
The Parameter Identification Problem
for SIR Epidemic Models: Identifying

Unreported Cases

Pierre Magal(∗) and Glenn Webb(∗∗)

(∗) Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France
CNRS, IMB, UMR 5251, F-33400 Talence, France.

(∗∗)Mathematics Department, Vanderbilt University, Nashville, TN 37240, USA

December 25, 2017

This article is dedicated to the memory of Karl Hadeler.

Abstract

A SIR epidemic model is analyzed with respect to identification of its
parameters, based upon reported case data from public health sources.
The objective of the analysis is to understand the relation of unreported
cases to reported cases. In many epidemic diseases the ratio of unreported
to reported cases is very high, and of major importance in implementing
measures for controlling the epidemic. This ratio can be estimated by
the identification of parameters for the model from reported case data.
The analysis is applied to three examples: (1) the Hong Kong seasonal
influenza epidemic in New York City in 1968-1969, (2) the bubonic plague
epidemic in Bombay, India in 1906, and (3) the seasonal influenza epidemic
in Puerto Rico in 2016-2017.

Key words. epidemic models, transmission rate, reported cases, unreported
cases.

1 Introduction
A major challenge in the application of epidemic models is the determina-

tion of model parameters.The challenge is made difficult by the lack of com-
plete data available in the course of a typical epidemic disease. In the United
States, typical epidemic data consist of Morbidity and Mortality Weekly Re-
ports (MMWR) published by the Centers for Disease Control and Prevention.
For many diseases, such as seasonal influenza, these data are very incomplete,
and record only a small fraction of total cases. In general, reported cases are
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not representative of all cases, with respect to symptoms severity, infectiousness
level, demographic classification, and social context. Identifying the fraction
of unreported cases requires that the unknown becomes known. Mathematical
models of an epidemic’s evolution provide a way to make known this unknown.
The distinction can be incorporated into the model parameterization, and the
known case data can be related to the number of unknown cases through the
transmission dynamics in the model construction.

We assume that reported case data provide a time-sequential record of the
number of cases reported in some specified formulation by public health offi-
cials. We assume that these cases are removed from the infected class and that
they no longer have capability to infect susceptible individuals (due to mortal-
ity, hospitalization, isolation, social instruction, or other reasons). We assume
that a typical susceptible individual has the potential to be infected by an in-
fected individual independently of whether or not the infected individual will
ultimately be reported.

We note several examples of case data for specific epidemics. In [9] data for
the 2010-2011 influenza season in the United States were obtained by landline
telephone survey of approximately 90,000 people. Of these 8.9% of adults and
33.9% of children reported influenza like symptoms. In [48] a statistical esti-
mator model was used to estimate the ratio of unreported to reported cases for
the H1N1 influenza epidemic in the United States from April to July 2009 as
79 to 1, and the ratio of total cases to confirmed cases as 140 to 1. In [51] it is
estimated that approximately 60.8 million cases occurred in the United States
during this epidemic, with the population approximately 300 million during this
time period.

In Section 2 we present the SIR model and formulate a system of equations
connecting its parameters to reported case data. In Section 3 we solve this
system of equations and identify the model parameters. In Section 4 we present
three examples of epidemics with reported case data, and determine the fraction
of their unreported cases. In Section 5 we discuss our results and further work.

2 The deterministic SIR epidemic model and the
identification of its parameters

The first SIR deterministic epidemic models were developed by Bernoulli
[8, 20, 21], Ross [50], Kermack-McKendrick [34, 35, 36], and Macdonald [40].
Investigations of these models and their extensions have been developed by many
researchers, including [1, 6, 11, 12, 13, 18, 28, 30, 33, 45, 54]. The parameter
identification problem for SIR model has been investigated by many researchers,
including [3, 4, 14, 16, 17, 19, 22, 25, 26, 27, 29, 31, 32, 37, 39, 41, 44, 46, 47,
49, 56].

The SIR model we analyze is the following: at time t, let S(t) be the number
of susceptible, I(t) the number of infected, and R(t) the number of removed and
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permanently immune. The equations for the SIR model are

d

dt
S(t) = −τI(t)S(t) (2.1)

d

dt
I(t) = τI(t)S(t)− (ν1 + ν2)I(t) (2.2)

d

dt
R(t) = (ν1 + ν2)I(t) (2.3)

with initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0. Here τ is
the transmission rate, ν1 is the removal rate of reported infected individuals, and
ν2 is the removal rate of infected individuals due to all other unreported causes
such as mortality, recovery, or other reasons. It is assumed that a reported case,
known to medical care-givers or public health authorities, produces no further
cases.

