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Abstract. A model of phenotype evolution incorporating mutation, selection, and
recombination is investigated. The model consists of a partial di�erential equation
for population density with respect to a continuous variable representing phenotype
diversity. Mutation is modeled by di�usion, selection is modeled by di�erential
phenotype �tness, and genetic recombination is modeled by an averaging process.
It is proved that if the recombination process is suÆciently weak, then there is a
unique globally asymptotically stable attractor.

1. Introduction. We investigate the following model for the evolution of a popu-
lation with a continuously varying phenotype structure:8<:

ut = �2uyy + [�(y) �F(u)]u+ � [H(u)� u];
uy(0; t) = uy(1; t) = 0; t > 0;
u(y; 0) = '(y); 0 � y � 1;

(1.1)

where � � 0; � � 0; � 2 L1(0; 1); and F 2 L1+(0; 1)
� is the linear form de�ned by

F(') = 

R 1
0
'(by)dby; 8' 2 L1(0; 1) with 
 � 0; and

H(')(y) =

( 1
0 k(y;y)'(2y�y)'(y)dy

1
0 '(y)dy

; 8' 2 L1+(0; 1) n f0g ;
0; if ' = 0

with

k(y; by) =
8<:

2 if 0 � y � 1
2 and 0 � by � 2y

2 if 1
2
� y � 1 and 2y � 1 � by � 1

0 elsewhere.

In (1) u = u(y; t) is the density of a population with respect to a phenotype
variable y 2 (0; 1) at time t. The subpopulation of phenotypes at time t in the range
[y1; y2] � [0; 1] is given by

R y2
y1

u(y; t)dy. The population is viewed as evolving over

time due to the three separate processes of mutation, selection, and recombination.
In (1) the mutation process is represented by the di�usion term �2 uyy, where �
is a parameter corresponding to the average rate of movement in y per mutation
per unit time. The boundary conditions at y = 0 and y = 1 in (1) mean that no
individuals are lost through the boundary as a direct result of mutation. In (1)
the selection process for the population depends on the �tness of individuals with
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respect to phenotype represented by the function �(y). Fitness is variable in y and
the sign of �(y) may be positive or negative. In (1) there is also a density dependent
mortality independent of phenotype represented by the crowding term F(u). The
problem (1) also incorporates DNA exchange in phenotype evolution represented
by the term � (H(u)�u). The recombination operator H corresponds to the average
rate at which two parent phenotypes y1 and y2 hybridize to yield o�spring with
phenotype y1+y2

2 . This form of recombination inheritance is an idealization and
other genetic recombination processes could be treated in a similar way. Problem
(1) thus models the evolution of phenotype structure from the initial phenotype
distribution � 2 X = L1(0; 1) at time 0 subject to these processes.

Our analysis of (1) proceeds as follows: In Section 2 we will analyze problem (1)
with mutation (� > 0) and recombination (� > 0), but without selection (� � 0)
and crowding (
 = 0). We will establish that the recombination operator H is Lip-
schitz continuous in X+ = L1+(0; 1), positive homogeneous in X+, norm preserving
in X+, and mean preserving in X+. Further, we will prove that limn!1H

n� is a
delta function concentrated at the mean of � for each � in X+. If only recombina-
tion acts on phenotype evolution (� = 0; � � 0; 
 = 0; � > 0), then the population
would evolve to a delta function. If only mutation acts on phenotype evolution
(� > 0; � � 0; 
 = 0; � = 0), then the population would evolve to a uniformly
constant phenotype density. Thus, mutation and recombination can be viewed as
having opposite e�ect, although each can result in increased phenotypic variability.
We will prove that if both mutation and recombination are present and � > 0 is
suÆciently small, then all solutions evolve to a nontrivial equilibrium phenotype
distribution dependent on the norm of the initial distribution �.

In Section 3 we will analyze problem (1) with mutation (� > 0), selection (� 6� 0),
and crowding (
 > 0), but without hybridization (� = 0). In this case we will
establish that the behavior of the solutions depends on the sign of the dominant
eigenvalue ~�0 of the linear problem (� > 0; � 6� 0; 
 = 0; � = 0). If ~�0 � 0 then

the population goes extinct, and if ~�0 > 0 then the population evolves to a unique
nontrivial equilibrium independent of the initial distribution �.

In Section 4 we will analyze the full problem (1) (� > 0; � 6� 0; 
 > 0; � > 0).
We will use a result of Smith and Waltman [13] to establish that if � > 0 is
suÆciently small, then the population evolves to a unique nontrivial equilibrium
phenotype distribution independent of the initial distribution �. Thus, the ultimate
fate of phenotype evolution depends on the relative strength of recombination. The
combined e�ects of mutation, selection, and recombination yield stabilization to
a unique equilibrium independent of the initial phenotype structure if the e�ect
of recombination is suÆciently weak. We remark that numerical simulations indi-
cate that if the e�ect of recombination is suÆciently strong, then the phenotype
population again stabilizes to equilibrium, but that the phenotype structure of the
equilibrium depends on the initial population structure.

An example of phenotype evolution in a continuously varying property is the
colonization of Helicobacter pylori, a bacteria inhabiting the human stomach. This
bacteria displays phenotype diversity in its expression of Lewis type antigen, which
varies continuously through a range of optical density measurements. Experiments
in [12] and [15] demonstrate that during the colonization of Helicobacter pylori
the phenotype population migrates and stabilizes through successive generations
subject to selection, mutation, and recombination processes in the host. In future
work model (1) will be used to analyze and interpret these experimental data.
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2. Mutation and Recombination. In this section we analyze (1) with � >
0; � � 0; 
 = 0, and � > 0:8<:

ut = �2uyy + � [H(u)� u];
uy(0; t) = uy(1; t) = 0; t > 0;
u(y; 0) = '(y); 0 � y � 1:

(2.2)

We �rst establish some properties of the recombination operator H.

