.2, we have

“+o0
B(a)i(t,a)da =0 Vt>ty,
0

and we obtain a contraction with Proposition 3.11. Thus, no such ¢; exists. a

4. Extinction. Recalling the definition of M, given in (3.6), we define

M := Xoy = [0, +00) x {0g2} x LL ((0,+00),R)?,

My = [0,400) x {0g2} x Mo,
and
8/\/10 = M \ MO.

LEMMA 4.1. Let Assumption 1.1 be satisfied. There exists ST € (0,—|—oo)2, such
that

(4.1) S(t) < St vt>0,
and for each ty > 0, there exists S~ = S~ (to) € (0,400)* such that
(4.2) Sit)>85" >0 Vt>t.

Proof. As in (2.1), we have

AN (t)

(4.3) —

=A— DN(1).
Since D is diagonal, a consequence of (4.3) is that

max g—i,Nl(O)

max 3—3, N5 (0)

for all t > 0. Letting S™ = N, the first part of the lemma is proven.
Additionally,

+oo
/ i(t,a)da < N(t) < N,
0
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and so

+o0 +oo
/ B (a)i(t, a)da < / |Bll,~ it a)da < | B . N*
0 0

for all ¢ > 0. Therefore,

ds(t)

o = A= DS(t) - diag(S(t)) 7 B (a)i(t,a)da

— A — DS(t) — diag ( - B(a)ift, a)da) S(t)

where D = D + ||B||; diag (NT). Since D is diagonal, it follows that for a given
to > 0,

S(t) > 8™ :

. A1
mm-< ————— S t }
{d1+|\B||mNr’ 1(fo)

. Ao
min ¢ ——=22——— S5 (¢ }
LBl g 22 (to)

for all t > tg. O

LEMMA 4.2. Let Assumption 1.1 be satisfied. Then My is positively invariant

under {U(t)},>q (the semiflow generated by (2.4)). Moreover, Ep = (Sp.ip) =

(D‘lA, Og2, OL1(07+OO)) is globally exponentially stable for U restricted to OMy.
Proof. Let (Sp,0gz2,i9) € 0My. Then i € 3/\70 and we have

(Op + 0a)i(t,a) = — [D + M(a)]i(t,a),

i(t,0) = diag(S(t)) [."°° B (a)i(t, a)da,
i (0,.) = io.

By using (4.1) we have

o~

i(t,a) <i(t,a),
where

~

(O +0a)i(t,a) = — [D + M(a)]i(t,a),
i(t,0) = diag(S*) [, B(a)i(t,a)da,
i(0,.) = do,

and by applying Proposition 3.2 to the above linear system, we deduce that

—+o0

0< /+°O B (a)i(t,a)da < B (a)i(t,a)da = 0,
0 0

and the result follows. d
THEOREM 4.3. Let Assumption 1.1 be satisfied. Assume that
Ro < 1.

The disease-free equilibrium is global asymptotically stable.



1080 PIERRE MAGAL AND CONNELL MCCLUSKEY

Proof. 1t is sufficient to prove that the global attractor A is equal to the singleton

Sp
(o ) ) I
021(0,400)
where
EF = DA
Consider a total solution
S(t)
Y(t)= Op2 e A
i(t,.)
By Lemma 2.2, we have
S < Sp.

Define the function £ : L} ((0,+00);R?) — R% by
(4.4) £[v] = / B(a) / ¢~ J7 D+MWAL (6)ds d.
0 0

Then
d ..
:/ B(a)/ e_fsaD+M(l)dlgi(t,s)dsda

_ /O ~ Bla) / " e Jo Dy {_%m, 5)— (D + M(s))it, s)] ds da.

0

Performing the integration with respect to s, we obtain

d

Lt )] = - /O ~ Bla) [e—ff D+M<l>dli(t,s)]“ da

s=0

= / B(a)e™ Jo PHMWdlgq (¢ 0) — / B(a)i(t,a)da.
0 0

% B(a)i(t, a)da, and

Using the boundary condition to replace i(t, 0) with diag(S(t)) J,

defining
Ag = / B(a)e™ Jo' DM Dl g, diag (§F) )
0

we have
%L [it,.)] = [Asdiag (Sp) " diag(S(t)) — 1] /O ~ Bla)i(t, a)da.