Although the analysis of (2.1), (2.2), (2.3) is well-known, we provide details
here for the sake of completeness. First, S(t) and I(t) are nonnegative when
S0 > 0 and I0 > 0, which implies S(t) is decreasing. The basic reproduction
number R0 is defined as τS0/(ν1 + ν2). If R0 < 1, then I(t) is decreasing. If
R0 > 1, then I(t) is initially increasing and then decreasing. Add (2.1) and
(2.2) to obtain

S(t) + I(t) + (ν1 + ν2)

∫ t

0

I(s)ds = S0 + I0, (2.4)

which implies I(t) <∞ for t ≥ 0, and
∫∞
0
I(t)dt <∞. Also, (2.1) implies

log

(
S(t)

S0

)
= −τ

∫ t

0

I(s)ds⇐⇒ S(t) = S0 exp

(
− τ

∫ t

0

I(s)ds

)
. (2.5)

Since S(t) is decreasing and
∫∞
0
I(t)dt < ∞ by (2.4), limt→∞ S(t) = S∞ > 0.

Then (2.4) implies limt→∞ I(t) = 0. Further, (2.4) and (2.5) imply

S∞ = S0 + I0 +
ν1 + ν2
τ

log

(
S∞
S0

)
. (2.6)

It is possible to use the data of cumulative reported cases to determine the
total number of cases S(0)− S∞ over the course of the epidemic, as well as the
parameters τ , ν1, and ν2. The cumulative number of reported cases at time t is

CR(t) = ν1

∫ t

0

I(s)ds =
ν1
τ

log

(
S0

S(t)

)
,

and the total cumulative number of reported cases at the end of the epidemic is

CR∞ = lim
t→∞

CR(t) =
ν1
τ

log

(
S0

S∞

)
, (2.7)

which implies

S∞ = S0 exp

[
− τ

ν1
CR∞

]
. (2.8)
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Then (2.6) implies

S0 exp

[
− τ

ν1
CR∞

]
= S0 + I0 −

ν1 + ν2
ν1

CR∞. (2.9)

The cumulative number of both reported and unreported cases at time t is
C(t) = S0 + I0 − S(t), and the cumulative number of unreported cases at time
t is CU(t) = C(t)− CR(t). Since the total number of cases (the epidemic final
size) is

CR∞ + CU∞ = S0 + I0 − S∞,

the total number of unreported cases is

CU∞ = S0 + I0 − S∞ − CR∞.

The epidemic attack ratio (defined as the fraction of the susceptible population
that becomes infected) is

(S0 + I0 − S∞)/(S0 + I0) = (CR∞ + CU∞)/(S0 + I0).

By symmetry, the ratio of reported cases to unreported cases is

CR(t)

CU(t)
=
ν1
ν2
, since CR(t) = ν1

∫ t

0

I(s)ds and CU(t) = ν2

∫ t

0

I(s)ds.

Assume that the reported cases have a maximum at time tp, which we call
the turning point. Since (2.2) implies ν1I ′(tp) = ν1(τS(tp)−(ν1+ν2))I(tp) = 0,
we obtain S(tp) = (ν1 + ν2)/τ . From (2.4 and (2.5) we obtain

CR(tp) =
ν1
τ

log

(
τS0

ν1 + ν2

)
⇐⇒ ν1 + ν2

τ
= S0 exp

[
− τ

ν1
CR(tp)

]
, (2.10)

S0 + I0 −
(
ν1I(tp)

)(
1

ν1

)
=
ν1 + ν2
τ

(
1− log

(
ν1 + ν2
τS0

))
. (2.11)

3 Analysis of Equations (2.9), (2.10), (2.11)
The Equations (2.9), (2.10), (2.11) provide an algorithm for identifying the

parameters S0, I0 and τ , ν1 and ν2. Assume that tp, CR′(tp), CR(tp), and CR∞
are known. The algorithm is based on the following equation:

S0 + I0 = S0 exp

[
− τ

ν1
CR∞

]
+

τ

ν1
S0 exp

[
− τ

ν1
CR(tp)

]
CR∞. (3.1)

Equation (3.1) is obtained by using equation (2.10) to obtain

ν1 + ν2 = τS0 exp

(
− τ

ν1
CR(tp)

)
,
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and then substituting ν1 + ν2 into equation (2.9). Re-write (3.1) as

exp

[
− τ

ν1
CR∞

]
+

τ

ν1
exp

[
− τ

ν1
CR(tp)

]
CR∞ − 1 =

I0
S0
. (3.2)

Equation (3.2) is equivalent to

F (X) =
I0
S0
, where F (X) = e−cX + cXe−rcX − 1, X ≥ 0, (3.3)

with X =
τ

ν1
, and c = CR∞, and r =

CR(tp)

CR∞
.

