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Abstract
We develop a model of honey bee colony collapse based on the contamination of
forager bees in environmental regions contaminated with pesticides. An important
feature of the model is the daily homing capacity each day of foragers bees. The model
consists of difference equations describing the daily homing of uncontaminated and
contaminated forager bees, with an increased homing failure of contaminated bees.
The model quantifies colony collapse in terms of the fraction of contaminated bees
subject to this increased homing failure. If the fraction is sufficiently high, then the
hive falls below a viability threshold population size that leads to rapid disintegration.
If the fraction is sufficiently low, then the hive can rise above the viability threshold
and attain a stable population level.

Keywords Colony collapse · Pesticide contamination · Difference equation

Mathematics Subject Classification 92D25 · 92D40

1 Introduction

Our objective is to analyze the role of pesticide contamination in honey bee colony
collapse disorder (CCD). CCD is defined as the disappearance of a majority of honey
bees in a colony, leaving behind insufficient numbers of bees to care for immature
bees in the hive (Myerscough et al. 2017; Wikipedia 2019). CCD occurs in both
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natural wild settings and in managed agricultural settings. CCD losses in managed
honey bee colonies have increased markedly worldwide and in the USA in recent
years (Bee Informed Partnership 2018; Goulson et al. 2015; United States Depart-
ment of Agriculture Agricultural Research Service 2019). Various causes of CCD
have been proposed, including viral infection transmitted by mites and environmental
contamination arising from fungicides and pesticides. Mathematical models of CCD
caused by viral infections include Becher et al. 2014; Bernardi and Venturino 2016;
Betti et al. 2014; DeGrandi-Hoffman and Curry 2004; Farley 2017; Kang et al. 2016;
Khoury et al. 2011; Martin 2002; Ratti et al. 2013, 2015, 2017; Russell et al. 2013;
Sumpter and Martin 2004. Mathematical models of CCD caused by environmental
contamination arising from fungicides and pesticides include Becher et al. 2014; Betti
et al. 2014, 2017; Henry et al. 2012, 2015; Schmickl and Crailsheim 2007;Willkinson
and Smith 2002. Surveys of mathematical models for CCD are given in Becher et al.
(2013, 2018).

The significance of environmental pesticide contamination (EPC) in CCD is con-
troversial, since it is recognized that pesticides have sub-lethal effects on honey bees,
but may caused delayed development and impaired functionality of forager bees that
become contaminated (Barron 2015; Blacquiére et al. 2016; Bryden et al. 2013; Henry
et al. 2012, 2015; Kang and Theraulaz 2016; Khoury et al. 2011; Meikle et al. 2016;
Sandrock et al. 2014). Forager bees differentiate from hive worker bees at approximate
age of 21days, at which time they transition to performing out-colony tasks, including
water, nectar, pollen, and resin collection (Abou-Shaara 2014). The contribution of
forager bees to the rearing of juvenile bees in the hive is significant and is regulated by
the number of forager bees in the colony, a process known as social inhibition (Betti
et al. 2014; Huang and Robinson 1974; Leoncini et al. 2004).

A class of neuro-active insecticides, neonicotinoids, have been identified as poten-
tially harmful to honey bee colonies, particularly to managed colonies, whose foragers
have exposure to contaminated agricultural fields (Blacquiére et al. 2016;Chauzat et al.
2009; Desneux et al. 2007; Thompson et al. 2015). In Europe, neonicotinoid pesti-
cide products have been partially banned in agricultural use (European Food Safety
Authority 2018). In the USA, neonicotinoids have been banned in some states (Amer-
ican Society for Horticultural Science 2019), and legislation is pending in the US
Congress for a national ban (United States Environmental Protection Agency 2019;
H.R. 3040-Saving America’s Pollinators Act 2018). A recent study by the European
Food Safety Authority has confirmed the risk of neonicotinoids to bees (European
Food Safety Authority 2018b). Another study by the Genetic Literacy Project has
disputed this claim, citing studies that found limited linkage of CCD to neonicotinoid
contamination (Cutler and Scott-Dupree 2007; Cutler et al. 2014; Cutler and Scott-
Dupree 2016; Dively et al. 2015; Nguyen et al. 2009; Pilling et al. 2013; Rolke et al.
2016; Rundlof et al. 2015; Schneider et al. 2012; Stanley et al. 2016).

Recent studies by Henry et al. (2012, 2015) have identified neonicotinoid pesticides
as responsible for significant homing failure in forager honey bees. In these studies,
free-ranging individual forager bees were monitored with radio-frequency identifica-
tion. In one field study, a fraction 0.2–0.3 of exposed foragers failed to return to their
colony on a daily basis, when foraging in treated crop regions, which was as much as
twice the fraction of homing failure of unexposed foragers. Forager bees, when they
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return each day from foraging, provide a significant contribution for brood rearing in
the hive (DeGrandi-Hoffman et al. 1989). Thus, increased homing failure may sig-
nificantly destabilize the social organization in the development of new bees in the
colony population, resulting in CCD.

In this paper, we analyze a model of CCD arising from pesticide contamination.
Our model has the form of a discrete-time difference equation, which tracks forager
bees as they leave and return to the hive each day. This daily homing feature is of
major importance in understanding the consequences of pesticide contamination upon
homing capacity. Ourmodeling approach here is applicable tomany biological species
that exhibit such a regular return-home behavior. In the future work, we will analyze
a spatially dependent version of the model here.

