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We study an infection-age model of disease transmission, where both the
infectiousness and the removal rate may depend on the infection age. In
order to study persistence, the system is described using integrated
semigroups. If the basic reproduction number R051, then the disease-
free equilibrium is globally asymptotically stable. For R041, a Lyapunov
functional is used to show that the unique endemic equilibrium is globally
stable amongst solutions for which disease transmission occurs.

Keywords: Lyapunov functional; structured population; global stability;
age of infection; integrated semigroup
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1. Introduction

In this article we first consider an infection-age model with a mass action law
incidence function:

dSðtÞ

dt
¼ � � �SSðtÞ � �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda,

@iðt, aÞ

@t
þ
@iðt, aÞ

@a
¼ ��I að Þiðt, aÞ,

iðt, 0Þ ¼ �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda,

Sð0Þ ¼ S0 � 0, ið0, :Þ ¼ i0 2L
1
þ 0, þ1ð Þ:

8>>>>>>>>><>>>>>>>>>:
ð1Þ

In the model (1), the population is decomposed into the class (S) of susceptible
individuals and the class (I) of infected individuals. More precisely, the number of
individuals in the class (S) at time t is S(t). The age of infection a� 0 is the time since
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the infection began, and i(t, a) is the density of infected individuals with respect to the
age of infection. That is to say that for two given age values a1, a2 : 0� a15a2�þ1
the number of infected individuals with age of infection a in between a1 and a2 isZ a2

a1

i t, að Þda:

The infection age allows different interpretations for values of a. For example, an
individual may be exposed (infected, but not yet infectious to susceptibles) from age
a¼ 0 to a¼ a1 and infectious to susceptibles from age a1 to age a2. In the model, the
parameter �40 is the entering flux into the susceptible class (S), and �S40 is the exit
(or (and) mortality) rate of susceptible individuals. The function �(a) can be
interpreted as the probability to be infectious (capable of transmitting the disease)
with age of infection a� 0. The quantityZ þ1

0

�ðaÞiðt, aÞda

is the number of infectious individuals within the subpopulation (I). The function
�(a) allows variable probability of infectiousness as the disease progresses within an
infected individual.

Another interpretation of the density i(t, a) of infected individuals is thatZ a2

a1

iðt, aÞda, 0 � a1 5 a2

is the number of infected individuals in a particular class which is defined by the
infection age interval [a1, a2]. For example, the infection age interval [a1, a2] could
correspond to an exposed (pre-infectious) phase, an infectious phase, an asympto-
matic phase, or a symptomatic phase. Each of these phases of the disease course can
be defined in terms an infection age interval common to all infected individuals. It is
this interpretation of infection age that is used for the numerical work of Section 4.

Further, �40 is the rate at which an infectious individual infects the susceptible
individuals. Finally, �I (a) is the exit (or (and) mortality or (and) recovery) rate of
infected individuals with an age of infection a� 0. As a consequence the quantity

l�IðaÞ :¼ exp �

Z a

0

�I lð Þdl

� �
is the probability for an individual to stay in the class (I) after a period of time a� 0.

In the sequel, we will make the following assumption.

ASSUMPTION 1.1 We assume that the function a!�(a) is bounded and uniformly
continuous from [0,þ1) to [0,þ1), and we assume that the function a! �I(a) belongs
to L1þ ð0,þ1Þ and satisfies

�IðaÞ � �S for almost every a � 0:

In this article, we will be especially interested in analysing the dynamics of model
(1) in the two situations described in Figure 1. In both cases, (A) and (B), we consider
an incubation period of 10 time units – hours or days depending on the time scale.
For case (A), after the incubation period the infectiousness function �(a) increases
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with the age of infection. This situation corresponds to a disease which becomes

more and more transmissible with the age of infection. For case (B), after the

incubation period, the infectiousness of infected individuals increases, passes through

a maximum at a¼ 20, and then decreases and is eventually equal to 0 for large values

of a� 0. Case (A) could be applied, for example, to Ebola, while case (B) could be

applied to Influenza and various other diseases.

For model (1), the number R0 of secondary infections produced by a single

infected patient [1–4] is defined by

R0 :¼ �
�

�S

Z þ1
0

�ðaÞl�IðaÞda:

System (1) has at most two equilibria. The disease-free equilibrium

�SF, 0
� �

(with �SF ¼
�
�S
) is always an equilibrium solution of system (1). Moreover when

R041, there exists a unique endemic equilibrium

�SE, �{E
� �

(i.e. with �{E 2L
1
þ 0, þ1ð Þ n 0f g) defined by

�SE :¼ 1= �

Z þ1
0

�ðaÞl�IðaÞda

� �
¼

�SF

R0

and

�{EðaÞ :¼ l�I ðaÞ�{Eð0Þ,

with

�{Eð0Þ :¼ � � �S �SE:
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Figure 1. Probability to be infectious as a function of infection age a. The graph (A) is typical
of diseases such as ebola and the graph (B) is typical of diseases such as influenza.
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System (1) has been investigated by Thieme and Castillo-Chavez [5,6]. More

precisely, in [5,6] they study the uniform persistence of the system and the local

exponential asymptotic stability of the endemic equilibrium. The main question

addressed in this article concerns the global asymptotic stability of the endemic

equilibrium (when it exists).
In the context of SIR and SEIR models described by a system of ordinary

differential equations, Lyapunov functions have been employed successfully to

study the stability of endemic and the disease-free equilibrium [7–26]. We also refer

to [27–31] for another geometrical approach which was also successfully applied in

such a context. We refer to [32–34] for more results going in this direction.
One may observe that the problem is much more difficult here, since the system (1)

yields an infinite-dimensional dynamical system. If one assumes, for example, that

�I að Þ � �I 4 0, 8a � 0,

and that

�ðaÞ ¼ 1 �,þ1½ ÞðaÞ

for some �� 0. Then by setting

IðtÞ ¼

Z þ1
0

iðt, aÞda

one derives the following delay differential equation:

dSðtÞ

dt
¼ � � �SSðtÞ � �SðtÞe

��I�Iðt� �Þ,

dIðtÞ

dt
¼ �SðtÞe��I�Iðt� �Þ � �IIðtÞ:

8><>:
Also the system (1) can be viewed as a kind of distributed delay differential equation.

Recently some work has been done on related epidemic models with delay, and we

refer to [35–40] for more results on the subject.
The global asymptotic stability of the endemic equilibrium of (1) has been studied

in [41] whenever the function a! e�Sa�(a)l�I(a) is non-decreasing.
One may observe that R0¼ 1 corresponds to bifurcation points of the disease-free

equilibrium. Also when R041 and the parameters of the system are close to some

bifurcation point (i.e. some parameter set for which R0¼ 1), it has been proved in

[42] that the endemic equilibrium is also globally stable. Nevertheless, no global

asymptotic stability results are known for the general case.
When R0� 1, we first obtain the following result extending the results proved in

[41, Proposition 3.10] and in [6, Theorem 2].

THEOREM 1.2 Assume that R0� 1. Then the disease-free equilibrium ð �SF, 0Þ is

globally asymptotically stable for the semiflow generated by system (1).