Proposition 3.1 Let c > 0 and r ∈ (0, 1). We have the following alternative:

i) If 2 r ≥ 1, then F (X) ≤ 0,∀X ≥ 0.

ii) If 2 r < 1, then Ymax := supX≥0 F (X) > 0. Moreover there exists a unique
Xmax > 0 such that Ymax := F (Xmax), and F is strictly increasing on
(0, Xmax) and strictly decreasing on (Xmax,+∞). Furthermore, for each
Y0 ∈ (0, Ymax) there exists X∗ ∈ (0, Xmax) and X∗∗ ∈ (Xmax,+∞) such
that F (X∗) = F (X∗∗) = Y0.

Proof. Observe that F (0) = 0 and limX→+∞ F (X) = −1. Moreover

F ′(X) = − c e−cX + c e−c r X − c2 r X e−c r X

= c e−c r X
(
1− e−c [1−r]X − c r X

)
,

and
F ′′(X) = c2 e−cX − 2c2 r e−c r X − c3 r2X e−c r X

= c2 e−c r X
(
e−c (1−r)X − 2 r + c r2X

)
.

Therefore,
F ′(0) = 0 and F ′′(0) = c2(1− 2 r). (3.4)

Define G(X) := 1− e−c [1−r]X − c r X, and we then have

F ′(X) = c e−c r XG(X), (3.5)

and F ′(X) = 0 ⇐⇒ G(X) = 0. Thus, G(0) = 0, limX→+∞G(X) = −∞,
and G′(X) = c [1− r] e−c [1−r]X − c r. By assumption r < 1, so the mapping
X → G′(X) is strictly decreasing, G′(0) = c (1− 2 r), and limX→+∞G′(X) =
−c r < 0.

Proof of i). Assume that 1 − 2 r ≤ 0. Then G′(0) = c (1 − 2 r) ≤ 0, and since
G′(x) is strictly decreasing, G′(X) < 0,∀X > 0. But G(X) = 0, therefore
G(X) < 0,∀X > 0. By using (3.5), we deduce that F ′(X) < 0,∀X > 0 and i)
follows from the fact that F (0) = 0.

Proof of ii). Assume that 1 − 2 r > 0. Then G′(0) = c (1 − 2 r) > 0, and the
mapping G has exactly one point Xmax > 0 such that G(Xmax) = 0, and

G(X) > 0,∀X ∈ (0, Xmax), and G(X) < 0,∀X > Xmax. (3.6)
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By using again (3.5), we deduce that Xmax > 0 is a critical point of F (X) (i.e.
F ′(Xmax) = 0), and ii) follows from (3.5) and (3.7).

Remark 3.2 Proposition 3.1 implies that the cumulative reported case data
CR(tp) and CR∞ are compatible with the solution of model (2.1), (2.2) only if
CR(tp)/CR∞ < 1/2. The condition 2CR(tp) < CR∞ means that more than
half of the reported cases will be reported after the turning point. The multiplier
ν1 in the definition of CR(t) = ν1

∫ t
0
I(s)ds can be replaced by ν2 or ν1 + ν2,

and the turning point is unchanged. Then, the cumulative unreported cases
satisfy 2CU(tp) < CU∞ (where CU(t) = ν2

∫ t
0
I(s)ds), and all the cumulative

cases satisfy 2CT (tp) < CT∞ (where CT (t) = (ν1 + ν2)
∫ t
0
I(s)ds). Thus,

CR(t), CU(t), CT (t) all have the same the turning point tp. Illustrations of
Proposition 3.1 are given in Figures 1 and 2.

The algorithm to determine the initial conditions S0, I0 and the parameters
τ, ν1, ν2 from the reported case data is as follows:

(1) Assume the reported case data ν1I(t) and the turning point tp are known,
and 2CR(t) < CR∞. Define F (X) = I0/S0 as in (3.3) (where F depends only
on CR(tp), CR∞, and not on S0, I0, tp).

(2) The value of the ratio I0/S0 in (3.3) must be adjusted so that the model
simulation of (2.1), (2.2) gives agreement with the reported case data and its
turning point tp. Let trial values of S0 and I0 be given. Then F (X) = I0/S0

has two positive solutions X = X∗ and X∗∗, provided I0/S0 < supX≥0 F (X).

(3) Set either X∗ or X∗∗ to τ/ν1, and use (2.10), (2.11) to obtain ν1, τ , and ν2,
for each from

ν1 =
CR′(tp)

S0 + I0 − S0 exp

(
− τ

ν1
CR(tp)

)(
1 + τ

ν1
CR(tp)

) , (3.7)

τ =

(
τ

ν1

)
ν1, (3.8)

ν2 = τS0 exp

(
− τ

ν1
CR(tp)

)
− ν1. (3.9)

(4) One value of X∗ or X∗∗ for τ/ν1 will yield parameters τ, ν1, ν2 such that the
corresponding numerical simulation of (2.1), (2.2) has a graph with the shape of
the reported case data, but possibly not the same turning point tp of the data.
The value of the ratio I0/S0 must be adjusted so that the value of X∗ or X∗∗
for τ/ν1 will yield parameters τ, ν1, ν2 such that the corresponding numerical
simulation has a graph with the shape of the reported case data and the same
turning point as the data.
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Remark 3.3 We note that when I0 is small relative to S0, the turning point of
the model simulation can be approximated as a decreasing function of the ratio
I0/S0 according to the following formula:

tp(k) ≈ tp 1 + log(kI0/S0)

1 + log(I0/S0)
,

where tp is the turning point obtained by the algorithm for I0/S0 and tp(k) is
the turning point obtained by the algorithm for k I0/S0 with k > 0.

