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FINAL SIZE OF AN EPIDEMIC FOR A TWO-GROUP SIR MODEL*

PIERRE MAGALT, OUSMANE SEYDI}, AND GLENN WEBB §

Abstract. In this paper we consider a two-group SIR epidemic model. We study the finale
size of the epidemic for each sub-population. The qualitative behavior of the infected classes at the
earlier stage of the epidemic is described with respect to the basic reproduction number. Numerical
simulations are also preformed to illustrate our results.
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1. Introduction. In this article we study a two-group epidemic model. In order
to focus on the dynamical properties of an infectious disease itself, here we neglect the
demography, namely the birth and death processes, and the immigration/emigration
process. The classical SIR model takes the following form (Anderson and May [1])

dfl;” — 38
) B = oyt — i)
d%t) =nl(t)

with the initial distributions

S(O) =5 € R+,I(O) =1y € R+ and R(O) =Ry € R+

where S(t) is the number of susceptible individuals, I(¢) is the number of infectious
individuals (i.e. individuals who are infected and capable to transmit the disease),
R(t) is the number of recovered individuals at time ¢, respectively. The parameter
B > 0 is called the infection rate (i.e. the contact rate times the probability of
infection, see Thieme [40]), and n > 0 is the recovery rate (i.e. the rate at which
infectious individuals recover).

Epidemic model have a long history and starts with the pioneering work of
Bernoulli [7] in 1760 in which he aimed at evaluating the effectiveness of inocula-
tion against smallpox. The susceptible-infectious-recovered (SIR) model as we know
today takes its origin in the fundamental works on “a priori pathometry” by Ross [38]
and Ross and Hudson [37, 36] in 1916-1917 in which a system of ordinary differential
equations was used to describe the transmission of infectious diseases between suscep-
tible and infected individuals. In 1927-1933, Kermack and McKendrick [22, 23, 24]
extended Ross’s ideas and model, proposed the cross quadratic term SIS linking the
sizes of the susceptible (S) and infectious (I) populations from a probabilistic analysis
of the microscopic interactions between infectious agents and/or vectors and hosts in
the dynamics of contacts, and established the threshold theorem. Since then epidemic
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2 P.MAGAL, O. SEYDI AND G. WEBB

models have been extensively developed in several directions, we refer to the mono-
graphs of Bailey [5], Bartlett [6], Muench [31], Anderson and May [1], Busenberg and
Cooke [10], Capasso [11], Murray [33], Daley and Gani [13], Mode and Sleeman [30],
Brauer and Castillo-Chavez [9], Diekmann and Heesterbeek [15], Thieme [40], and
Keeling and Rohani [25] on these topics.

The main tool to understand the dynamical properties of equation (1) is the
following conservation formula

(2) % S(t) + I(t) — %m(sa)) = 0.

By exploiting the above conservation formula, Hethcote [19, 20] obtain the following
classical result.

THEOREM 1. Let (S(t),1(t)) be a solution of (1). If Ry := BSo/n <1, then I(t)
decreases to zero as t — +oo. If Ry := B8So/n > 1, then I(t) first increases up to a
mazimum value I,q. = So+ Iy — % In(Sp) — % + % ln(%) and then decreases to zero as

t — 4o00. The susceptible S(t) is a decreasing function and the limiting value S(+00)

is the unique root in 0,% of the equation

S(+00) — %ln(S(Jroo)) =So+1Ip— %m(so)

or equivalently

In this article, we focus on a two-group SIR epidemic model. Our motivation is coming
from vector born diseases as well as when two groups populations with asymmetric
transmission probability or susceptibility. Probably the first example is coming from
malaria as well as other disease transmitted mosquitoes [29]. Another example of
population with two sub group are the male and the female in the context of HIV, since
there probability of transmission is not the same from male to female than from female
to male [26]. Another example of asymmetric probability of transmission are the
hospital-acquired infection where the probability of transmission from the health care
worker and the patients are not symmetric [14, 28]. The probability of transmission
can also be strongly influenced by the co-infection [32, 35]. An example of co-infection
is provide by HIV and tuberculosis as well as other diseases, since the susceptibility
to tuberculosis of people infected by HIV is much higher than other people [35].
Differences in the susceptibility between individuals can also come from educational
campaigns which may influence the susceptibility of individuals [21]. Many examples
of application of two-group (or multi-group) can be observed practically.

