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Abstract. In this paper, we first develop some techniques and results
for integrated semigroups when the generator is not a Hille-Yosida opera-
tor and is non-densely defined. Then we establish a theorem of Da Prato
and Sinestrari’s type for the nonhomogeneous Cauchy problem and prove
a perturbation theorem. In particular, we obtain necessary and suffi-
cient conditions for the existence of mild solutions for non-densely de-
fined non-homogeneous Cauchy problems. Next we extend the results
to LP spaces and consider the semilinear and non-autonomous prob-
lems. Finally we apply the results to studying age-structured models
with dynamic boundary conditions in L? spaces. We also demonstrate
that neutral delay differential equations in LP can be treated as special
cases of the age-structured models in an L? space.

1. INTRODUCTION

The goal of this paper is to study certain class of non-autonomous and
non-densely defined semi-linear equations arising in population dynamics. In
order to investigate such problems, we first need to consider a non-densely

defined non-homogeneous Cauchy problem:

d -

= = Au(t) + f(t), t € 0,7], u(0) == € D(A), (1.1)
where A : D(A) C X — X is a linear operator in a Banach space X and
f €LY ((0,7),X). When A is a Hille-Yosida operator and is densely defined

(i.e., D(A) = X), the problem has been extensively studied (see Pazy [39]
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and Yosida [54]). When A is a Hille-Yosida operator but its domain is

non-densely defined, Da Prato and Sinestrari [16] investigated the existence

of several types of solutions for (1.1). They first reformulated (1.1) as a
du

sum of operator problems (i.e., Bu = Au + f with Bu(t) = %), and then

obtained the existence and uniqueness of integrated solutions of (1.1) for
each € D(A) and each f € L'((0,7),X). In this paper, we first study
the existence of mild solutions for the non-homogeneous Cauchy problem
(1.1) when A is not a Hille-Yosida operator and its domain is non-densely
defined.

A very important and useful approach to investigate such non-densely
defined problems is to use the integrated semigroup theory, which was first
introduced by Arendt [6, 7]. In the context of Hille-Yosida operators, we
have the following relationship between the integrated semigroup and inte-
grated solutions of (1.1). An integrated semigroup {S(t)},~, is a strongly
continuous family of bounded linear operators on X, which commute with
the resolvent of A, such that for each x € X the map ¢t — S(t)x is an
integrated solution of the Cauchy problem

d

d—z = Au(t) + =, u(0)=0. (1.2)
Arendt [6, 7] proved that if there is a strongly continuous family of bounded
linear operators {S(¢) }+>0 on X, which is assumed to be exponentially boun-

ded (see Section 2 for a precise definition), and if
(uI — A) 'z = ,u/ e M S(t)x dt
0

holds for all z € X and all p > w large enough (where (w,00) C p(A)), then
{S(t)}+>0 is an integrated semigroup and A is called its generator. Keller-
mann and Hieber [28] further developed the integrated semigroup theory and
provided an easy proof of Da Prato and Sinestrari’s result [16]. To be more
specific, Kellermann and Hieber [28] proved that when A is a Hille-Yosida
operator, the map t — (S * f) (t) := fg S(t—s)f(s)ds is continuously differ-
entiable and u(t) = 4 (S * f) () is an integrated solution of (1.1). For recent
studies on the integrated semigroup theory, we refer to the monographs of
Arendt et al. [8], Xiao and Liang [53] and the references cited therein.

The notion of generator has been extended by Thieme [42] to non-exponen-
tially bounded integrated semigroups. The relationship between an expo-
nentially bounded semigroup (not necessarily locally Lipshitz continuous)
and its generator has also been studied by Kellermann and Hieber [28] and



ON INTEGRATED SEMIGROUPS 199

Neubrander [38]. We finally mention that it is also possible to study non-
densely defined problems by using the extrapolation space technique. The
connection between integrated semigroups and extrapolation spaces has been
investigated by Thieme [42] and Arendt et al. [9].

As demonstrated by Da Prato and Sinestrari [16], there are many examples
of differential operators with non-dense domain. Examples include operators
arising from certain constructions which can be used to handle dynamic
boundary conditions and non-autonomous differential equations. Thieme
[41, 42, 43, 44] also used the integrated semigroup theory to consider various
biological models, such as age-structured population models.

We now introduce age-structured models to explain our motivation. Let
H :D(H) C Z — Z be a Hille-Yosida operator on a Banach space (Z, ||-|| ).
Assume that p € [1,400),a9 € (0,+00], and (Y, |-||y-) is a Banach space.
Consider the following age-structured model

. % 4 % = A(a)v(t,a) + F (t,z(t),v(t)) (a), a € (0,a),
o(t,0) = K(t, 2(t). v(2)).
dx(t) (1.3)
o = He(t)+ G (t2(t),v(1))
z(0) = xo € __(2?5, v(0,-) =1 € LP ((0,a0),Y),

where a represents the age, F, KC, and G are continuous nonlinear maps from
[0,70] x D(H) x LP((0,a0),Y) into LP ((0,a9),Y),Y, and Z, respectively.
{A(a)}sep0,40) is a family of linear operators that generates an evolution
family {U(a, s)
is the following

}o<s<a<cag O1 Y. An important example of the operator A(a)

n
A(a) (9)(@) = ) s,(dij(a, )00, 0(2)) — pla, 2)p(z), z € Q,
ij=1
where (2 C L™ with Y = R".

Age-structured models with diffusion have been studied by a large number
of researchers. We refer to Anita [5], Busenberg and Cook [12], Busenberg
and Tannelli [13], Gurtin [22], Di Blasio [18], Gurtin and MacCamy [23],
Kunisch et al. [29], Langlais [30, 31], Marcati [34], Marcati and Serafini
[35], Webb [49], etc. To investigate age-structured models, one can use the
classical method, that is, use solutions integrated along the characteristics

and work with nonlinear Volterra equations. We refer to the monographs
of Webb [49], Metz and Diekmann [37] and Iannelli [26] on this method. A
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second approach is the variational method; we refer to Anita [5], Aineseba
[4] and the references cited therein. One can also regard the problem as
a semilinear problem with non-dense domain and use the integrated semi-
groups method. We refer to Thieme [41, 43, 44], Magal [32], Thieme and
Vrabie [45], Magal and Thieme [33], and Thieme and Vosseler [46] for more
details on this approach.

The problem (1.3) when p = 1 is a classical case and has been extensively
studied in the literature using either one of the above-mentioned approaches.
Concerning the case when p > 1, one can find examples in which either the
classical approach or the variational method can be applied. The goal of this
paper is to investigate the case when p € (1,400) by using the integrated
semigroups theory. This approach has not been developed for such cases.
The main difficulty is that, when p > 1, the linear part of (1.3) generates an
integrated semigroup, but its generator is not a Hille-Yosida operator and
the integrated semigroup is not locally Lipschitz continuous.

In Section 2, we first recall some classical definitions and results about
integrated semigroups, then we prove a Kellermann and Hieber’s [28] type
result for a class of non-locally Lipschitz integrated semigroups. We prove an
integrated semigroup formulation of Desch and Schappacher’s [17] linear per-
turbation theorem in Section 3. In Section 4, we obtain some sufficient condi-
tions on the resolvent of A in order to apply Kellermann and Hieber’s type re-
sult in Section 2, when the space L' ((0,79) , X) is replaced by L? ((0,7g), X)
(with p > 1). In Section 5, we investigate the existence and uniqueness of
a non-autonomous semiflow generated by non-autonomous semi-linear prob-
lems. The obtained results are applied to studying age-structured models in
LP spaces in Section 6. Finally, in Section 7 we demonstrate that neutral
delay differential equations in LP can be treated as special cases of the age
structured models in the LP space.

2. INTEGRATED SEMIGROUPS

Let (X,|.|lx) and (Y,||.|y) be two Banach spaces. Denote by L£(X,Y)
the space of bounded linear operators from X into Y. When X =Y, denote
L(X,X) by L(X). Let A: D(A) C X — X be a linear operator. Denote by
p(A) the resolvent set of A, N(A) the null space of A, and R(A) the range
of A, respectively. Also denote by X the closure of D(A), and Ay the part
of A in Xy. Note that Ay : D(Ap) C Xo — X is a linear operator defined
by

Apx = Az, Vo € D(Ap) ={y € D(A) : Ay € Xo}.
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Assume that (w, +00) C p(A). Then it is easy to check that for each A\ > w,
D(Ag) = (M —A) ' Xgand (M — Ag) ' =M —A)" |y, .
Moreover, we have the following result.

Lemma 2.1. Let (X, ||.||) be a Banach space and let A: D(A) C X — X be
a linear operator. Assume that there exists w € R, such that (w,+00) C p(A)
and

. -1
ligilfg))\ H()\I A) HL(XO) < +00. (2.1)
Then the following assertions are equivalent:

(i) Hmy_yoc AN(AM — A) Lz = 2,V € X,.

(i) limy—qoo (M — A) 'z =0,Vz € X.

(iii) D (4g) = Xo.