Remark 3.4 For I0/S0 = (cI0)/(cS0), c > 0 given, the algorithm yields pa-
rameters τ(c), ν1(c), ν2(c) that depend on the scaling factor c, but with turning
point independent of c. Further, S0cν1(c), S0cτ(c), ν1(c)+ ν2(c), and R0(c) are
independent of c. More precisely, assume that S0 = cŜ0 and I0 = cÎ0 for some
constant c > 0, where Ŝ0 > 0, Î0 > 0, and CR(t) are given. Then, by solving

(3.2), we deduce that
τ(c)

ν1(c)
is independent of c. By using (3.7), we deduce that

ν1(c) =
ν̂1
c
, where

ν̂1 :=
CR′(tp)

Ŝ0 + Î0 − Ŝ0 exp

(
− τ(c)

ν1(c)
CR(tp)

)
(1 + τ(c)

ν1(c)
CR(tp))

is independent of c. By (3.8) τ(c) =
τ(c)

ν1(c)
ν1(c), and we obtain τ(c) =

τ̂

c
(where

τ̂ :=
τ(c)

ν1(c)
ν̂1 is independent of c). Thus, τS0 = τ̂ Ŝ0 is independent of c, and

by using (3.9) we deduce that ν2(c) = η − ν̂1
c

with η := τS0 exp(− τ
ν1
CR(tp)),

is independent of c. Now by replacing the values for τ(c), ν1(c), ν2(c) with these
formulas in (2.1), (2.2), we obtain

S′(t) = − τ̂
c
S(t)I(t)

I ′(t) =
τ̂

c
S(t)I(t)− ηI(t)

S(0) = cŜ0, I(0) = cÎ0.

(3.10)

By setting Ŝ(t) :=
S(t)

c
and Î(t) :=

I(t)

c
we obtain

Ŝ′(t) = −τ̂ Ŝ(t)Î(t)
Î ′(t) = τ̂ Ŝ(t)Î(t)− ηÎ(t)
Ŝ(0) = Ŝ0, Î(0) = Î0.

(3.11)

Moreover, since Î(t) =
I(t)

c
, we obtain Î ′(t) = 0 ⇔ I ′(t) = 0. Since (3.10) is

independent of c, we deduce that the turning point of (3.10) is the same as the
turning point of (3.11), which is independent of c.
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From (2.10) (ν1(c) + ν2(c))/(S0c τ(c)) = R0(c) = exp[−τ(c)CR(tp)/ν1(c)],
independently of c. Thus, R0(c) is independent of c. Further, (2.11) (divided by
S0c) implies

1 +
I0c

S0c
− ν1(c)I(tp)

S0c ν1(c)
=

(
ν1(c) + ν2(c)

S0 c τ(c)

)(
1− log

(
ν1(c) + ν2(c)

S0 c τ(c)

))
,

which yields S0c ν1(c) independent of c. Then, S0c τ(c) = S0c ν1(c) τ(c)/ν1(c)
and ν1(c) + ν2(c) = S0c τ(c)R0(c) are independent of c.

Remark 3.5 The total number of initial cases I0 may be known, both reported
and unreported, but the initial number of susceptible individuals S0 may not
be known. This is the case if a significant fraction of the demographic popu-
lation has acquired immunity from a prior infection. The value of S0 can be
obtained from the algorithm by varying S0 and comparing the model output to
the reported case data and its turning point tp. The turning point in the model
simulation, with I0 fixed, increases approximately linearly with log(S0), so the
correct value of S0 can be matched to the turning point in the model and the
data. An illustration is given in Figure 10.

Remark 3.6 The initial number of reported cases may be known from the data,
but the initial number of all cases I0, including unreported cases, may not be
known. If S0 is known, however, the algorithm can be extended to determine
I0: vary I0 in the algorithm and compare the model output to the reported case
data and its turning point tp. The turning point in the model simulation, with
S0 fixed, decreases approximately linearly with log(I0), so the correct value of
I0 can be matched to the turning point of the data. An illustration is given in
Figure 10.