One may observe that Assumption 1.1 implies that Ag is a 2 x 2 irreducible
nonnegative matrix. Moreover, Ry < 1 implies 7 (Ag) < 1 (where r (Ag) is the
spectral radius of the matrix Ag). It follows that there exists w = (4,5 ) > 0 such that

wlAg =r(Ags)w?.
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Thus,

(4.5) %wTﬁ li(t,.)] = [r (Ag) w” diag (Sp) " diag (S()) — wT} /0 ~ Bla)i(t, a)da.

Using the fact that S(t) < Sr and r (4s) < 1, we deduce that

(4.6) %MT,C [i(t,.)] <0 VteR.
Since (4.5) is coupled with
+oo
%ﬁt) =A—DS(t) — diag(S(t)) B (a)i(t,a)da,
0

equation (4.6) achieves equality only if [;~ B (a)i(t,a)da is zero.
Consider a point Zj in the alpha limit set of Y (¢). Let

(t) < o )
Z(t) = Og2
i(t,.)

be the solution that passes through Zy at time 0. Then w’ £ ﬁ(t, )] is constant along
Z(.). Tt follows that fOOOB(a)Z(t,a)da is identically zero. Thus, Z(t) € My, and
by Lemma 4.2 the disease-free equilibrium is globally asymptotically stable in 9 M,
and we deduce that the alpha limit set of Y'(¢) consists solely of the disease-free
equilibrium. Finally since t — w” L[i(t,.)] is decreasing and is zero at the alpha limit
set, we deduce that it is identically zero, and the result follows. a

5. Uniform persistence.

LEMMA 5.1. Let Assumption 1.1 be satisfied. Then My is positively invariant
under {U(t)},~, (the semiflow generated by (2.4)). Moreover, for each (So,0rz,i0) €
My, there exists t* > 0, such that

+oo
B(a)i(t,a)da >0 Vt >t
0
or equivalently
—+oo
Br(a)ig(t,a)da >0 Vt>t" for k=1,2.
0

Proof. The first part of this proof allows for the case that one or more components
of S(0) may be zero. Since

where
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we deduce that there exists sufficiently small ¢y > 0 such that
i(to, ) S M\O.
Now, by (4.2), we have

S(t)>S" >0 V>t

Let
i(t,.) = i(t +to, .).
Then
(0y + 0a)i(t,a) = — [D + M(a)]i(t, a),
(5.1) i(t,0) > diag(S™) [, B (a)i(t, a)da,

7(0,.) = i(ty,.) € M.

Let iT(,.) be the solution to the system that is obtained by replacing the inequality
in (5.1) with an equality. Then

i(t,.) >it(t,.),

and the result follows by applying Proposition 3.11 and Corollary 3.12 to i (¢,.) and
the system that it solves. O

By combining Theorem 4.2 in Hale and Waltman [27] and Theorem 3.7 in Magal
and Zhao [44] (see also Theorem 2.11 in Magal [40] for both discrete and continuous
time versions of this results), we are able to prove the following theorem.

THEOREM 5.2 (uniform persistence). Let Assumption 1.1 be satisfied. Sup-
pose Ry > 1. Then the semiflow U is uniformly persistent in My, (with respect
to the decomposition (0Mo, My)). That is, there exists € > 0, such that for each
(S0, Ogz,i9) € Mo,

liminf ||i(¢,.)]| > e.

t——+oo

Furthermore, the semiflow U has a compact global attractor Ay in Mo.
Proof. Recall that the disease-free equilibrium is given by Er = (Sp,ir) =
(D7'A,011(0,400)) and is globally exponentially stable in 9Mg. Denote the compo-

nents of Sg as follows:
- SF1
Sp = < S ) )

Since Ry > 1, there exists € > 0 such that
(5.2)

+oo “+o0 .
(Sk1—¢) (Sr2 — 5)/ Bi(a)e Io dl+m1(l)dlda/ Ba(a)e™ Jo' datmaidl gy > 1,
0 0

