
Modeling Epidemic Outbreaks in
Geographical Regions: Seasonal Influenza

in Puerto Rico

P. Magal(1), A. Noussair(1), G. Webb(2) and Y. Wu(2)

(1) Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France
CNRS, IMB, UMR 5251, F-33400 Talence, France.

(2)Mathematics Department, Vanderbilt University, Nashville, TN 37240, USA

May 9, 2019

Abstract

We develop a model for the spatial spread of epidemic outbreak in a
geographical region. The goal is to understand how spatial heterogeneity
influences the transmission dynamics of the susceptible and infected pop-
ulations. The model consists of a system of partial differential equations,
which indirectly describes the disease transmission caused by the disease
pathogen. The model is compared to data for the seasonal influenza epi-
demics in Puerto Rico for 2015-2016.
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1 Introduction
Mathematical modeling of the spatial spread of epidemic diseases in ge-

ographical regions presents many challenges. Many authors have developed
continuum partial differential equation models to describe spatial variation in
epidemics, and typically, diffusion terms are adopted to describe the spatial
movement of susceptible and infected individuals in the epidemic populations
(see e.g. [1, 4, 5, 7, 8, 11, 12, 14, 20, 21, 22, 23, 24, 25, 26]). The main diffi-
culty of this approach is that human movement in space does not correspond to
random motion assumed by continuum diffusion formulations.

A recent treatment of this problem was given in [16], in which infected in-
dividuals diffused in space, but susceptible individuals did not. The underlying
assumption was that the diffusion of infected individuals indirectly accounted
for the spatial propagation of the microbial agent causing the infection. This
assumption is reasonable for outbreak diseases such as seasonal influenza, in
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which infectiousness of infected individuals lasts a short time compared to the
duration of the epidemic, and results primarily in the infection of nearby sus-
ceptible individuals. The model in [16] was applied to the seasonal influenza
epidemics in Puerto Rico in 2016-2017, and gave reasonable agreement with
reported case data for these epidemics.

In this work we develop another approach to account for spatial behavior in
outbreak epidemics. We assume that neither susceptible nor infected individuals
diffuse in the given spatial region, but infectious individuals infect nearby sus-
ceptible individuals, as described by a spatially dependent transmission term. In
this way the underlying microbial agent, which is not modeled directly, spreads
spatially in the geographical region. Our model also allows for an incubation
period before infected individuals become infectious, which is modeled by a time
delay in the spatially dependent transmission term.

Yearly outbreaks of seasonal influenza lead to 3-5 million infected cases and
approximately 375,000 deaths per year world-wide [28]. Despite the tremendous
research effort on seasonal influenza, it is still not well-understood how the
seasonal pattern of influenza emerges [19]. We refer readers to the survey paper
[13] for proposed theories on the causes of the seasonality of influenza. We
propose here a model of seasonal influenza that suggests that the duration of
an influenza epidemic is largely determined by the depletion of the susceptible
population to a level that no long sustains the transmission of the infection [16].

Our model will be applied to simulating the spatial spread of the 2015-2016
seasonal influenza in Puerto Rico. We propose one possible explanation for
the seasonality of influenza in Puerto Rico, which lacks seasonal distinctions
throughout the year. A major influenza-virus subtype is introduced to some
location in Puerto Rico each year in the winter (e.g. through bird migration
or human importation to Puerto Rico from other places), which then spreads
through the island and fades away as it exhausts the susceptible population.

Our main objective in this paper is to demonstrate the possibility of apply-
ing spatial epidemic models to the study of outbreak diseases in geographical
regions using spatial data, rather than using only total case data independently
of spatial locations. We note that for most influenza epidemics, the reported
case data is only a small fraction of the total case data [15].