Proof. Since D (Ag) = (A — A)™! Xo, VA > w, it is clear that (i) = (iii).
The proof of (iii) = (i) follows from the argument in the proof of Lemma
3.2 in Pazy [39]. It remains to show that (i) < (ii). Assume first that
(i) is satisfied, then by using the resolvent formula, we know that for fixed
w € (w,+00) and all A > p,

M =A== —(ul — A 4 (uI - A)7!
== A=) A=A (ul = A7 4 (I - A7
- [I A — A)*} (ul — A+ (A — A)™ (u — A
and (ii) follows. Assume now that (ii) is satisfied; then, we have

[A (M — A)! - I} (ul — A)~"

A -1 —1 —1
=—F (M -A)" —(u[— A —(ul — A" .
oy [ = AT = el = A7 = (- )
We obtain that limy_ 4o A (Al — A) 'z = z, V2 € D(A), and by using (2.1),
we know that (i) is satisfied. O

Recall that A is a Hille- Yosida operator if there exist two constants, w € R
and M > 1, such that (w,+00) C p(A) and

M
LX) T (A —w)®

In the following, we assume that A satisfies some weaker conditions.

H(M—A)"“H VYA > w, Vk> 1.
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Assumption 2.1. Let (X, |[|-]|) be a Banach space and A: D(A) C X — X
be a linear operator. Assume that
(a) There exist two constants w € R and M > 1, such that (w,+o00) C
p(A) and
M

—k
)" N exe) < oo

| (AT — A —

YA > w, Vk>1;

(b) limy—qoo M —A) 'z =0,Vz e X.
By using Lemma 2.1 and the Hille-Yosida theorem (see Pazy [39], Theo-
rem 5.3 on p. 20), and the fact that if p(A) # 0 then p(A) = p(Ap), one
obtains the following lemma.

Lemma 2.2. Assumption 2.1 is satisfied if and only if p(A) # 0, and Ay is
the infinitesimal generator of a Co-semigroup {T, (t)}tzo on Xo.

Now we give the definition of the integrated semigroups.

Definition 2.3. Let (X, ||-||) be a Banach space. A family of bounded linear
operators {S(t)},5o on X is called an integrated semigroup if
(i) S(0) =o0.
(ii) The map ¢t — S(¢)x is continuous on [0, +o0) for each x € X.
(iii) S(t) satisfies

S(s)S(t) = /O (S(r46) — S()) dr, V5 > 0. (2.2)

An integrated semigroup {S(t)},~, is said to be non-degenerate if, when-
ever S(t)x = 0, Vt > 0, then = = 0. According to Thieme [42], we say that
a linear operator A : D(A) C X — X is the generator of a non-degenerate
integrated semigroup {S(t)},~, on X if and only if

t
x € D(A), y=Az & S(t)x —tx = / S(s)yds, ¥t > 0. (2.3)
0

From [42, Lemma 2.5], we know that if A generates {Sa(t)},~,, then for
each x € X and t > 0, B

/t Sa(s)xds € D(A) and S(t)x = A/t Sa(s)xds+tx.
0 0

An integrated semigroup {S(f)},5q is said to be exponentially bounded if

there exist two constants M > 0, and & > 0, such that

1S (@)l gy < Me, ¥t > 0.
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When we restrict ourselves to the class of non-degenerate exponentially
bounded integrated semigroups, Thieme’s notion of generator is equivalent
to the one introduced by Arendt [7]. More precisely, combining Theorem 3.1
in Arendt [7] and Proposition 3.10 in Thieme [42], one has the following
result.

Theorem 2.4. Let {S(t)},~, be a strongly continuous exponentially bounded
family of bounded linear operators on a Banach space (X,|-||) and A :
D(A) € X — X be a linear operator. Then {S(t)},~, is a non-degenerate
integrated semigroup, and A its generator if and only if there exists some
W > 0 such that (&, +00) C p(A) and

(N —A) e = /\/ e S (s)xds, YA > O.
0

The following result is well known in the context of integrated semigroups.

Proposition 2.5. Let Assumption 2.1 be satisfied. Then A generates a
uniquely determined non-degenerate exponentially bounded integrated semi-
group {Sa(t)},~o- Moreover, for each x € X, each t > 0, and each p > w,
Sa(t)z is given by

Salt)z = u/ot Tay(s) (ul — A P wds+ [T —Ta, (1)) (ul — Atz (2.4)

Furthermore, the map t — Sa(t)x is continuously differentiable if and only
if v € Xo and
dS,(t)x
dt

Proof. The right-hand side of (2.4) defines an exponentially bounded func-
tion of t. A short calculation shows that its Laplace transform is A™1 (A —
A)~L. The result follows by using Theorem 2.4. g

= T, ()m, Vt >0, Yz € Xo.

From (iii) in Definition 2.3 one easily deduces that
T, (r)Sa(t) = Sa(t+r)—Sa(r), Vt,r > 0. (2.5)
From Proposition 2.5, we deduce that S (t) commutes with (Al — A)™' and

t
Sa(t)e = / T, (D dl, Yt >0, Vo € Xo.
0
Hence, Vo € X, Vt > 0, Vi € (w, +00),

(I — AP Sa(t)z = Sa(t) (ul — A) 'tz = /Ot Tay(s) (ul — A) ' ds.
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We have the following result.

Lemma 2.6. Let Assumption 2.1 be satisfied and let 79 > 0 be fixed. Denote
for each f € C*([0,79], X),

(Saxf)( /SAt—s s)ds, Yt € [0, 70] .

Then we have the following:
(i) The map t — (Sa * f) (t) is continuously differentiable on [0, To].
(ii) (Sa= f)(t) € D(A), Vt € [0,7].
(iii) If we set u(t) = % (Sa* f)(t), then

A/ ds+/ F(5)ds, ¥t € [0,70]. (2.6)

(iv) For each X\ € (w,+00) and each t € [0, 7], we have
A=A 5 Sas DO = [ Taglt =) (=47 fs)ds. (2)

Proof. Let f € C'([0,79],X). Then

d
d(SA*f)() /SA "(t — s)ds.
t
The result follows from Lemmas 3.2.9 and 3.2.10 in Arendt et al. [8]. O

We now consider the inhomogeneous Cauchy problem

fl_;‘ — Au(t) + f(t), t € [0,70], u(0) == € D(A) (2:8)

and assume that f belongs to some appropriate subspace of L ((0,79), X).

Definition 2.7. A continuous map u € C ([0, 7], X) is called an integrated
solution (or mild solution) of (2.8) if and only if

/ "u(s)ds € D(A), Vit € [0.7] (2.9)
0

and

_g;+A/ ds+/f )ds, Vit € [0,70].

Remark 2.8. From (2.9) we know that if u is an integrated solution of (2.8),
then u(t) € D(A), Vt € [0, 7).
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Since A generates a non-degenerate integrated semigroup on X, we can
apply Theorem 3.7 in Thieme [42] and obtain the following result.

Lemma 2.9. Let Assumption 2.1 be satisfied. Then for each v € D(A) and
each f € L* ((0,79),X), (2.8) has at most one integrated solution.

The following lemma can be used to obtain explicit solutions.

Lemma 2.10. Let Assumption 2.1 be satisfied. Let v € C([0,7],Xo),
feL(0,7],X), and A € (w,+00). Assume the following:
(i) (M —A)" o e WHL([0,70], X) and for almost every t € [0, 7],
d
(M= A)Po) = XA = A) o) —o(t) + (A= A) L f(1).
(ii) t — (Sa * f) (t) is continuously differentiable on [0, ).
Then v is an integrated solution of (2.8) and
d
v(t) = [Ta,(t)v(0) + - (Sax f) (t)], Vt € [0,79].
Proof. We have for almost every ¢ € [0, 79| that
d

yrCU Aot
(

=AM —A) o) = (M =AM —A) o)+ (A — A) L)
= Ao (M — A) Fu(t) + (AT — AL f(1).
So

(M — A) L o(t) = Ta, (t) (M — A) L o(0) + /Ot Tay(t—s) (M — A)~" f(s)ds.

By (ii),
d

=4 L (500 ) (1) = & 0= 4 (545 1) (1)

— /Ot Tay(t —s) (A — A)~F f(s)ds, Yt € [0,70],

so we have for all ¢ € [0, 79| that

(A — 4 o(t) = (= 4) ™ [Zay (00(0) + 5 (54 + 1) (1)

Since (A — A)~! is injective, the result follows. O
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In order to obtain an estimate for the integral solution, we introduce the
following assumption.

Assumption 2.2. Let 79 > 0 be fixed. Let Z C L' ((0,79), X) be a Banach
space endowed with some norm |-|| , . Assume that C* ([0, 7], X)NZ is dense
in (Z,|.||;) and the embedding from (Z, ||-|| ;) into (L' ((0,70), X), |-l ;1) is
continuous. Also assume that there exists a continuous map I' : [0, 9] X Z —
[0,400) such that

(a) I'(¢,0) = 0, Vt € [0,79], and the map f — I'(¢, f) is continuous at 0
uniformly in ¢ € [0, 79] .
(b) We have Vt € [0, 7], Vf € C* ([0,70], X) N Z that
d
|2 Sax H)|| <. 5).
We now state and prove the main result in this section.

Theorem 2.11. Let Assumptions 2.1 and 2.2 be satisfied. Then for each
f € Z the map t — (Sa * f)(t) is continuously differentiable, (Sa x f) (t) €
D(A),vt € [0,70], and if we denote u(t) = % (Sax f)(t), then

u(t) = A /0 u(s)ds + /0 F(s)ds, vt € [0, 7]
and
lu(®)|| <T(t, f), Vt € [0,70].