In this article, we will focus on the theoretical aspects of the system of equations
for the two group SIR model. We remark that our results for the final size of the
two group SIR model are similar to the results given in [34]. Our method of proof,
however, is very different, much simpler, and more intuitive for applications. The
system considered here is the following

ds(t)

— = —diag(S(1)) BI(t)
drt) .

(4) — = diag(S(1)) BI(t) - EI(t)
O _
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FINAL SIZE OF AN EPIDEMIC FOR A TWO-GROUP SIR MODEL 3

with the initial distributions

S(0) = Sy € R%,1(0) = Iy € R3 and R(0) = Ry € R%.

where S(t) are the susceptible, I(¢) are the infectious and R(t) are the recovered and
are decomposed accordingly to the population 1 and 2

S(t) = < g;g; > () = < 28 > R(t) = ( %8 ) t> 0.
The recovery of individuals (or quarantine of infectious) is described by the matrix
(3 2)
while the transmission of pathogen is described by the matrix

o Bu1 P2
B_<521 522>'

The diagram flux of system (4) is described in Figure 1.

Fig. 1 The figure represents a transfer diagram of the individual fluxes of system (4). In this
diagram each solid arrow represents a flux of individuals, while the dashed arrows represent
the influence of either infectious of sub-population 1 or infectious of sub-population 2.

BI+Bl, < n,
1M1 I2Zv
s, 3 » R

- BZZI2+B21 I1
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4 P.MAGAL, O. SEYDI AND G. WEBB

System (4) can be rewritten as the following system

dsjt(t) = —S51(t)(BurLi(t) + Pral2(t))
%t(t) = —S55(t)(B2111(t) + Bazla(t))

5 dl;t(t) = S1(t)(Br1l1(t) + Braa(t)) — mIi (1)
dljhft) = So(t)(Ba1 L1 (t) + Bazla(t)) — Iz ()
dliti(t) _ mLu(®
il t(t)

2 =l (t).

We make the following assumption on the parameters.

ASSUMPTION 2. We assume that
(i) B is a non negative matriz irreducible;
(i) m >0 and n2 > 0.

REMARK 3. One may observe that B irreducible is equivalent to assume that

Biz > 0 and By > 0.

When we assume in addition that the transmission of pathogen occurs by criss-cross
transmission only (i.e. P11 = Poz = 0) this of course implies that B is invertible.

One may observe that such a system SIR has an infinite number of equilibrium.
Namely every three non negative vectors

S§>0,]=0and R>0

is an equilibrium of the system.
Moreover system (4) preserves the total number of individuals in each sub popu-
lation. Namely for each ¢ > 0

(6) S(t) + I(t) + R(t) = ( . )

where N7 > 0 (respectively N2 > 0) is the number of individuals in sub-population 1
(respectively sub-population 2).

It is trivial to verify that ¢ — S(t) is non increasing and ¢ — R(¢) is non decreasing
(since the solutions are non-negative). Therefore by using the equality (6) we deduce
that the limits

lim S(t) = ST, lim I(t) = IT> and lim R(t) = RT>
t—o0 t—o00 t—o0

exist. Moreover the final distribution of infectious 77 is 0. The finale distribution of
susceptible individuals S7°° is the number of individuals who escape to the epidemic.
The final distribution of recovered individuals R is the total number of individuals
who have been infected during the epidemic.

We can also rewritte the model (4) by using the fraction of individuals instead of
the number of individuals. Consider

D= diag( xl )
2

This manuscript is for review purposes only.
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FINAL SIZE OF AN EPIDEMIC FOR A TWO-GROUP SIR MODEL 5

then the fraction of individuals are given by

s(t) := D'S(t),i(t) :== D™ I(t) and r(t) :== D™ R(t)

and the model (4) rewrites as

df:lit) _ _diag (s(t)) BDi(t)
(7) d;(t) = diag (s(t)) BDi(t) — Ei(t)
dr(t) .
T Ei(t).