In Section 2 we present the model, which consists of a system of partial differ-
ential equations for the susceptible, infectious, and removed infected individuals
in the epidemic population. In Section 3, we provide proofs for theoretical re-
sults of the model. In Section 4, we apply the model to the seasonal influenza
epidemic in Puerto Rico in 2015-2016. A major challenge for this application
is to identify the geographical boundaries of Puerto Rico and the spatial dis-
cretization of the epidemic populations. In Section 5, we compare the numerical
simulation of the model to reported case data. In Section 6, we discuss conclu-
sions and extensions of the model to other epidemics in spatial settings.
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2 Model
Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. Let s(t, x),

i(t, x) and r(t, x) be the density of susceptible, infected and recovered indi-
viduals at position x ∈ Ω and time t, respectively. We propose the following
compartmental model to simulate the spatial spread of influenza in a bounded
region Ω: ∂ts(t, x) = −β(x)h(b(t, x))s(t, x), x ∈ Ω̄, t > 0,

∂ti(t, x) = β(x)h(b(t− τ, x))s(t− τ, x)− γ(x)i(t, x), x ∈ Ω̄, t > 0,
∂tr(t, x) = γ(x)i(t, x), x ∈ Ω̄, t > 0,

(2.1)
where β > 0 is the disease transmission rate, τ > 0 is the time needed for a
patient to become infectious after exposure to the virus, γ > 0 is the disease
recovery rate, and

h(u) =
up

1 + κuq

with p ≥ 1, κ ≥ 0 and q ≥ 1, and b(t, x) is the solution of the elliptic equation
b(t, x)− ε∆b(t, x) = i(t, x), x ∈ Ω, t > 0,

∂b

∂ν
= 0, x ∈ ∂Ω, t > 0,

(2.2)

where ε > 0 is a positive constant, and ∂b/∂ν is the outward normal derivative
on ∂Ω.

Equation (2.2) expresses that fact the pathogen is spreading around the
infectious individuals. The function b(t, x) measures the infectiousness of the
infected individuals to nearby susceptible individuals. If i(t, x) = δ(x − x0) is
the Dirac measure centered at x0 ∈ Ω, then ∫Ω b dx = 1 and b(t, x) describes
the capability of an infected individual at position x0 to infect the individual at
x. As ε→ 0, b(t, x)→ i(t, x), which means the infectious individual at position
(t, x) will only infect an individual at the same position.

Remark 2.1 Equation (2.2) can be derived from the following parabolic system
as η goes to 0:

η∂tb = ε∆b(t, x) + i(t, x)− b(t, x), x ∈ Ω, t > 0,

∂b

∂ν
(t, x) = 0, x ∈ ∂Ω, t > 0.

(2.3)

The process of letting η → 0 corresponds to the assumption that the dynamics of
the virus is faster than the dynamics of humans. Model (2.1) coupled with (2.3)
is a variant of the model proposed in [16], which assumed that the susceptible
population was not moving, and the transmission of virus was viewed indirectly
as the diffusion of the infected population.

We impose the following initial conditions

s(θ, x) = s0(θ, x), i(θ, x) = i0(θ, x), r(0, x) = r0(x), x ∈ Ω̄, θ ∈ [−τ, 0], (2.4)
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where s0, i0 and r0 are nonnegative continuous functions.
The density of exposed individuals is given by the following formula

e(t, x) :=

∫ t

t−τ
β(x)h(b(σ, x))s(σ, x)dσ, x ∈ Ω̄, t ≥ 0.

Then e(t, x) satisfies

∂te(t, x) = β(x)h(b(t, x))s(t, x)− β(x)h(b(t− τ, x))s(t− τ, x). (2.5)

Adding (2.1) and (2.5), we have

∂t(s(t, x) + i(t, x) + e(t, x) + r(t, x)) = 0

and we deduce from this formula that

s(t, x) + e(t, x) + i(t, x) + r(t, x) = n(x), x ∈ Ω̄, (2.6)

where n is the total population and does not change in time. The analysis of
the model is provided in section 3. In particular, we prove i(t, x)→ 0 as t→∞,
as in [16], which means that the disease will eventually disappear.

3 Analysis of the model
The first result is about the existence of solutions of the model.

Theorem 3.1 Assume that β, γ ∈ C(Ω̄) are strictly positive, s0, i0, r0 are non-
negative continuous functions, and κ, ε, p, q are positive constants. Then the
model (2.1)-(2.4) has a unique global nonnegative mild solution (s(t, x), i(t, x), r(t, x)),
which is classical for t ≥ τ .