Assume that there exists (Sp, Ogz, i) € My such that

(5.3) ||(S(t),0R2,i(t, ) — (§F70R270L1(0,+oo))u <e Vt>O0.
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Then we have

S@p><§$:i>::55 Vit >0,
and hence
(8 + 8a)i(t,a) = — [D + M(a)] i(t, a),
i(t,0) > diag(S2) [, B (a)i(t, a)da,
i(0,.) =iy € M.
Therefore
i(t,a) >i(t, a),
where
(8, + 0a)i(t,a) = — [D + M(a)]i(t, a),
(5.4) i(t,0) = diag(S2) [o> B (a)i(t, a)da,
7(0,.) =iy € M.

Recalling (5.2), and applying Theorem 3.9 to (5.4), we deduce that

0R2 Aot OR2
II -~ =e 1l .
Ao < i(t, ) ) € Ao 20

for some A\g > 0, where II,, is given in the statement of Lemma 3.8. It follows that

, Op= \||
(5.5) lim HH)\O ( /Z'\(t, ) )H = +00.
Note that the norm |- | defined by

t—4o0
(5 msflon (5 Y- (5 )

is equivalent to ||-||. Thus, recalling that i(¢,a) > i(t,a), we see that (5.5) contradicts
(5.3). Therefore, the stable manifold of Er does not intersect M.

We already know (see Theorem 2.1) that the semiflow U is asymptotically smooth,
point dissipative, and that the forward trajectory of a bounded set is bounded. Fur-
thermore, the E is globally asymptotically stable in M. Thus, Theorem 4.2 of
Hale and Waltman [27] implies that U is uniformly persistent. O

The last key ingredient in order to apply our Lyapunov method is the following
proposition.

PROPOSITION 5.3. Let Assumption 1.1 be satisfied. There exists 6 > 0 such that
for each (S, 0gz,1) € Ay,

s>5( }) and /O+OOB(a)i(a)da>6( ' )

Proof. Let (S(t),0re,i(t,.)) be the solution to (2.4) with initial condition (Sp, Ogz,i9) €
Ap. Since this solution is in the attractor, Lemma 2.2 implies

)

S(t)>D'A>0
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for all ¢ > 0. Thus, for sufficiently small §, we have S(t) > (1) for all ¢ > 0.
Furthermore,

i) >0(t,.),

where
(8y 4 0,)i(t,a) = — [D 4+ M(a)]i(t, a),
i(t,0) > diag(D~'A) [ B (a)i(t, a)da,

~

Z(O,.) =19 € M\O.

Thus, by Proposition 3.11, there exists t* = ¢* (ip) > 0 such that
+o0
/ B (a)i(t,a)da >0 ¥Vt >t
0

Let 7% > max {a},a3}. Recall that the mapping (¢, (S, Or2,7)) — U(t) (S, Ogz,1) is
continuous. Also, the mapping ¢ — fOJrOO B(a)i(a) is continuous (in the L' norm).
Thus, there exists € = 6(50, ORz,io) > 0 such that if (§0, 0R2,20) e Ay with

H(§070R27/i\0) - (SOaOR27iO)H S g,

and the solution to (2.4) with initial condition (§0, Oz, 10) is denoted by (S(t), Ogz, i(t, J),
then
+o0 R

B(a)i(t,a)da>0 Vte [t*,t"+717].
0

Now by using Lemma 3.3 we deduce that
+o0 N
/ B (a)i(t,a)da >0 VYt >t
0

Therefore, using the compactness of Ag and a finite cover, we deduce that there exists
t > 0, such that for each (S, Orz, o) € Ao,

“+o0
B(a)i(t,a)da >0 Yt >1,
0

where (S(t),0,1i(t,.)) is the solution to (2.4) with initial condition (Sy,0,4p). Now by
using the fact that Ap is invariant under U, it follows that for each (Sg, Ogz,i9) € Ao,

“+o0
B (a)io(a)da > 0.
0

Now using the continuity of 7o — f0+oo B(a)ig(a) again, and the compactness of Ay,
the result follows. 0
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6. Global asymptotic stability of the endemic equilibrium. In this sec-
tion, we use a Lyapunov functional to show that, for the case Ry > 1, all solutions of
(1.1) for which the disease is initially present tend to the endemic equilibrium E*.