Our model of EPC describes only the forager bees in the colony, since worker bees,
drone bees, and the queen bee are not contaminated directly. Our model describes the
forager population day by day, and our time unit will be a day, defined as the period of
sunlight during each day.We note that this sunlight period may vary from one location
to another. Our model is designed for shorter time spans, typical of managed colonies
placed in agricultural fields, rather than for seasonal time spans characteristic of natural
colonies in the wild, in which colony size varies considerably throughout the year.

A key element of our analysis is a critical viable threshold of the forager bee
population (Dennis and Kemp 2016; Myerscough et al. 2017). If the population falls
below this threshold, CCDwill rapidly occur. If the population is above this threshold,
the colony can stabilize. This population behavior is often called an Allee effect, which
can have a variety of modeling forms. Allee effects have been used in many models
of CCD, in both gain and loss terms (Banks et al. 2017; Bernardi and Venturino 2016;
Betti et al. 2014; Booten et al. 2017; Bryden et al. 2013; Dennis and Kemp 2016;
Gabbriellini 2017; Goulson et al. 2015; Kang and Theraulaz 2016; Kang et al. 2016;
Kribs-Zaleta and Mitchell 2014; Myerscough et al. 2017; vanEngelsdorp et al. 2009).
In ourmodel, theAllee effectwill be placed in the term corresponding to the production
of new forager bees, as they transition from eclosion, maturation, and differentiation
to forager functionality.

The organization of this paper is as follows: in Sect. 2 we develop a model of
CCD without pesticide contamination; in Sect. 3 we develop a model of CCD with
pesticide contamination based on the homing failure fraction of contaminated foragers;
in Sect. 4 we illustrate the model with numerical simulations; in Sect. 5 we provide
some conclusions from our model of EPC in CCD.

2 Model Without Pesticide Contamination

We first consider a honey bee colony without exposure to pesticide contamination. At
sunrise of the first day, the number of forager bees is

U (0) = U0 ≥ 0.

During the first day, the population of bees is subject to natural loss, which includes
homing failure, and all other causes of mortality. The change in U (t) during the first
day is described by the following differential equation:
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U ′(t) = −μU (t), t ∈ [0, 1),

where μ > 0 is the natural morality rate of forager bees, including homing failure.
The units of μ are day−1, and the number of forager bees who survived to the end of
the first day is denoted by

U (1−) = e−μU0,

where μ is multiplied by 1day.
At sunrise of the second day, we account for the recruitment of new hive bees to

foraging. This maturation process of hive bees requires up to 3weeks, from eclosion
to adulthood specialization to foraging. We set the number of new forager bees at the
beginning of the second day to

β U (1−)2

χ2 +U (1−)2
.

This Allee form term for forager recruitment means that when the number of forager
bees is below a viability threshold, the production of new forager bees decreases
sharply, and when the number of forager bees is large, the number of recruited forager
bees approaches β, which is the maximal rate of new forager bees produced per day.
This form for recruitment of new forager bees emphasizes the role of forager bees, in
addition to hive worker bees, in the rearing of hive bees.

Thus, the number of new forager bees at the beginning of the second day is

U1 = β U (1−)2

χ2 +U (1−)2
+U (1−)

= β U (0)2

χ̃2 +U (0)2
+ e−μU (0)

where χ̃ = χeμ Therefore, we obtain the following difference equation to describe
the number of forager bees at sunrise of day n + 1:

{

U (n + 1) = β U (n)2

χ̂2+U (n)2
+ e−μU (n), n ≥ 0,

U (0) = U0,
(1)

The number of bees during day n = 0, 1, . . . is

U (t) = e−μ(t−n)U (n), t ∈ [n, n + 1).

Equilibria: 0 is always an equilibrium of (1). A strictly positive equilibrium U of 1
must satisfy the following equality:

˜β U

χ̃2 +U
2 = 1
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where

˜β := β
(

1 − e−μ
) .

Therefore, we seek the positive roots of

p(U ) = U 2 − ˜βU + χ̃2 = 0.

Set

R0 := ˜β

2χ̃
= βe−μ

2χ
(

1 − e−μ
) .

We observe that if R0 < 1, p(U ) has no real root, and if R0 > 1, p(U ) has two
positive roots.

Since the right-hand side of the difference equation (1) is monotone, we obtain the
following result:

Lemma 1 (Allee effect) We have the following alternatives:

(i) If R0 < 1, the only equilibrium of (1) is 0. Moreover, 0 is stable for (1) and every
solution starting from U0 ≥ 0 converges to 0.

(ii) If R0 > 1, (1) has three nonnegative equilibria:

0 < U− :=
˜β −

√

˜β2 − 4χ̃2

2
< U+ :=

˜β +
√

˜β2 − 4χ̃2

2
.

Moreover, 0 is locally stable for (1) and every solution of (1) starting from U0 ∈
[0,U−) converges to 0. Furthermore,U+ is locally stable and every solution of (1)
starting from U0 ∈ (U−,∞) converges to U+.

Proof Define

f (x) = β x2

χ̃2 + x2
+ e−μx,

which corresponds to the right-hand side of (1).
Proof of (i): Assume R0 < 1. Then f (x) < x for all x > 0, and

U (1) = f (U (0)) < U0.