Theorem 2.1. H is a (nonlinear) operator from X+ to X+ satisfying the following
properties:

i) H is positive homogeneous, i.e., H(c�) = cH(�) 8� 2 X+ and c � 0;
ii) H is Lipschitz continuous in X+;

iii) H preserves norm in X+, i.e.,
R 1
0 H(�)(y)dy =

R 1
0 �(y)dy8� 2 X+;

iv) supp(H(�)) is contained in the closed convex hull of supp(�) 8� 2 X+;
v) H preserves mean in X+, i.e., if � 2 X+ n f0g and we de�ne ym(�) :=R 1
0 y �(y) dy=k�k, then ym(�) = ym(H(�));

vi) if � 2 L2+(0; 1) n f0g, then

limn!1 (Hn�)(y) =

�
0; if y 6= ym(�);
1; if y = ym(�):

Proof: The proofs of i) - iv) are straightforward. To prove v) let � 2 X+ n f0g.
Then, using iii),Z 1

0

y (H�)(y) = kH(�)k dy

=

Z 1

0

y (

Z 1

0

k(y; ~y)�(2y � ~y)�(~y) d~y) = k�k2 dy

=

Z 1

0

�(~y) (

Z 1

0

y k(y; ~y)�(2y � ~y) dy) = k�k2 d~y

=

Z 1

0

�(~y) (

Z (~y+1)=2

~y=2

y 2�(2y � ~y) dy) =k�k2 d~y

=

Z 1

0

�(~y) ( 2

Z 1

0

(
z + ~y

2
)�(z)

dz

2
) d~y=k�k2

=
1

2

Z 1

0

�(~y) (

Z 1

0

z �(z) dz +

Z 1

0

~y �(z) ) d~y=k�k2

=
1

2

Z 1

0
�(~y) (ym(�) + ~y ) d~y= k�k = ym(�):

To prove vi) let � 2 L2+(0; 1) n f0g such that k�kX = 1 and extend � to (�1;1)
by �(y) = 0 if y < 0 or y > 1. Let � = ym(�) and �2 = variance(�). Then
H(�)(y) = 2(���)(2y) and consequently, (Hn�)(y) = 2n��2

n

(2ny). From the local
central limit theorem [8]

limn!1 supy2(�1;1)j�
p
n��n(y�

p
n+ nm) � e�y

2=2

p
2�

j = 0:

It follows that

limn!1 supy2(�1;1)jn��n(ny) �
p
np

2��
e
�n(y�m)2

2�2 j = 0:
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Thus,

limn!1 supy2(�1;1)jHn�(y) �
p
2np
2��

e
�2n(y�m)2

2�2 j = 0

and vi) follows.

Remark 2.1 The proof of vi) in Theorem 2.1 is due to R. Rudnicki and M. Kimmel.

Our analysis will use the theory of semigroups of linear operators and view (2)
as a semilinear perturbation of a linear problem. De�ne the unbounded operator
A : D(A)! X byA' = �2'00, where D(A) = f' 2 X : '0 is absolutely continuous
and '0(0) = '0(1) = 0g: We state the following results concerning the linear
strongly continuous semigroup fT (t)gt�0 with in�nitesimal generator A (see Brezis

[1], Clement et al. [6], Pazy [11], and Wu [16]):

i) T (t)X+ � X+; 8t � 0;

ii)
R 1
0 T (t)(')(y)dy =

R 1
0 '(y)dy; 8t � 0;

iii) T (t) is compact for t > 0;

iv) �(A) = P�(A) =
�
�n = �(n��)2 : n = 0; 1; :::

	
with A'0 = �0'0; where '0 �

1 (�(A) denotes the spectrum of A and P�(A) denotes the point spectrum of A).

v) X = X0�X1 where X0 = fc'0 : c 2 Rg ; and X1 = R(I�P0); where P0(')(y) =
(
R 1
0 '(by)dby)'0(y); T (t)Xi � Xi; 8t � 0; 8i = 0; 1:

vi) T (t)P0' = P0' and there exists M > 0 and Æ 2 (0; (��)2) such that

kT (t)P1'k �Me�ÆtkP1'k;
where P1 = I � P0:

We note that properties v) and vi) above imply that fT (t)gt�0 has the property
of asynchronous exponential growth, that is, limt!1e

��0tT (t)� = P0� 8� 2 X.
The global existence, uniqueness, and positivity of weak solutions to (2) is a direct
consequence of the properties of fT (t)gt�0 and the fact that H is Lipschitz contin-

uous (see Pazy [11]). To investigate the asymptotic behavior of these solutions we
�rst prove the following result:

Theorem 2.2. If � > 0 is suÆciently small, then for each � > 0 there exists a
unique b'� 2 X+ such that kb'�k = �; b'00� (y) + � ((H(b'�))(y) � b'�(y)) = 0, andb'0�(0) = b'0�(1) = 0: Moreover, 8� > 0; b'� = � b'1:
Proof: Let � > 0 and consider the �xed point problem

'00 + � (H(')� ') = 0, ' = � (�I �A)�1H(') = K('):

Then we have K : S� = f' 2 X+ : k'k = �g ! S�; (since � (�I � A)�1 and H are
norm preserving on X+), and for all '1; '2 2 S� ; we have

kK('1) �K('2)k � �
M

� + Æ
kHkLip;

because (�I � A)�1 jX1 P1� =
R +1
0 e��tT (t)P1�dt. Thus,

k(�I � A)�1 jX1 P1�k �
M

� + Æ
kP1�k:
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Choose � > 0; suÆciently small such that kKkLip < 1; and then we know that there
exists a unique b'� 2 S� such that K(b'�) = b'�: To prove that 8� > 0; '� = �'1, it is
suÆcient to remark that K is homogenous, and the property follows by uniqueness
of the �xed point on the sphere S� .