WhenR041 the behaviour is more delicate to study.We consider the extended real

�a ¼ supfa � 0 : �ðaÞ4 0g
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
c
C
l
u
s
k
e
y
,
 
C
o
n
n
e
l
l
]
 
A
t
:
 
1
4
:
4
9
 
1
5
 
J
u
n
e
 
2
0
1
0



and we define

bM0 ¼ i2L1
þ 0, þ1ð Þ :

Z �a

0

iðaÞda4 0

� �
:

That is, bM0 consists of the distributions i that will generate new infectives either now

or in future. Let

M0 :¼ 0,þ1½ Þ � bM0

and set

@M0 :¼ 0,þ1½ Þ � L1
þ 0,þ1ð Þ nM0:

Then the state space is the set M0[ @M0.
The main result of this article is the following theorem.

THEOREM 1.3 Assume that R041. Then every solution of system (1) with initial value

in @M0 (respectively in M0) stays in @M0 (respectively stays in M0). Moreover each

solution with initial value in @M0 converges to ð �SE, 0Þ: Furthermore, every solution with

an initial value in M0 converges to the endemic equilibrium ( �SE, �{E). Furthermore, this

equilibrium ( �SE, �{E) is locally asymptotically stable.

One important consequence of the above theorem, concerns the uniform

persistence in the context of nosocomial infection. As presented in [41,43,44], one

may derive from the above results some uniform persistence result of individuals

infected by resistant strain. These consequences will be presented elsewhere, but this

was our original motivation to study such a problem.
The method employed here to prove Theorem 1.3 is the following. In Section 2,

we will first use integrated semigroup theory in order to obtain a comprehensive

spectral theory for the linear C0-semigroups obtained by linearizing the system

around equilibriums. We refer to Webb [45,46] and Engel and Nagel [47] for more

results of this topic. We will also use a uniform persistence result due to Hale and

Waltman [48] combined with the results in Magal and Zhao [49] to assure the

existence of global attractor A0 of the system inM0. We also refer to Magal [42] for a

continuous time version of these results. Then in Section 3, we will first show that it is

sufficient to consider the special case

�I að Þ ¼ �S, 8a � 0 and � ¼ �S

since a change of variables converts the general form of Equation (1) to this special

case. We will then define V the Lyapunov functional

VðSðtÞ, iðt, :ÞÞ ¼ g
SðtÞ

�SE

� �
þ

Z 1
0

�ðaÞ g
iðt, aÞ

�{EðaÞ

� �
da,

where

gðxÞ :¼ x� 1� ln x,

and

�ðaÞ :¼

Z 1
a

��ðl Þ�{Eðl Þdl:
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We will observe that V is well defined on the attractor A0, while V is not defined on
M0 because of the function g under the integral. (For instance, if i(t, .) is zero on an
interval, then V(S(t), i(t, .) is not defined.) Then we prove that this functional is
decreasing over the complete orbits on A0. We conclude this article by proving that
this implies that A0 is reduced to the endemic equilibrium.

The plan of this article is the following. In Section 2, we present some results
about the semiflow generated by (1) and we will present some results about uniform
persistence and about the existence of global attractors. In Section 3, we study the
Lyapunov functional for complete orbits passing through a point of the global
attractor. In Section 4, we will apply the model (1) to the severe acute respiratory
syndrome (SARS) epidemic in 2003.

2. Preliminary

To describe the semiflow generated by (1) we can use both Volterra’s integral
formulation [45,50,51] and integrated semigroup formulation [52–55].

Without loss of generality, we can add the class of recovered individuals to the
system (1) and obtain the following system:

dSðtÞ

dt
¼ � � �SSðtÞ � �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda,

@iðt, aÞ

@t
þ
@iðt, aÞ

@a
¼ ��I að Þiðt, aÞ,

iðt, 0Þ ¼ �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda,

Sð0Þ ¼ S0 � 0,

ið0, :Þ ¼ i0 2L
1
þ 0,þ1ð Þ,

8>>>>>>>>>>><>>>>>>>>>>>:
ð2Þ

dRðtÞ

dt
¼

Z þ1
0

�I að Þ � �Sð Þiðt, aÞda� �SRðtÞ, 8t � 0:

Rð0Þ � 0:

8<:
By assumption �I (a)� �S for almost every a� 0, we deduce that

Rð0Þ � 0) RðtÞ � 0, 8t � 0:

Now, by setting

NðtÞ ¼ SðtÞ þ

Z þ1
0

iðt, aÞdaþ RðtÞ

we deduce that N(t) satisfies the following ordinary differential equation:

dNðtÞ

dt
¼ � � �SNðtÞ ð3Þ

and so N(t) converges to �
�S
. Moreover, since R(t)� 0, 8t� 0, we obtain the following

estimate:

SðtÞ þ

Z þ1
0

iðt, aÞda � NðtÞ, 8t � 0: ð4Þ

1114 P. Magal et al.
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2.1. Volterra’s formulation

The Volterra integral formulation of age-structured models has been used

successfully in various contexts and provides explicit (or implicit) formulas for the

solutions of age-structured models. In this context, system (2) can be formulated

as follows:

dSðtÞ

dt
¼ � � �SSðtÞ � �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda

and

iðt, aÞ ¼

exp

Z a

a�t

�I lð Þdl

� �
i0ða� tÞ if a� t � 0

exp

Z a

0

�I lð Þdl

� �
bðt� aÞ if a� t � 0,

8>>><>>>:
where t! b(t) is the unique continuous function satisfying

bðtÞ ¼ �SðtÞ

Z t

0

�ðaÞ exp

Z a

0

�I lð Þdl

� �
bðt� aÞda

þ

Z þ1
t

�ðaÞ exp

Z a

a�t

�I lð Þdl

� �
i0ða� tÞda

26664
37775: ð5Þ

By using this approach one may derive the following results by using the results given

in [44] (see also [6]). Instead, we use the following approach.

2.2. Integrated semigroup formulation

We use the approach introduced by Thieme [55]. In order to take into account the

boundary condition, we extend the state space and we consider

bX ¼ R� L1 0, þ1ð Þ

and bA : DðbAÞ � bX! bX the linear operator on bX defined by

bA 0

’

� �
¼

�’ð0Þ

�’ 0 � �I’

� �
with

D bA� 	
¼ 0f g �W1,1 0,þ1ð Þ:

If �2C, with Re(�)4��S, then �2 	ðbAÞ (the resolvent set of bA), and we have the

following explicit formula for the resolvent of bA
�I� bA� 	�1 �

 

� �
¼

0

’

� �
, ’ðaÞ ¼ e

�
R a

0
�Iðl Þþ�dl�þ

Z a

0

e
�
R a

s
�Iðl Þþ�dl ðsÞds:
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Then by noting that

dSðtÞ

dt
¼ � � �SSðtÞ � �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda,

d

dt

0

iðt, :Þ

� �
¼ bA 0

iðt, :Þ

� �
þ

�SðtÞ

Z þ1
0

�ðaÞiðt, aÞda

0

0@ 1A,
Sð0Þ ¼ S0 � 0,

ið0, :Þ ¼ i0 2L
1
þ 0,þ1ð Þ:

8>>>>>>>>>><>>>>>>>>>>:
ð6Þ

Moreover by defining biðtÞ ¼ 0
iðt, :Þ

� 	
the partial differential equation (PDE)