Moreover, for each A € (w,+o0), we have

(AJ—A)*%(SA*]C) (t):/o Tay(t —s) (A — A)~" f(s)ds.

Proof. Consider the linear operator

Loy + (€ (0.7, X) 1 Z, 1) — (€ (0. 70] . X) . [ low o.m)
defined by

Ln(P)(0) = % (Sa% 1)(2), ¥ € 0,7]., ¥ € € ([0,m], X) 1 2

Then

sup | L+, (f)(@)| < sup T'(t, f).
te[0,70] te[0,7o]

Since C! ([0,70],X) N Z is dense in Z, using assumptions (a) and (b), we
know that L., has a unique extension L, on Z and

1L (F)®)| <T(t, f), Vt € [0,70], Vf € Z.
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By construction ETO is continuous from (Z, ||-|| ;) into

(C([OvTO]vX)v H ’ Hoo,[();ro})‘
Let f € Z and let {f,},5( be a sequence in C1 ([0,70],X) N Z, such that
fn — f in Z. We have for each n > 0 and each t € [0, 79| that

/Ot Ly (fa)(s)ds = /Ot Ly (fn)(s)ds = /Ot Sa(t — 8) fu(s)ds.

Since the embedding from (Z, [|-|| ;) into (L* ((0,70),X),|[]-|;1) is continu-
ous, we have that f, — f in L' ((0,7),X) and when n — +o0,

/ ETO(f)(s)ds—/ Sa(t—s)f(s)ds, ¥Vt € [0,70] .
0 0

Thus, the map ¢t — (S4 * f)(t) is continuously differentiable and

L (f)(t) = %/0 Sa(t —s)f(s)ds, Vt € [0, 7] .

Finally, by Lemma 2.6, we have for each n > 0 and each ¢ € [0, 7p] that

t t
En(f) =4 [ Tn(fe)ds+ [ fulds
the result follows from the fact that A is closed. OJ

In the proof of Theorem 2.11, we basically followed the same method
Kellermann and Hieber [28] used to prove the result of Da Prato and Sines-
trari [16] (see also [8, Theorem 3.5.2, p. 145]) for Hille-Yosida operators and
with Z = L' ((0,70) , X).

By Lemma 2.10 and Theorem 2.11, we obtain the following result.

Corollary 2.12. Let Assumptions 2.1 and 2.2 be satisfied. Then for each
x € Xo and each f € Z, the Cauchy problem (2.8) has a unique integrated
solution u € C ([0, 7], Xo) given by

u(t) = Ta,(t)x + % (Saxf)(t), YVt €0,70].

Moreover, we have

lu(®)]| < Me*" |lz|| + T(t, ), Vt € [0, 0] .
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3. BOUNDED PERTURBATION

In this section we investigate the properties of A+ L : D(A) C X — X,
where L is a bounded linear operator from Xg into X. If A is a Hille-Yosida
operator, it is well known that A + L is also a Hille-Yosida operator (see [8,
Theorem 3.5.5]).

The following theorem is closely related to Desch and Schappacher’s the-
orem (see [17] or Engel and Nagel [20, Theorem 3.1, p. 183]). This is in fact
an integrated semigroup formulation of this result.

Theorem 3.1. Let Assumptions 2.1 and 2.2 be satisfied. Assume in addition
that C ([0, 70],X) C Z and there exists a constant 6 > 0 such that

F(tvf) < 0 SL[lopt} ”f(s)Hv Vf € C([OaTO] 7X)7 vt € [OaTO] .
se|0,

Let L € L(Xo, X) and assume that ||L||zx, x)0 < 1. Then A+ L: D(A) C
X — X satisfies Assumptions 2.1 and 2.2. More precisely, if we denote
by {Sa+r(t)}io the integrated semigroup generated by A + L, then Vf €

ct ([077—0] 7X)7

H%(sAH*f) Ol

1
sup I'(s, f),Vt € [0,70]. (3.1)
- ||LH£(X0,X)6 s€[0,1]

Proof. Without loss of generality we can assume that 79 = 7. We first
prove that there exists @ € R such that (@, +00) C p(A+ L). We have for
x € D(A) and y € X that
M—-(A+L)z=y & M—-Az=y+Lz
& z=WN-A) " y+ (N —-A) "Lz
So (M — (A + L)) is invertible if [ (AT —A) "' L] £(x,,x) < 1. Since {Sa(t)},5¢
is exponentially bounded, by Theorem 2.4, we have for all A > © that

+oo
(M —A) = )\/ e MS (t)xdt, Vo € X.
0

We obtain that
+o0 70
(M —A) ' Le = )\/ e M8 (t) La dt + )\/ e NS4 (t) L dt.

0 0
Since Sa(t)y = % fg Sa(t —s)yds,Vy € X, from the assumption we have
[1Sa@yll < dllyll, vt € [0,70], Vy € X.
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Thus,
H)\/OTO e—AtSA(t)Lx dt” < )‘/OTO Mt HLHﬁ(XO,X)(SHxH
and .
)\/ e Mdt=1—e 5 1as \— +oo.
Moreover "

+oo
H/\/ e MSA(t) L dt” — 0 as A — +o0.
70

So we obtain

lim sup H()\I — A LHE(

< ||L o< 1.
A 00 ) | HE(XO’X)

X0, X
We know that there exists @ € R such that
1Ll £(x0,x) 0 + 1

1- a7 B, +00) .
H()\ ) L(X0,X) 2 » YA€ (@, +00)
Hence, for all A € (&, +00), (M — (A+ L)) is invertible,
+oo k
W —(A+LD) Ty =Y [()J — A L] (M — A)" 'y,
k=0
and for each y € X,
1

H()\I—(AJrL))_lyH < H(/\I—A)_lyH .0 as A — 400
1

R
2

To prove Assumption 2.1 it remains to show that (A + L),, the part of
(A+ L) in Xy, is a Hille-Yosida operator. Let = € Xj. Define II, ¥, :
C ([0, 70], Xo) — C ([0, 70], Xo) for each v € C ([0, 7], Xo) by

TI(v)(t) = % (Sa* Lv) (t) and Uu(v)(t) = Ta, (t)z + IL(v)(t), V¢ € [0, o).

Then from the assumptions it is clear that W, is an ||L||z(x,, x)J-contraction.
So ¥, has a unique fixed point given by

U(t)a = ink (T ()z) (£), Vt € [0, 7] .
k=0

In particular,
1

1Ll £(x0,%) 0

IU@)all < 1= Me* ||z||, ¥t € [0, 70) -
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Thus, we obtain {U(t)}¢<;<,, » @ family of bounded linear operators on Xo,
such that for each z € Xy, t — U(t)x is the unique solution of

¢ t
Ult)x =2+ A/ U(s)xds + / LU(s)xds, Vt € [0, 7).
0 0

Therefore, U(t + s) = U(t)U(s), Vt,s € [0,79] with t + s < 79. We can
define for each integer k > 0 and each t € [k7y, (k + 1)79] that U(t) =
U(t — k7o)U(79)¥, which yields a Cp-semigroup of Xy and

t t
Ult)r =x+ A/ U(s)xds —|—/ LU(s)xds, Vt > 0.
0 0

It remains to show that (A + L), is the generator of {U(t)},5q. Let B :
D(B) C Xy — Xo be the generator of {U(t)},-, . Since U(t)z is the unique
solution of B

t
U(t)x:x+(A+L)/ U(s)xds, Yt > 0,Vz € Xy,
0

we know that (A — (A+L))~! and U(¢) commute, in particular (A\I — (A +
L))~t and (M — B)~! commute. On the other hand, we also have

t t
B/ U(s)w:(A—i—L)/ U(s)xds, Vt > 0,Vz € X.
0 0
Thus,
t t
(M —(A+L)7" / U(s)z = (M — B)_l/ U(s)zds, ¥t > 0,Yz € X.
0 0

Taking the derivative of the last expression at ¢ = 0, we obtain for sufficiently
large A € R that
(M —(A+ L)) 'z= W\ -B) 'z Vz e X,.

Hence, B = (A + L), and (A + L) satisfies Assumption 2.1.
Now using Proposition 2.5 we know that (A + L) generates an integrated
semigroup {Sa+r(t)};>o and

t t
SA+L(t):c—(A+L)/ SA+L(t)x+/ xds, Vt >0, Vo € X.
0 0
So

d
Sarr(t)xr = Sa(t)x + 7 (Sa* LSa+r()x) (t), Yt € [0,70], Vx € X
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and for each f € L' ([0, 7], X),

t t t
/OSA+L(t—s)f(s)ds:/0 SA(t—S)f(s)ds+/0 W(t—s)f(s)ds,

vt € [0,m0], Vo € X, where W (t)z = & (Sa * LSatr (")) (¢).
Also notice that

t pl
/ / W(l —s)f(s)dsdl = / / (Il —s)f(s)dlds
0o Jo

t t—s
_// W dlds—/ (S + LSarr(VF(s)) (t — 5)ds
0 JO

:/t /H Salt —s = DLSas (1) f(s)dl ds
/ / St — DLSars(l — 5)f(s)dl ds
/ / Salt = DLSasr(l — s)f(s)ds dl

- /0 Salt 1) /0 LSasr(l— 8)f(s)ds di;

we then have

[ W= 9)(s)ds = 5 (Sax LiSaesx () (1)
0

Thus,

(Savr * ) (0) = (Sa» F)(E) + 5 (Sa% L(Saer* ) () (1), i € [0,7].