Remark 3.7 In practice neither I0 nor S0 may be known. The algorithm can
be used in this case by varying the ratio I0/S0. As I0/S0 increases, the turning
point in the model simulation decreases. The correct value of the ratio I0/S0

can be identified by matching the model turning point to the data and its turning
point tp. For this value of I0/S0 any scaling cI0/cS0 of this ratio will also match
the data and its turning point tp. For c given, R0 is independent of c, and the
ratio ν2(c)/ν1(c) is a linearly increasing function of c. Thus, the scaling factor
c can be varied and the values of cS0, cI0, τ(c), ν1(c), ν2(c) can be compared to
known information about the epidemic to obtain a realistic value of c.

4 Examples of the Algorithm for Identifying the
Model Parameters

Example 1. The Hong Kong influenza epidemic in New York City in 1968-1969.

We apply the parameter identification algorithm to the Hong Kong influenza
epidemic in New York City in 1968-1969. The reported case data consist of
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weekly reported mortality cases in excess of typical reported mortality (assumed
to be due to the influenza epidemic) for the same time period in previous years
[53]. The cumulative mortality is obtained by adding these weekly values over
the 13 week duration of the epidemic. The time units are weeks. We take
S(0) = 7, 900, 000 (the population of New York City in the 1970 census) and
I(0) = 15, 000. The weekly reported data and the cumulative reported excess
mortality data are illustrated by the black dots in Figure 3. From these data
we estimate CR∞ ≈ 1, 080, tp ≈ 6.15 weeks, CR(tp) ≈ 500, and ν1I(tp) = 190.
Notice that 2CR(tp) < CR∞.

The two solutions of F (X) = I0/S0, with F (X) given in (3.3), are X =
0.000276 and X = 0.000728. The solution that gives agreement with the data
is X = 0.000728. F (X) has its maximum at F (0.000524) ≈ 0.00332. If I0 >
26, 220, then I0/S0 > 0.00332, and the reported case data are not consistent
with these initial conditions. For X = 0.000728, the numerical solutions of
equations (2.9),(2.10),(2.11) are τ ≈ 3.24×10−7, ν1 ≈ 0.00044, ν2 ≈ 1.78, which
corresponds to an average infectious period in non-fatal cases of ≈ 1/1.78 weeks
≈ 4 days, and a ratio of unreported to reported cases of ≈ 4045 to 1. The graphs
of the reported data and model reported cases output are given in Figure 3. The
epidemic peak size is I(tp) ≈ 198, 000 at tp ≈ 6.15 weeks. From model output we
obtain S∞ ≈ 3, 620, 000. The epidemic final size is S0 + I0 − S∞ ≈ 4, 295, 000.
The epidemic attack ratio is (S0 + I0 − S∞)/(S0 + I0) ≈ 54%. The basic
reproduction number R0 ≈ 1.44. The graphs of S(t), I(t), R(t) are given in
Figure 4, and the graph of F (X) is given in Figure 5(a). The value of ν1I(t)
obtained from the numerical solution of model, with parameters obtained from
X = 0.000276 as the solution of F (X) = I0/S0, is graphed in Figure 5(b), and
is not in agreement with the reported data.

The case fatality ratio CR∞/(S0+I0−S∞) = 1, 080/4, 295, 000 ≈ 0.00025 =
0.025% is lower than commonly claimed values for seasonal influenza, typically
0.1 to 0.2 % [38]. If the initial susceptible population S0 is reduced, then the
fatality ratio is increased proportionately.

Example 2. The plague epidemic in Bombay, India in 1906.

We apply the parameter identification algorithm to the bubonic plague epi-
demic in Bombay, India in 1906. This epidemic has been modeled many times,
beginning with one of the most famous works in mathematical epidemiology,
due to Kermack and McKendrick [34]. These reported case data consist of
weekly reported mortality cases over a period of 30 weeks beginning in Jan-
uary, 1906. These data of reported mortality cases are available at https:
//www.math.psu.edu/treluga/misc.html, and are graphed Figure 6(a) (black
dots). The population of Bombay in 1906 was approximately 1,000,000, but not
all residents had equal likelihood of infection. Infection did not spread from per-
son to person, but was strongly associated with shared dwellings, workplaces,
or other localities [55]. Additionally, many residents fled the city during the
seasonal plague epidemics of that time period, as for example, 850,000 in 1896
(http://en.wikipedia.org/wiki/Mumbai). The case-fatality rate was as high
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as 90%, and the typical duration of a fatal infection was ≈ 5 days with an
incubation period of ≈ 3 days [5].