Since f (x) is strictly increasing, by applying f on both sides of the above inequality
n times, we deduce that

U (n + 1) = f n(U (1)) < f n(U (0)) = U (n).
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Therefore, n → U (n) is decreasing. Since this sequence is bounded, it converges to
the largest equilibrium below U (0) which is 0. Therefore, U (n) converges to 0 as
n → ∞.
Proof of (ii): Assume R0 > 1. If U (0) ∈ (0,U−), then

U (1) = f (U (0)) < U0,

and by using the same argument as above,U (n) converges to 0 as n → ∞. IfU (0) ∈
(U−,U+), then

U (1) = f (U (0)) > U0

and by using the same argument as above,U (n) converges toU+ which is the smallest
equilibrium above U (0). Similarly, when U (0) > U+, we have

U (1) = f (U (0)) < U0

and by using the same argument as above,U (n) converges toU+, which is the largest
equilibrium below U (0). ��
Identification of the parameters: In a particular application, U+ and U− may be
known. We set

˜β +
√

˜β2 − 4χ̃2

2
= U+ (2)

and
˜β −

√

˜β2 − 4χ̃2

2
= U−. (3)

By summing (2) and (3), we obtain

˜β = U+ +U− = β

1 − e−μ
, (4)

and subtracting (3) from (2), we obtain

χ̃2 = (U+ +U−)2 − (U+ −U−)2

4
= χ2e2μ. (5)

Therefore, if μ,U−, and U+ are known, we can identify the parameters β and χ by
using (4) and (5). An example is given in Fig. 1.

3 Model with Pesticide Contamination

In this section, we assume that the forager bees may be contaminated due to pesticide
in the environment. At the sunrise of the first day, the numbers of uncontaminated and
contaminated forager bees are
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Fig. 1 The values of the equilibria areU− = 6051 andU+ = 24,423. The parameters are β = 2900, χ =
11,000, μ = 0.1. R0 = 1.2534. The dots correspond to daily values (Color figure online)

U (0) = U0 ≥ 0, C(0) = C0 ≥ 0.

During the day, the population of forager bees is subject to the natural mortality and
contamination by pesticide in the environment. Thus, for t ∈ [0, 1), we have

{

U ′(t) = −μU (t) − αU (t)
C ′(t) = −μC(t) + αU (t)

(6)

where α > 0 is the rate of contamination during the day. A simple computation yields
the populations at the end of the first day:

U
(

1−)+ C
(

1−) = e−μ(U0 + C0), U
(

1−) = e−(μ+α)U0,

where μ + α is multiplied by one day. Therefore,

U (1−) = e−(μ+α)U0, C(1−) = e−μ
{

C0 + [

1 − e−α
]

U0
}

.

According to field experiments in Henry et al. (2012, 2015), the homing failure
probability of forager bees, when foraging in treated contaminated crops on a daily
basis, increased significantly, when compared to the natural homing failure of an
uncontaminated forager. We thus obtain the following equations for the populations
at the beginning of the second day:

⎧

⎨

⎩

U1 = β (U (1−)+pC(1−))
2

χ2+(U (1−)+pC(1−))
2 +U (1−),

C1 = pC(1−),
(7)
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where p ∈ [0, 1] is the fraction of contaminated forager bees that succeeded in return-
ing back to the hive at the end the first day. Thus, 1 − p is the fraction of newly
contaminated forager bees that have an increased mortality due to homing failure
beyond the normal daily homing failure.

We start over at sunrise of the second day with the new initial conditions

U (1) = U1, C(1) = C1.

We define

V (0) := U (1−) + pC(1−) = e−(μ+α)U0 + p
(

e−μC0 + [

e−μ − e−(α+μ)
]

U0
)

= pe−μ (U0 + C0) + (1 − p)e−(α+μ)U0,

which is the total population of forager bees that return to the hive at the end of the
first day. Therefore, we obtain the following difference equation model that provides
the numbers of uncontaminated and contaminated forager bees at sunrise of day n:

{

U (n + 1) = β V (n)2

χ2+V (n)2
+ e−(μ+α)U (n),

C(n + 1) = pe−μC(n) + pe−μ
[

1 − e−α
]

U (n),
(8)

where

V (n) := pe−μC(n) +
[

pe−μ + (1 − p)e−(α+μ)
]

U (n),

with initial condition

U (0) = U0 ≥ 0, C(0) = C0 ≥ 0.

The terms in (8) have the following biological meaning:

{

U (n + 1) = F (U (n) ,C (n))

C (n + 1) = G (U (n) ,C (n))
(9)

where

F (U ,C)
︸ ︷︷ ︸

daily change in U

= βV (U ,C)2

χ2 + V (U ,C)2
︸ ︷︷ ︸

daily production of new

uncontaminated foragers U

+ e−μe−αU
︸ ︷︷ ︸

daily survival and return home of

uncontaminated foragers U

(10)

G (U ,C)
︸ ︷︷ ︸

daily change in C

= pe−μC
︸ ︷︷ ︸

daily survival and return home of

exising contaminated foragers C

+ pe−μ
(

1 − e−α
)

U
︸ ︷︷ ︸

daily new C from contamination of

U that survive and return home

(11)
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V (U ,C)
︸ ︷︷ ︸

daily total U and C

returning home

= pe−μC
︸ ︷︷ ︸

daily survival

and return home

of existing C

+ pe−μ
(

1 − e−α
)

U
︸ ︷︷ ︸

daily new C that

survive and return home

+ e−μe−αU
︸ ︷︷ ︸

daily survival and

return home of

non-contaminated U

(12)

3.1 Analysis of theModel with Contamination

We first consider the equilibria of the difference equation model (8).