Equation (6) can be rewritten as an ordinary differential equation coupled with
a non-densely defined Cauchy problem:

dSðtÞ

dt
¼ ��SSðtÞ þ F1ðSðtÞ,biðtÞÞ

dbiðtÞ
dt
¼ bAbiðtÞ þ F2ðSðtÞ,biðtÞÞ,

8>><>>:
where

F1 S,
0

i

� �� �
¼ � � �S

Z þ1
0

�ðaÞiðaÞda

and

F2 S,
0

i

� �� �
¼

�S

Z þ1
0

�ðaÞiðaÞda

0

0@ 1A:
Set

X ¼ R�R� L1 0,þ1ð Þ and Xþ ¼ Rþ �Rþ � L1 0,þ1ð Þ

and let A : D(A)�X!X be the linear operator defined by

A

S
0

i

� �0@ 1A ¼ ��SSbA 0

i

� �0@ 1A ¼ ��S 0

0 bA

 � S

0

i

� �0@ 1A
with

DðAÞ ¼ R�D bA� 	
:

Then DðAÞ ¼ R� 0f g � L1 0,þ1ð Þ is not dense in X. We consider F : DðAÞ ! X the
non-linear map defined by

F

S
0

i

� �0@ 1A ¼ F1 S,
0

i

� �� �
F2 S,

0

i

� �� �
0BBB@

1CCCA:

1116 P. Magal et al.
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Set

X0 :¼ DðAÞ ¼ R� 0f g � L1 0,þ1ð Þ

and

X0þ :¼ DðAÞ \ Xþ ¼ Rþ � 0f g � L1
þ 0,þ1ð Þ:

We can rewrite the system (2) as the following abstract Cauchy problem:

duðtÞ

dt
¼ AuðtÞ þ FðuðtÞÞ for t � 0, with uð0Þ ¼ x2DðAÞ: ð7Þ

By using the fact that the non-linearities are Lipschitz continuous on bounded sets,

by using (4), and by applying the results given in [52], we obtain the following

proposition.

PROPOSITION 2.1 There exists a uniquely determined semiflow {U(t)}t�0 on X0þ,

such that for each x ¼
� S0� 0

i0

� 	2X0þ, there exists a unique continuous map U2

C([0,þ1),X0þ) which is an integrated solution of the Cauchy problem (7), that is to

say that Z t

0

UðsÞxds2DðAÞ, 8t � 0

and

UðtÞx ¼ xþ A

Z t

0

UðsÞxdsþ

Z t

0

F UðsÞxð Þds, 8t � 0:

Moreover

lim sup
t!þ1

SðtÞ �
�

�S
:

By using the results in [56] (see also [57]), and by using the fact that a! �(a) is
uniformly continuous, we deduce that the semiflow {U(t)}t�0 is asymptotically

smooth (see [58] for a precise definition). Moreover by using again (4), we deduce

that U is bounded dissipative, and by using the results of [58], we obtain the

following proposition.

PROPOSITION 2.2 There exists a compact set A�X0þ, such that

(i) A is invariant under the semiflow U(t) that is to say that

UðtÞA ¼ A, 8t � 0;

(ii) A attracts the bounded sets of X0þ under U, that is to say that for each

bounded set B�X0þ,

lim
t!þ1


ðUðtÞB,AÞ ¼ 0,

where the semi-distance 
(., .) is defined as


ðB,AÞ ¼ sup
x2B

inf
y2A

x� y
�� ��:

Moreover, the subset A is locally asymptotically stable.
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2.3. Linearized equation at the disease-free equilibrium

We now turn to the linearized equation at the disease-free equilibrium. Our goal is

to compute the projector on the eigenspace associated with the dominant eigenvalue,

in order to study the uniform persistence property. The linearized equation at the

disease-free equilibrium �SF, 0
� �

is

dSðtÞ

dt
¼ ��SSðtÞ � � �SF

Z þ1
0

�ðaÞiðt, aÞda,

@iðt, aÞ

@t
þ
@iðt, aÞ

@a
¼ ��I að Þiðt, aÞ,

iðt, 0Þ ¼ � �SF

Z þ1
0

�ðaÞiðt, aÞda,

Sð0Þ ¼ S0 � 0,

ið0, :Þ ¼ i0 2L
1
þ 0, þ1ð Þ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
For this linearized system, the dynamics of i do not depend on S and so, in order to

study the uniform persistence of disease we need to focus on the linear system

@iðt, aÞ

@t
þ
@iðt, aÞ

@a
¼ ��I að Þiðt, aÞ,

iðt, 0Þ ¼ � �SF

Z þ1
0

�ðaÞiðt, aÞda,

ið0, :Þ ¼ i0 2L
1
þ 0, þ1ð Þ,

8>>>>><>>>>>:
where �SF ¼

�
�S
: We define

B̂�
0

�

� �
¼

�

Z þ1
0

�ðaÞ�ðaÞda

0

0@ 1A
with

� :¼ �
�

�S
:

For �2C with Re(�)4��S, we defined the characteristic function D(�) as

D �ð Þ :¼ 1� �

Z þ1
0

�ðaÞe
�
R a

0
�Iðl Þþ�dlda:

Moreover since �I� bA is invertible, we deduce that �I� ðbAþ B̂�Þ is invertible if and

only if I� B̂�ð�I� bAÞ�1 is invertible or for short

�2 	 bAþ B̂�

� 	
, 12 	 B̂� �I� bA� 	�1� �

and we have

�I� bAþ B̂�

� 	� 	�1
¼ �I� bA� 	�1

I� B̂� �I� bA� 	�1
 ��1
:

1118 P. Magal et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
c
C
l
u
s
k
e
y
,
 
C
o
n
n
e
l
l
]
 
A
t
:
 
1
4
:
4
9
 
1
5
 
J
u
n
e
 
2
0
1
0



But we have

�

 

� �
� B̂� �I� bA� 	�1 �

 

� �
¼

�

’

� �
,

�� �

Z þ1
0

�ðaÞ e
�
R a

0
�Iðl Þþ�dl�þ

Z a

0

e
�
R a

s
�Iðl Þþ�dl ðsÞds


 �
da


 �
¼ �

 ¼ ’

8<: :

We can isolate � only if D(�) 6¼ 0. So, we deduce that for �2C with Re(�)4��S, the
linear operator I� B̂�ð�I� bAÞ�1 is invertible if and only if D(�) 6¼ 0, and we have

I� B̂� �I� bA� 	�1
 ��1 �

’

� �
¼

D �ð Þ�1 �

Z þ1
0

�ðaÞ

Z a

0

e
�
R a

s
�Iðl Þþ�dl’ðsÞdsdaþ �


 �
’

0@ 1A:
It follows that for �2C with Re(�)4��S and D(�) 6¼ 0, we have

�I� bAþ B̂�

� 	� 	�1 �

 

� �
¼

0

’

� �
,

’ðaÞ ¼ e
�
R a

0
�Iðl Þþ�dl D �ð Þ�1 �

Z þ1
0

�ðaÞ

Z a

0

e
�
R a

s
�Iðl Þþ�dl ðsÞds daþ �


 �� �
þ

Z a

0

e
�
R a

s
�Iðl Þþ�dl ðsÞds:

Assume that R0 ¼ ½�
Rþ1
0 �ðaÞe

�
R a

0
�Iðl Þdlda��¼0 4 1. Then we can find �02R,

such that

�

Z þ1
0

�ðaÞe
�
R a

0
�Iðl Þþ�0dlda ¼ 1

and �040 is a dominant eigenvalue of bAþ B̂� [46]. Moreover, we have

dD �0ð Þ

d�
¼ �

Z þ1
0

a�ðaÞe
�
R a

0
�Iðl Þþ�0dlda4 0

and the expression

b� �

 