For the model (2.1),(2.2) we take S(0) = 100, 000 and I(0) = 8. The
cumulative reported mortality data are illustrated by the black dots in Fig-
ure 6(b). From these data we estimate CR∞ ≈ 8, 840, tp ≈ 13.5 weeks,
CR(tp) ≈ 4, 330, and ν1I(tp) = 770. Notice that 2CR(tp) < CR∞. The
two solutions of F (X) = I0/S0, with F (X) given in (3.3), are X = 0.0000159
and X = 0.0000204. The solution that gives agreement with the data is
X = 0.0000159.

For X = 0.0000159 the numerical solutions of (2.9),(2.10),(2.11) are τ ≈
5.2× 10−5, ν1 ≈ 3.3, ν2 ≈ 1.6, which correspond to an average infectious period
of ≈ 1/4.9 weeks ≈ 1.4 days, and a ratio of unreported to reported cases of
≈ 0.48 to 1. From (2.8) we estimate S∞ ≈ 87, 000 with corresponding total
cases ≈ 13, 000, an attack ratio ≈ 13%, and a reported removal rate of ≈ 70%
(the total mortality rate would be increased by unreported removal cases). The
epidemic peak size is I(tp) ≈ 235 at tp ≈ 13.5 weeks. The basic reproduction
number R0 ≈ 1.07. The graph of the model output of the weekly reported cases
ν1I(t) is given in Figure 6(a). The graph of model output of cumulative weekly
reported cases is given in Figure 6(b).

Example 3. The seasonal influenza epidemic in Puerto Rico in 2016-2017.

We apply the parameter identification algorithm to the seasonal influenza
epidemic in Puerto Rico in 2016-2017. The reported case data consist of weekly
reported cases from Departamento de Salud, Puerto Rico [57] from week 36 in
2016 to week 23 in 2017 (Figure 7). The cumulative reported cases are obtained
by adding these weekly values over the 37 weeks duration of the epidemic. We
take S(0) = 2, 500, 000 and I(0) = 57. The 2010 census of Puerto Rico was
≈ 3, 500, 000, so we assume ≈ 1/3 of the population has acquired immunity.
The weekly reported data and the cumulative reported data are illustrated by
the black dots in Figure 8. From this data we estimate CR∞ ≈ 45, 300, tp ≈ 14
weeks, CR(tp) ≈ 20, 400, and ν1I(tp) ≈ 6, 200. Notice that 2CR(tp) < CR∞.

The two solutions of F (X) = I0/S0, with F (X) given in (3.3), are X =
4.78× 10−7 and X = 2.67× 10−5. The solution that gives agreement with the
data is X = 2.67× 10−5, and the numerical solutions of equations (2.9), (2.10)
are τ ≈ 6.36 × 10−7, ν1 ≈ 0.024, ν2 ≈ 0.90, which correspond to an average
infectious period in non-fatal cases of ≈ 1.1 weeks, and a ratio of unreported to
reported cases of ≈ 37.7 to 1. The graphs of the reported data and model output
for reported cases are given in Figure 8. From the model output we obtain the
epidemic final size S0+I0−S∞ ≈ 1, 756, 000. The attack ratio of the susceptible
population is (S0 + I0 − S∞)/(S0 + I0) ≈ 70%. The attack ratio as a fraction
of the total population of Puerto Rico is (S0 + I0 − S∞)/3, 500, 000 ≈ 48.8%.
The reported case data include year-round background cases, which may over
estimate the reported cases and the attack ratio. The basic reproduction number
R0 ≈ 1.73. The epidemic peak size is I(tp) ≈ 237, 000 at tp ≈ 14 weeks. The
graphs of S(t), I(t), R(t) are given in Figure 9.
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5 Discussion
For the SIR model (2.1), (2.2), (2.3) we have constructed an algorithm to

identify unreported cases using reported case data ν1I(t). This SIR model
yields a simple rise and fall of the infected cases over the course of the epidemic,
with a turning point at time tp. A necessary condition for the algorithm is
that the data satisfy CR(tp)/CR∞ < 1/2. The algorithm uses the cumulative
reported case data CR(tp) at the turning point and cumulative reported case
data CR∞ at the end of the epidemic to obtain model parameters ν1, ν2, and
τ , that fit the reported case data and data turning point tp, assuming S0, I0 are
known. S0, however, may not be known, since the number of initially susceptible
individuals S0 may be less than the demographic population of the region due
to some individuals having acquired immunity from previous infections. I0 may
not be known, since the number of initially infected individuals I0 may be much
higher than the number of initially reported infected individuals. If one of S0

and I0 is known, then the algorithm allows identification of the other using the
turning point of the data. If neither S0 nor I0 is known, then the ratio I0/S0 in
the algorithm can be adjusted to identify parameters τ, ν1, ν2 that agree with
the reported case data and its turning point tp. In this case any scaling cI0/cS0

will yield parameters that also fit the reported case data and turning point. The
ratio S0/I0 is central in our algorithm for identifying the parameters and initial
conditions of the model.