Let f € C1([0,70],X). The map t — L (S * f) () is continuously differ-
entiable and

d

g (SaxL(Sayrr*f)())(t)

= ()L (Sasr 5 1) (0) + (Sax 5L (Sar+ 1) ) 0)

SO

CSarn ) ()= 5S4 )+ 5 (Sa% L5 (Sase = N 0)0)
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Therefore, for each t € [0, 79, we have

|5 Sree e DO 0D+ 108 500 [ Savs = 90|

and p 1
sup || (Sare % ) (5)]| < sup T(s, f)-
sefo, 1 dt - L= |ILll £ x0,x) 9 sefo.
This completes the proof. O

4. THE LP CASE
In this section we investigate the case when

Z =17 ((0,7), X) and T'(t, f) = N [ 200 ()]

LP((0,t),X)

where p € [1,+00), M >0,0 €R,and (X, ]]]]) is a Banach space. From now
on, for any Banach space (Y, ||-||y-) we denote by Y* the space of continuous
linear functionals on Y. We recall a result which will be used in the sequel
(see Diestel and Uhl [19, pp. 97-98)).

Proposition 4.1. Let Z be a Banach space and I C R be a non-empty open
interval. Assume p,q € [1,+o0] with 1/p+1/q = 1.

(i) For each q € [1,400] and each p € LY(1,Z*)NC (I,Z*),

P ——— /1 (s) (p(s)) ds

pEC(1,2)
||<P||Lp(1,z)§1

(ii) For each p € [1,+00) and for each ¢ € LP (f, Z) ,

elsan = s [l (ele)ds
YeCee(1,z*) JI
Il Lo 1,2y <1

From now on, denote

abs (f) := inf {5 >0:edf() e L (o,+oo,X)} < 400
and define the Laplace transform of f by

+oo
LK) = /0 e f(s)ds

when A > abs (f). We first give a necessary condition for the LP case when
p € [1,+0o0].
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Lemma 4.2. Let Assumption 2.1 be satisfied and let p,q € [1,400] with
% + % = 1. Assume that there exist M >0 and © € R, so that Vt >0, Vf €
c ([0, X),

I(Sae O] < M

Ol f(. : 4.1
c f<)’LP((O,t),X) (4.1)

Then there exists a subspace 2 C X such that for each x* € E there exists
Vpx € L1([0,+00), X*)NC ([0, 400), X™*) such that

+o0o
x* <()\ —(A-an)™ x) = / e MV (s)z ds, (4.2)
0
when A > 0 is sufficiently large,

t
* (Sa—on(t)z) = / V= (8)x ds,Vt > 0, (4.3)

0

sup [Var 1l La((0,4.00),x+) < M, VE >0,

2B | g <1

and

llz|| < sup z*(z),Vx € X, (4.4)
m*GE:Hx*HXé <M

where M > 0 is the constant introduced in Assumption 2.1.
Proof. We set

B = {()\ —w)yfo (M — Ag) 2yt e X¢, ||y*HX5 <1, and A > w} .
From Assumption 2.1, we obtain sup{Hx*HXg cx* € B} < M and

)\liril (A —w)> (M — Ag) 2z = z,Vz € Xo.

Using the Theorem of Hahn-Banach, we have ||z|| < sup,«cpz*(x). Let E
be the subspace of X{j generated by B. Then

|z|| < sup z*(x) < sup x*(x)
T*eB m*EE:H:p*HXgSM

and (4.4) is satisfied.
Let y* € X§ be such that ||y*HX6 <1 and let g > w. Set

o= (n—w)?y* o (ul — Ag) 2.
Then for A > & 4+ max(0,w), we have for each x € X that
(A= (A—BT) " 2)
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= (p =Py (Wl = A0) " (A= (A9 = B1) " (u — A) " x)

==y (- a0 [ I ) - ) et
So
(A= (A=QI) z) = /OO e MV () dt
with ’
Vor (£) = €% (= w)® y* o (uI — Ag) ™" 0 Ty () o (I — A)~',Vt > 0.
Since

t
Ta,(t)x =z + Ao/ Ty, (Dxdl
0

and Ag (uI — Ag) ™" is bounded, it follows that t — (uf — Ag) " Ta,(t) is
continuous from [0, +00) into £(Xy), and is exponentially bounded. Thus,
t — Vy«(t) is Bochner measurable from [0,400) into X* and belongs to
Lt ([0,+00), X*). Moreover, for each f € C*([0,t],X), we have

2" ((Sa o f)(®))

= (u=w)? [ o (= A0) ™ o Tyt =)o (u = A7 ((5) s

= /t Vi (t — s)ea(t_s)f(s)ds.
0

Now by using (4.1) it follows that

* ((Sao f))) = /0 Ve (t — 5)e°3) £ (s)ds. (4.5)

Since F is the set of all the finite linear combinations of elements of B, it
follows that (4.2), (4.3) and (4.5) are satisfied for each z* € E. Let 2* € E
with H”U*”Xg < 1. We have from (4.1) that

Lr((0,¢),X)

/Ot Vi (t = 5)e%=) f(s)ds = a* (S o £)(1) < M |20 £()]

Using Proposition 4.1(i), we have

Vel pago,0),x) < M, ¥t 2 0.
This completes the proof. ]
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Theorem 4.3. Let Assumption 2.1 be satisfied. Let B : D(A) — Y be
a bounded linear operator from D(A) into a Banach space (Y,|-|ly-) and
X : (0,400) — R a non-negative measurable function with abs (x) < +00.
Then the following assertions are equivalent:

(') 1B(Sae /(O < f x(t—s)IIf(s)lds, Vt>0 vf € CH([0,+00), X).

(i) HB A=) pxy) < wm 0*“3” Le=2sx (s)ds, YA > 0, ¥n >

i) 1B (St )= SaO gy < S (5)ds, Vb0,

Moreover, if one of the above three condztwns 1s satisfied, then
x € L1 ,.([0,+00),R) for some q € [1,+00], and p € [1,+00) satisfies 1—1) +
% = 1, then for each 7 > 0 and each f € LP((0,7),X), the map t —
B (Sax f)(t) is continuously differentiable and

| S8 (54 1) )] < / (t—s) |1 £(s)] ds, vt € [0, 7).
Proof. Proof of (i)=(ii). Let # € X be fixed. From the formula
+o0
A=Atz = )\/ e MSa(zdl, YA > 6
0

one deduces that
(A —A)!

(A —A)~ (g — (—1)n G

—+oco
_ / N — Y e NS 4 (1) dl.
0
We also remark that

- /t "e NS (D dl = /t Sa(l)f (t,t —1)dl = (Sax f(t,-)) (1),
0 0

where
f(t,s)=h(t—s)x with h(l) = =",
It follows that

— "¢ f/\tSA( )

D (502 109 0] = (S0 £ () 0+ (54 L)),

so for all A > 0 large enough

lim (Saof(t ) () =— lim (SA*af(t")>(t).

t—-4o00 t——4o00 ot

(SA*af(t ) :/(:S(l)h’(t—(t—l))dl:/ot[)\l”—nl”1]6’\lS(l)xdl,
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SO

w400 = i (50 R0 =t (Sae 0 0)

Now by using (i), it follows that
B (A =4~V al| = lim B (Saof(t) @)

t

“+o00
< tim [ X It — D) di = / e My (1) di |
0 0

and (ii) follows.
Proof of (ii)=(i). Let f € C'(]0,+00),X) be fixed. Without loss of
generality we can assume that f is exponentially bounded. We remark that

+oo +oo
_ 1 _ N N
(A=A L () () = A /0 Sl /0 F(byd
+o0
= /0 e M (S f)()dl

Integrating by parts we obtain that

A+wekmsAoﬂuyu=(A—A)1503@%

Then
d’n

da ond E(N—A)~! gk
A\

+oo
) e (Sao f)(D)dl Z n d\—k d)\k‘c(f) ()

k=0

and

H — /+OO e NB(Sa0 f) (l)le

dkB(A—A) AL () ()
d\n—F ANk H

Ck

NER

bl

S |l

0

k
Cﬁ@l—kﬂHB(A—uﬁ_W*WJw(_nkglﬂggﬁﬁﬁ.

B
I

0
Now using (ii) it follows that

ch/ e MNB(S40f) (l)le
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e d L) (V) AL (11D ()
< _ n k
< (Y oL L
k=0
= [ e e a
- |, X
and by the Post-Widder theorem (see Arendt et al. [8]) we obtain

1B (Sao f) (@I < O+ [I£1) (£), Vi = 0.

So we obtain (i) for all the maps f in C ([0, +00), X).
We now prove (iii)=-(ii). First assume that n = 1. We have

+oo
BA—A) 'tz = /\/ e MBS(s)zds.
0
Using (iii), we obtain

+o0 s
HB(AfA)*H < )\/ e_)‘s/ (1) dl ds
0 0
and by integrating by parts (ii) follows. Next assume that n > 2. We have
BA—A)™ B(A—Ay) Y (A — At

1 n—2 A2 ()N — A -1 400 e
= ((n—)Q)!)\B< El)\"_Q ) )/0 e S 4(s)ds

_ A e n—2_—As teo —)s

= (n—2)!B/o s"%e TAO(s)ds/O e 8 4(s)ds
4)\ e —As ° n—2

- (n—2)!B/O € /0 (s =1)"""Tay(s = 1)Sa(l)dl ds.