The goal of this article is to extend Theorem 1 to a two-group epidemic model.
Actually Theorem 1 can be decomposed into two part parts : 1) the computation of
the finale size of the epidemic ; 2) the qualitative behavior of the infected class. As
we will see it is possible to extend the first part of Theorem 1 concerning the final
size of the epidemic. But we will not be able to describe the qualitative behavior of
the infected classes in the two-group case. We should mention the work of Andreasen
[2] and Arino et al. [3, 4], Ma and Earn [27] and Brauer [8] for some works going
into the same direction. To our best knowledge, the computation of the finale size of
the epidemic for system (1) has not been obtained in the literature. In section 4 we
will see an example of numerical simulation showing that the behavior of the infected
classes can be more complex for a two-group model than for a single group model (see
4).

This article is organized as follow. In section 2 we first compute the finale size of
the epidemic. In the second part of section 2 we describe the behavior of the infectious
classes at time ¢ = 0 depending on the reproduction number. Section 3 is devoted to
numerical simulations. We will conclude this article by considering an application to
super spreader in the context of SARS in section 4.

2. Main results.

2.1. Final size of an epidemic. By using the S-equation of equation (4) we
have for each ¢t > 0

dln S(t)

= —BI()

therefore

(8) In(S(t)) — n(S(0)) = /0 dlnTi(S)ds:—B /0 I(s)ds

and by summing the S-equation and the I-equation we obtain

(S +1I)(t)

—— = —BI().

Hence for each ¢t > 0

) (S + I)(t) — (S + 1)(0) :/0 w :—E/O I(s)ds

and by combining (8)-(9) we obtain

In(S(t)) — In(S(0)) = BE~L[(S + I)(t) — (S + I)(0)].

This manuscript is for review purposes only.



6 P.MAGAL, O. SEYDI AND G. WEBB

145 Therefore the analogous of formula (2) is the following

d

146 (10) o [

NS+ I)(t)—In(S())] =0, vt > 0.

147 By integrating (10) between 0 and 400 we obtain

148 BE™(S 4 I)(4+00) — In(S(+00)) = BE~'(S + I)(0) — In(S(0))
149 and since I(+00) = 0 we obtain

150 BE'S(+00) — In(S(4+00)) = BE~*(S + I)(0) — In(S5(0)).

151 Hence we deduce that S(+00) satisfies the following fixed point problem

152 (11) S(400) = diag(S(0)) exp (BE~" [S(+00) — V])
153 where
154 V= (S+1I1)(0).
155 The fixed point problem (11) reads as to find 0 < S(+00) < S(0) satisfying
2 S1(+00) = S1(0) exp (22 [S) (+00) — Vi] + 22 [Sy(+00) — V3
156
S5(400) = 82(0) exp (22 [ (+-00) — V4] + 222 [Sy(+00) — V3
157 In the sequel we will use the following notations
158 X<Y&X;<Yforall j=1,2
159 X <Y & X <Y and X; <Yj for some j =1,2
160 XY & X;<Y;foralj=1,2

161 Consider T : R? — R? the map defined by the second member of system (12). Namely

. z1\ _ ( Ti(z1,z2)
o T( T2 ) B ( To(x1,72) >
163 with
164 Ty (w1, 22) := S1(0) exp (”B” [1 — Vi] + brz [z — V2]>
m 2
165 and
166 To(x1, z2) = S2(0) exp (677211 [21 — V1] + 67222 [z2 — Vg}) .

167  Then it is clear that T is monotone increasing. This means that
168 (13) X<Y=TX)<T(Y)
169 and by using the fact that 821 > 0 and 512 > 0 we obtain

170 (14) X<Y=TX)<TY).

This manuscript is for review purposes only.



188

189

190

191

192

193

195

196

197

198

FINAL SIZE OF AN EPIDEMIC FOR A TWO-GROUP SIR MODEL 7

Moreover it is not difficult to see that

0 < T(0) < T(S(0)) < S(0).

Therefore by using induction arguments we deduce that for each n > 1

0<T(0)--- < T™0) < T"TH0) < T"T(S(0)) < --- < T™(S(0)) < S(0)

so that by taking the limit when n goes to +00 we obtain

0< lim T"(0)=:5" <S5T:= lim T"(5(0)) < 5(0).

n—-+oo n—-+oo

Then by continuity of 7" we have

T(S™)=S and T(ST)=S*.
By using the above arguments we obtain the following lemma.

LEMMA 4. All the fized point of T into [0,S5(0)] are contained into the smaller
interval [S™, ST].

The irreducibly of B gives the following property.
LEMMA 5. If S~ < ST then S~ < ST.