Other methods provide alternative approaches for the parameter identifica-
tion problem for epidemic models, including formal least squares methods and
stochastic methods [2, 7, 24, 38]. Stochastic SIR models account for probabilis-
tic individual behavior, but typically have much greater computational require-
ments for large population sets. Deterministic SIR models provide only mean
distribution outputs, but are typically much more computationally efficient. Our
deterministic modeling approach emphasizes the role of the initial conditions I0
and S0, which for many epidemic diseases such as seasonal influenza, are largely
unknown. Our approach also emphasizes the role of reported cases, which for
diseases such as seasonal influenza, are a very small fraction of the total number
of cases.

5.1 The SEIR epidemic model
A generalization of the SIR model (2.9), (2.10), (2.11) is the SEIR model,

which allows for an incubation period of newly infected individuals before they
become infectious. The equations of the SEIR model are
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d

dt
S(t) = −τI(t)S(t) (5.1)

d

dt
E(t) = τI(t)S(t)− σE(t) (5.2)

d

dt
I(t) = σE(t)− (ν1 + ν2)I(t) (5.3)

d

dt
R(t) = (ν1 + ν2)I(t) (5.4)

with initial conditions S(0) = S0 > 0, E(0) = E0 ≥ 0 I(0) = I0 ≥
0, R(0) = R0 ≥ 0. Here E(t) is the number of pre-infectious infected individ-
uals at time t, the parameters τ , ν1, and ν2 are as before, and σ is the rate at
which incubating infected individuals become infectious. The basic reproduction
number R0 is τS0/(ν1+ν2), the same as the SIR model, and S∞ = limt→∞ S(t)
satisfies

S∞ = S0 + E0 + I0 +
ν1 + ν2
τ

log

(
S∞
S0

)
(5.5)

(R0 and S∞ are independent of σ). If R0 > 1, I(t) may first decrease before
increasing and then decreasing at a turning point tp (depending on S0, E0, I0).
The SIR analysis carries over to a similar analysis for the SEIR model, with
equations (2.9), (2.10), (2.11) the same, except that I0 is replaced by I0 + E0,
and F (X) = (I0 + E0)/S0 in (3.3). With the values of τ, ν1, ν2 obtained from
the modified equations (2.9), (2.10), (2.11), and (3.3), the equations (5.1), (5.2),
(5.3), are solved numerically with values of σ chosen so that the output matches
the reported case data and the turning point tp. For seasonal influenza in Puerto
Rico in 2016-2017, τ = 4.54 × 10−7, ν1 = 0.017, and ν2 = 0.90 as in the SIR
model (Example 3) and E0 = 70, I0 = 70, and σ = 21. Thus, the incubation
period is ≈ 1/21 weeks = 0.33 days, which is consistent with incubation times
for influenza in volunteer studies measured by viral shedding in [15].

5.2 The general incidence SIR epidemic model
The SIR model (2.9), (2.10), (2.11) does not take into account changes in

social behavior or public health policies as the epidemic unfolds, which may
reduce transmission. A model that incorporates such change is the general
incidence SIR model:

d

dt
S(t) = − τI(t)p

1 + κI(t)q
S(t) (5.6)

d

dt
I(t) =

τI(t)p

1 + κI(t)q
S(t)− νI(t) (5.7)

d

dt
R(t) = νI(t) (5.8)
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with initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0.
The parameter κ accounts for reduced transmission as I(t) increases, and the
positive exponents p and q satisfy 1 ≤ p ≤ q+1. The basic reproduction number
is R0 = τIp−10 S0/(1 + κIq0 ). If R0 < 1, then S(t) decreases to a limiting value
S∞ > 0 and I(t) decreases to 0. If R0 > 1, then S(t) decreases to a limiting
value S∞ > 0 and I(t) first increases, then decreases to 0 [43].

The condition CR(tp)/CR∞ < 1/2 may be violated for the general inci-
dence model. If the epidemic data do not satisfy this condition, then the SIR
model (2.9), (2.10), (2.11) may not be valid for epidemic analysis. A numer-
ical example of a general incidence model not satisfying CR(tp)/CR∞ < 1/2
is given in Figure 11. Examples of epidemic reported case data not satisfy-
ing CR(tp)/CR∞ < 1/2 are the 2013-2014 and 2014-2015 seasonal influenza
epidemics in Puerto Rico [58] illustrated in Figure 12.