Equilibria: (0, 0) is an equilibrium (8). By the second equation of (8), an equilibrium
(U ,C) must satisfy the following equation

C = p e−μ
{

C + [

1 − e−α
]

U
} ⇔ C = κ1U

with

κ1 := p e−μ
[

1 − e−α
]

1 − p e−μ
.

Moreover,

V := e−μ
{

C + [

1 − e−α
]

U
} = κ2e

−(μ+α)U

where

κ2 = eα
{

κ1 + [

1 − e−α
]} = eα − 1

1 − pe−μ
.

Thus, the first equation of (8) gives

U = β

(

e−(μ+α)U + pκ2e−(μ+α)U
)2

χ2 + (

e−(μ+α)U + pκ2e−(μ+α)U
)2 + e−(μ+α)U .

Thus, we obtain

U = ̂β U
2

χ̂2 +U
2 (13)

where
̂β := β

1 − e−(μ+α)
and χ̂ := χ

e−(μ+α) [1 + pκ2]
. (14)

By using the argument employed in Lemma 1, we derive the following quantity:

R1 := ̂β

2χ̂
= β [1 + pκ2]

2χ
[

e(μ+α) − 1
] = β

[[

1 − pe−μ
]+ p [eα − 1]

]

2χ
[

e(μ+α) − 1
] [

1 − pe−μ
] ,
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We thus obtain

Lemma 2 The following alternatives holds:

(i) If R1 < 1, then (0, 0) is the only equilibrium of system (8).
(ii) If R1 > 1, then system (8) has three equilibria:

(0, 0) 
 (U−,C−) 
 (U+,C+),

where

C± = κ1U±,

and

0 < U− :=
̂β −

√

̂β 2 − 4χ̂2

2
< U+ :=

̂β +
√

̂β 2 − 4χ̂2

2
.

Proposition 1 (Extinction) Assume that R1 < 1. Then the trivial equilibrium (0, 0) is
globally asymptotically stable, that is, (0, 0) is locally stable and every nonnegative
solution of (8) converges to (0, 0).

Proof We construct a family of upper solutions. For each ̂U0 ≥ 0, we fix ̂C0 > 0 such
that

̂C0 = pe−μ
̂C0 + pe−μ

[

1 − e−α
]

̂U0, (15)

which is equivalent to

̂C0 = pe−μ
[

1 − e−α
]

1 − pe−μ
̂U0 = κ1̂U0,

and corresponds to the second equation of (8), which is possible since μ > 0.
Define

̂f (x) = ̂β x2

χ̂2 + x2
+ e−(μ+α)x .

which corresponds to the right-hand side of the first equation of (8) whenever C(n)

and U (n) satisfy (15).

Let (̂U (n), ̂C(n)) be the solution (8) starting from (̂U0, ̂C0). Then, ̂U (1) =
̂f (̂U (0)) < ̂U (0) and by construction ̂C(1) = ̂C(0). Therefore,

{

̂U (1) = F(̂U (0), ̂C(0)) < ̂U (0),
̂C(1) = G(̂U (0), ̂C(0)) = ̂C(0).

Since F and G are strictly increasing, the sequence (̂U (n), ̂C(n)) is decreasing and
converges to the largest equilibrium below (̂U0, ̂C0), which is (0, 0).
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Now let (U0,C0) ∈ R
2+.We can choose ̂C0 > 0 large enough and ̂U0 satisfying (15)

such that

̂C0 ≥ C0 and ̂U0 ≥ U0.

Since F and G are strictly increasing, for each integer n ≥ 0, we have

̂C(n) ≥ C(n) and ̂U (n) ≥ U (n).

Since (̂C(n), ̂U (n)) converges to (0, 0), (̂U (n), ̂C(n)) converges to (0, 0).
The local stability follows by using the same arguments. Indeed by choosing ̂C0 > 0

small enough, we obtain a positively invariant neighborhood of (0, 0) in R2+ as small
as we want. ��

The proof of the following proposition is based on the same argument as the proof
of Proposition 1.

Proposition 2 Assume that R1 > 1. The following statements hold:

(i) The equilibrium (0, 0) is asymptotically stable. IfU0 ∈ [0,U−) andC0 ∈ [0,C−),
then the corresponding solution (U (n),C(n)) of (8) converges to (0, 0).

(ii) The equilibrium (U+,C+) is asymptotically stable. If U0 ∈ (U−,∞) and
C0 ∈ (C−,∞), then the corresponding solution (U (n),C(n)) of (8) converges to
(U+,C+).

Proof The proof is similar to Proposition 1. For each fixed ̂U (0) ≥ 0, let ̂C(0) =
κ1̂U (0). Let (̂U (n), ̂C(n)) be the solution (8) starting from (̂U0, ̂C0). If ̂U0 ∈ [0,U−)∪
(U+,∞), then ̂C0 ∈ [0,C−) ∪ (C+,∞) and

{

̂U (1) = F(̂U (0), ̂C(0)) < ̂U (0),
̂C(1) = G(̂U (0), ̂C(0)) = ̂C(0).