Theorem 2.3. If u is a weak solution of equation (2.2), and k'k = � > 0; then
ku(t)k = �; 8t � 0: Moreover, if u�'(t) is the weak solution of equation (2.2) with
initial value �'; then u�'(t) = �u'(t); 8t � 0; � � 0:

Proof: Let us recall that u is a weak solution of equation (2.2) if

u(t) = T (t)' +

Z 1

0

T (t � s)� [H(u(s)) � u(s)]ds:

Now using the property ii) for T (t), and denoting x�(') =
R 1
0 '(y)dy; one deduces

that

x�(u(t)) = x�(T (t)') + x�(
R 1
0 T (t� s)� [H(u(s)) � u(s)]ds);

= x�(') +
R 1
0 x

�(� [H(u(s)) � u(s)])ds = x�(');

since x�(H(')) = x�('): The last assertion is a direct consequence of the homo-
geneity of the mapping H:

Theorem 2.4. If � > 0 is suÆciently small, '1; '2 2 X+, and k'ik = 1; 8i = 1; 2;
then limt!1ku1(t)� u2(t)k = 0:

Proof: Let ui(t) = T (t)'i +
R 1
0 T (t � s)� [H(ui(s)) � ui(s)]ds and observe that

ku1(t)� u2(t)k � kT (t)P0('1 � '2)k+ kT (t)P1('1 � '2)k
+�

R t
0 kT (t� s)P0([H(u1(s)) �H(u2(s))] � [u1(s) � u2(s)])kds

+�
R t
0 kT (t � s)P1([H(u1(s)) �H(u2(s))] � [u1(s) � u2(s)])kds:

Thus, ku1(t)� u2(t)k �

0 +Me�Ætk'1 � '2k+ 0 +

Z t

0

Me�Æ(t�s)Cku1(s) � u2(s)kds;

where C = �kH � IkLip: Setting w(t) = ku1(s) � u2(s)k; one has

eÆtw(t) � C1 +CM

Z t

0

eÆsw(s)ds;

where C1 =Mk'1 � '2k. Setting v(t) = eÆtw(t); one has

v(t) � C1 + CM

Z t

0
v(s)ds;

so that by Gronwall's lemma (see lemma3.1 p:15 in Hale ([9]) v(t) � C1e
CMt:Thus,

w(t) � C1e
(CM�Æ)t; so that for � > 0 suÆciently small, we have �kH�IkLipM < Æ;

and the result follows.

Theorem 2.5. If � > 0 is suÆciently small, then for every ' 2 X+ n f0g one has
limt!1u(t) = b'k�k; where b'k�k is the unique equilibrium solution given by theorem
2.2.

Proof: The result is a direct consequence of theorem 2.2 and theorem 2.4.
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3. Mutation and Selection. In this section we investigate the global asymp-
totic behavior of (1) in the case that mutation and selection determine phenotype
evolution without recombination (� > 0; � 6� 0; 
 > 0, and � = 0):8<:

ut = �2uyy + [�(y) �F(u)]u
uy(0; t) = uy(1; t) = 0; t > 0;
u(y; 0) = '(y); 0 � y � 1;

(3.3)

The formulation (3) allows us to use the method developed in [14]. Let � 2
L1(0; 1) and denote by B : D(B) ! X the unbounded linear operator de�ned by
B' = �2'00+�'; where D(B) = D(A). Since B is a perturbation of A obtained by
addition of a bounded operator, we know (see Pazy [11] p:76-77) that B generates
a linear semigroup fS(t)gt�0 which satis�es the variation of constants formula

S(t)' = T (t)' +

Z t

0

T (t� s)(�S(s)')ds; t � 0: (3.4)

We also know that for all � 2 R; equation (3.4) is equivalent to the following
equation

S(t)' = e��tT (t)' +

Z t

0

e��(t�s)T (t� s)(�S(s)' + �S(s)')ds; 8t � 0: (3.5)

So by taking � > max(0;��);where � = inf ess�2(0;1)�(�); we deduce that i) S(t)X+

� X+; 8t � 0:Moreover, we deduce from lemma 1.6 p:42 in Wu [16] that, ii) S(t) is
compact for t > 0: Finally, we remark that by using equation (3.5) one has for
� � max(0;��);

S(t)' � e��tT (t)'; 8t � 0; 8' 2 X+: (3.6)

From equation (3.6) and the properties of fT (t)gt�0 it is not diÆcult to deduce

that fS(t)gt�0 is irreducible, that is, 8' 2 X+ n f0g ; 8'� 2 X�
+ n f0g

9t0 = t0('; '
�) > 0; such that '�(S(t)') > 0;

where X�
+ = f'� 2 X� : '�(x) � 0; 8x 2 X+g : From theorem 1 p:158 in Zerner

[17], we know that there exists e'0 2 X+ n f0g ; e'�0 2 X�
+ n f0g ; such that if

eP0(')(y) = (

Z 1

0

e'�0(by)'(by)dby)e'0(y);
then the following hold: iii) if X = eX0 � eX1, where eX0 = fce'0 : c 2 Rg andeX1 = R(I � eP0); then S(t) eXi � eXi; 8t � 0; 8i = 0; 1; and iv) if e�0 = s(B), the

spectral bound of B, then S(t) eP0' = e�0t eP0' and there exists some fM > 0 andeÆ > 0 such that

kS(t) eP1'k � Me(�0�Æ)tk eP1'k; where eP1 = I � eP0:
Remark 3.1: In the references [2], [3], and [4] suÆcient conditions are given to

assure that the dominant eigenvalue e�0 of B is strictly positive. We remark that

a suÆcient, but not necessary, condition that e�0 > 0 is that the average valueR 1
0
�(y)dy of � on (0; 1) is positive.

Theorem 3.1. Let e�0 > 0, let ' 2 X+nf0g, and denote by fW0(t)gt�0 the strongly
continuous semigroup associated with (3.3). Then

W0(t)' = u(t)! u� =
e�0 eP0'
F( eP0') =

e�0 e'0
F(e'0) ; as t!1:
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Moreover, u� is an exponentially asymptotically stable equilibrium solution.