Proof. Let K = C(Ω̄;R3
+). Denote L = (I − ε∆)−1 : C(Ω̄) → C(Ω̄) subject

to homogeneous Neumann boundary condition. Then L is a bounded linear
operator with L(C(Ω̄;R+)) ⊂ C(Ω̄;R+). Define a continuous function B :
C([−τ, 0];K)→ C(Ω̄) by

B(φ) =

 −βh(Lφ2(0))φ1(0)
βh(Lφ2(−τ))φ1(−τ)− γφ2(0)

γφ2(0)


for any φ = (φ1, φ2, φ3) ∈ C([−τ, 0];K) = [C([−τ, 0];C(Ω̄;R+))]3. Then B is
Lipschitz on bounded subsets of C([−τ, 0];K) and satisfies

lim
ε→0

d(φ(0) + εB(φ);K)

ε
= 0

for any φ ∈ C([−τ, 0];K). Then by [17, Proposition 5.3.2] or [18, Corollary 4],
the following problem has a solution u(t) = (s(t, ·), i(t, ·), r(t, ·)) ∈ K on [0, T )
for some T ∈ (0,∞], with either T =∞ or limt→T− ‖u(t)‖ =∞:{

u(t) = ψ(0) +
∫ t

0
B(uσ)dσ, t ≥ 0

u(θ) = ψ(θ), −τ ≤ θ ≤ 0,
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where ψ(θ) = (s0(θ, ·), i0(θ, ·), r0), −τ ≤ θ ≤ 0. By (2.6), T =∞ and therefore
the solution is global. Moreover by [17] or [18, Theorem 1], the solution is
classical for t ≥ τ .

The second result is about the positivity of the solutions of the model.

Theorem 3.2 Let (s(t, x), i(t, x), r(t, x)) be the solution of (2.1)-(2.4). Then
the following statements hold:

1. If s0(0, x0) = 0 for some x0 ∈ Ω̄, then s(t, x0) = 0 for all t ≥ 0; If
s0(0, x0) > 0 for some x0 ∈ Ω̄, then s(t, x0) > 0 for all t ≥ 0;

2. If s0(θ, x0) = 0 and i0(0, x0) = 0 for all θ ∈ [−τ, 0] for some x0 ∈ Ω̄,
then s(t, x0) = i(t, x0) = 0 for all t ≥ 0; If, in addition, r0(x0) = 0, then
r(t, x0) = 0 for all t ≥ 0.

3. If s0(0, x0) > 0 for some x0 ∈ Ω̄ and i0(0, ·) 6≡ 0, then i(x0, t) > 0 for any
t > τ .

Proof. 1. By the equation for s,

s(t, x) = s0(0, x)e−
∫ t
0
β(x)h(b(δ,x))dδ.

Thus, for any x0 ∈ Ω̄, s(t, x0) = 0 if s0(0, x0) = 0, and s(t, x0) > 0 if s0(0, x0) >
0 for all t ≥ 0.

2. Since s0(θ, x0) = 0, s(t, x0) = 0 for all t ≥ −τ . By the equation for i, we
have

i(t, x) = e−γ(x)ti0(0, x) +

∫ t

0

e−γ(x)(t−δ)β(x)h(b(δ − τ), x)s(δ − τ, x)dδ. (3.1)

Noting i0(0, x0) = 0, we have i(t, x0) = 0 for all t ≥ 0. By the equation for r,
r(t, x0) = 0 for all t ≥ 0.

3. Since i0(0, ·) 6≡ 0, there exists x1 ∈ Ω̄ such that i0(0, x1) > 0. By (3.1),
i(t, x1) > 0 for all t ≥ 0. By the strong positivity of L (defined in Theorem 3.1),
b(t, x) = Li(t, ·) > 0 for all x ∈ Ω̄ and t > 0. Since s0(0, x0) > 0, s(t, x0) > 0 for
all t ≥ 0. Therefore h(b(t− τ, x0))s(t− τ, x0) > 0 for all t > τ . Again by (3.1),
we have i(t, x0) > 0 for all t > τ .

We next study the global dynamics of the model.

Theorem 3.3 Assume 1 ≤ p ≤ q+1. Let (s(t, x), i(t, x), r(t, x)) be the solution
of (2.1)-(2.4). Then s(t, x) → s∞(x), i(t, x) → 0, and r(t, x) → r∞(x) for all
x ∈ Ω̄ with s∞(x), r∞(x) ≥ 0. Moreover, the convergence is in L1(Ω), and
s∞(x) > 0 if s0(0, x) > 0 for almost all x ∈ Ω̄.