Since F and G are strictly increasing, the sequence (̂U (n), ̂C(n)) is decreasing and
converges to the largest equilibrium below (̂U0, ̂C0). If ̂U0 ∈ [0,U−), this equi-
librium is (0, 0); if ̂U0 ∈ (U+,∞), this equilibrium is (U+,C+). Similarly, if
̂U0 ∈ (U−,U+), then ̂C0 ∈ (C−,C+), and the sequence (̂U (n), ̂C(n)) is increas-
ing and converges to the smallest equilibrium above (̂U0, ̂C0), which is (U+,C+).

For any (U0,C0) ∈ (0,U−)× (0,C−), we can find (̂U0, ̂C0) ∈ (0,U−)× (0,C−)

with ̂C(0) = κ1̂U (0) such that

̂C0 ≥ C0 and ̂U0 ≥ U0.

Since F and G are strictly increasing, we have ̂C(n) ≥ C(n) and ̂U (n) ≥ U (n), and
the sequence (̂U (n), ̂C(n)) converges to (0, 0).

For any (U0,C0) ∈ (U−,∞) × (C−,∞), we can find (̂U0, ̂C0) ∈ (U+,∞) ×
(C+,∞) with ̂C(0) = κ1̂U (0) such that ̂C0 ≥ C0 and ̂U0 ≥ U0. We can also find
( qU0, qC0) ∈ (U−,U+)×(C−,C+)with qC(0) = κ1 qU (0) such that qC0 ≤ C0 and qU0 ≤
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U0. Then the sequence (̂U (n), ̂C(n)) is decreasing to (U+,C+), and the sequence
( qU (n), qC(n)) is increasing to (U+,C+). Since

̂U0 ≥ U0 ≥ qU0 and ̂C0 ≥ C0 ≥ qC0,

and F and G are strictly increasing, we have

̂U (n) ≥ U (n) ≥ qU (n) and ̂C(n) ≥ C(n) ≥ qC(n), for all n ≥ 0.

Therefore, (U (n),C(n)) converges to (U+,C+). ��
In the case R1 > 1, we can prove that the solution of (8) converges to (U+,C+) if

either U0 is large enough or C0 is large enough.

Proposition 3 Assume that R1 > 1. There exist M, N > 0 such that for any (U0,C0)

with U0 ≥ M or C0 ≥ N, the solution of (8) converges to (U+,C+).

Proof By Proposition 2, it suffices to show that there exist M, N > 0 such that, for
any (U0,C0) with U0 ≥ M or C0 ≥ N , (U (n),C(n) ∈ (U−,∞) × (C−,∞) for
some n ≥ 0. The existence of M is obvious, as it suffices to set

M = max

{

U−
e−(μ+α)

+ 1,
C−

pe−μ(1 − e−α)
+ 1

}

.

IfU0 ≥ M , then (U (1),C(1)) ∈ (U−,∞)× (C−,∞), and the solution (U (n),C(n))

of (8) converges to (U+,C+).
To see the existence of N , we consider a sequence {xn} determined by the iteration

xn+1 = β/2 + e−(μ+α)xn with x0 = U0. Since {xn} converges to β̂/2 > U−, there
exists K > 0 such that xK > U−. Since C(n + 1) ≥ pe−μC(n) and V (n) ≥
pe−μC(n), there exists N > 0 such that if C0 ≥ N , then we have C(n) > C− and

βV (n)2

χ2 + V (n)2
≥ β

2

for all 1 ≤ n ≤ K . So, for all (U0,C0) with C0 ≥ N , we have U (n + 1) ≥ β/2 +
e−(μ+α)U (n), 1 ≤ n ≤ k. Then, U (n) ≥ xn for all 1 ≤ n ≤ K , and therefore,
U (K ) ≥ xK > U−. Hence, (U (K ),C(K )) ∈ (U−,∞) × (C−,∞). ��

3.2 Case p = 1

In the case p = 1, the difference equation (8) becomes

⎧

⎪

⎨

⎪

⎩

U (n + 1) = β
(

e−μ(U (n) + C(n))
)2

χ2 + (

e−μ(U (n) + C(n))
)2 + e−(μ+α)U (n),

C(n + 1) = e−μC(n) + e−μ
[

1 − e−α
]

U (n),

(16)
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with initial distribution

U (0) = U0 ≥ 0 and C(0) = C0 ≥ 0.

By summing the two equations of (16), we have

U (n + 1) + C(n + 1) = g
(

e−μ [U (n) + C(n)]
)+ e−μ [U (n) + C(n)]

and we deduce the following result:

Proposition 4 Assume that p = 1 and R1 > 1. The following hold:

(i) The equilibrium (0, 0) is locally asymptotically stable. Moreover, the domain

D− =
{

(U ,C) ∈ R
2+ : U + C < U− + C−

}

is positively invariant for (8). Furthermore, every solution of (8) starting on D+
(i.e. with U0 + C0 < U− + C−) converges to (0, 0).

(ii) The equilibrium (U+,C+) is locally asymptotically stable. Moreover, the domain

D+ =
{

(U ,C) ∈ R
2+ : U + C > U− + C−

}

is positively invariant for (8). Furthermore, every solution of (8) starting on D+
(i.e. with U0 + C0 > U− + C−) converges to (U+,C+).

(iii) The equilibrium (U−,C−) is unstable. Moreover, the separatrix between D− and
D− is

S =
{

(U ,C) ∈ R
2+ : U + C = U− + C−

}

,

which has slope−1 and is positively invariant for (8). Furthermore, every solution
of (8) starting on S (i.e. with U0 + C0 = U− + C−) converges to (U−,C−).