Throughout this section, we use the variables xy, yi, and z for k = 1,2, defined

by . ;
o (t) = Sgg)7 yp(t,a) :== zlz_;gt(;;)b), zi(t) == Z:;gt(b?)

We begin by proving two identities that can be used to simplify the Lyapunov cal-
culation that appears later in this section. In these identities, and throughout the
section, we use the notation that j, k € {1,2} are distinct. In these propositions, we
note that the function H(¢) may be given as a function of xj, or zj, but not yy since
yr. depends on a.

ProposITION 6.1. If Ry > 1, then

[ @iz (@) s — =y Hra =0

for any H = H(t).
Proof. We first note that

ir(t,a) S;(t)

| s@ii@ursda= [ g% G da
= %/0 Br(a)ir(t,a)S;(t)da
Z; (O) ij (tv 0)

0)

55 45(
/0 Br(a)iy(a)z;da.

Subtracting the right-hand side from the left-hand side gives the result for the special
case where H = 1. Then, since H does not depend on a, multiplying both sides by a
general H(t) gives the desired result. O

In the previous proposition, and in the next one, the condition that Rg be greater
than one appears in order that the endemic equilibrium be defined.

The next proposition will be used in the Lyapunov calculation to move terms that
do not depend on a from one integral to another.

PROPOSITION 6.2. If Ry > 1, then

i1(0)53
i5(0)57

/00 B2(a)is(a)Hda = /Oo B1(a)ii(a)Hda
0 0

for any H = H(t).
Proof. We first note that without H, we have

e — A0
| iz = 55

i1(0)53 15(0)
i5(0) 57
1(0)53

2
i5(0) 57

S3
/ B1(a)ii(a)da.
0
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Then, since H does not depend on a, multiplying both sides by H gives the desired
result. O

The main theorem of this section is the following.

THEOREM 6.3. If Rg > 1, then the endemic equilibrium E* is globally asymptot-
ically stable.

Proof. Let v(t) = (S(t),i(t,.)) be a complete solution to (1.1) that lies in the
attractor Ay C M. From Proposition 5.3, we know there exist d1,d2 > 0 such that

Sk () <6y and 9 < i(t a)
Sk ir(a)
fork=1,2,t e R, and a > 0.

Let g(u) = u —1 —1In(u). Then g : (0,00) — Ry is decreasing for x € (0,1), is
increasing for # > 1, and has global minimum g¢(1) = 0. It follows from (6.1) that
g(Sg—l(f)) and g(z’;((&))) are bounded.

Let

Vs, (t) = g <Sgg>) Vi) = /O ~ axla)g (Z’;:’Ea ‘)”) da,
where

(6.2) an(a) = / " Be(r)is(r) dr

Since B, is bounded and 0 < if(7) < i%(0)e P, it follows that aj(a) is bounded
above by a decaying exponential. Then, since g(zf*(f’j)) is bounded, it can be shown
e

that V;, is finite for each ¢, k =1, 2.
We consider the Lyapunov functional

< 09

(6.1) o <

where K = ggg;g—% When necessary, we interpret V as a function of the state
variables S and 7. We note that, when restricted to Ap, the function V is bounded.
Furthermore, V' obtains its minimum value of 0 only at E*.

For clarity of presentation, we first find the derivatives of Vg, and V;, , and then
combine them to get the derivative of V. In the following calculation, we use the

substitution

which comes from expanding ds’“ = 0 at the endemic equilibrium. Using this to
replace A\, we obtain

dVs, - (1 Sk) 1 dSy

dt Sy) S; dt

:( §Z>sl [dk(Sk ) + / 8,(a (a)SZ—ij(t,a)Sk)da}

Sk — S},
= -, B gi sks*) <1__)/ Pite S e

1
SS* / Bila 1_x__ngck+yj .

(6.4)