� �
¼ lim

�!�0
�� �0ð Þ �I� bAþ B̂�

� 	� 	�1 �

 

� �
exists and satisfies

b� �

 

� �
¼

0

’

� �
, ’ðaÞ ¼ e

�
R a

0
�Iðl Þþ�0dl dD �0ð Þ

d�

� ��1
�

Z þ1
0

�ðaÞ

Z a

0

e
�
R a

s
�Iðl Þþ�0dl ðsÞds daþ �


 �( )
:

The linear operator b� : bX! bX is the projector onto the generalized eigenspace ofbAþ B̂�, associated with the eigenvalue �0. We define � : X!X

�

S

�

i

0B@
1CA ¼ 0b� �

 

� �0@ 1A:
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We observe that the subset bM0 defined in Section 1 can be identified with

M0 ¼ x2X0þ : �x 6¼ 0

 �

and

@M0 ¼ X0þ nM0:

LEMMA 2.3 The subsets M0 and @M0 are both positively invariant under the semiflow

{U(t)}t�0, that is to say that

UðtÞM0 �M0 and UðtÞ@M0 � @M0:

Moreover for each x2 @M0,

UðtÞx! xF, as t!þ1,

where xF ¼
� �SF�

0R

0
L1

� 	 is the disease-free equilibrium of {U(t)}t�0.

Proof of Theorem 1.2 Assume that R0� 1. Then we first observe that

R0 ¼ �
�

�S

Z þ1
0

�ðaÞl�IðaÞda � 1,
�

�S
� �SE: ð8Þ

We set

�IðaÞ ¼ � �SE

Z þ1
a

e
�
R s

a
�Iðl Þdl�ðsÞds, 8a � 0:

Then since

� �SE ¼

Z þ1
0

e
�
R s

0
�Iðl Þdl�ðsÞds

� ��1
,

we have

�0IðaÞ ¼ �IðaÞ�IðaÞ � � �SE�ðaÞ for almost every a � 0,

�Ið0Þ ¼ 1:

(

We define

Dð Aþ Fð Þ0Þ ¼ x2DðAÞ : Axþ FðxÞ 2DðAÞ

 �

:

Let x2D((AþF )0)\X0þ, then we know [52,55] that

iðt, :Þ 2W1,1 0, þ1ð Þ, 8t � 0,

and we have for each 8t� 0,

iðt, 0Þ ¼ SðtÞ�

Z þ1
0

�ðaÞiðt, aÞda, 8t � 0,
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the map t! i(t, .) belongs to C1([0,þ1), L1 (0,þ1)) and 8t� 0,

diðt, :Þ

dt
¼ �

@iðt, :Þ

@a
� �IðaÞiðt, aÞ for almost every a2 0,þ1ð Þ:

So 8t� 0,

d

Z þ1
0

�IðaÞiðt, aÞda

dt
¼ �

Z þ1
0

�IðaÞ
@iRðt, aÞ

@a
da�

Z þ1
0

�IðaÞ�IðaÞiIðt, aÞda:

By using the fact that i(t, .)2W1,1 (0,þ1), we deduce that

iðt, aÞ ! 0 as a!þ1,

so by integrating by part we obtain

d

Z þ1
0

�IðaÞiðt, aÞda

dt
¼ � �IðaÞiðt, aÞ½ �

þ1
0 þ

Z þ1
0

� 0IðaÞiðt, aÞda

�

Z þ1
0

�IðaÞ�IðaÞiRðt, aÞda

¼ iðt, 0Þ � � �SE

Z þ1
0

�ðaÞiðt, aÞda

¼ � SðtÞ � �SE

� � Z þ1
0

�ðaÞiðt, aÞda

so

d

Z þ1
0

�IðaÞiðt, aÞda

dt
¼ � SðtÞ � �SE

� � Z þ1
0

�ðaÞiðt, aÞda, 8t � 0
ð9Þ

and by density of D((AþF )0)\X0þ into X0þ, the above equality hold for any initial

value x2X0þ.
Let x2A. Since there exists a complete orbit

n
uðtÞ ¼

� SðtÞ�
0

iðt, :Þ

� 	o
t2R

� A

and since

dSðtÞ

dt
¼ � � �SSðtÞ � �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda ð10Þ

it follows that for each t50,

Sð0Þ ¼ e
�
R 0

t
�Sþ
R þ1
0

�ðaÞiðl, aÞda dl
SðtÞ þ

Z 0

t

e
�
R s

t
�Sþ
R þ1
0

�ðaÞiðl, aÞda dl
�ds,

thus

Sð0Þ � e
�
R 0

t
�Sþ
R þ1
0

�ðaÞiðl, aÞda dl
SðtÞ þ

Z 0

t

e
�
R s

t
�Sdl�ds
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and by taking the limit when t!�1, we obtain

Sð0Þ �
�

�S
:

Now since the above arguments hold for any x2A, we deduce that

SðtÞ �
�

�S
, 8t2R: ð11Þ

Now by combining (8), (9) and (11), we deduce that t!
Rþ1
0 �IðaÞiðt, aÞda is non-

decreasing along the complete orbit.
Now assume that A¯M0. Let x2M0\A. By using the definition of �I and the

definition of M0, it follows thatZ þ1
0

�IðaÞið0, aÞda4 0

and since t!
R þ1
0 �IðaÞiðt, aÞda is non-decreasing it follows thatZ þ1
0

�IðaÞiðt, aÞda �

Z þ1
0

�IðaÞið0, aÞda4 0, 8t2R:

Thus, the alpha-limit set of the complete orbit passing through x satisfies

�ðxÞ :¼ \t�0[s �t uðtÞ

 �

� A \M0:

Moreover, there exists a constant C40, such that for each x̂ ¼
� bS� 0

{̂

� 	2�ðxÞ,
we have Z þ1

0

�IðaÞ{̂ðaÞda ¼ C4 0 ð12Þ

and

bS � �

�S
: ð13Þ

Let
nbuðtÞ ¼ � ŜðtÞ�

0
{̂ðt, :Þ

� 	o
t�0

be the solution of the Cauchy problem (7) with initial value

x̂2�ðxÞ: Then (12) implies that x̂2M0, and by using (5) we deduce that there exists

t140, such that Z þ1
0

�ðaÞ{̂ðt, aÞda4 0, 8t � t1:

Now by using the invariance of the alpha-limit set �(x) by the semiflow generated by

(7), and by using (10) and (13), we deduce that for each t24t1, we have

ŜðtÞ5
�

�S
, 8t � t2:

Finally since by (8), we have �
�S
� �SE and by using (9) we obtain

d

Z þ1
0

�IðaÞ{̂ðt, aÞda

dt
5 0, 8t � t2
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so the map t!
Rþ1
0 �IðaÞ{̂ðt, aÞda is not constant. This contradiction assures that

A � @M0

and it follows that

A ¼ xFf g,

the result follows. g

By applying the results in [49] (or [42]), we obtain the following proposition.

PROPOSITION 2.4 Assume that

R0 4 1:

The semiflow {U(t)}t�0 is uniformly persistent with respect to the pair (@M0,M0), that

is to say that there exists "40, such that

lim inf
t!þ1

�UðtÞx
�� �� � ", 8x2M0:

Moreover, there exists A0 a compact subset of M0 which is a global attractor for

{U(t)}t�0 in M0, that is to say that

(i) A0 is invariant under U, that is to say that

UðtÞA0 ¼ A0, 8t � 0;

(ii) For each compact subset C�M0,

lim
t!þ1


ðUðtÞC,A0Þ ¼ 0:

Moreover, the subset A0 is locally asymptotically stable.