Remark 1 We remark that if p = 1, then U− is a decreasing function of α and U+ is
an increasing function of α. Further, if p = 1 and α ≥ 0, then R0 (in the case without
contamination) = R1 (in the case with contamination), and U− (in the case without
contamination) = U− +C− in the case with contamination. The same equality holds
for U+ and C+.

3.3 Case p < 1

The following result compares the system (8) with the system (16).

Lemma 3 (Comparison property) If (U (n), V (n)) is a solution of (8) starting from
(U (0), V (0)) ∈ [0,∞)2, then

(U (n), V (n)) ≤ (˜U (n), ˜V (n)),∀n ≥ 0,
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where
(

˜U (n), ˜V (n)
)

is the solution of (16) starting from the same initial value. Let

(U
∗
−,C

∗
−) be the smallest positive equilibrium of (16) corresponding to p = 1. Then,

each solution of (8) starting from an initial value satisfying U0 + C0 < U
∗
− + C

∗
−

converges to (0, 0).

Proof In order to prove the above result, it is sufficient to observe that

V (0) := U (1−) + pC(1−) = e−(μ+α)U0 + p
(

e−μC0 +
[

e−μ − e−(α+μ)
]

U0

)

,

and since p ∈ [0, 1], we deduce that

V (0) ≤ U (1−) + C(1−) = e−μ(U0 + C0).

It follows that U (1) ≤ ˜U (1) and C(1) ≤ ˜C(1). Then,

V (1) ≤ e−μ(U (1) + C(1)) ≤ e−μ(˜U (1) + ˜C(1)),

and it follows that U (2) ≤ ˜U (2) and C(2) ≤ ˜C(2). By induction, we have
(U (n), V (n)) ≤ (˜U (n), ˜V (n)) for all n ≥ 0. If U0 + C0 < U

∗
− + C

∗
−, then the

sequence ˜U (n) + ˜V (n) converges to 0 by Proposition 4. Therefore, (U (n), V (n))

converges to (0, 0). ��
Theorem 1 (Allee effect) Assume that R1 > 1, and let (U−,C−) be the smallest
positive equilibrium of (16). For each ˜U > 0 and ˜C > 0, there exists a constant
α0 > 0, which depends on (˜U , ˜C), such that

α0(˜U + ˜C) ≥ U
∗
− + C

∗
−

where (U
∗
−,C

∗
−) is the smallest positive equilibrium of (16) corresponding to p = 1.

Moreover, the following alternatives hold:

(i) If α < α0 the solution of (8) starting from (U0,C0) = (α˜U , α˜C) converges to
(0, 0).

(ii) If α > α0 the solution of (8) starting from (U0,C0) = (α˜U , α˜C) persists and the
sum U (n) + C(n) stays above U

∗
− + C

∗
− for each integer n ≥ 0.

Proof For any ˜U , ˜C > 0 and (U0,C0) = (α˜U , α˜C), we observe that if α˜U + α˜C <

U
∗
− + C

∗
−, (U (n),C(n)) converges to (0, 0) by Lemma 3. By the monotonicity of

the system, we observe that, for any 0 < α′ < α′′, if the solution with initial data
(α′′

˜U , α′′
˜C) converges to (0, 0), the solution with initial data (α′

˜U , α′
˜C) converges

to (0, 0).
Define α0 =

sup{α > 0 : (U (n),C(n)) with initial data (α˜U , α˜C) converges to (0, 0)}.

By our previous observations, α0 > 0 is well defined and α0(˜U + ˜C) ≥ U
∗
− + C

∗
−.

Since, ifα is large, the solution converges to the positive equilibrium,we haveα0 < ∞.
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If α > α0, (U (n),C(n)) does not converge to (0, 0), andwemust haveU (n)+C(n) ≥
U

∗
− + C

∗
− for n ≥ 0 by Lemma 3. ��

Theorem 2 Assume that R1 > 1. For each ˜U > 0 and ˜C > 0, there exists a constant
α1 > α0, which depend on (˜U , ˜C), such that the following hold:

(i) If α < α1 the solution of (8) starting from (U0,C0) = (α˜U , α˜C) stays away
from the largest positive equilibrium of (8). More precisely, there exists ε > 0,
independent of α, such that

‖(U (n) −U+,C(n) − C+)‖ ≥ ε,∀n ≥ 0.

(ii) If α > α1 the solution of (8) starting from (U0,C0) = (α˜U , α˜C) converges to
(U+,C+).

Proof By the monotonicity of the system, we observe that, for any 0 < α′ < α′′, if the
solution of (8) with initial data (α′

˜U , α′
˜C) converges to (U+,C+), the solution of (8)

with initial data (α′′
˜U , α′′

˜C) converges to (U+,C+). Moreover, we observe that, for
each ˜U > 0 and ˜C > 0, the solution of (8) with initial data (α˜U , α˜C) converges to
(U+,C+) if α is large enough by Proposition 2.

Define α1 =

inf{α > 0 : (U (n),C(n)) with initial data (α˜U , α˜C) converges to (U+,C+)}.