Proof: Let ' 2 X+ n f0g. It is straightforward to verify that the weak solution of
equation (3.3) is given by

u(t) = W0(t)' =
S(t)'

1 +
R t
0 F(S(s)')ds

;

and by using l'Hospital's rule, we have u(t)! �0P0'

F(P0')
= u�; as t!1. It remains

to prove that u� is exponentially asymptotically stable. In order to do this we now
show that

S(t)'

1 +
R t
0 F(S(s)')ds

�
e�0 eP0'
F( eP0') ! 0; as t!1

exponentially on bounded sets of X+ n f0g . Consider the following expression:

k S(t)'

1 +
R t
0 F(S(s)')ds

�
e�0 eP0'
F( eP0')k � k S(t)'

1 +
R t
0 F(S(s)')ds

�
e�0S(t)'

e�0tF( eP0')k
+ k

e�0S(t)'
e�0tF( eP0') �

e�0 eP0'
F( eP0')k

� kS(t)'
e�0t

kj e�0t

1 +
R t
0 F(S(s)')ds

�
e�0

F( eP0') j
+ j

e�0
F( eP0') jkS(t)'e�0t

� eP0'k:
It remains to prove that j e�0t

1+ t

0 F(S(s)')ds
� �0
F(P0')

j ! 0; as t!1 exponentially

on bounded sets of X+ n f0g. But

j e�0t

1 +
R t
0 F(S(s)')ds

�
e�0

F( eP0') j = j e�0t

e��0t +
R t
0 e

��0tF(S(s)')ds �
e�0

F( eP0') j;
so it only remains to show that j R t0 e��0tF(S(s)')ds � F(P0')

�0
j ! 0; as t ! 1

exponentially on bounded sets of X+ n f0g : Since

j
Z t

0

e��0tF(S(s)')ds � F( eP0')e�0 j

� j
Z t

0

e��0tF(S(s)')ds �F(
Z t

0

e��0s eP0'ds)j+ jF(e��0t eP0')e�0 j;

it is suÆcient to consider the term

j
Z t

0

e��0tF(S(s)')ds � F(
Z t

0

e��0s eP0'ds)j
= j

Z t

0

e��0tF(S(s)')ds �F(
Z t

0

e��0s eP0'ds)j:



228 P.MAGAL AND G.F. WEBB

Since
R t
0 e

��0sds =
R t
0 e

��0(t�l)dl, we have

j
Z t

0
e��0tF(S(s)')ds � F(

Z t

0
e��0s eP0'ds)j = j

Z t

0
e��0(t�s)F(e��0sS(s)' � eP0')dsj

� j
Z t

t
2

e��0(t�s)F(e��0sS(s)' � eP0')dsj+ j Z t
2

0

e��0(t�s)F(e��0sS(s)' � eP0')dsj
� 1e�0 sup

s2[ t2 ;t]

jF(e��0sS(s)' � eP0')j+ e��0
t
2e�0 sup
s2[0; t2 ]

jF(e��0sS(s)' � eP0')j
� 1e�0 sup

s2[ t2 ;t]

jF(e��0sS(s)' � eP0')j + e��0
t
2e�0 sup
s2[0; t2 ]

jF(e��0sS(s)' � eP0')j
� 1e�0 sup

s2[ t2 ;t]

Me�Æsk eP1'k+ e��0
t
2e�0 sup
s2[0; t2 ]

Me�Æsk eP1'k
� 1e�0Me�Æ

t
2 k eP1'k+ e��0

t
2e�0 Mk eP1'k;

and the result follows.

We recall that the growth bound of the linear semigroup fT (t)gt�0 is the real
number given by

! = inf
�
w 2 R : 9M 2 R+ such that kT (t)k �Mewt8t � 0

	
:

We now investigate the linearized semigroup of W0(t)' at u�. In order to de�ne
the linearized semigroup one has to be careful, because W0(t)' is only globally
de�ned for ' in X+: Clearly for each t � 0; the mapping ' ! W0(t)' is right
di�erentiable with respect to the positive cone X+ (see Deimling [7] p:225 for the
de�nition). More precisely, for each t � 0; there exists a bounded linear operator
DxW0(t) 2 L(X); such that the limit as khk ! 0 with u� + h 2 X+ of

1

khk [W0(t)(u
� + h)�W0(t)(u

�) �DxW0(t)(u
�)(h)] = 0;

where DxW0(t) is de�ned for each ' 2 X by DxW0(t)(u�)' =

S(t)'

1 +
R t
0 F(S(s)u�)ds

� S(t)u�

(1 +
R t
0 F(S(s)u�)ds)2

Z t

0

F(S(s)')ds:

Moreover, since by construction S(t)u�

1+ t

0 F(S(s)u
�)ds

= u�; we deduce that

DxW0(t)(u
�)' =

S(t)' � u�
R t
0 F(S(s)')ds

(1 +
R t
0 F(S(s)u�)ds)

:

Moreover, since u� = �0
F('0)

e'0; and S(t)u� = e�0tu�; 8t � 0; we deduce that

DxW0(t)(u�)' = e��0t[S(t)' � u�
R t
0 F(S(s)')ds]: It is not diÆcult to see that

t! DxW0(t)(u
�)' is continuous. Then it is possible to prove by a direct computa-

tion (using again the fact that u� = �0
F('0)

e'0) that DxW0(t)(u�) ÆDxW0(s)(u�) =

DxW0(t+ s)(u�); 8t; s � 0: Thus, the family of linear operators fDxW0(t)(u
�)gt�0

is a C0-semigroup.