Proof. Adding up the equations for s, e and i, we have

∂t(s(t, x) + e(t, x) + i(t, x)) = −γ(x)i(t, x). (3.2)

Integrating the equation on (0, t), we get

0 ≤ γ(x)

∫ t

0

i(δ, x)dδ ≤ s(0, x) + e(0, x) + i(0, x).
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which implies ∫ ∞
0

i(t, x)dt <∞ (3.3)

for all x ∈ Ω̄. Since 0 ≤ s(t, x), e(t, x), i(t, x) ≤ n(x), ∂ti(t, x) is bounded by the
equation of i. Therefore by (3.3), i(t, x) → 0 for all x ∈ Ω̄. Integrating (3.2)
over Ω and (0, t) leads to

0 ≤ γm
∫ t

0

∫
Ω

i(δ, x)dxdδ ≤
∫

Ω

(s(0, x) + e(0, x) + i(0, x))dx,

with γm = minx∈Ω̄ γ(x), which implies∫ ∞
0

∫
Ω

i(t, x)dxdt <∞. (3.4)

Since ∂t
∫

Ω
i(t, x)dx is bounded by the equation of i, we have i(t, ·) → 0 in

L1(Ω).
Since ∂st(t, x) = −β(x)h(b(t, x))s(t, x) ≤ 0, there exists s∞(x) with 0 ≤

s∞(x) ≤ s0(x) such that s(t, x) → s∞(x) for any x ∈ Ω̄. Moreover by the
Lebesgue Theorem, s(t, ·)→ s∞ in L1(Ω). Noticing that if 1 ≤ p ≤ q + 1, then

up

1 + κuq
≤ max{1, 1/κ}u. (3.5)

Integrating both sides of the first equation of (2.2),∫
Ω

b(t, x)dx =

∫
Ω

i(t, x)dx. (3.6)

Combining (3.5)-(3.6), we have∫ t

0

∫
Ω

βh(b(δ, x))dxdδ ≤ ‖β‖max{1, 1/κ}
∫ t

0

∫
Ω

b(δ, x)dxdδ (3.7)

= ‖β‖max{1, 1/κ}
∫ t

0

∫
Ω

i(δ, x)dxdδ (3.8)

It then follows from (3.4) that∫
Ω

∫ ∞
0

βh(b(t, x))dtdx =

∫ ∞
0

∫
Ω

βh(b(t, x))dxdt <∞,

which implies ∫ ∞
0

βh(b(t, x))dt <∞

for a.e. x ∈ Ω̄. By the equation of i, we have

s(t, x) = s0(0, x)e−
∫ t
0
β(x)h(b(δ,x))dδ
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Therefore,

s∞(x) = lim
t→∞

s(t, x) = s0(0, x)e−
∫∞
0
β(x)h(b(δ,x))dδ > 0,

provided s0(x) > 0 for almost all x ∈ Ω̄. Finally, since ∂tr(t, x) ≥ 0 and r(t, x)
is bounded, for each x ∈ Ω̄, there exists r∞(x) ≥ 0 such that r(t, x) → r∞(x).
r∞ is bounded and measurable, so it is integrable. By the Lebesgue Theorem,
r(t, ·)→ r∞ in L1(Ω).

4 Materials and methods

4.1 Using GPS geographical data for model input
4.1.1 Constructing the boundaries of municipalities

For partial differential equations with complex geometries, such as the Puerto
Rico geometric region Ω, the finite element method (FEM) is particularly suit-
able. The island of Puerto Rico consists of 76 municipalities, with a total
population of approximatedly 3.5 million peoples, in a geographical region of
approximately 170 km by 60 km. The first major difficulty is to construct the
boundaries of these 76 municipalities. The GPS coordinates of every munici-
pality were collected from the website [29].

We used the MATLAB PDE tool box, which requires the same points for
shared common boundaries of any two municipalities. The MATLAB function
used to construct this FEM mesh is pdetool. To increase the computation speed,
we reduced the number of points defining boundaries. In order to solve this prob-
lem we developed a series of MATLAB procedures to construct the geometric
coordinates for the boundaries of municipalities, so that common boundaries
are defined by the same sequence of points. In Figure 1 we plot these points.

Figure 1: The map of Puerto Rico with at most 50 points to defined the boundary
of each municipality.
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4.1.2 Mesh generation and finite element method with MATLAB

We first construct the mesh of the domain Ω with small triangles, which
preserve the municipality structure. In order to define the required triangula-
tion, we use the Matlab pdetool. The mesh obtained is plotted in Figure 2. It is
important to observe that this mesh preserves the municipalities geometry. We
use this mesh to define characteristic functions for each municipality. This mesh
will be used to construct the densities of the populations of the municipalities.