= _dk
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Next, we calculate the derivative of V;, .
dvi, —d % ir(t,a)
at dt/o a’“(a)g( i (a) >da
d [ i
“ ), oo (M
Using 0 =t — a to replace a, we obtain
avi, d [* ix(o 0)
b= t— . do
at di /_OO o U)g( (0
ik(t,0)> /t (zk( : )
= a(0)g ( ” + w(t—0o)g *
AR 70
i) (t ° Zk( ,a)
:akOg<_* >+/ aag( >da
R SAON AN SR
Now, using (6.2) to replace a(0) and «/,(a), and combining the integrals, we find
dV; /OO . ik(t, 0) g (t, a)
2w ﬁkaz*a<g<,* -9 —= da
dt 0 (@)ii(@) i(0) ir(a)

(6.5) = /OOO Br(a)ir(a) (g (2x) — g (yk)) da

ol
—~
~
I
e
(=}
~
N——
U
S

- / Be(a)i%(a) (21 — o + In g — In 24) da.
0

Paying careful attention to the subscripts, we now use (6.4) and (6.5) to calculate the
derivative of V, defined in (6.3), obtaining

)2 o Qx 2
dV:_dl(Sl_Sl) —Kdg(S2 SQ)

dt 5,57 5553

1
/ﬁg 22()[1—x——y2x1+z2+lny2—lnz'2]da

1
—|—K/ Bi(a)ii(a [1—x——y1x2+z1+lny1—lnz1]da.
2

We now use Proposition 6.1 twice, with H = 1 — % for k=2and with H =1— % for
k =1, to add terms to the two integrals without changing the value of the expression.
This gives

)2 _Qx\2
dV :_dl(Sl_Sl) KdQ(S2 SQ)

dt S8 5553

1
/ﬁg a)is(a )[1———z1—|—1— +z2+lny2—ln22]da
z1

1
& [ s - a1 gy - s
0 2

z2

Next, we interpret Proposition 6.2 as allowing an expression that does not depend
on a to be subtracted from one integral and added to the other. We subtract H =
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zog — z1 — In zo + In z; from the first integral and add it to the second, obtaining

*\2 *\2
AV Bi=S) (5 S5)

dt S8 5553

/ Ba(a)is(a [ 1 lnzl} da

1
+K/ B1(a)ii(a [1——+1—m—2+1ny1 lnzg}da.
X9 Z9

We now add and subtract Inx; to the first integral and In 25 to the second. Then, by
manipulating logarithms, we find

av (51 _Sik) (52—55)2

— = —di e — Ky
dt 1 Sls* 2 SQS*

/ Ba2(a)is(a [1—i+1 — +1- yle—i—lnywcl}da
1 z1 21
+K/ Aula)ii(a [1—i+lni+1—y1”2+1ny1x2}da
T2 Z9 29

5)° (S2 — S3)°

= S e, (52— 5
R 5,55

- [ @i o (5) v (22 | da
& [Th@is@ | () +o (22 |da<o,

with equality if and only if

(6.6) Sp=2S, and y; =2z

for j,k = 1,2 with j # k. We have now shown that the function V is nonin-
creasing along any complete solution v(¢) in the attractor A4g. Consider a point
P = (Sp,0g2,ip) in the alpha limit set of v(f). We deduce that V is constant along
any complete orbit v’ (t) = (SP(t),0p2,iP(t)) passing through P € Ay. By (6.6),
applied to v, we have

SP _ S*
and
i) _ gy Bta) Gt —a0)
ZZ(O) = k(t) - yJ(tv )_ Z;(CL) Z;(O)
Thus,

{0 =i (¢ 0,020

for all t € R and all @ > 0. Since the left-hand side does not depend on a, it follows
that the right-hand side must take on the same value for all ¢ > 0. It then follows
that both sides of the equation remain fixed as a and ¢ are changed. Thus il (,0) is
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constant for k£ = 1,2. Combined with S¥ = S*, we see that the complete solution v
is constant. Hence

vP(t) = E* VteR.

Therefore the alpha limit set of v(t) is simply {E*}. Similarly, the omega limit set of
v(t) is also {E*}. Since t — V' (v(t)) is nonincreasing function, we deduce that

V(u(t) =V (E*) VteR.