Proof. Assume for example that S; < S;7. Then since 21 > 0 we have
Sy =Ta(Sy,85) <Ta(Sy,85) < Ta(Sy, 8) = S5
hence
Sy < St= 5, < ST
Similarly 812 > 0 gives Sy < S5 = S; < S O
LEMMA 6. For each A > 1 and X > 0 we have the following inequality
TAX+S)-T(S)> AT (X+S7)-T(57)].
Proof. We have

1 1
T(X+5)-T(5) = / DT (IAX + 57) (AX) dI = A/ DT (IAX + 5) Xdl
0 0
and the differential of T is given by the following formula

(15) DT (X) = ( BUT, (01, 2)  B3T (21, 2) )

%Tz(zl,ﬂﬂz) %Tz(ﬂh,xz)
Since A > 1 and X > 0 we deduce that

DT (INX +S7)X > DT (IX +S57) X, VI € [0,1].

It follows that
0

T(AX+S7)-T(S7) >>)\/1DT(ZX+S)XdlA[T(XJrS)T(S)].

This manuscript is for review purposes only.
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THEOREM 7. The map T has at most two equilibrium. More precisely we have
the following alternative either
(i) S~ =S and T has only one equilibrium in [0, S(0)]
or
(1) S— < St and the only equilibrium of T in [0,S(0)] are S~ and S+.

Proof. Assume that S~ # S*. Then S~ < S* which implies S~ < S*. Assume
that there exists X € [S™,S™] a fixed point 7" such that

S™#X and X £ S7.
Then by using the same arguments as in Lemma 5 we deduce that
ST< X< ST
Define
yi=sup{A>1:A(X-S57)+S5 <S5t}
Since X < S this implies that
v > 1.
We have
(X -ST)+S5 <st
and by applying T on both side of this last inequality we obtain
T(v(X-5")+87)<st.
By using Lemma 6 we have
T(y(X=8)+8) =T (S) > [T((X-5)+5)~T(5)] =7 [X - 5]
therefore
ST>T(v(X-57)+S)>»vy[X-S7]+5

which contradict the definition of ~. ]

In the rest of this section we will focus on the case
S™ < STt
By using formula (15) we deduce that

N Bu Sli Bz Sf[
1 DT — m 72
" G\ sy s

LEMMA 8. The spectral radius of the matrices DT (S™) and DT (S1) satisfy the
following property

(DT ($7)) <1 <r (DT (S*)).

This manuscript is for review purposes only.
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FINAL SIZE OF AN EPIDEMIC FOR A TWO-GROUP SIR MODEL 9

Proof. We observe that
ST~ =T (St)-T(S)=T((StT-57)+57)-T(5")

= /1 DT (1(S*=57)+57) (ST —57)dl

and since ST — S~ > 0 we have

DT (S*) (St =87) > [y DT(I(S* —S~)+5) (St —S)di
> DT (S7) (ST —57).

Therefore
DT (S+) (5* —§7) > (S* — 87) > DT (57) (S* - 57)

and since both matrices are non negative and irreducible the result follows by using
the Perron-Frobenius theorem. |

THEOREM 9. (Final size of the epidemic) Let
S(0) = So > 0 and I(0) = Iy > 0.

Then the final size of an epidemic of model (1) is given by
lim S(t) =S, lim I(t)=0and lim R@t)=( ™ ) -5~
t—+o00 T 540 t—+oo Ny ’

REMARK 10. Due to the above theorem and due the approximation formula S~ =
lim,, 400 T™(0), it is clear that we can compute numerically the finale size of the
epidemic.

Proof. If S~ = ST there is nothing to prove. Otherwise let
ST <5t
Assume that

lim S(t) =ST.

t—+oo

We can rewrite the I-equation of system (5) as

dI(t) [ Si()B Si(t)paz )
dt [ Sa(t)Bar  Sa(t)Ba2 ]I (t) — EI(t)

and since ¢ — S(t) is decreasing we have

dI(t) SFBi S Bia bugh  Bigh
T I(t)— FI(t) = m 72 -7
dt [ Sy Bar Sy Bao ®) (*) B21 g+ 137222 S

m 72

Y

EI().

By using the theory of monotone dynamical systems, we deduce that

(17) I(t) > Y(t),¥t >0

This manuscript is for review purposes only.
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10 P.MAGAL, O. SEYDI AND G. WEBB

where Y'(¢) is the solution of the ordinary differential equation

ay(t) [ Sfpu Sy b

= Y(t) — EY for all £ >
dt S;ﬁ21 5;622 (t) (t), or all ¢ = 0

and

By using (16), we have

St B St B2 }—E: E:[DT(S*)—I]E.