But T4, (s —1)Sa(l) = Sa(s) — Sa(s —1), so

+o0 s
ﬁ /0 6)\8/0 (s —1)""?[BSa(s) — BSa(s —1)]dl ds.

B(A—A)™ =

From (iii), we obtain

. A +oo s s e s
|B(A—A) ||L(X)<m/o e ’\/O(S—Z) 2/s_lx(r)drdlds.

Notice that

+oo s s +oo s 8
/ e N / (s =12 / x(r)drdlds = / e / "2 / x(r)dr dl ds
0 0 s—1 0 0 l
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+o0 s pr 1 +o0 s
:/ e_’\s/ / "2dlx(r)drds = —— e_’\s/ "Iy (r)dr ds;
0 0 Jo n—1Jo 0

integrating by parts, we have

400 s s 1 +oo
—As n—1 n—1 —As
e s—1 / XT’dT’dldS—i/ s x(s)e”ds.
/0 /o( ) s ) (n=1)A Jo (=)

It follows that
1 oo n—1 —As
m 0 S X (S) € ds.

It remains to prove (i)=-(iii). Let h > 0 and ¢ > h be fixed. We have

HB (A— A)_an(X) <

d d [ d ("
T (Sa 1y ()z) (t) = %/0 Salt —s)ljp(s)rds = E/o Sa(t—s)zds

t
= a4 Sa(s)xds = Sa(t)xr — Sa(t — h)x.
dt Ji—p

Let {¢n},>0 C C' (R4+,R) be a sequence of non-increasing functions such
that -

1, if t € [0, h],
¢n(t): € [O>h]7 iftE [hah"i'%ﬂ]a
0, ift>h+ n+r1
We can always assume that ¢,4+1 < ¢, ¥n > 0. Then we have

G 5a56,02) (0= 5 [ Salhonlt = ads

= S4(t)pn(0)z —l—/o Sa(s)d,(t — s)zds = Sa(t)x —l—/o Sa(t — s)o,(s)z ds

ht :
= Sa(t)r + / Sa(t — s)p,(s)xds.
0
By the continuity of ¢ — S4(t)z, it follows that

nEI—Poo% (Sa*Pn()x) (t) = Sa(t)r — Sa(t — h)x.

On the other hand, we have x [jp € L' ((0,%),R), and s — x(t — 5)Pn(s) is
a non-increasing sequence in L' ((0,t) ,R). So by the Beppo-Levi (monotone
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convergence) theorem, we obtain
t

t h t
lin [ x(t=90n(s)s = [x(t=pu(ds = [x=s)s= [ x)a

n—-+oo Jq h
and (iii) follows from (i). The proof of the last part of the theorem is similar
to the proof of Theorem 2.11. O

Remark 4.4. When B = I, the previous theorem provides an extension of
the Hille-Yosida case. Unfortunately, this kind property is not satisfied in
the context of age-structured models. Because if property (iii) were satisfied
for some function x € LY ([0,400),R), this would imply that ¢ — Sa(¢)
is locally of bounded L%-variation from [0, +o0) into £(X), but this is not
true in such a context (see Remark 4.8(d)).

Inspired by the paper of Bochner and Taylor [11] we now consider func-

tions of bounded LP-variation. Let I be an interval in R. Let H : I — X be
a map. If p € [1,+00), set

VIP(I,H)=  sup {(ZHHW_Q 1|p111)||P>1/p}’

to<t1<-<tn
o
t;el Vi=1,...,n

where the supremum is taken over all finite strictly increasing sequences in

.C;. If p = +o00, set
Vi Hy = sup { PO =H Iy

|t — 5]

o
t,sel

We will say that H is of bounded LP-variation on I if VLP(I,H) < +oo0.
Let (Y, ||-|ly-) be a Banach space. Let H : I — L(X,Y) and f: ] — X. If

o
7 is a finite sequence top <t < --- <t,in I and s; € [t;i—1,t] (i =1,...,n),
we denote by

S(dH, f7 7'(') = Z (H (tz) —H (tifl)) f (Sl) and |7T| = 7;:IIOIELX |ti — tifl‘ .
P )
We will say that f is Riemann-Stieltjes integrable with respect to H if
b
dH(t)f(t) = li S(dH, f, ists.
/a ( )f( ) || —0 with t0—>ilr111fll and t,—sup [ ( / ﬂ-) eSS

Then we have the following result (see Section 1.9 in Arendt et al. [8] and
Section I11.3.3 in Hille and Phillips [25] for more details).
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Lemma 4.5. Assume p,q€[1,+00] such that %—i—% =1. Let f € CY([a,b], X).
Let H : [a,b] — L(X,Y) be a bounded and strongly continuous map. Then
f is Riemann-Stieltjes integrable with respect to H and

b b
[ anse = 1e)50) - H@s@ - [ HOL Gt

where the last integral is a Riemann integral. If we assume in addition that
H is of bounded L-variation on [a,b], then we have

H /ab dH(t)f(t)H < VLY ([a, b, H) | £l 1o any.x) -

Motivated by Lemma 4.2, we introduce the following definition.

Definition 4.6. Let (Y,|.||y) be a Banach space. Let E be a subspace of
Y*. E is called a norming space of Y if the map |-|; : Y — R, defined by

lylg= sup y'(y),Vyey
y*ek
v lly= <1
is a norm equivalent to .||y .
The main result of this section is the following theorem.

Theorem 4.7. Let Assumption 2.1 be satisfied. Let p,q € [1,+00] with
% + % =1 and & € R. Then the following properties are equivalent:

(i) There exists M >0, such that for each 1 >0, Vf € C! ([0,70],,X),

IS4 0 NI < M| ()

t .
Lp((o,t),x)’v € [0, 7o]

(ii) There exists a norming space E of Xo, such that for each x* € E the
map t — x* 0 Sa4wr(t) is of bounded LI-variation from [0, +00) into
X* and

sup lim VLI([0,t],2% 0 Sa_51(7)) < +o0. (4.6)
m*eE:|\x*||X5§1H+°O

(iii) There exists a norming space E of Xo, such that for each x* € E
there exists x.~ € L% ((0,+00),R),

t+h
lz* 0 Sa_gr(t+h) —a" 0 Ss_51(t)| - < / Xz (5)ds,Vt,h >0 (4.7)
t
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and

sup  |IXa* [l La((0,400)R) < 00 (4.8)
a*€B: 2| xz <1

Proof. The proof of (i)=-(iii) is an immediate consequence of Lemma 4.2.
The proof of (iii)=-(ii) is an immediate consequence of the fact that (4.7)
implies

VL0, 2], 2" 0 Sayer (1) < IXe~ |l Lago.0my » £ 2 0.

So it remains to prove (ii)=>(i). Let #* € E and f € C' ((0,79), X) be fixed.
By Lemma 4.5, we have for each ¢ € [0, 79| that

t
c;lt(SA*f)() /SA t—s)ds—/o dSa(s)f(t— s)ds.
Thus,

s — dim A= A0 s

g Gaxf) ()= lim XA —Ao)™ = (Saxf) ()
t

= I —s — A7 f(s)ds

= lim ) /0 Tuo(t — 8) (AT = A) ™" f(s)d
t ~

= lim ) / Tyt — s) A — A) ™ 2= f(s)ds

i (SA+wI 5 20 ')f(')> (t) = /Ot dSasor(s)e ) f(t — 5)ds.

By using the last part of Lemma 4.5, we have

t ~
o (GG 0) = [ 46 0 Saan (95 —)
< VLA([0,t], (2" 0 Sa—51) (‘))Hea(t_')f(')HLp(((M),Xl)-
Hence, Vt € [0, 79] we have

d * S(t—-
(S (Sax 1) ®) S VLU0, 400), (@0 Saar) O o 1),
and the result follows from the fact that £ is a norming space. O

Remark 4.8. (a) We can use Theorem 4.3 to replace (4.6) by the equivalent
condition, VA > 4, Vn > 1,

|z* o (A= (A+ &))"

1 +oo 1 —x
< - n— —AS * . 4
N T /0 s"Tre T M xgr (8) ds (4.9)
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(b) From Thieme [42], we know that
+oo
(M — Atz = )\/ e S u(s)x ds
0

for A > 0 sufficiently large. So we can also apply the results of Weis [50] to
verify assertion (iii) of Theorem 4.7.

(c) In the Hille-Yosida case, assertions (i7) and (iii) of Theorem 4.7 are
satisfied for ¢ = 400, E = X, and xz+ (s) = M, Vs > 0.

(d) In the context of age-structured problems in LP spaces the property
(iii) holds. But in some cases (see Remark 6.5) we have

t+h . 1/p
IS atar(t+ 1) = Sarer @z = ( /t erslar) ", v h > 0,

So t — Saptwr (t) is not of bounded L?-variation. Nevertheless, we will
see that (4.8) and (4.9) are satisfied. This shows that a dual approach is
necessary in general.