Lemma 3.2. Let e�0 > 0. The linear C0-semigroup fDxW0(t)(u�)gt�0 has a
strictly negative growth bound.
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Proof: Since X is reproducing (i.e., X = fu� v : u; v 2 X+g); it is suÆcient
to prove that there exists a constant Æ > 0; such that for all ' 2 X+ n f0g ;
kDxW0(t)(u

�)'k �Me�Ætk'k; 8t � 0: Let ' 2 X+ n f0g ; be �xed. Thus
DxW0(t)(u

�)' =
S(t)'�u� t

0
F(S(s)')ds

(1+F(u�) t

0
e�0sds)

=
S(t)'�u� t

0
F(S(s)')ds

(1+F(u�)( e
�0t�1

�0
))

=
S(t)P0'�u

� t

0
F(S(s)P0')ds

(1+F(u�)( e
�0t�1

�0
))

+
S(t)P1'�u

� t

0
F(S(s)P1')ds

(1+F(u�)(e
�0t�1

�0
))

.

Let us consider the �rst term of the last sum. We have u� = �0P0'

F(P0')
; and

S(t) eP0'� u�
R t
0 F(S(s) eP0')ds = e�0t eP0' � �0P0'

F(P0')

R t
0 F(e�0s eP0')ds

= e�0t eP0'� �0P0'

F(P0')
F( eP0')( e�0t�1�0

) = eP0':
On the other hand, we have by construction kS(t) eP1'k �Me(�0�Æ)tk eP1'k, so

kS(t) eP1' � u�
Z t

0

F(S(s) eP1')dsk
� [Me(�0�Æ)t + ku�k

Z t

0

Me(�0�Æ)sds]k eP1'k:
Finally we deduce that kDxW0(t)(u�)'k �

k eP0'k
(1 + F(u�)( e�0t�1

�0
))

+
[Me(�0�Æ)t + ku�k R t0 Me(�0�Æ)sds]k eP1'k

(1 + F(u�)( e�0t�1
�0

))
:

The result directly follows from this last inequality.

Lemma 3.3. Let e�0 > 0. There exists a constant c0 > 0 such that

k eP0'k � c0k'k 8' 2 X+:

Proof: From the de�nition of eP0 it is clear that it is suÆcient to prove the existence
of a constant c0 > 0; such that e'�0(') � c0k'k; 8' 2 X+: By using equation (3.6)

we know that for c � max(0;��); e�0t e'�0(') = e'�0(S(t)') � e'�0(e�ctT (t)') =e'�0(e�ctT (t)P0') + e'�0(e�ctT (t)P1'); so that

e'�0(') � e�(�0+c)t e'�0('0)k'k � ke'�0ke�(�0+c)tMe�Ætk'k:
Thus, for t > 0 large enough we have e'�0('0) > ke'�0kMe�Æt; and the result follows.

4. Mutation, Selection, and Recombination. We now turn to the full problem
(1.1) with � > 0; � 2 L1(0; 1); � 6� 0; 
 > 0, and � > 0.

Theorem 4.1. (Existence and Uniqueness) For each ' 2 X+ the problem (1.1)
has a unique global weak solution in X+.

Proof: Consider the problem (1.1) with 
 = 0:8<:
ut = �2uyy + �u + � [H(u)� u]; a.e.y 2 (0; 1);
uy(0; t) = uy(1; t) = 0;
u(y; 0) = '(y); a.e.y 2 (0; 1)

(4.7)

Since H is a Lipschitzian mapping, we know by using classical arguments that
problem (4.7) has a unique global weak solution (see theorem 1.2 p:184 in Pazy
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[11]). Further, the solution is positive for positive initial values, because the solution
of (4.7) must satisfy

u(t) = e��tS(t)' + �

Z t

0

e��(t�s)S(t � s)H(u(s))ds

and H(X+) � X+. Let feS� (t)gt�0 be the nonlinear semigroup associated with
(4.7). Since H is positive homogeneous, the weak solution of (1.1) is given for every
' 2 X+ by

u(t) =
eS(t)'

1 +
R t
0 F(eS(s)')ds ; t � 0: (4.8)

We now investigate the existence of a global attractor for (1.1). Here we use
the de�nition of global attractor due to Hale [10] p:17, that is, a maximal compact
invariant set which attracts each bounded set in X+: We restrict ourselves to the
metric space X+, because we are only interested in the asymptotic behavior of
nonnegative solutions.

Theorem 4.2. (Boundedness) Denote by u(t) the solution of the problem (1.1).
There are two cases:

i) if
R 1
0 '(y)dy � �


 (where � = sup ess�2(0;1)�(�)), then there exists t0 > 0; such

that
R 1
0 u(t)(y)dy � �


 ; 8t � t0;

ii) if
R 1
0 '(y)dy � �


 ; then
R 1
0 u(t)(y)dy � �


 ; 8t � 0:

Proof: We start by considering the following approximate problem:

u0�(t) = A�u�(t) + �u�(t) + � (H(u�(t)) � u�(t)) �F(u�(t))u�(t)
where A� = �A(�I � A)�1 is the Yosida approximation. Let V (') =

R 1
0 '(y)dy,

and we then have V (u0�(t)) = V (�u�(t))� V (u�(t))F(u�(t)); which implies

V (u�(t)) � V (u�(0)) =

Z t

0

V (�u�(s)) � V (u�(s))F(u�(s))ds:
Let �!1; to obtain

V (u(t))� V (u(0)) =

Z t

0

V (�u(s)) � V (u(s))F(u(s))ds;
so that

V (u(t))0 = V (�u(s)) � V (u(s))F(u(s));
and thus

V (u(t))0 = V (�u(s)) � 
V (u(s))2;

and

V (u(t))0 � V (u(t))[� � 
V (u(t))]: (4.9)

Assume �rst that V (u(0)) > �


; then clearly from inequality (4.9) there exists t0 > 0;

such that V (u(t0)) � �


: Assume that V (u(0)) � �



; and assume that there exists

t1 > 0; such that V (u(t1)) � �

 + �; for some � > 0: Then there exists t2 2 (0; t1);

such that V (u(t2)) � �

 + �

2 ; and V (u(t)) � �

 + �

2 ; for all t 2 [t2; t1]: By (4.9)

V (u(t)) must be strictly decreasing on [t2; t1]; which gives us a contradiction. From

the contradiction, we deduce that we must have V (u(t)) < �


+ �; for each � > 0.
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Theorem 4.3. (Compactness of the Nonlinear Semigroup) Denote by fW� (t)gt�0
the nonlinear semigroup in X+ associated with problem (1.1) given by formula (4.8).
Then for t > 0; W� (t) is compact, i.e., maps bounded sets into relatively compact
sets.