Proof Since xF ¼
� �SF�

0R

0
L1

� 	 the disease-free equilibrium is globally asymptotically

stable in @M0, to apply Theorem 4.1 in [48], we only need to study the behaviour of

the solutions starting in M0 in some neighbourhood of xF: It is sufficient to prove

that there exists "40, such that for each x ¼
� S0�

0
i0

� 	2 f y2M0 : kxF � yk � "g, there
exists t0� 0, such that

xF �Uðt0Þx
�� ��4 ":

This will show that f y2X0þ : kxF � yk � "g is an isolating neigbourhood of xFf g

(i.e. there exists a neigbourhood of xFf g in which xFf g is the largest invariant set

for U ) and

Ws xFf gð Þ \M0 ¼1,

where

Ws xFf gð Þ ¼


x2X0þ : lim

t!þ1
UðtÞx ¼ xF

�
:
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Assume by contradiction that for each n� 0, we can find xn ¼
�

Sn
0�
0
i n
0

� 	2
f y2M0 : kxF � yk � 1

nþ1g, such that

xF �UðtÞxn
�� �� � 1

nþ 1
, 8t � 0: ð14Þ

Set

SnðtÞ

0

i nðt, :Þ

� �0@ 1A :¼ UðtÞxn

and we have

SnðtÞ � �SF

�� �� � 1

nþ 1
, 8t � 0:

Moreover, the map t!
�

0

i nðt, :Þ

	
is an integrated solution of the Cauchy problem

d

dt

0

i nðt, :Þ

� �
¼ bA 0

i nðt, :Þ

� �
þ F2 SnðtÞ,

0

i nðt, :Þ

� �� �
for t � 0,

with
0

i nð0, :Þ

� �
¼

0

i n0

� �
:

8>><>>:
Now since bA is resolvent positive and F2 monotone non-decreasing, we deduce that

inðt, :Þ � ~{ nðt, :Þ, ð15Þ

where t!binðt, :Þ is a solution of the linear Cauchy problem

d

dt

0

~{ nðt, :Þ

� �
¼ bA 0

~{ nðt, :Þ

� �
þ F2

�SF þ
1

nþ 1
,

0

~{ nðt, :Þ

� �� �
for t � 0,

with
0

~{ nð0, :Þ

� �
¼

0

i n0

� �
,

8>><>>:
or ~{ nðt, aÞ is a solution of the PDE problem

@~{ nðt, aÞ

@t
þ
@~{ nðt, aÞ

@a
¼ ��I að Þ~{

nðt, aÞ,

~{ nðt, 0Þ ¼ � �SF �
1

nþ 1

� �Z þ1
0

�ðaÞ~{ nðt, aÞda,

~{ nð0, :Þ ¼ i n0 2L
1
þ 0, þ1ð Þ:

8>>>><>>>>:
We observe that

F2
�SF �

1

nþ 1
,

0

’

� �� �
¼ B̂�n

0

’

� �
with

�n ¼ � �SF �
1

nþ 1

� �
:
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Now since R041, we deduce that for all n� 0 large enough, the dominanted

eigenvalue of the linear operator bAþ B̂�n : DðAÞ � X! X satisfies the characteristic

equation

� �SF �
1

nþ 1

� �Z þ1
0

�ðaÞe
�
R a

0
�Iðl Þþ�0ndlda ¼ 1:

It follows that �0n40 for all n� 0 large enough. Now xn2M0, we have

b�n

0

i n0

� �
6¼ 0,

where b�n is the projector on the eigenspace associated to the dominant eigenvalue

�0n. It follows that

lim
t!þ1

~{ nðt, :Þ
�� �� ¼ þ1

and by using (15) we obtain

lim
t!þ1

i nðt, :Þ
�� �� ¼ þ1:

So we obtain a contradiction with (14) and the result follows. g

The following proposition was proved by Thieme and Castillo-Chavez [6]. For

completeness we will prove this result.

PROPOSITION 2.5 Assume that

R0 4 1:

Then the endemic equilibrium xE ¼
� �SE�

0
�{E

� 	 is locally asymptotically stable for

{U(t)}t�0.

Proof The linearized equation of (7) around the endemic equilibrium xE is

dvðtÞ

dt
¼ AvðtÞ þDF xEð ÞðvðtÞÞ for t � 0, with vð0Þ ¼ x2DðAÞ,

which corresponds to the following PDE:

dxðtÞ

dt
¼ ��SxðtÞ � � �SE

Z þ1
0

�ðaÞ yðt, aÞda� xðtÞ�

Z þ1
0

�ðaÞ�{EðaÞda,

@yðt, aÞ

@t
þ
@yðt, aÞ

@a
¼ ��I að Þ yðt, aÞ,

yðt, 0Þ ¼ � �SE

Z þ1
0

�ðaÞ yðt, aÞdaþ xðtÞ�

Z þ1
0

�ðaÞ�{EðaÞda,

xð0Þ ¼ x0 2R,

yð0, :Þ ¼ y0 2L
1 0,þ1ð Þ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
Since {TA0

(t)}t�0 the semigroup generated by A0 the part of A in DðAÞ satisfies

TA0
ðtÞ

�� �� � M̂e��St, 8t � 0,
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for some constant M̂4 0: It follows that !ess(A0) the essential growth of rate of
{TA0

(t)}t�0 is ���S. Let fTðAþDFð xEÞÞ0ðtÞgt�0 be the linear C0-semigroup generated by
ðAþDFðxEÞÞ0 the part of AþDF ðxEÞ : DðAÞ � X! X in DðAÞ. Since DFðxEÞ is
a compact bounded linear operator, it follows that [59,60] that

!essð AþDF xEð Þð Þ0Þ � ��S:

So it remains to study the ponctual spectrum of ðAþDFðxEÞÞ0: So we consider the
exponential solutions (i.e. solutions of the form u(t)¼ e�tx with x 6¼ 0) to derive the
characteristic equation and we obtain the following system:

�x ¼ ��Sx� � �SE

Z þ1
0

�ðaÞ yðaÞda� x�

Z þ1
0

�ðaÞ�{EðaÞda,

�yðaÞ þ
dyðaÞ

da
¼ ��I að Þ yðaÞ,

yð0Þ ¼ � �SE

Z þ1
0

�ðaÞ yðaÞdaþ x�

Z þ1
0

�ðaÞ�{EðaÞda,

8>>>>>><>>>>>>:
where �2C with Re(�)4��S and (x, y)2R�W1,1 (0,þ1) n {0}. By integrating
y(a) we obtain the system of two equations for �2C with Re(�)4��S,

�þ �S þ �

Z þ1
0

�ðaÞ�{EðaÞda

� �
x ¼ �� �SEyð0Þ

Z þ1
0

�ðaÞl�I ðaÞe
�a�da

and

1� � �SE

Z þ1
0

�ðaÞl�I ðaÞe
�a�da

� �
yð0Þ ¼ þx�

Z þ1
0

�ðaÞ�{EðaÞda,

where

�SE :¼ �

Z þ1
0

�ðaÞl�IðaÞda

� ��1
and �

Z þ1
0

�ðaÞ�{EðaÞda ¼ � �S�1E � �S

and

x, yð0Þð Þ 2R
2
n 0f g:

We obtain

1 ¼ � �SE

Z þ1
0

�ðaÞl�IðaÞe
�a�da

�
� �S�1E � �S
� �

�þ �S þ � �S�1E � �S
� � � �SE

Z þ1
0

�ðaÞl�IðaÞe
�a�da

¼ � �SE

Z þ1
0

�ðaÞl�IðaÞe
�a�da 1�

� �S�1E � �S
� �
�þ � �S�1E

� �" #
,

thus it remains to study the characteristic equation �2C with Re(�)4��S,

1 ¼ � �SE

Z þ1
0

�ðaÞl�IðaÞe
�a�da

�þ �Sð Þ

�þ � �S�1E

� �" #
: ð16Þ
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By considering the real and the imaginary part of �, we obtain

Re �ð Þ þ � �S�1E

� �
þ i Im �ð Þ

� �
Re �ð Þ þ �Sð Þ � i Im �ð Þ½ �

Re �ð Þ þ �Sð Þ
2
þIm �ð Þ2

� �
¼ � �SE

Z þ1
0

�ðaÞl�IðaÞe
�aReð�Þ cos a Im �ð Þð Þ þ i sinða Imð�ÞÞ½ �da


 �
:

So by identifying the real and the imaginary parts, we obtain for the real part

Reð�Þ þ � �S�1E

� �
ðReð�Þ þ �SÞ þ Imð�Þ2

¼ Re �ð Þ þ �Sð Þ
2
þ Im �ð Þ2

� �
� �SE

Z þ1
0

�ðaÞl�I ðaÞe
�aReð�Þ cos a Im �ð Þð Þda


 �
,

thus

� �S�1E � �S
� �

Re �ð Þ þ �Sð Þ

¼ Re �ð Þ þ �Sð Þ
2
þ Im �ð Þ2

� �
� �SE

Z þ1
0

�ðaÞl�I ðaÞe
�aRe �ð Þ cos a Im �ð Þð Þda


 �
� 1


 �
:

Assume that there exists �2C with Re(�)� 0 satisfying (16). Then since
�SE ¼ ð�

R þ1
0 �ðaÞl�I ðaÞdaÞ

�1 we deduce that

� �SE

Z þ1
0

�ðaÞl�IðaÞe
�aRe �ð Þ cos a Im �ð Þð Þda


 �
� 1

and since R0 ¼ �
�
�S

Rþ1
0 �ðaÞl�I ðaÞda ¼

�
�S

1
�SE

41, we obtain � �S�1E � �S 4 0, thus

� �S�1E � �S
� �

Re �ð Þ þ �Sð Þ4 0:

It follows that the characteristic Equation (16) has no root with non-negative real
part. The proof is complete. g

3. Lyapunov functional and global asymptotic stability

In this section, we assume that

R0 4 1:

By using Proposition 2.4 (since A0 is invariant under U), we can find {u(t)}t2R�A0

a complete orbit of {U(t)}t�0, that is to say that

uðtÞ ¼ Uðt� sÞuðsÞ, 8t, s2R, with t � s:

So we have

uðtÞ ¼

SðtÞ

0

iðt, :Þ

� �0@ 1A2A0, 8t2R

and {(S(t), i(t, .))}t2R is complete orbit of system (1).
Moreover, by using the same arguments as in Lemma 3.6 and Proposition 4.3 in

[41], we have the following lemma.
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LEMMA 3.1 There exist constants M4"40, such that for each complete orbitn� SðtÞ� 0

iðt, :Þ

� 	o
t2R

of U in A0, we have

" � SðtÞ �M, 8t2R

and

" �

Z þ1
0

�ðaÞiðt, aÞda �M, 8t2R:

Moreover

O ¼ [t2R SðtÞ, iðt, :Þð Þ

 �

is compact in R�L1(0,þ1).

3.1. Change of variable

By using Volterra’s formulation of the solution, we have

iðt, aÞ ¼ exp

Z a

0

��IðrÞdr

� �
bðt� aÞ,

where

bðtÞ ¼ �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda:

Set

uðt, aÞ :¼ exp

Z a

0

�I rð Þ � �Sð Þdr

� �
iðt, aÞ ¼ e��Sabðt� aÞ,

blðaÞ :¼ exp �

Z a

0

�I rð Þ � �Sð Þdr

� �
and b�ðaÞ :¼ �ðaÞblðaÞ:
Then we have

iðt, aÞ ¼blðaÞuðt, aÞ
and (S(t), u(t, a))t2R is a complete orbit of the following system:

dSðtÞ

dt
¼ � � �SSðtÞ � �SðtÞ

Z þ1
0

b�ðaÞuðt, aÞda,
@uðt, aÞ

@t
þ
@uðt, aÞ

@a
¼ ��Suðt, aÞ,

uðt, 0Þ ¼ �SðtÞ

Z þ1
0

b�ðaÞuðt, aÞda,
Sð0Þ ¼ S0 � 0,

uð0, :Þ ¼ u0 2L
1
þ 0, þ1ð Þ:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð17Þ
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Moreover, by using (17) we deduce that

d SðtÞ þ
Rþ1
0 uðt, aÞda

h i
dt

¼ � � �S SðtÞ þ

Z þ1
0

uðt, aÞda


 �
ð18Þ

and since t! ½SðtÞ þ
Rþ1
0 uðt, aÞda� is a bounded complete orbit of the above

ordinary differential equation, we deduce that

� ¼ �S SðtÞ þ

Z þ1
0

uðt, aÞda


 �
, 8t2R:

Moreover, by multiplying S(t) and u(t, a) by �S
� , we can assume that

�

�S
¼ 1:

So without loss of generality, we can assume that system (1) satisfies the following

assumption. (For clarity, we emphasize that through the change of variables given

above, the general form of system (1) is equivalent to the special case obtained by

using Assumption 3.2.)

ASSUMPTION 3.2 We assume that

�IðaÞ ¼ �S, 8a � 0 and � ¼ �S:

Then system (1) becomes

dSðtÞ

dt
¼ �S � �SSðtÞ � �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda,

@iðt, aÞ

@t
þ
@iðt, aÞ

@a
¼ ��Siðt, aÞ,

iðt, 0Þ ¼ �SðtÞ

Z þ1
0

�ðaÞiðt, aÞda,

Sð0Þ ¼ S0 � 0, ið0, :Þ ¼ i0 2L
1
þ 0, þ1ð Þ,

8>>>>>>>>><>>>>>>>>>:
ð19Þ

and from here on, we consider this system. In this special case, the endemic

equilibrium satisfies the following system of equations:

0 ¼ �S � �S �SE � � �SE

Z þ1
0

�ðaÞ�{EðaÞda

�{EðaÞ ¼ e��Sa�{Eð0Þ ð20Þ

with

1 ¼ � �SE

Z þ1
0

�ðaÞe��Sada:

Moreover, by Lemma 3.1, we can consider {(S(t), i(t, .))}t2R a complete orbit of

system (19) satisfying

" � SðtÞ �M, 8t2R
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and

" �

Z þ1
0

�ðaÞiðt, aÞda �M, 8t2R:

Moreover,

O ¼ [t2R SðtÞ, iðt, :Þð Þ

 �

is compact in R�L1(0,þ1).
Furthermore, we have

iðt, aÞ

�{EðaÞ
¼

bðt� aÞ

�{Eð0Þ
¼

�Sðt� aÞ

Z þ1
0

�ðl Þiðt� a, l Þdl

�{Eð0Þ

and thus

�

�{Eð0Þ
"2 �

iðt, aÞ

�{EðaÞ
�

�

�{Eð0Þ
M2:

3.2. Lyapunov functional

Let

gðxÞ ¼ x� 1� ln x:

Note that g0ðxÞ ¼ 1� ð1=xÞ. Thus, g is decreasing on (0, 1] and increasing on [1,1).
The function g has only one extremum which is a global minimum at 1, satisfying
g(1)¼ 0. We first define expressions VS(t) and Vi(t) and calculate their derivatives.
Then, we will analyse the Lyapunov functional V¼VSþVi. Let

VSðtÞ ¼ g
SðtÞ

�SE

� �
:

Then

dVS

dt
¼ g0

SðtÞ

�SE

� �
1

�SE

dS

dt

¼ 1�
�SE

SðtÞ

� �
1

�SE

�S � �SSðtÞ �

Z 1
0

��ðl Þiðt, l ÞSðtÞdl


 �
¼ 1�

�SE

SðtÞ

� �
1

�SE

�S �SE � SðtÞ
� �

þ

Z 1
0

��ðl Þ �{Eðl Þ �SE � iðt, l ÞSðtÞ
� �

dl


 �
¼ ��S

SðtÞ � �SE

� �2
SðtÞ �SE

þ

Z 1
0

��ðl Þ�{Eðl Þ 1�
iðt, l Þ

�{Eðl Þ

SðtÞ

�SE

�
�SE

SðtÞ
þ
iðt, l Þ

�{Eðl Þ

� �
dl: ð21Þ

Let

ViðtÞ ¼

Z 1
0

�ðaÞ g
iðt, aÞ

�{EðaÞ

� �
da,
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where

�ðaÞ :¼

Z 1
a

��ðl Þ�{Eðl Þdl: ð22Þ

Then

dVi

dt
¼

d

dt

Z 1
0

�ðaÞ g
iðt, aÞ

�{EðaÞ

� �
da

¼
d

dt

Z 1
0

�ðaÞ g
bðt� aÞ

�{Eð0Þ

� �
da

¼
d

dt

Z t

�1

�ðt� sÞ g
bðsÞ

�{Eð0Þ

� �
ds

¼ �ð0Þ g
bðtÞ

�{Eð0Þ

� �
þ

Z t

�1

�0ðt� sÞ g
bðsÞ

�{Eð0Þ

� �
da

and thus

dVi

dt
¼ �ð0Þ g

iðt, 0Þ

�{Eð0Þ

� �
þ

Z 1
0

�0ðaÞ g
iðt, aÞ

�{EðaÞ

� �
da: ð23Þ

Moreover, by the definition of � we have

�ð0Þ g
iðt, 0Þ

�{Eð0Þ

� �
¼

Z 1
0

��ðl Þ�{Eðl Þ g
iðt, 0Þ

�{Eð0Þ

� �
dl: ð24Þ

Noting additionally, that �0ðaÞ ¼ ���ðaÞ�{EðaÞ, we may combine Equations (23) and

(24) to get

dVi

dt
¼

Z 1
0

��ðaÞ�{EðaÞ g
iðt, 0Þ

�{Eð0Þ

� �
� g

iðt, aÞ

�{EðaÞ

� �
 �
da:

Filling in for the function g, we obtain

dVi

dt
¼

Z 1
0

��ðaÞ�{EðaÞ
iðt, 0Þ

�{Eð0Þ
�
iðt, aÞ

�{EðaÞ
� ln

iðt, 0Þ

�{Eð0Þ
þ ln

iðt, aÞ

�{EðaÞ


 �
da: ð25Þ

Let

VðtÞ ¼ VSðtÞ þ ViðtÞ:

Then, by combining (21) and (25), we have

dV

dt
¼ ��S

SðtÞ � �SE

� �2
SðtÞ �SE

þ

Z 1
0

��ðaÞ�{EðaÞ

1�
iðt, aÞ

�{EðaÞ

SðtÞ

�SE

�
�SE

SðtÞ
þ
iðt, 0Þ

�{Eð0Þ

� ln
iðt, 0Þ

�{Eð0Þ
þ ln

iðt, aÞ

�{EðaÞ

26664
37775da: ð26Þ
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The object now, is to show that dV
dt is non-positive. To help with this, we demonstrate

that two of the terms above cancel outZ 1
0

��ðaÞ�{EðaÞ
iðt, 0Þ

�{Eð0Þ
�
iðt, aÞ

�{EðaÞ

SðtÞ

�SE


 �
da

¼
1

�SE

Z 1
0

��ðaÞ�{EðaÞ �SE da
iðt, 0Þ

�{Eð0Þ
�

1

�SE

Z 1
0

��ðaÞiðt, aÞSðtÞ da

¼
1

�SE

�{Eð0Þ
iðt, 0Þ

�{Eð0Þ
�

1

�SE

iðt, 0Þ

¼ 0: ð27Þ

Using this to simplify Equation (26) gives

dV

dt
¼ ��S

SðtÞ � �SE

� �2
SðtÞ �SE

þ

Z 1
0

��ðaÞ�{EðaÞ 1�
�SE

SðtÞ
� ln

iðt, 0Þ

�{Eð0Þ
þ ln

iðt, aÞ

�{EðaÞ


 �
da: ð28Þ

Noting that �{Eð0Þ=iðt, 0Þ is independent of a, we may multiply both sides of (27) by

this quantity to obtainZ 1
0

��ðaÞ�{EðaÞ 1�
iðt, aÞ

�{EðaÞ

SðtÞ

�SE

�{Eð0Þ

iðt, 0Þ


 �
da ¼ 0: ð29Þ

We now add (29) to (28) and also add and subtract lnðSðtÞ= �SEÞ to get

dV

dt
¼ ��S

SðtÞ � �SE

� �2
SðtÞ �SE

þ

Z 1
0

��ðaÞ�{EðaÞCðaÞ da,

where

CðaÞ ¼ 2�
iðt, aÞ

�{EðaÞ

SðtÞ

�SE

�{Eð0Þ

iðt, 0Þ
�

�SE

SðtÞ
� ln

iðt, 0Þ

�{Eð0Þ
þ ln

iðt, aÞ

�{EðaÞ
þ ln

SðtÞ

�SE

� ln
SðtÞ

�SE

¼ 1�
�SE

SðtÞ
þ ln

�SE

SðtÞ

� �
þ 1�

iðt, aÞ

�{EðaÞ

SðtÞ

�SE

�{Eð0Þ

iðt, 0Þ
þ ln

iðt, aÞ

�{EðaÞ

SðtÞ

�SE

�{Eð0Þ

iðt, 0Þ

� �
¼ � g

�SE

SðtÞ

� �
þ g

iðt, aÞ

�{EðaÞ

SðtÞ

�SE

�{Eð0Þ

iðt, 0Þ

� �
 �
� 0:

Thus, dV
dt � 0 with equality if and only if

�SE

SðtÞ
¼ 1 and

iðt, aÞ

�{EðaÞ

�{Eð0Þ

iðt, 0Þ
¼ 1: ð30Þ

Using (20), this second condition is equivalent to

iðt, aÞ ¼ iðt, 0Þe��Sa ð31Þ

for all a� 0.
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Look for the largest invariant set Q for which (30) holds. In Q, we must have
SðtÞ ¼ �SE for all t and so we have dS

dt ¼ 0. Combining this with (31), we obtain

0 ¼ �S � �S �SE �

Z 1
0

��ðaÞiðt, aÞ da �SE

¼ �S � �S �SE �

Z 1
0

��ðaÞiðt, 0Þe��Sa da �SE

¼ �S � �S �SE �
iðt, 0Þ

�{Eð0Þ

Z 1
0

��ðaÞ�{Eð0Þe
��Sa da �SE

¼ �S � �S �SE �
iðt, 0Þ

�{Eð0Þ

Z 1
0

��ðaÞ�{EðaÞ da �SE

¼ �S � �S �SE �
iðt, 0Þ

�{Eð0Þ
�S � �S �SE

� �
¼ 1�

iðt, 0Þ

�{Eð0Þ

� �
�S � �S �SE

� �
:

Since �SE is not equal to 1, we must have iðt, 0Þ ¼ �{Eð0Þ for all t. Thus, the set Q
consists of only the endemic equilibrium.