5. THE SEMILINEAR PROBLEM

In this section we investigate some properties of the non-autonomous semi-
flow generated by the following equation:

t t
Ut,s)r =z+ A/ U(l, s)xdl +/ F(l,U(,s)z)dl, t>s>0. (5.1)
We consider the problem
d
U(t,s)r = TAO(t—s)az—}-a(SA*F(-—I—S, U(-+s,s)x)(t—s), t>s>0. (5.2)

The results presented here are inspired by the results proved in Cazenave
and Haraux [14, Chapter 4] concerning autonomous semilinear equations
with dense domain. We also refer to Segal [40] and Weissler [51] for more
general results concerning autonomous and non-autonomous densely defined
semi-linear equations.

Assumption 5.1. Assume that A : D(A) C X — X is a linear operator
satisfying Assumptions 2.1 and 2.2, C([0,70],X) C Z, and there exists a
map ¢ : [0, 79] — [0, +00) such that

L(t, f) <o(t) sup ||f(s)||, Vt€[0,70], and lim 6(t) =0.

s€[0,t] t—07F
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Assume that F' : [0,400) x D(A) — X is a continuous map such that for
each 79 > 0 and each £ > 0, there exists K (79,£) > 0 such that

1B, z) = F(ty)|| < K(70,8) |z =y

whenever t € [0,7], ¥,z € Xo, and ||z|| <&, ||y| <&

First note that without loss of generality we can assume that 6(¢) is non-
decreasing. Moreover, using Theorem 3.1 (or direct arguments) and for each
a € R replacing 79 by some 7, € (0,7p) such that §(7,) |a] < 1, we obtain
that A + «l satisfies Assumptions 2.1 and 2.2. Replacing A by A — wl and
F(t,-) by F(t,-) +wl, we can assume that w = 0. From now on we assume
that 6(¢) is non-decreasing and w = 0. In the sequel, we will use the norm
|| on Xy defined by

|z| = sup || T4, (t)z||, Vz € Xo.
t>0

Then we have ||z|| < |z| < M ||z|| and |T4,(t)z| < |z|, Yz € Xo, Vt > 0.
Remark that by the assumption, for each f € C ([0,70],X), 4£(Sa* f)(t) is
well defined Vt € [0,70]. Let f € C* ([0,27],X) . Then, for ¢ € [rg, 270],
d , t _
T (Sax )(t) = Tim [ Ty (t—s)p(ul — A) L f(s)ds
t pu——+00 0

= %(SA * f(-+70))(t —70) + Ta,(t — TO)%(SA « £ ())(10),

SO

d
|5 Saen®]| <ot -m) sw @I+ 6t~) sup 7O
lE[To,t—To] 16[077'0]
Thus, Assumption 2.2 is satisfied with Z = C([0,270], X); we deduce that
4(Sa f)(t) is well defined for all t € [0,27)] and satisfies the conclusions
of Theorem 2.11. By induction, we obtain that for each 79 > 0 and each
feC(0,m],X), t— (Sax*f)(t)is continuously differentiable on [0, 79],
(Sa* f)(t) € D(A),Vt € [0, 7], and if we denote u(t) = <& (S4 * f) (t), then

A/ ds+/f \ds, Vt € [0,70].

In the following definition 7 is the blow-up time of maximal solutions of
(5.1).

Definition 5.1. Consider two maps 7 : [0, +00) X Xo — (0,+0o0] and U :
D, — X, where D; = {(t,s,2) € [0,400)? x Xg:s <t < s+7(s,x)}. We
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say that U is a mazimal non-autonomous semiflow on Xy if U satisfies the
following properties:
(i) 7(r,U(r,s)x)+r =7 (s,z)+s,¥s > 0,Vo € Xo,Vr € [s,s+ 7 (s,2)).
(ii) U(s,s)r =z,Vs > 0,Vz € X.
(iii) U(t,r)U(r,s)x = U(t,s)x,Vs > 0,Vx € Xo,Vt,r € [s,s+ 7 (s,2))
with ¢ > r.

(iv) If 7 (s,2) < 400, then lim, )" |U(t, s)z|| = +oo0.

—(s+7(s,z

Set D = {(t,s,2) € [0,4+00)2x X : t > s}. The main result of this section
is the following theorem, which is a generalization of Theorem 4.3.4 in [14].

Theorem 5.2. Let Assumption 5.1 be satisfied. Then there exist a map
T : [0,400) X Xog — (0,+00] and a maximal non-autonomous semiflow
U : D, — Xo, such that for each z € Xy and each s > 0, U(+,8)x €
C([s,s+7(s,x)),Xo) is a unique mazimal solution of (5.1) (or equivalently
a unique mazximal solution of (5.2)). Moreover, D, is open in D and the map
(t,s,z) = U(t, s)x is continuous from D, into Xo.

In order to prove Theorem 5.2 we need some lemmas.

Lemma 5.3. (Uniqueness) Let Assumption 5.1 be satisfied. Then for each
x € Xo, each s > 0, and each T > 0, equation (5.1) has at most one solution
U(ys)z € C([s, 7+ s],Xo).

Proof. Assume that there exist two solutions of equation (5.1), u,v €
C ([s, 7+ s],Xo), with u(s) = v(s). Define ty = sup{t > s : u(l) = v(l),
VI € [s,t]}. Then, for each t > ¢y, we have

u(t) — v(t) = A/t [u(l) — v(D)]dl +/t (F(,u(l)) — (1, 0(1))]dL.
It follows that
(1 — ) (t — to + to) :A/O”O (1 —v) (I + to)dl

t—to
[Pt 4 t0)) = P to, 00+ t0))
0
thus,

u(t) —vlt) = (S % (F(+to,ul- +10)) = F(- 4 to,v(- + 1)) (¢ ~ 1o).
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Let & = max(||ulo,(s,r45]s [Vl 0, [s,7+5])- Thus, we have for each ¢ € [to, to+70]
that

[u(t) = v < 6(O) K (T + 5,€) o [u(t) = o]l

Let € > 0 be such that 6(e)K (7 + s,£) < 1. We obtain that
sup u(l) —v(D]] <6(e)K (T +5,§)  sup lul) —v(I)].

lE[to,to-‘rE} lE[to,to-‘rE}
So u(t) = v(t), VYt € [to, to + €], which gives a contradiction with the defini-
tion of tg. O

Lemma 5.4. (Local Ezistence) Let Assumption 5.1 be satisfied. Then for
each T > 0, each B > 0, and each § > 0, there exists v (1, 3,€) € (0, 70] such
that for each s € [0, 7] and each x € Xo with ||z|| < &, equation (5.1) has a
unique solution U(-,s)x € C ([s,s +v(7,5,&)], Xo) which satisfies

[U(t, s)zl| < (14 B)¢, VE€ls,s +7(7,5,)].
Proof. Let s € [0, 7] and z € X with ||z| < & fixed. Let v (7, 3,€) € (0, 7o)
such that
6 (v(7.8,€)) ML+ Ermy + (14 B)EK (7 + 70, (14 B) )] < B¢
with &, = SUPseio,a) 1£'(5,0)[], Voo > 0. Set
E={ueC([s,s+0(y(r,3,8))], Xo) : [[u(®)[| < (A1+B)E,Vt € [s,s4+7(7, 5,8)]}-

Consider the map

(I)%S : C([S,S + 6(7 (7_7/87§>)] 7X0) - C([S73 + 6(7 (7_7576»] 7X0)
defined for each t € [s,s + d (v (7,p,C))] by
D, s(u)(t) = Ta,(t — s)z + %(SA * F (- +s,u(-+9)))(t—s).
We have Vu € E that
@)D < &+ M| S (S F (45, + )t~ 5)|

<&+ Mo (y (1, 8,6)) sup 1" (¢, u(t))]]
t€[s,s+0(v(7.8,6))]

SE+MO(y(rB,9) [+ K(r+70,(1+8)€) s fu(®)]
t€[s,5+6(v(7.6,6))]
<(1+8)E
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Hence, ®, s(F) C E. Moreover, for all u,v € E, we have
@5 (u) () = a5 (v) (1)]

< M6 (y(7,5,8)) K(7 +70,(1 4 5)§) sup |u(t) —v(t)]
t€ls,s+5(v(7,8,8))]
S _ K(T+Tﬂv(1+/8)§)/8§ sup ’U(t)—?)(t)‘
[1+ &+ K(7 + 70, (14 8) &) (1 + B) €] tefs.s+3(:(7.5.6)]
B

<2 sup lu(t) —v(t)].
L+ 5 tefs,s4+8(v(r,8,6)]

Therefore, ®, ; is a (%)—Con‘craction on E and the result follows. O
For each s > 0 and each = € Xy, define
7 (s,x) =sup{t >0:3U(,s)z € C([s,s +t],Xo) a solution of (5.1)}.

From Lemma 5.3 we already knew that 7 (s,z) > 0, Vs > 0, Vx € Xj.
Moreover, we have the following lemma.

Lemma 5.5. Let Assumption 5.1 be satisfied. Then U : D, — Xy is a
mazimal non-autonomous semiflow on Xo.