Proof: The result follows from (4.8) and the fact that eS� (t) is compact for t > 0,

because eS� (t)t�0 arises from a Lipschitz perturbation of a compact linear semigroup
(it is a direct consequence of lemma 1.6 p:42 in Wu [16]).

Lemma 4.4. Let c1 > c0 > 0 such that c0k'k � k eP0'k � c1k'k; 8' 2 X+. Let

�> 0 and �� > 0 (small enough) such that C = �0
2 c0 + ��c0 � ��c1 � c1� > 0: If

u(t) is a weak solution of equation (1.1) satisfying V (u(t)) � �; 8t 2 [0; T ], then we
have for all 0 �� ���;

V (u(t)) � e
�0
2 t c0

c1
V (u(0)) +

Z t

0

e
�0
2 (t�s)C

c1
V (u(s))ds; 8t 2 [0; T ]:

Proof: The solution u(t) of equation (1.1) can be expressed as

u(t) = e�
�0
2 tS(t)' +

Z t

0

e�
�0
2 (t�s)S(t � s)[

e�0
2
u(s)

+ � [H(u(s))� u(s)]� F(u(s))u(s)]ds;
so

V ( eP0(u(t))) = e
�0
2 tV ( eP0(')) + Z t

0

e
�0
2 (t�s)V ( eP0[e�0

2
u(s)

+ � [H(u(s))� u(s)]� F(u(s))u(s)])ds:
Now using lemma 3.3, we know that there exists 0 < c0 < c1 such that

c0k'k � k eP0'k � c1k'k; 8' 2 X+;

where c1 is the norm of the operator eP0: From the previous inequalities we have

c1e
��0

2 tV (u(t)) � c0V (u(0)) +

Z t

0

e�
�0
2 s[

e�0
2
c0

+ �c0 � �c1 � c1V (u(s))]V (u(s))ds

and the result follows.

Theorem 4.5. Let 0 < �1 < �; � > 0; let

D
�1;

�



+�

=

�
' 2 X+ : �1 � k'k � �



+ �

�
;

and let
B� = [t�0W� (t)(D�1 ;

�



+�
):

Then 8� 2 [0; ��]; i)W� (t)B� � B� ; 8t � 0; ii)BX+ (0;
c0
c1

�1
2 ) \ B� = ; (where

BX+ (0; r) = f' 2 X+ : k'k � rg); iii) 8' 2 X+nf0g ; 9t0 � 0 such that W� (t0)' 2
IntX+ (B� ) (where IntX+ (B� ) is the interior of B� relative to the metric space X+);

and iv)B� � BX+ (0;
�

 + �):

Proof: We set A� = [t�0W� (t)(D�1 ;
�



+�
): To prove i) it is suÆcient to remark that

by construction W� (t)A� � A� ; 8t � 0; which implies by continuity of '!W� (t)'
that W� (t)B� � B� ; 8t � 0: The proof of ii) is a direct consequence of lemma
4.4. Indeed, assume that BX+ (0;

c0
c1

�1
2 ) \ B� 6= ;; which implies by the de�nition
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of B� that there exists ' 2 X+ such thatk'k = �1; Thus, the solution u(t) of
equation (1.1) satis�es the property that there exists t0 > 0 such that ku(t)k �
�1; 8t 2 [0; t0]; and ku(t0)k = c0

c1

�1
2 : But this is impossible because from lemma 4.4,

we know that

ku(t)k � e
�0
2 t c0

c1
V (u(0)) � c0

c1
�1 >

c0
c1

�1
2
; 8t 2 [0; t0]:

To prove iii) it is suÆcient to remark that we know from lemma 4.4, and theorem

4.2 if ' 2 X+ n f0g ; and k'k � �1; or k'k > �

 + �; then there exists t0 > 0; such

that �1 < ku(t0)k < �

 + �; which implies that u(t0) 2 IntX+ (B� ): Finally iv) is

direct consequence of theorem 4.2.

We now use a result by Smith and Waltman [13] to analyze the asymptotic
behavior of solutions of (1.1). One problem in applying this result is the fact that
X+ nf0g has empty interior. This case was also considered by Smith and Waltman
(see [13], remark 2.1 p:449 ) and we will use their approach.

Let U be a subset of a Banach space X, and let � be a metric space with metric
d: We use the notation BX (�; s) (B�(�; s)) for the open ball of radius s about the
point � 2 X (� 2 �). The following theorem is theorem 2.2 p:449 in Smith and
Waltman [13] taking into account remark 2.1 p:449.

Theorem 4.6. ([13]) Let U be a subset of a Banach space X and let � be a metric
space with metric d: Let W : U�[0;+1)��! U be continuous and de�ne a family
of semi-dynamical systems fW� (t)gt�0 (where W� (t)(�) = W (�; t; � )) parameter-
ized by �: Let (�0; �0) 2 U � �: Assume also that for each t > 0 there exists Æ =
Æ(t) > 0; � = �(t) > 0; such that W� (t)(�) can be extended to BX (�0; Æ)�B�(�0; �);
and D�W� (t)(�) exists and is continuous on that set and BX (�0; Æ)\U is convex.
Suppose that W�0 (t)(�0) = �0 for all t � 0; U (t) � D�W�0 (t)(�0) de�nes a strongly
continuous linear semigroup with negative growth bound, and W�0(t)(�) ! �0; as
t! 1 for each � 2 U: In addition, suppose that: (H1) For each � 2 �; there is a
subset B� of U such that for each � 2 U;W� (t)(�) 2 B� for all large t, and (H2)