Figure 2: On the top we plot the mesh used for the simulation. On the bottom
we graph the Puerto Rico municipalities and their corresponding coding number.

We briefly describe our numerical scheme for the model. At each nodepoint
p in Ωh, we solve the equation (2.1) satisfied by the pathogen density b(t, x).
We use the FEM to obtain the approximate solution Bnp at each time tn, at
each nodepoint p in Ωh. We then update the approximate values (Snp , I

n
pR

n
p ) of

(S(tn, p), I(tn, p), R(tn, p)) at time tn+1 = tn + ∆t by the following scheme:
Sn+1
p =

Snp(
1 + β∆t h(Bnp )

) , ∀p ∈ Ωh,

In+1
p =

Inp + β∆t h(Bn−dp ) Sn−dp

1 + γ∆t
, ∀p ∈ Ωh,

Rn+1
p = Rnp + γ∆tInp , ∀p ∈ Ωh,

(4.1)

where d ' τ
∆t corresponds to the delay τ . Then Bn+1

p is obtain from Inp again
by using MATLAB to solve a finite element discretized version of

B = (I − ε∆)−1i.

Note that the advantage of (4.1) is the preservation of the stability of the scheme
and the positivity of the solutions without any condition on the time step ∆t.
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4.2 Data for the model
4.2.1 Data collected by Departamento de Salud de Puerto Rico

The Department of Public Health of Puerto Rico tracks the reported number
of influenza cases weekly [27], and we graph this data for the 2015-2016 influenza
season in Figure 3. We will simulate the total influenza cases of the 2015-2016
epidemic season. It is very important to note that the total infected cases are
much larger than the total reported cases, as the fraction of unreported cases
of influenza is very high.

Figure 3: The black curve corresponds to the number of weekly reported cases of
seasonal influenza in Puerto Rico in 2015-2016 [27].

In Figure 4 we plot the density of infected individuals for week 52 in 2015,
which will be used as the initial data i(0, x) (week 1) for the simulation. We also
plot the corresponding b(t, x) with ε = 0.01, which measures the infectiousness
of influenza at week 52 in 2015.
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Figure 4: On the top we plot the density of the infected population for Puerto
Rico at week 52 in 2015, obtained from reported case data [27]. On the bottom
we plot b(t, x) with ε = 0.01. The larger ε is, the more spread out is the infection
around an original location of an infected individual.

4.2.2 Reconstruction of population densities per municipalities.

The four major municipalities of Puerto Rico with largest population are
the eastern San Juan (population 2,350,000), the southern Ponce (population
262, 000), the western Arecibo (population 193,000), and the western Mayaguez
(population 89,000). A continuum density function for n(x) is constructed based
on the populations and geographical centers of the 76 municipalities. The den-
sity of population in the municipalities is based on the data collected from US
Census Bureau.

In Figure 5 we plot the municipalities population densities, by taking into
account the area of each municipality. We assume that everybody is susceptible
at the beginning of the epidemic season. Therefore, the initial value s(0, x) can
be approximated by the density of the population. In fact, it is well-known that
a significant fraction of the population is immune to a given influenza strain,
and we refer to [15] for consideration of this issue.
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Figure 5: Population density of the municipalities of Puerto Rico in 2016 (US
Census Bureau). In the model the distribution corresponds to n(0, x) = s(0, x)+
i(0, x) + e(0, x) + r(0, x).

5 Simulation of the epidemic outbreak for the
2015-2016 epidemic season

In this section, we simulate the 2015-2016 seasonal influenza epidemic in
Puerto Rico. In Table 1 we list the parameters used for the simulation of the
model. Since the incubation period is assumed to be 2 days [3], which is small
compared to 1 week, we use a constant initial distribution for the simulations.

Symbol Description Value Units
β Transmission rate 0.002
γ Recorvering rate 1/5 1/Day
r Incubation period 2 Days
κ 10−4

p 1 real
q 2 real
ε diffusion rate 10−2 km2/day

Table 1: List of parameters used for the simulations.
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Figure 6: Total number of weekly cases from week 52 in 2015 to week 20 of 2016
obtained by the simulation of the model.