Byour previous observations,α1 > α0 iswell defined,whereα0 is given byTheorem1.
By the definition of α1, (ii) is true. (i) follows from the fact that if (U (n),C(n)) ∈
(U−,∞) × (C−,∞) for some n ≥ 0, then the sequence (U (n),C(n)) converges to
(U+,C+). ��

4 Numerical Simulations

We illustrate the behavior of the solutions of model (8) with numerical simulations.
Model (8) is of the form

{

U (n + 1) = F(U (n),C(n)),

C(n + 1) = G(U (n),C(n)),

(see 9), where F and G are strictly increasing functions (see (10) and (11)). By the
monotonicity of F and G, the sequence {(U (n),C(n))} with initial data (U0,C0)

satisfying
{

U ≤ F(U ,C)

C ≤ G(U ,C)
(17)

is increasing. Similarly, the sequence {(U (n),C(n))} with initial data (U0,C0) satis-
fying (17) with both inequalities reversed is decreasing.

The parameters in the first simulation of Model (8) are given in Table 1.
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Table 1 Parameters and steady states for forager bees in the simulation

Parameter/
equilibrium

Simulation
value

References

μ .1/day Betti et al. (2014),DeGrandi-Hoffman
and Curry (2004), Dukas (2008),
Henry et al. (2012), Henry et al.
(2015), Khoury et al. (2011), Myer-
scough et al. (2017) and Torres et al.
(2015)

α .03/day Henry et al. (2012, 2015)

β 2900 Truitt et al. (2019)

χ 11,000 Betti et al. (2014), Dennis and Kemp
(2016), Kang and Theraulaz (2016),
Kang et al. (2016) and Truitt et al.
(2019)

p .8 Henry et al. (2012, 2015)

(U+,C+) (14,889 , 1154) DeGrandi-Hoffman et al. (1989),
DeGrandi-Hoffman andCurry (2004),
Dennis and Kemp (2016), Khoury
et al. (2011) and vanEngelsdorp et al.
(2009)

(U−,C−) (8900, 690) DeGrandi-Hoffman et al. (1989),
DeGrandi-Hoffman andCurry (2004),
Dennis and Kemp (2016), Khoury
et al. (2011) and vanEngelsdorp et al.
(2009)

μ = daily mortality rate of uncontaminated foragers and contaminated foragers (including normal homing
failure),β = production parameter in the daily output of newuncontaminated foragers,χ =Allee parameter
in the daily output of new uncontaminated foragers, 1− p = fraction of contaminated bees failing to return
back to the hive each day (in addition to normal homing failure), α = daily rate of contamination of
uncontaminated bees, (U+,C+) = locally stable steady state, (U−,C−) = locally unstable steady state

In the simulation, R1 = 1.0333 > 1. Figure 2 provides a phase portrait of the
solutions, where the dots indicate U and C values each day. In Fig. 2, the points sat-
isfying (17) are in the yellow region, which is invariant. If the initial value (U0,C0)

is in the yellow region, {(U (n),C(n))} is increasing and convergent to the equilib-
rium (U+,C+). The initial data satisfying (17) with the inequalities reversed are in
the gray and red regions, which are also invariant. If the initial value is in the gray
region, {(U (n),C(n))} is decreasing and convergent to the equilibrium (0, 0); if the
initial value is in the red region, {(U (n),C(n))} is decreasing and convergent to the
equilibrium (U+,C+).

The equilibria and the three regions are determined as follows: Solve the equa-
tion G(U ,C) = C for C and obtain the line C1(U ) = κ1U , where κ1 = 0.0775.
Since R1 > 1, there are three equilibria 0, (U−,C−), (U+,C+). Solve the equation
F(U , κ1U ) = U for U and obtain the three values 0 < U− < U+. Set C− = κ1U−,
and C+ = κ1U+. Solve the equation F(U ,C) = U for C and obtain two roots
C±(U ) =
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29560.6U − 1.24261U 2 ± 4.38501
√

(2.85694 × 1011 − 1.20094 × 107U )U

23789.1 −U
.

Set C2(U ) = C+(U ). The intersection of C1(U ) and C2(U ) yields the three regions
and the equilibria (U−,C−) and (U+,C+).

We conjecture that there are two separatrices dividingR2+ into the invariant regions
and the regions of attractions for the equilibria (0, 0), (U−,C−), and (U+,C+), that
are almost straight lines. We have numerically verified this conjecture for the this
simulation and other simulations. We call these approximating lines Separatrix 1 and
Separatrix 2, respectively. The approximating slopes of Separatrix 1 and Separatrix 2
are determined as follows: Obtain the linearization of F(U ,C)−U andG(U ,C)−C :

J (U ,C) =
⎡

⎣

∂F(U ,C)−U
∂U

∂F(U ,C)−U
∂C

∂G(U ,C)−C
∂U

∂G(U ,C)−C
∂C

⎤

⎦ .

The linearization J [U−,C−] yields the eigenvalues 1.029 > 1.0 and .7158 < 1.0,
which indicates a saddle point. Their eigenvectors are, respectively,

[

.9976

.0698

]

(slope = −2.647),

[−.3534
.9355

]

(slope = .0699).

The linearization J [U+,C+] yields the eigenvalues .9699 < 1 and .7178 < 1, which
indicates a stable node. Their eigenvectors are, respectively,

[

.9962

.0866

]

(slope = .0869),

[−.2703
.9628

]

(slope = -3.562).

The approximations to Separatrix 1 and Separatrix 2 in Fig. 2 are straight lines with
slopes −2.647 and −3.562, respectively. These linearizations yield the local behavior
of the solutions at the equilibria, as graphed in Fig. 3.