C � [�2�W� (s)(B� ) is compact in U for some s > 0: Then there exists "0 > 0 and

a continuous mapping b� : B�(�0; "0)! U such that b�(�0) = �0; W� (t)b�(� ) = b�(� )
for t � 0; and W� (t)�! b�(� ) as t!1; � 2 U; � 2 B�(�0; "0):

We apply theorem 4.6 with W (�; t; � ) = W� (t)(�); � = [0;1), and �0 = 0: The

nonlinear strongly continuous semigroup
neS� (t)o

t�0
associated with equation (4.7)

satis�es

eS� (t)' = S(t)' +

Z t

0
S(t � s)(� [H(eS� (s)') � eS� (s)'])ds: (4.10)

From theorem 3.1 and lemma 3.2 we have that fW0(t)gt�0 satis�es the assumptions
of theorem 4.6. We note that if we set U = X+ n f0g ; and

B� = [t�0W� (t)(D�1 ;
�



+�
);

then from theorem 4.5, the assumption (H1) of theorem 4.6 is also satis�ed. From

assertion iv) of theorem 4.5 we know that 8� 2 [0; ��]; B� � BX+ (0;
�

 + �); so to

verify assumption (H2) of theorem 4.6 it is suÆcient to apply the following lemma:

Lemma 4.7. For every bounded set B � X+ and for every t � 0;

[�2[0;�� ]W� (t)(B)
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is compact.

Proof: Since eS� (t) mapsX+ into itself, we deduce from (4.8) that for every ' 2 X+;
1

1+ t

0 F(S� (s)')ds
� 1: Thus

[�2[0;�� ]W� (t)(B) � co(([�2[0;�� ] eS� (t)(B)) [ f0g):
So it is suÆcient to prove that [�2[0;�� ] eS� (t)(B) is compact. In order to prove this
we use (4.10). Assuming that kS(t)k � Me!t; which always holds, and denoting
k = kHkLip; we have

keS� (t)'k �Me!tk'k+
Z t

0

�Me!(t�s)(k + 1)keS� (s)'kds:
Thus,

e!tkeS� (t)'k �Mk'k+ �M (k+ 1)

Z t

0

e�!skeS� (s)'kds:
By applying Gronwall's lemma, we obtain

keS� (t)'k �Mk'ke([�M(k+1)+!]t): (4.11)

From this inequality we deduce that for each bounded set B � X; and each t > 0 ,

[�2[0;�� ] [s2[0;t] eS� (t)(B) is bounded. We are now in position to apply lemma
1.6 p:42 in Wu [16], and since fS(t)gt�0 is a compact strongly continuous linear

semigroup, we deduce that [�2[0;�� ] eS� (t)(B) is compact, whereby the result follows.

Lemma 4.8. W : U � [0;1)� �! U is continuous.

Proof: We prove that W is continuous with respect to each variable '; �; and t: For
the variable t this is immediate, since by construction t!W� (t)(') is continuous.
For the continuous dependence with respect to the initial value '; in the case
where the nonlinear part is only Lipschitz continuous on bounded sets, we refer
to proposition 4.3.7 p:58 in Cazenave and Haraux [5]. To prove the continuity of

� !W� (t)('), we observe from (4.8) that it is suÆcient to show that � ! eS� (t)(')
and � ! R t

0 F(eS� (s)')ds are continuous. To prove this we need to obtain some
estimates. We haveeS� (t)' � eS� 0 (t)' =

R t
0 S(t � s)(� [H(eS� (s)') � eS� (s)'])ds

� R t0 S(t � s)(� 0[H(eS� 0 (s)') � eS� 0 (s)'])ds;
so assuming kS(t)k �Me!t; and k is Lipschitz constant for H; we have

keS� (t)' � eS� 0 (t)'k � R t
0 Me!(t�s)j� 0 � � j(k + 1)keS� 0 (s)'kds
+
R t
0
Me!(t�s)� (k + 1)keS� (s)' � eS� 0 (s)'kds:

But from equation (4.11), we know that

keS� 0 (t)'k �Mk'ke([� 0M(k+1)+!]t);

and thus

e�!tkeS� (t)'� eS� 0 (t)'k �Mk'kj� 0� � j(k + 1)

Z t

0

e(�
0M(k+1)s)ds

+M� (k + 1)

Z t

0

e�!skeS� (s)' � eS� 0 (s)'kds:



234 P.MAGAL AND G.F. WEBB

So by applying Gronwall's lemma, we obtain

keS� (t)'� eS� 0 (t)'k �Mk'kj� 0

� � j(k+ 1)

Z t

0

e(�
0M(k+1)s)dse([M�(k+1)+!]t);

(4.12)

and the result follows.

Lemma 4.9. For each T > 0 there exists Æ = Æ(T ) > 0; � = �(T ) > 0; such that
for t 2 [0; T ]; W t

�' can be extended to BX (u�; Æ)� [0; �]; and W t
�' is given for each

' 2 BX (u�; Æ) and � 2 [0; �] by formula (4.8).

Proof: By using the same arguments as in the proof of lemma 4.7, we have

keS� (t)' � eS� (t)'0k �Mk'� '0ke([�M(k+1)+!]t): (4.13)

We know that

eS� (t)u� = e��tS(t)u� +

Z t

0

e��(t�s)S(t � s)(�H(eS� (s)u�))ds;
and since H maps X+ into itself, we also have eS� (t)u� � e��tS(t)u� = e(�0��)tu�:
Thus, Z t

0

F(eS� (s)u�)ds � Z t

0

e(�0��)sF(u�)ds�
Z t

0

keS� (t)u� � eS0(t)u�kds:
But F(u�) = e�0; so by using equation (4.12), one hasR t

0 F(eS� (s)u�)ds � e�0 R t0 e(�0��)sds
�Mku�kj� j(k+ 1)te([M�(k+1)+!]t):

Thus, R t
0 F(eS� (s)u�)ds � e��

�t(e�0t � 1)

�Mku�kj� j(k+ 1)
R t
0 se

([M�(k+1)+!]s)ds:
(4.14)

On the other hand, we have

j R t0 F(eS� (s)')ds � R t0 F(eS� (s)u�)dsj � R t
0 keS� (s)' � eS� (s)u�kds

� R t0 Mk'� u�ke([�M(k+1)+!]s)ds;
(4.15)

and by using equation (4.14), we haveR t
0 F(eS� (s)')ds � �Mku�kj� j(k+ 1)

R t
0 se

([M�(k+1)+!]s)ds

�Mk'� u�k R t0 e([�M(k+1)+!]s)ds:

We deduce that for each "0 > 0; there exists Æ = Æ(��; T ) > 0 and � = �(T ) > 0;
such that for � 2 [0; �]; and ' 2 BX (u

�; Æ),Z t

0

F(eS� (s)')ds � �1 + "0 > �1; for t 2 [0; T ]; (4.16)

and the result follows.