That is, V' is constant along the complete solution v. We now apply to v the argument
that was just used for v*, concluding that

v(t)=E* VteR.

We have now shown that the arbitrary complete solution v in the attractor Ay must
be the endemic equilibrium solution. Thus, we have shown that

Ao =1{E}. O

7. Application to nosocomial infection. In this section, we consider an epi-
demic of bacteria arising from the interaction between patients and health care workers
(HCWs) in a hospital. This study is motivated by some earlier models introduced in
D’Agata et al. [13] describing nosocomial infections. Such problems have been consid-
ered previously in several articles [12, 14, 13, 15, 24, 63]. The results of [13] suggest
that including both antibiotic resistant and nonresistant strains of pathogen does not
play a major role in the population level infection dynamics. Here we only focus on
the transmission of the resistant strain. The age of infection is introduced in such a
context to account for antibiotic treatment in the model.

Let Hy(t) be the number of uncolonized HCWs, H¢ (t) the number of colonized
HCWs, and S(t) the number of susceptible patients at time ¢t. Let i(t,a) be the
density of infected patients who have been infected for duration a at time t. Suscep-
tible patients may become newly infected through interaction with a colonized HCW.
Typically, the colonization of HCWs is of a superficial form, such as dirty hands that
carry the pathogen. Thus, for colonized HCWs, we assume that the transmissibility
does not depend on the age of infection. The rate vy at which contacts between staff
and patients occur is taken to be constant. When a susceptible patient has contact
with an HCW, the probability that it is with a contaminated HCW is equal to the
fraction ﬁ—g of HCWs that are colonized, where Ny is the total number of HCWs.
Finally, given a contact between a susceptible patient and a contaminated HCW, the
probability that the patient becomes infected is Py € (0,1]. Thus, the rate of inci-
dence of new infections in the patient population is "]‘\’,5 LSHc. All newly infected
patients enter the infected population with infection age 0.

For infected patients, we assume that the recovery rate v is independent of
the infection age. Upon recovery, patients either become susceptible or they leave
the hospital and are replaced by new susceptibles. Here, we have assumed that the
size of the hospital patient population remains constant. We now have the following
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equations to describe the patient population:

dst) _ VR /+00 i(t,a)da — VVPIS(t)HC(t)a
0

dt Ny
di(t,a)  0i(t,a) .
8t + aa — _VRZ(ta a)v
i(t,0) = VVPIS(t)Hc(t),
H
S(0) = So > 0,

i(0,.) =ip € L} (0, +00).

Next, we determine equations for the HCWs, beginning with the incidence. As in
the patient equations, contacts occur at rate vy. Let Po € (0,1] be the maximum
probability that a contact between an infected patient and an uncontaminated HCW
leads to a new contamination. The relative infectivity of patients of infection age a is
~(a) and the density of contacts with patients of infection age a is ng,—g), where Np is
the total number of patients. Thus, the incidence of new contaminations in the HCW
population is ”‘J’VI;C U f0+oo v(a)i(t,a)da. The decontamination rate for HCWs is vg.
We now have the following equations to describe the HCW population:

Hu(t) /O ()it a)da,

it Np HU(t)/OOO’y(a)i(taa)da—’/HHC(t)v

HU(O) = HUO 2 07
Hc(O) = Hgo > 0.

It arises from these equations that Np and Ny are fixed.

We now transform these equations into a form that is a special case of (1.1). To
do so, in the equations for S and Hy;, we make the substitutions

“+o0
/0 i(t,a)da = Np — S(t) and He(t) = Ng — Hy(t)

to obtain
ds(t it
% — UrNp — vRS(t) — ”X]HI S(t)He (L),
Oilt,a)  Oilt,a) _ —vgi(t,a),
Patient ot da
(7.1) equation : vy Py
q i(t,0) = S(t)He (1),
Nu
S(O) - SO 2 07
i(0,.) = o € L% (0, +00)
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and

(7.2)
dHy (t vy P, R
7[]( ) = VHNH — I/HHU(t) - v CHU(t)/ A/(a')z(t’a’)da’

dt Np 0
dHc (t P >
HOW o) _wlep o / +(@)i(t, a)da — vy Ho(t),
equation dt Np 0

Hy(0) = Hyo > 0,
Hc(0) = Hego > 0.