Sy Ba1 Si Bao

(35 %)
21 22
Pagy fug

m 2

Moreover the matrix DT (S™) is non negative irreductible, so by the Perron Frobe-
nius’s theorem, we can find W = (Wy, Ws) with

W >0
and such that
wWDT (S*) =r (DT (S+)) Ww.
We have

AWY (1)
dt

where X\ := [r (DT (S*)) — 1] . By Lemma 8 we know that A > 0 hence

= \WEY(t)

dWY (t .
T() > min (n1,n2) A\WY(t)

and since

WY (0) = WI(0) >0

this implies that

lim WY (t) = +oo.

t—+oo
This gives a contradiction with (17) and the fact that lim; , o I(¢) = 0. d

2.2. Basic reproduction number. We can also extend the result for the basic
reproduction number of the general case. We define Ry the basic reproduction number
as the spectral radius of

L := diag (Sp) BE™'.
More precisely following the next generation method [16, 41] we have
S10611 - S0Pz
(18) L= 5221521 5222522 and Ro = r(L).
m M2

This manuscript is for review purposes only.
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FINAL SIZE OF AN EPIDEMIC FOR A TWO-GROUP SIR MODEL 11

Since L is non negative and irreducible, by using the Perron-Frobenius’s theorem we

can find a left eigenvector W = (W5, Ws) and a right eigenvector V = ( 51 ) such
2

that

W>0and V>0
with
Wdiag (So) BE™ = RoW and diag (So) BE™'V = R,V.

Recall that the I-equation in system (4) is given by

%f) = diag (S(t)) BI(t) — EI(t) = [diag (S(t)) BE™' — I|EI(t), t > 0.

Then the following lemmas holds true.

LEMMA 11. Assume that EI(0) is proportional to V the eigenvector associated
to the dominant eigenvalue (i.e. Ry) of the matriz diag(S(0)) BE™'. Then at time
t=0

dI(0)
i (Ro — 1)EI(0).

Moreover if we assume that Ry > 1 and EI(0) proportional to V', then both compo-

nents I1(t) and I5(t) are increasing locally around t = 0. Similarly, if we assume

that Ry < 1 and EI(0) proportional to V then both components I1(t) and Iz(t) are

decreasing locally around t = 0.

Furthermore for any initial distribution 1(0) we have

Wdf;to) = (Ro — )W EI(0)

REMARK 12. It is obvious to see that when Ry > 1 we always have at least one
component increasing locally around t = 0. Indeed when Ry > 1 we may obtain very
complex dynamics at the onset of the epidemic (See Figures 4).

Note that the explicit form of the I-equation in system (4) is given by

dlcll,ft) = S1(t) (B L1 (t) + Prala(t)) — m Iy (1)
dffhft) = Sg(t) (/62111 (t) + 522[2(15)) — 772]2(t)

which is equivalent to

(19) dfélhft) — [51(75)512 ﬁgg - (771 — 61151(75))} I1(t)
dléft) = [$:(082 28 — (1 — B2 S2()] Fa(0),

By using the above system we also deduce the following lemma.

This manuscript is for review purposes only.
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12 P.MAGAL, O. SEYDI AND G. WEBB

LEMMA 13. Let S1(0) > 0 and S2(0) > 0 be fized. Assume that Ry > 1. Then
the following properties hold true

i) If ;m > $1151(0) then by choosing ﬁgg; small enough, the maps I1(t) is de-

creasing and I5(t) is increasing locally around t = 0.

i) If no > [2252(0) then by choosing g—gg; small enough, the maps I2(t) is de-

creasing and 11(t) is increasing locally around t = 0.

2.3. Relationship between the final size and Ry . In this section we will
give the relationship between the final size of the epidemic and Ry defined in (18).
More precisely we give a generalization of (3) for our two-group SI epidemic model.
Recall that

(20) In(S(t)) —In(Sy) = BE™' (S(t) + I(t) — Sy — Ip), ¥Vt > 0.
Then since I(+00) = 0 by letting ¢ goes to +o00 in (20) we obtain
(21) In(S(400)) —In(Sy) = BE™! (S(+00) — Sy — 1) .
Hence using the fact that L = diag(Sq)BE~! we obtain

diag(So) [In(S(+00)) — In(So))] = L (S(+00) — So — Io).