Proof. Let s > 0 and =z € X be fixed. We first prove assertions (i)-
(iii) of Definition 5.1. Let r € [s,s + 7 (s,2)) be fixed. Then, for all ¢ €
[rs+7(s,2)),

t t
U(t,s)x = x—l—A/ U(l,s)xdl—i—/ F(l,U(,s)x)dl

:[mwm+A/%WJMﬂ+/}%U@$MM

By Lemma 5.3, we obtain that U(t, s)z = U(t,r)U(r, s)x, Vt € [r, s+7(s,x)).
So 7 (r,U(r,s)x) +r > 7 (s,x) + s. Moreover, if we set

) = U(t,r)U(r,s)x, Yte[r,r+7(r,U(r s)x)),
Ul(t,s)x, Vt € [s,r],

then
v(t) =z + A/tv(l)dl + /t F(l,v(l))dl, vt € [s,r+ 7 (r,U(r,s)z)].

Thus, by the definition of 7 (s,x) we have s + 7 (s,z) > r+ 7 (r,U(r, s)z)
and the result follows.
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It remains to prove assertion (iv) of Definition 5.1. Assume that 7 (s, ) <
+oo and that ||U(t,s)x| - +oo ast /" s+ 7(s,z). Then we can find a
constant £ > 0 and a sequence {t,},~, C [s,5+ 7 (s,x)), such that ¢, —
s+7(s,2) asn — +oo and ||U (t,, s) x| < &, ¥n > 0. Using Lemma 5.4 with
7=1[0,s+7(s,2)] and 8 = 2, we know that there exists v (7, 5,¢) € (0, 1]
for each n > 0, t, + 7 (tn,x) > t, + v (7,63,£). From the first part of the
proof we have s + 7 (s,x) > t, + v (7, 5,€), and, when n — +00, we obtain

s+7(s,2) Zs+7(s,3) +7(7,8,),
which is impossible since v (7, 3,£) > 0. O

Lemma 5.6. Let Assumption 5.1 be satisfied. Then the following are satis-
fied:
(i) The map (s,z) — 7 (s, x) is lower semi-continuous on [0, 4+00) x Xo.
(ii) For each (s,x) € [0,400) x X, each T € (0,7 (s,z)), and each se-
quence {(sn, Tn)},> C [0,400) x Xo such that (sn,xn) — (s,2) as
n — 400, one has
sup U (I + sp,sn)xn —U (I +s8,8)z]| — 0 as n — +o0.
l€[0,7]
(iii) Dy = {(t,s,2) € [0,400)? x Xg: s <t < s+7(s,2)} is open in
D ={(t,s,z) €[0,400)* x Xo:t > s}.
(iv) The map (t,s,x) — U(t, s)x is continuous from D, into Xj.

Proof. Let (s, z) € [0, +00) x X be fixed. Consider a sequence {(sn, Zn)}n>0
C [0, +00) x X satisfying (sp, z,) — (s,2) as n — +oo. Let 7 € (0,7 (s,))
be fixed. Define

€=2 sup |U(t,s)x|]|+1>0
te[s,s+7]

and
Tn =sup{t € (0, 7(sn,xn)) : [U(L + Sn,sn)xn|| < 2&, VI € [0,t]}.
Let € € (0, 79] be such that

&1:=0() MK (T+5,26) <1, §=sup s.
n>0

Set

& =0()M sup ||F(h+ sp, U(l+s,s)x)— F(h+s,U(l+s,s)x)|| —0
he(0,7]
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as n — +o00. Then, we have for each [ € [0, min (7,,7)] and each r € [0,]
with [ — r < ¢ that

Ul+s,8)x=U(l+s,7r+s)U(r+s,s)x
d
:TAO(Z—T)U(T—I—S,S).%—I—E(SA*F(-+T+S,U('—|-7“+8,S).T)(l—7“).

Hence,

\U(l 4 Sn,sn)xn — U(l+ s, s)x|
= U+ sp, 7+ $p)U(r + spysn)xn, — Ul + s,7 + s)U(r + s, 5)7]
<|Tay(I = r) [U(r + sn, Sn)xn — U(r + s, s)x]|

+ M3 () sup |F(h+ sn,U(h+ sp,8p)xn) — F(h+5,U(h + s, 5)z)]
helr,l]

<|U(r+ sp, $p)xn — U(r + s, 8)x|

+ &1 sup |U(h + Sn, Sn)wn - U(h + s, S)l‘| + 53
helr,l]

Therefore, for each | € [0, min (7,,,7)] and each r € [0,!] with [ —r <¢,

sup |U(h + sn, sn)2n — U(h + s, 5)]
helr,l]

<
1-&

From this we deduce for » = 0 that

(U (r + sn, sn)zn = U(r + 5, 8)z| + &1

sup |U(h + sp,8p)xn —U(h +s,5)x] — 0 as n — 400,
he[0,min(g,7,7)]

and by induction we have that

sup \U(h + $n, $p)xn —U(h+s,8)x] = 0asn — +oo.  (5.3)
he[0,min(7,,7)]

It follows that

sup |U(h + spn, $n)Tn|
he[0,min(7y,7)]

< sup |U(h + s, Sn)xn —U(h + s,s)z| +&.

 he[0,min(Fn,7)]

Since £ > 0, there exists ng > 0 such that 7, > 7, Vn > ng, and the result
follows by using (5.3).
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Now (iii) follows from (i). Moreover, if (t,, Sn,xn) — (t,s,x), then we
have
U (tn, sp)xn — U(t, s)x|| < || U((tn — $n) + Sny Sn)Tn — U((tn — sp) + 8, 5)z]|
+ | U((tn, — sn) + 8,8)x —U((t — s) + s, 8)x]|
and by using (ii),
WU (tn, sn)xn — U(t, s)x|| — 0 as n — +oo.
This proves (iv). O

6. AGE-STRUCTURED PROBLEMS IN LP

In this section we consider the age-structured problems in LP. Let (Y, ||-||y)
be a Banach space, p € [1,4+00), and ag € (0, +o0]. We are now interested
in solutions v € C ([0, 0], L” ((0,ap) ,Y)) of the following problem:

% + % = A(a)v(t,a) + F (t,v(t)) (a), a € (0,ap),
v(t,0) = K(t, v(t)), (6.1)
U(O, ) = d] €L ((07 CL()) ’Y) )

where K : [0,79] X LP ((0,a0),Y) — Y and F : [0,70] x L? ((0,a0),Y) —
L? ((0,ap),Y) are continuous maps.

In order to apply the results obtained in Sections 2-5 to study the age-
structured problem (6.1) in LP, as in Thieme [43, 44], we assume that the
family of linear operators {A(a)}o<,<,, generates an exponentially bounded
evolution family {U(a, 5)}0§sga<ag- ‘We refer to Kato and Tanabe [27], Ac-
quistapace and Terreni [2], Acquistapace [1], and the monograph of Chicone
and Latushkin [15] for further information on evolution families. Then we
introduce a closed, bounded operator B based on {U(a, S)}0§s§a<ao' Next
we rewrite system (6.1) as a Cauchy problem with the linear operator B and
show that B generates an integrated semigroup {Sg(t)}+>0. Now the results
in the previous sections can be applied to the problem. A similar argument
applies to the general system (1.3).

Definition 6.1. A family of bounded linear operators {U(a, $)}o<scqaca,
on Y is called an exponentiallyly bounded evolution family if the following
conditions are satisfied:

(a) U(a,a) = Idy if 0 < a < ay.

(b) U(a,r)U(r,s) =U(a,s) if 0 <s<r<a< ap.
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(c) For each y € Y, the map (a,s) — Uf(a,s)y is continuous from
{(a,s) :0<s<a<ap}into Y.

(d) There exist two constants, M > 1 and w € R, such that ||U(a, s)|| <
Mew(@=5) if () <s<a<ap.

From now on, set X =Y x L ((0,a0),Y) and Xo = {Oy } x L? ((0,a0),Y)
endowed with the product norm

15| =1t + 1l

Define for each A > w, Jy : X — X{ a linear operator defined by

w(1)-(%)=
o(a) = e U(a,0)y + /0 ' e MU (a, s)ip(s)ds, a € (0,a).

Lemma 6.2. Assume that {A(a)}<,<,, generates an exponentially bounded
evolution family {U(a, s)}ocscqecq,- Then there exists a unique closed linear

operator B : D(B) C X — X such that (w,+00) C p(B), Jy = (A — B)™ !,

VA > w, and D(B) = Xp.

Proof. It is straightforward to check that Jj is a pseudo resolvent on (w,+00)
(e, Jx = Ju = (0= A) IanJy, YA, € (w,+00)). By construction we have

R(J)) C Xy. Moreover, let = < i ) € X and assume that Jyz = 0.
Then, for a € (0, ap)

1 a
Ia::—/
aJo

and lim, o+ I, = ||y||. So y =0 and N(Jy) C Xy. Moreover, using Young’s
inequality, we have for all A > w that

()] = e won) ol

< M 6(—)\+w).‘

13
é“qmaow+1/ e METIU (€, s)1p(s)ds|| dE = 0
0

IN

Lp ((O,ao),R)

Ll((oﬂo),R) ”1/}|’LP((07a0)7Y) ,

SO

0 M
n (9] = 52 Wl
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Moreover, we can prove that Vi € C? ((0,a0),Y),

. 0\ [0
AEToo“AU)‘(w)'

By the density of C? ((0,a0),Y) in L? ((0,a0),Y), we obtain that

lim Az ==z, Ve X,
A—+00

and by using a standard argument (see Yosida [54], Section VIII.4), the
result follows. O

Define F': [0, +00) x X¢g — X by

and denote

Consider equation (6.1) as the following Cauchy problem:

% — Bu(t)+ F(tu(t)), +>0, u(0)=z € Xo. (6.2)

Lemma 6.3. Assume that {A(a)}<,<,, generates an exponentially bounded
evolution family {U(a, $)}o<scaca,- Then B satisfies Assumption 2.1.