Proof of Theorem 1.3 Assume that A0 is larger than xEf g. Then there exists
x2A0 n xEf g, and we can find {u(t)}t2R�A0, a complete orbit of U, passing through
x at t¼ 0, with alpha-limit set �(x). Since

uð0Þ ¼ x 6¼ xE, ð32Þ

we deduce that t!V(u(t)) is a non-increasing map. Thus, V is a constant functional
on the alpha-limit set �(x). Since �(x) is invariant under U, it follows that

� xð Þ ¼ xEf g: ð33Þ

Recalling from Proposition 2.5 that the endemic equilibrium is locally asymptotically
stable, Equation (33) implies x ¼ xE which contradicts (32). g

4. Numerical examples

We present three examples to illustrate the infection-age model (1). In the examples,
infection age is used to track the period of incubation, the period of infectiousness,
the appearance of symptoms and the quarantine of infectives.

Example 1 In the first example we interpret infection age corresponding to an
exposed period (infected, but not yet infectious) from a¼ 0 to a¼ a1 and an
infectious period from a¼ a1 to a¼ a2. The total number of exposed infectives E(t)
and infectious infectives I(t) at time t are

EðtÞ ¼

Z a1

0

{ðt, aÞda, IðtÞ ¼

Z a2

a1

{ðt, aÞda:

This interpretation of the model is typical of a disease such as influenza, in which
there is an initial non-infectious period followed by a period of increasing than
decreasing infectiousness. We investigate the role of quarantine in controlling an
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epidemic using infection age to track quarantined individuals. We consider a

population of initially �/�S susceptible individuals with an on-going influx at rate �
and efflux at rate �S. These rates influence the extinction or endemicity of the

epidemic; specifically, the continuing arrival of new susceptibles enables a disease to

persist, which might otherwise extinguish.
Set �¼ 365, �S¼ 1/365 (time units are days). For a human population of

	100,000 people these rates may be interpreted in terms of daily immigration and

emigration into and out of the population. Set a1¼ 5 and a2¼ 21. We use the form of

the transmission function �(a) in Figure 2:

�ðaÞ ¼
0:0, if 0.0� a� 5.0;

0:66667ða� 5:0Þ2e�0:6ða�5:0Þ if a45.0.

�
We set the transmission rate �¼ 1.5� 10�5. We set �I(a)¼ �Q(a)þ �H(a)þ �S, where

�QðaÞ ¼
� logð0:95Þ, if 0.0� a� 5.0;

0:0 if a45.0

�
�HðaÞ ¼

0:0, if 0.0� a� 5.0;

� logð0:5Þ if a45.0.

�
The function �Q(a) represents quarantine of exposed infectives at a rate of 5% per

day and the function �H(a) represents hospitalized (or removed) infectious infectives

at a rate of 50% per day. It is assumed that exposed infectives are asymptomatic

(only asymptomatic individuals are quarantined) and only infectious infectives are

Figure 2. The period of infectiousness begins at day 5 and lasts 16 days. The transmission
probability peaks at 8.33333 days. Symptoms appear at day 5, which coincides with the
beginning of the infectious period. Infected individuals are hospitalized (or otherwise
removed) at a rate of 50% per day after day 5. Pre-symptomatic infectives are quarantined at a
rate of 5% per day during the pre-symptomatic period. From the initial infection age
distribution we obtain E(0)¼ 179.9 and I(0)¼ 72.5.
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symptomatic (symptomatic infectives are hospitalized or otherwise isolated from
susceptibles). These assumptions were valid for the SARS epidemic in 2003, but may
not hold for other influenza epidemics. In fact, in the 1918 influenza pandemic the
infectious period preceded the symptomatic period by several days, resulting in much
higher transmission. We assume that the initial susceptible population is
S(0)¼ �/�S¼ 133, 225 and initial age distribution of infectives (see Figure 2) is

(0, a)¼ 50.0(aþ 2.0)e�0.4(aþ2.0), a� 0.0. For these parameters R051.0 as in Section 1
and the epidemic is extinguished in approximately 1 year (Figure 3).

Example 2 In our second example we simulate Example 1 without quarantine
measures implemented (i.e., all parameters and initial conditions are as in Example 1
except that �Q(a)� 0.0). Without quarantine control the disease becomes endemic
(Figure 4). In this case R041.0 and the solutions converge to the endemic
equilibrium, as in Section 1. From Figure 4 it is seen that the solutions oscillate as
they converge to the disease equilibrium over a period of years. The on-going source
� of susceptibles allows the disease to persist albeit at a relatively low level. At
equilibrium the population of susceptibles is significantly lower than the disease-free
susceptible population.

Example 3 In our third example we assume that the infectious period and
the symptomatic period are not coincident, as in the two examples above. In this case
the severity of the epidemic may be much greater, since the transmission potential
of some infectious individuals will not be known during some part of their period

Figure 3. With quarantine of asymptomatic infectives at a rate of 5% per day, the disease is
extinguished and the susceptible population converges to the disease-free steady state
�SF ¼ �=�S ¼ 133, 225, �IF¼ 0.0; R0¼ 0.939.
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Figure 4. Without quarantine implemented, the disease becomes endemic and the populations
converge with damped oscillations to the disease steady state �SE ¼

�
R0 �S
¼ 102, 480, �E¼ 369,

�I¼ 120 and �{EðaÞ ¼ l�I ðaÞ�{Eð0Þ, l�I ðaÞ ¼ exp �
R a
0 �I lð Þdl

� �
, �{Eð0Þ ¼ � � �S �SE ¼ 85:8; R0¼ 1.26.

Figure 5. The period of infectiousness overlaps by 1 day the asymptomatic period. Quarantine
of asymptomatic infectives ends on day 6. Hospitalization of symptomatic infectives begins on
day 6.
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of infectiousness. We illustrate this case in an example in which the infectious period
overlaps the asymptomatic period by 1 day. All parameters and initial conditions are
as in Example 1, except that symptoms first appearing on day 6, which means that
hospitalization (or removal) of infectious individuals does not begin until 1 day after
the period of infectiousness begins. It is also assumed that quarantine of infected
individuals does not end until day 6 (Figure 5). In this scenario the epidemic, even
with quarantine measures implemented as in Example 1, becomes endemic. The
epidemic populations exhibit extreme oscillations, with the infected populations
attaining very low values, as the population converges to steady state as in Section 1
(Figure 6).
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