Finally recalling that L is an irreducible matrix and Ry = r(L) we can find a left
eigenvector W = (W7p, Ws) > 0 such that WL = RyW providing that

(22) Wdiag(Sp) [In(S(400)) — In(Sp)] = RoW (S(+00) — Sp — Ip) -

Note that (22) generalized the relation between Ry and the final size of the epidemic
for the one dimensional SIR model. In fact for the one dimensional SI model we
trivially have diag(Sp) = Sy and since W becomes a positive real number we trivially

obtain
S(+00) S(400) Ry
1 = —-1) - —=1I.
n( So ) RO( So So°

3. Numerical simulations. In this section we illustrate the theoretical results
obtained in Section 2 as well as the complex dynamic that can exhibit a two-group
SIR model at the earlier stage of the epidemic. Here we will restrict our attention to
the criss-cross model namely when 17 = 25 = 0.

3.1. Finale size of the epidemic. In Figures 2-3 we plot some phase plane
representations of the solutions. These simulations illustrate Theorem 9 about the
final size of the epidemic. In all these figures the parameters 811 = oo = 0, S12, B21,
71 and 72 and the initial fractions of infectious are fixed while the initial values are
varying with different constraints.

This manuscript is for review purposes only.



FINAL SIZE OF AN EPIDEMIC FOR A TWO-GROUP SIR MODEL 13

Fig. 2 Figure (a) (resp. (b)) represents the evolution of the fraction of susceptible s1 of
sub-population 1 (resp. s2 of sub-population 2) with respect to the fraction of infectious
i1 of sub-population 1 (resp. iz of sub-population 2). Figure (c) (resp. (d)) represents the
evolution of the fraction of susceptible sz (resp. removed r2) of sub-population 2 with respect
to the fraction of susceptible s1 (resp. removed 71) of sub-population 1. We fix Bi1 = Baz = 0;
312 =0.3; 321 = 0.2 ; m = 0.12 and 12 = 0.13. The fraction of infectious of each sub-
population is fixed with 419 = a9 = 107°. The fractions of susceptible takes different values
with the constraint s19 = s2¢ while the fraction of removed satisfies 710 = 1 — s19 — %10 and
ro0 = 1 — 820 — %20.
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Fig. 3 Figure (a) (resp. (b)) represents the evolution of the fraction of susceptible s1 of
sub-population 1 (resp. s2 of sub-population 2) with respect to the fraction of infectious
i1 of sub-population 1 (resp. iz of sub-population 2). Figure (c) (resp. (d)) represents the
evolution of the fraction of susceptible sz (resp. removed r2) of sub-population 2 with respect
to the fraction of susceptible s1 (resp. removed 71) of sub-population 1. We fix Bi1 = Baz = 0;
312 =0.7; 321 = 0.91 ; n1 = n2 = 0.15. The fraction of infectious of each sub-population
is fixed with i19 = 420 = 107°. The fractions of susceptible takes different values with the
constraint s19 + s20 = 1 while the fraction of removed satisfies 7190 = 1 — s10 — 710 and
ro0 = 1 — $20 — %20.
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3.2. Behaviour of the infectious classes. Figure 4 shows that the number
of infected are not always either 1) decreasing; or 2) increasing and then decreasing.
More precisely The map i1 (t) is first decreasing, then increasing to reach a peak and
finally decreases to 0. This shows that the dynamic of the infectious classes is more
complex in a two groups model than with a single group.
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Fig. 4 In this figure we plot the fraction of susceptible (blue line), the fraction of infectious
(red line) and the fraction of removed (green line) for system (7). The sub-population 1 is
represented on the left side and the sub-population 2 is represented on the right side. We
fix f11 = P22 =0; P12 =0.5; B21 = 0.1 ;11 =0.02; n2 =0.1; s10=04;i10=0.3;
ro1 = 0.3 ; s20 = 0.45 ; i20 = 0.001 ; ro0 = 0.549. Here Ro = 2.1213 > 1. The map i2(t) is
decreasing, then increasing and finally decreases to 0. The kind of behavior does exit for a
single population model.
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4. The Role of Super Spreaders in the 2003 SARS Epidemic in Sin-
gapore. In this section we will subdivide the population into two classes the super
spreader individuals and the non super spreader individuals. In the context of epi-
demiology the super spreader individuals are known as 20/80 rule (i.e. 20% of the
individuals within any given population are thought to contribute at least 80% to the
transmission potential of a pathogen). Namely the super spreader have the capacity
to infect more susceptible than other usual infectious individuals). We refer to Stein
[39] for a nice survey on this topic. Here we focus on the role of super spreader in
the context of SARS outbreak in Singapore in 2003 CDC [12]. We subdivide the
population into two classes: the first class of individuals outside hospital and the
second class of individuals inside the hospital (patients and health care workers). We
consider S (t) (respectively I1(t)) the number of susceptible (respectively infectious)
outside hospital at time ¢. We also consider Sa(t) (respectively I5(t)) the number
of susceptible (respectively infectious) inside hospital at time ¢. The number of new
infected (per day) has been reported in [12]. The data used from this report is forward
from March 25, 2003 to April 27, 2003. The super spreaders were patients, healthcare
workers, and others in hospital and healthcare settings. They were responsible for
approximately 75% of the approximately 200 total reported cases. In the figure 5 we
plot the daily reported number of new infected inside and outside the hospital.
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Fig. 5 Case data from March 25, 2003 to April 27, 2003: Centers for Disease Control
and Prevention (CDC), Severe Acute Respiratory Syndrome Singapore, 2003, Mor-
bidity and Mortality Weekly Report, Vol. 52, No. 18, May 9, 2003. Light gray bars:
new I; cases (outside hospital); Dark gray bars: new I cases (inside hospital); Black
bars: total new cases.
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In order to investigate this epidemic we will reconsider the two groups model