Proof. One can check that

or-57 (1) = s Il >

Using the Young inequality we have

This completes the proof. ]

Now we can claim that By (the part of B in X) generates a Cy-semigroup
{T’,(t)};>¢ and B generates an integrated semigroup Sp(?).
We obtain usual formula for Tg,(t) and Sg(t) (see Thieme [43, 44]).
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Lemma 6.4. Assume that {A(a)}<,<,, generates an exponentially bounded
evolution family {U(a,$)}ocscqcay- Then {Thsy(t)}>q, the Co-semigroup
generated by By (the part of B in Xy), is defined by

5,0 (0 ) = ( 2o )

:&awwxwz{gmﬂ_”“a_” Facon

Moreover, {Sp(t)},~q, the integrated semigroup generated by B, is defined

by
Sa(t) ( Z > - ( W(t)y+f(?f30(5)<ﬁd5 )

Ula,0)y  ifa<t,
0 ifa > t.

with

with
W(t) (y) (a) = {

Proof. If Tp,(t) and Sp(t) are defined by the above formulas, then it is
readily checked that

% (M — A) ' T, () = XM — A) " T, (t)x — T, (t)x
and
% M —A) ' Spt)e =AM — A) 1 Sp(t)e — Sp(t)z + (M — A) ' z.
Assertion (i) of Lemma 2.10 is satisfied, and the result follows. O

Remark 6.5. If we choose U(a, s) = e*(®=9) Idy, Va,s € [0,a0) with a > s,
then we have for a, s € [0,a9) with a > s that

Jssto () =ss ()= ([ ear) i

This example shows that the dual approach is necessary in this context (see
Remark 4.8(d) following Theorem 4.7).

Define P: X — X by

NORNOR

and set X3 =Y Xx {OLp((OjaO),Y)} . We obtain the following theorem.
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Theorem 6.6. Assume that {A(a)}o<a<a, generates an exponentially boun-
ded evolution family {U(a, s)}o<s<a<a,- LThen for each f € LP((0,70), X1)®
LY((0,70), Xo) and each x € D(B), there exists u € C([0,7],D(B)), a
unique integrated solution of the Cauchy problem
du(t)
dt

= Bu(t) + f(t), t€0,7], u(0) ==z, (6.3)
given by .
u(t) = Tp,(t)x + 7 (S * f)(t), Vt € [0,70], (6.4)

which satisfies for a certain M > 0 that is independent of g,

t 1/p
Mt M w(t=s) || p pd)
lu()] < Me || + (/0 (= |Pf(s)])" ds

t
+M/ =) |(I = P) f(s)| ds, Vte[0,7).
0

Moreover,
u(t) = Tp, (t)z + ( w(()t) ) , Vt € [0, 7] (6.5)
with
w(t)(a) = {U(G,B)Pf(t —a)+ (fot To(t — s)(I — P)f(s)ds> (a) ifa<t,
(fotTo(t—s)(I P)f(s)d )( ) Fa>t

Proof. Let ¢ € C2°((0,a0),Y™) be fixed. We defined z* € X5 by

o (0= [T v

Letxz(()yp)eX;wehave

<)\I B) 1Pa:>+:c*<)\l B)~ (I—P)a;)
and
(()\I B)™ /0 T o xrot v (7T, (1) (I — P)x) dt,

and for each A > w that

s(or-57e (L) = [M e e o
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+oo
N /0 AW (1) (y) dt

with
—wt .
W () (y) = {e Y()U(t,0)y  if 0 <t < ap,

if ¢ > ag.

z* <()J—B)_”P< i )) = %%m* ((M—B)_IP( gj >>

1

+o00
- m/o eI (8) (y) dt.

c(or-mme(0))| s ot [ e e (el

o (1) = {M le®lly- i t € (0, 0)

0 otherwise.

Hence, by Lemma 6.3, Proposition 4.1-ii), Theorem 4.7, and Remark 4.8-a),
we can define u(t) by (6.4), which is an integrated solution of (6.3), and by
using Lemma 2.10, we deduce that u(t) satisfies (6.5). O

Assumption 6.1. The maps K : [0,+00) x LP ((0,a9),Y) — Y and F :
[0, +00)x LP ((0,a0),Y) — LP((0,a0),Y) are continuous, and for each 7 > 0
and each £ > 0, there exists K(7,&) > 0 such that

1Kt o) = Kt )l < K(7,8) lle — ],

[F(t, ) = F(t,¥)| < K(7,8) le — ¢
whenever ¢ € [0,7], ,1 € L? ((0,a0),Y), [lll < &, ]| < €.
From the above assumption, it follows that [’ satisfies the second part of
Assumption 5.1, and we obtain the following theorem.

Theorem 6.7. Let Assumption 6.1 be satisfied and assume that {A(a)}o<a<a
generates an exponentially bounded evolution family {U (a, s) }o<s<a<ao- Then
there exist a map 7:[0, +00) x Xg — (0, +00] and a mazimal non-autonomous
semiflow U : D, — Xy on Xy, such that for each x € Xo and each s > 0,
U(-,s)x € C([s,s+71(s,x)),X0o) is a unique mazimal solution of

t t
U(t,s)a;:x—i—B/ U(l,s)mdl—i—/ F,U(l,s)x)dl, Vt e [s,s+T1(s,2)),
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or equivalently of
U(t,s)r =Tp,(t —s)z + % (Sp*x (F(-+sU(-+s,s)x))) (t—s),
Vit € [s,s + 7(s,x)). Moreover, D; is open in D and the map (t,s,z) —
U(t,s)x is continuous from D, into Xp.

Let Z be a Banach space and H : D(H) C Z — Z be a Hille-Yosida
operator. Then equation (1.3) can be rewritten as

B aule) + P, u(t)),
where A: D(A)C X X Z - X X Z, F:[0,4+00) x X x Z — X x Z, and

A(Z;):<§Z;>,V<Z;)ED(A):D(B)><D(H).

The problem is similar to the one we just studied.

7. NEUTRAL DELAY DIFFERENTIAL EQUATIONS IN LP

In this section, we show how to treat neutral delay differential equations
in LP as a special case of the age-structured models in LP spaces. Early work
on delay differential equations in LP spaces using semigroup methods was
due to Hale [24] and Webb [47, 48]. We refer to Wu [52] and Batkai and
Piazzera [10] for more results and references on this subject.

Consider the neutral delay differential equation

% (x(t) — Gi(t,x¢)) = H (z(t) — Gi(t, z¢)) + Ga(t,x¢),t > 0,

z(0)=x€ Z, xo=p € LP((-1,0),2), (7.1)
Yo = T — G1(0,¢) S D(H)

This type of neutral delay differential equation in the space of continuous
maps C ([—7,0],Z) has been considered by some researchers; see, for ex-
ample, Adimy and Ezzinbi [3]. As usual in the context of delay differential
equations, the map x; € LP ((—7,0), Z) is defined as

2t (0) = x (t+ 0) for almost every 0 € (—7,0).

Then we can consider the solution of (7.1)

(2(t) = G1(t, ) = T, (H)yo + —/ Sc(t — s)Ga(s,zs)ds, t >0,
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where {Tx,(t)},>, is a linear semigroup generated by Hy, the part of H in

Zo = D(H), and {Sy(t)},~ is the integrated semigroup generated by H.
Set -

d t
() = Tao (O + 5 [ Selt = 9)Gals,z)ds, ¢ 0.
0

Then we obtain z(t) = G1(t, =) + y(t), t > 0.

Now transform this problem into an age-structured problem. Define J :
LP ((—7,0),Z) — LP ((0,7),Z) by J (¢) (a) = ¢(—a). Clearly, J is invertible
and J7!(¢)(—a) = p(a). Set v(t) = Jx; for t > 0. The neutral delay
differential equation becomes

( Jv Ov

5 + P 0 for almost every a € (0,7),

v(t,0) = Ki(t,v(t)) +y(t),

o (7.2)
L 4(0) =0 € DH), v(0.-) =4 =JpeLP((0,7).2),

where K; (t,¢) = G; (t, Jflw) ,1=1,2.

We can see that the class of neutral delay differential equations described
by (7.1) corresponds to a special case of the age-structured model. Moreover,
when K; = 0 the problem is similar to the one considered by Batkai and
Piazzera [10]. The problem here is completely different compared with [10]
when K; # 0, because we must consider the operator

0 —(0) 0 y
Al ¢ | = - 1, Ll ¢ |=(0],
Yy Hy y 0

where D(A) = {0z} x W'P ((0,7),Z) x D(H), D(L) = Xo, and X = Z x
LP((0,7),Z) x Z. When K; = 0 it is sufficient to consider (A + L), the
part of (A+ L) in D(A). In fact, here (A + L), is a Hille-Yosida operator,
so the problem can be studied by using classical semigroup theory. When
p > 1, A is not a Hille-Yosida operator; we need to investigate the following
Cauchy problem:

PO _ au(t) + 10), 1€ 0.7], w(0) =2 € DA, (73)

When p > 1, this problem has a unique integrated solution whenever f €
LP((0,T),X).
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