The meaning of the parameters, as well as the values used in simulations, are
listed in Table 1. In spite of the small sizes of typical patient and HCW populations,
this model presents an invaluable opportunity to rigorously study different infection-
age-dependent intervention strategies by observing the impact that different choices
of v(+) have on the behavior of the system.

Equations (7.1) and (7.2) combine to give a special case of (1.1), where group 1 is
the patients and group 2 is the HCWs. Because infected HCWs are assumed to have
a constant decontamination rate and a constant level of infectiousness, the infection
age of this group plays no role. More formally, taking Ho = fooo i2(t,a)da, we see
that all of the results obtained for (1.1) also apply to the nosocomial infection system
being studied in this section.

Using (2.8) to calculate the basic reproduction number for this special case, we
find that

2 +oo
Ro = —VPIPC/ ~v(a)evreda.
VH 0

Antibiotic treatments can be incorporated into the model through the function y(a).
Remember that we consider only infection with the resistant strain. Therefore, v(a)
can be interpreted as the relative likelihood that a patient infected with the resistant
strain transmits the resistant pathogen.

TABLE 1
The parameter values are taken from [13] and are used in the numerical simulations. Values
marked with * were estimated for Beth Israel Deaconess Medical Center, Boston. Values marked
with ** were estimated for Cook County Hospital, Chicago.

Symbol  Interpretation Value Units

Np total number of patients 400* -

Ny total number of HCWs 100* -

i average time during which an HCW stays colonized  1* hours

% average duration of visit to a patient by 1.5* hours
an HCW plus time to the next visit

i average time spent in the hospital for an 28* days

' infected patient

Pr probability for a patient to be infected by 0.06** -
an HCW per visit

Pc probability for an HCW to be colonized by 0.4** -

a patient per visit
~v(a) relative infectivity of patients of infection age a -
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One reasonable possibility is to assume that

(a) = 1, a € [r,72),
v 0 otherwise,

where 0 < 71 < T2 are two positive numbers. This corresponds to the biological
assumptions that patients do not become infectious until a duration 71 has passed
since becoming infected, and that the infection will be detected and effectively treated
after a further time 75 — 7 has elapsed. Then we find that

2

1%
Ro = v PrPo (ef’jRTl — 67”1“772).
VHVR

The above formula suggests that the parameters 71 and 75 play a crucial role for the
persistence (or the invasion) of resistant pathogens. Clearly, these parameters are
related to antibiotic treatment (see [13]). At the level of a single patient, antibiotic
treatment provides an in-host environment that selects in favor of the resistant strain.
As a consequence, due to antibiotic treatment, patients may becomes more likely to
transmit resistant pathogens. But the effects of treatments for a single patient is
a fairly complex system. Some mechanisms involved in such problems have been
described in [11, 2] (see also the references therein).

Figure 3 illustrates the main results of the paper in the context of nosocomial
infections. In the first case, we find Ry =~ 0.81 < 1 and the disease dies out, as
predicted by Theorem 4.3. In the second case, we find Ry ~ 1.13 > 1 and the system
tends to the endemic equilibrium, as predicted by Theorem 6.3.

50 : : : ; ; ; ; 50 : : : ; ; ; ;
— Infected Patients — Infected Patients
—— Colonized HCWs —— Colonized HCWs
40+ 1 40+ 1
= 2
2 2
> 301 1 5 301 1
c c
© ©
c c
2 201 1 2 201 1
© ©
Q o
N N
<) 5]
10 K - &0 i
0 0 ; - * - * - *
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
days days

(a) (b)

Fic. 3. In these figures we use the values of the parameters in Table 1, and subfigure (a)
corresponds to 71 = 3 (days) and 7o = 6 giving Ro ~ 0.81, while subfigure (b) corresponds to 1 = 2
and T2 = 8, giving Ro ~ 1.13.
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