S1(t) = =S1(t)(Br111(t) + Biala(t))

Number of new cases

IS

| XHu ,HHU(..R||n||!, !

10 24 26

Month and day

2 4

Sy(t) = —Sa(t)(BarI1(t) + Bazla(t))
(23)
I1(t) = Si(t)(Brad1(t) + Brala(t)) — mIi(t)

I(t) = S2(t)(Barl1(t) + Bazl2(t)) — n2la(t)

where 17 = 0.00008 is the infection rate of susceptibles outside hospital due to
infectious cases outside hospital, S12 = 0.00006 is the infection rate of susceptibles
outside hospital due to infectious cases inside hospital, S2; = 0.00006 is the infection
rate of susceptibles intside hospital due to infectious cases outside hospital, (820 =
0.0028 is the infection rate of susceptibles intside hospital due to infectious cases inside
hospital, 71 = 0.4 is the removal rate of infectious cases outside hospital (average
infectious period = 2.5 days) and 72 = 0.66667 is the removal rate of infectious cases
inside hospital (average infectious period = 1.5 days). These parameters were chosen
to provide a reasonable fit to the data.
The initial distribution of population used in the simulation is the following

51(0) = 2,000, S5(0) =300, I(0) =5 and L(0) = 5.

In Figure 6 and Figure 7 we present a simulation of the model for the number of new
infected and the cumulative number of case respectively.

The two-group model of this SARS epidemic assists understanding of the reasons
that the epidemic extinguished very rapidly in Singapore. The super spreaders were
responsible for most of the cases, which occurred in hospitals among patients and
healthcare workers. Outside hospital settings cases occurred, some caused by hospital
cases, but many fewer than in the hospital settings. By the end of March, 2003
the medical community in Singapore understood the serious risk of SARS infection,
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and adopted stringent measures to control the epidemic in the hospitals. With these
measures, which reduced greatly the number of susceptible individuals in hospitals,
the number of hospital cases rapidly declined, and the epidemic rapidly extinguished.
The two-group model reveals these features of the 2003 SARS epidemic in Singapore.

Fig. 6 New cases from March 25, 2003 to April 27, 2003. Gray dashed graph: new
I; cases (outside hospital); Gray solid graph: new I, cases (inside hospital); Black
graph: total new cases. The simulation aligns with the data in the CDC report.
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Fig. 7 Cumulative cases from March 25, 2003 to April 27, 2003. Gray dashed graph:
cumulative I cases (outside hospital); Gray solid graph: cumulative I cases (inside
hospital); Black graph: total cumulative cases. The simulation aligns with the data
in the CDC report.
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