5.3 More general epidemic models
In many cases epidemic data do not show a simple rise and fall of the reported

cases. One example is found in models with multi-group infected populations.
In [42] a two-group model, with super-spreaders and ordinary spreaders, yielded
a two-peak output of the total infected population for the SARS influenza out-
break in Singapore in 2003. Spatial heterogeneity is also important in modeling
the spread of epidemics. One example is given in [23] of the 2015-2016 Zika
epidemic in Rio de Janeiro, Brazil. Another example is given in [43] of the ge-
ographical spread of the 2015-2016 seasonal influenza epidemic in Puerto Rico,
in which the reported infected cases show an early high peak and a later low
peak (Figure 7). The multiple peaks in this case can be attributed to spatial
variation in the course of epidemic. Models incorporating the disease phase of
infected individuals with a continuum disease age variable can track the rise of
infectiousness, and in particular the pre-symptomatic periods of infectiousness
[10]. Models involving time dependent transmission and removal rates, corre-
sponding to public behavioral changes are also important, and considerations
of time dependent parameters were treated by K.P. Hadeler in [26, 27] and T.
Stader et al. in [52]. These examples illustrate the need for extension of the
work here to identify parameters in epidemic models that incorporate additional
features of outbreak epidemic diseases.
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Figure 1: The graph of F (X) (red), and the two solutions X∗ and X∗∗ of
F (X) = I0/S0. One of the two solutions provides a correct numerical simulation
of (2.9), (2.10) for the reported case data and their turning point tp.
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Figure 2: The graph of all cases (both reported and unreported) I(t) (red) and
the graph of cumulative reported cases CR(t) (black), and their relationship at
the turning point tp. I ′(tp) = 0 and CR′′(tp) = 0.
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Figure 3: Hong Kong influenza epidemic in New York City in 1968-1969. The
weekly reported mortality case data and cumulative reported case data (black
dots), and the model output graphs of ν1I(t) and CR(t) (blue).
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Figure 4: Hong Kong influenza epidemic in New York City in 1968-1969. The
model output graphs of S(t) (blue), I(t) (black), and R(t) (dashed). The vertical
lines are at the epidemic turning point tp ≈ 6.15 weeks.
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Figure 5: Hong Kong influenza epidemic in New York City in 1968-1969. (a)
The graphs of F (X) (yellow) and I0/S0 (blue). There exists two solutions X =
0.000276 and X = 0.000728 of F (X) = I0/S0.The solution corresponding to
the data is X = 0.000728. (b) The graph of the model output of the cumulative
weekly reported case data for the solution X = 0.000276, which does not match
the epidemic data.
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Figure 6: Bubonic plague epidemic in Bombay, India in 1906. (a) The weekly
reported mortality case data (black dots) and model output graph of ν1I(t) (blue).
(b) The weekly reported cumulative mortality case data (black dots) and model
output graph of CR(t) (blue). The vertical lines are at the epidemic turning
point tp ≈ 13.5 weeks.
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Figure 7: Weekly reported cases of seasonal influenza epidemics in Puerto Rico
in the 2015-2016 and 2016-2017 seasons. The graph of reported cases in 2015-
2016 (yellow) has two peaks. The graph of reported cases in 2016-2017 (black)
has only one peak and satisfies CR(tp)/CR∞ < 1/2.
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Figure 8: Seasonal influenza epidemic in Puerto Rico in 2016-2017. The weekly
reported mortality case data and cumulative reported case data (black dots), and
the model output graphs of ν1I(t) and CR(t) (blue). The vertical lines are at
the epidemic turning point tp ≈ 14 weeks.
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Figure 9: Seasonal influenza epidemic in Puerto Rico in 2016-2017. The model
output graphs of S(t) (blue), I(t) (black), and R(t) (dashed).
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Figure 10: The relationship of I0/S0 for the simulation of the 2016-2017 seasonal
influenza epidemic in Puerto Rico with model (2.1), (2.2). The algorithm yields
the correct turning point tp = 14 for the data with I0/S0 = 2.28×10−5. Left side:
I0 = 57, tp increases linearly with log(S0) for I0/S0 = 2.28× 10−5. Right side:
S0 = 2, 500, 000, tp decreases linearly with log(I0) for I0/S0 = 2.28×10−5. The
green graphs correspond to S0 = 2, 500, 000 and I0 = 57. For cI0/cS0, c ≥ 1,
R0 ≈ 1.73 independently of c, and ν1/ν2 ≈ 38.7 c− 1.0.
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Figure 11: The general incidence model (5.6),(5.7) with τ = 0.14 × 10−6, ν =
3.0, p = 1.09, q = .1, S0 = 3, 500, 000, I0 = 1, 000. ν corresponds to all cases
being reported. R0 = 1.105, tp = 22.74, νI(tp) = 6, 829, CR(tp) = 114, 984,
CR∞ = 210, 828. The cumulative reported cases do not satisfy CR(tp)/CR∞ <
1/2.

Figure 12: Weekly reported cases of seasonal influenza epidemics in Puerto
Rico in the 2013-2014 and 2014-2015 seasons. The cumulative reported cases
(corresponding to the areas below the graphs) do not satisfy CR(tp)/CR∞ < 1/2
for either season.
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