Lemma 4.10. For each T > 0; there exists 0 < Æ0 < Æ = Æ(T ); 0 < �0 < � = �(T );
(where Æ(T ) and �(T ) are de�ned in lemma 4.9) such that for each t 2 [0; T ];
D'W� (t)' exists and is continuous on BX (u�; Æ0)� [0; �0]:
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Proof: The main diÆculty in proving this lemma is due to the fact that the mapping
H is continuously di�erentiable only on X n f0g : In order to avoid this diÆculty
we prove the following assertion:

Let 0 < 
 < ku�k and T > 0 be �xed. We will show that there exists 0 < Æ0 < Æ =
Æ(T ); 0 < �0 < � = �(T ); such that for each ('; � ) 2 BX (u

�; Æ0) � [0; �0]; W� (t)' 2
BX (u�; 
); for t 2 [0; T ]; and as 
 < ku�k; we will have 0 =2 BX (u�; 
):

Indeed, since 0 < Æ0 < Æ = Æ(T ); 0 < �0 < � = �(T ); we have for each ('; � ) 2
BX (u�; Æ0)� [0; �0]; and from (4.8)

kW� (t)' � u�k = kW� (t)' �W� (t)u
�k

= k
eS� (t)'

1 +
R t
0 F(eS� (s)')ds �

eS� (t)u�
1 +

R t
0 F(eS� (s)u�)dsk

� keS� (t)'kj 1

1 +
R t
0 F(eS� (s)')ds �

1

1 +
R t
0 F(eS� (s)u�)ds j

+ j 1

1 +
R t
0 F(eS� (s)u�)ds jkeS� (t)' � eS� (t)u�k:

Denote

(I) = keS� (t)'kj 1

1 +
R t
0 F(eS� (s)')ds �

1

1 +
R t
0 F(eS� (s)u�)ds j

and we have by using equations (4.11) and (4.16)

(I) � Mk'ke([�M(k+1)+!]t) 1

4
j(1 +

Z t

0
F(eS� (s)u�)ds) � (1 +

Z t

0
F(eS� (s)')ds)j:

Thus, by using (4.15) we have

(I) � Mk'ke([�M(k+1)+!]t) 1
4

R t
0 k'� u�kMe([�M(k+1)+!]s)ds

� k'� u�kM2(ku�k+ 
)e([�
0M(k+1)+!]2T ) 1

4T:

On the other hand, denoting

(II) = j 1

1 +
R t
0 F(eS� (s)u�)ds jkeS� (t)'� eS� (t)u�k

we have by using (4.13) and (4.16) (II) � 1
2Mk' � u�ke([�M(k+1)+!]t); so (II) �

1
2
Mk'� u�ke([�0M(k+1)+!]T ): Finally, we obtain

kW� (t)' � u�k � k'� u�k(M2(ku�k+ 
)e([�
0M(k+1)+!]2T ) 1

4T

+1
2Me([�

0M(k+1)+!]T )) (4.17)

and the proof is complete. Using the same arguments, one can also prove that for
each '; '0 2 BX (u�; Æ0); � 2 [0; �0]; t 2 [0; T ]

kW� (t)'�W� (t)'0k � k'� '0k(M2(ku�k+ 
)e([�
0M(k+1)+!]2T ) 1

4
T

+1
2
Me([�

0M(k+1)+!]T )):
(4.18)

Let us now study the di�erentiability of ' ! W� (t)' in BX (u
�; Æ0); for each t 2

[0; T ]; and � 2 [0; �0]: Recall that the weak solution of equation (1.1) is also given
by the following variation constant formula: for each ' 2 BX (u

�; Æ0); � 2 [0; �0]; t 2
[0; T ];

W� (t)' = S(t)'

+
R t
0 S(t � s)[� [H(W� (s)') �W� (s)'] � F(W� (s)')W� (s)']ds:

(4.19)
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By formally di�erentiating equation (4.19), one obtains the following variation of
constants formula for each ' 2 BX (u

�; Æ0); � 2 [0; �0]:�
U�;'(t) = S(t)+R t

0 S(t � s)[� (D'H(W� (s)') � I) �D'G(W� (s)')]U�;'(s)ds;
(4.20)

where U�;� 2 C([0; T ];L(X)) and G(') = F(')'; for each ' 2 X: From the �rst
part of the proof we also know that D'H(W� (s)') exists, since W� (s)' 6= 0; 8s 2
[0; T ]: Finally to apply theorem 4.6, it remains to remark that BX (u�; Æ) \ U is
convex for any Æ > 0:We can summarized the results obtained so far in the following
theorem:

Theorem 4.11. For each ' 2 X+ and each � � 0; problem (1.1) has a unique
global weak solution. Denote by fW� (t)gt�0 the nonlinear semigroup in X+ as-

sociated with this problem. Let ~�0 > 0: Then, there exists �0 > 0 and a contin-

uous mapping b� : [0; �0] ! X+ n f0g such that b�(0) = u�, W� (t)b�(� ) = b�(� ) for

� 2 [0; �0]; t � 0; and for each ' 2 X+nf0g ; � 2 [0; �0]; W� (t)'! b�(� ); as t!1:
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