(a) (b)

(c) (d)

Figure 7: The number of weekly cases from week 52 in 2015 to week 20 in 2016.
The figures (a) (b) (c) and (d) correspond, respectively, to the model simula-
tion of cases for the municipalities of San Juan, Arecibo, Ponce and Mayaguez,
respectively.
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In Figure 6 and Figure 7 we plot the density of the infected population for the
weeks 1, 5, 7, and 11 of the 2015-2016 seasonal inlfuenza epidemic. In Figure 8 we
observe that the influenza epidemic spreads around San Juan in the interior region of
Puerto Rico. We also observe almost no spreading around Ponce in the south of the
island. One limitation of this simulation is that we do not observe during this period
any significant spreading of the epidemic to the west side of the island, while some
spreading to this region is observed in the data.

Figure 8: Density of Infected population at weeks 1 (top) and 5 (bottom). The
figures on the left are based on reported cases data [27] and the figures on the
right are from our simulations.

In Figure 9 the epidemic seams to persist longer on the west side of the island,
while the number of cases decreases in the central part of the island. We observe that
for this simulation, the spreading of the epidemic is not given by a single front, but
by multiple wave fronts. In this sense, the simulations are similar to Departamento de
Salud de Puerto Rico data.
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Figure 9: Density of Infected population at weeks 7 (top) and 11 (bottom). The
figures on the left are based on reported cases data [27] and the figures on the
right are from our simulations.

6 Conclusion and discussion
The spatial progression of an epidemic outbreak in a spatially heterogeneous pop-

ulation presents substantial technical difficulties for mathematical modeling. Diffusion
formulations in partial differential equation models have been used by many authors
to describe the movement of people in social geographical settings. Such formulations,
however, are far from reality, since in most contexts, people do not diffuse in their spa-
tial environments in the same way that particles diffuse in their spatial environments.
Alternative formulations of the movement of people, such as network models, patch
models, agent based models, and other approaches also have incomplete connection to
the way people move.

In this paper, we propose a spatial epidemic outbreak model, which uses diffusion
in a different way. In our approach, diffusion does not model the movement of people,
but rather models indirectly the transmission of a disease causing microbial agent
from infected individual to uninfected individual. The infectiousness of an infected
individual is stipulated by a transmission term b(t, x) that describes the infection
capacity of disease transmission, depending on the local density of infected individuals
and susceptible individuals at time t and position x. We thus focus on the spread of
infection, rather than the movement of people. We analyze the dynamics of the model,
and prove that the density of the infected population i(t, x) converges to zero, which
means that the epidemic will eventually disappear. This result is in agreement with
the result for the diffusive SIR model in [16].

Our model is applied to the simulation of the 2015-2016 seasonal influenza epidemic
in Puerto Rico. We use geographical and population data for the simulation, and we
describe the epidemic dynamics in each municipality of the island of Puerto Rico. Our
simulation compares with the case data reported by Departamento de Salud de Puerto
Rico.

Based on our studies, we propose one possible explanation for the seasonality of
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influenza in this example: a subtype of influenza is introduced to some locations of
Puerto Rico annually in the late fall or winter; the infection then quickly spreads
through the island and exhausts the susceptible population to a level that no longer
sustains the transmission of the disease by the late winter or early spring.

We notice that there is a late second peak in total reported cases graphed in
Figure 3, and we believe that spatial heterogeneous distribution of the population is
one possible explanation for it. Another possible explanation for this small second
peak is that an outbreak of type B strain at week 21 in 2016 may account for it (see
Figure 10).

Figure 10: The total number of reported cases of influenza strain subtypes in
2015-2016. An outbreak of type B strain peaks at week 21 in 2016, which may
account for the small second peak in total reported cases graphed in Figure 6.

Our studies show that it is possible to model spatial epidemics with comparison to
geographical, population, and epidemic data. Our simulations are meant to connect
theoretical spatial epidemic models with real epidemic outbreak data. At this stage,
there are still many difficulties to overcome in order to make spatial epidemic models
more realistic. For example, there are many unreported cases for influenza, so it is
necessary to understand better the role of unreported cases [15]. There is also an
incomplete understanding of the fraction of the population that is susceptible, since
many people have immunity to a current influenza strain through previous infection,
vaccination, or other reasons. In future work we will address these and other issues
concerning the spatial progression of outbreak epidemics.
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