In the numerical illustrations below, we examine the behavior of the solutions of (8)
in terms of the homing failure parameter p and the contamination rate parameter α.
In Fig. 4, we graph R1(p, α) as a function of p and α. The parameters β, χ , and μ

are as in Table 1.
In Fig. 5,we plot the values of the equilibriaU− andC− as the contaminated homing

failure parameter p and the contamination rate parameter α vary. The parameters
β, χ,μ are as in Table 1.

In Figs. 6 and 7, we plot the phase portraits of the solutions as the contaminated
homing failure parameter p and the contamination rate parameter α vary. The param-
eters β, χ,μ are as in Table 1.

In our last numerical illustration, we alter the initial values U0 and C0. If the total
initial population U0 + C0 is sufficiently high, CCD is avoided. If not, CCD occurs.
The parameters β, χ,μ, p, α are as in Table 1 (Fig. 8).
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Fig. 2 The parameters are β = 2900, χ = 11,000, μ = 0.1, α = 0.03, and p = .8. R1 = 1.0333.
Separatrix 1 is, approximately, a straight line with slope − 2.65. Separatrix 2 is, approximately, a straight
line with slope − 3.56. The dots correspond to daily values. The three intersection points of C1(U ) and
C2(U ) are the equilibria of (8), and the three colored regions are invariant with respect to (8). If the initial
value is in the yellow region, U (n) and C(n) are increasing. If the initial value is in the gray or red region,
U (n) and C(n) are decreasing. The equilibria (0, 0) and (U+,C+) are locally stable, and (U−,C−) is
unstable (Color figure online)

Fig. 3 The regions in Fig. 2 surrounding the equilibria (U−,C−) (left) and (U+,C+) (right). The black
arrows are obtained from the eigenvalues and eigenvectors of the linearization of {F(U ,C)−U ,G(U ,C)−
C} at the equilibria, and define the approximating separatrices. The black dots are initial values. The blue
lines are the movement in one day (Color figure online)
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Fig. 4 R1(p, α) as a function of p and α. R1(p, α) decreases more sharply as p decreases, than as α

increases. If p = 1, then R1(1, α) = 1.253, independent of α (Color figure online)

Fig. 5 The equilibriaU− andC− of (8) as p and α vary. Left: α = .03, p ∈ (0.6768, 1.0). For p < 0.6768,
only the (0, 0) equilibrium exists. Right: p = 0.8, α ∈ (0.0, 0.0362). For α > 0.0362, only the (0, 0)
equilibrium exists (Color figure online)

5 Conclusions

Honey bee colony collapse disorder (CCD) is a serious ecological and agricultural
problem throughout the world, and much further research is needed to understand its
causation and prevention. In this paper, we have focused on environmental pesticide
contamination (EPC) as a major instigator of honey bee CCD. The role of pesticides
in CCD is highly controversial, and the restriction of pesticides has been proposed and
opposed in current scientific research and government legislation. The extensive use of
pesticides in industrial agriculture is very important in agricultural economics, and its
constraint has serious economic impact. Many studies have suggested limited impact
of EPC on CCD and provide opposition to constraints on agricultural pesticide use.
Other studies identify significant impact of EPC on CDD and provide strong advocacy
for such constraints.
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Fig. 6 Slopes of the separatrices as p changes. Top left: p = 1.0, both slopes are −1. Top right p = .9,
Separatrix 1 slope = −1.68, and Separatrix 2 slope = −2.36. Bottom left: p = .8, Separatrix 1 slope
= −2.65, and Separatrix 2 slope = −3.56. Bottom right: p = .7, Separatrix 1 slope = −4.19, and
Separatrix 2 slope = −4.80. The slopes are increasingly negative as p decreases (Color figure online)

We have designed a mathematical model of pesticide contamination in honey bee
environments that quantifies the capacity of EPC to generate CCD and provides under-
standing and resolution for this controversy.

Our model has three key features:

1. Honeybee colonies have a critical population viability threshold, belowwhich their
population rapidly disintegrates, but above which their population approaches a
stable level. This feature of our model is incorporated as an Allee effect, which is
based on a sustainable level of production of younger bees in the hive to offset the
mortality of forager bees outside the hive.

2. EPC has sub-lethal effect on forager honey bees and does not directly cause CCD.
Rather, the effect of EPC on forager bees is to impair the capacity of contami-
nated forager bees to return home each day, which disrupts their essential social
contribution to the sustenance of younger bees in the hive.

3. The level of daily homing failure in contaminated forager bees is quantifiable
in terms of the population viability threshold and can be overcome if the total
population of both uncontaminated and contaminated forager bees is sufficiently
high.

CCD is a complex phenomenon, which may have multifactorial causes, difficult
to appraise scientifically. Studies that do not show significant connection of EPC to
CCD may be cases in which EPC does not cause the population to fall below the crit-
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Fig. 7 Slopes of the separatrices asα changes. Top left:α = 0.1, Separatrix 1 slope= −2.66, and Separatrix
2 slope = −5.62. Top right α = 0.2, Separatrix 1 slope = −2.62, and Separatrix 2 slope = −4.46. Bottom
left: α = 0.3, Separatrix 1 slope = −2.65, and Separatrix 2 slope = −3.56. Bottom right: α = 0.35,
Separatrix 1 slope = −2.75, and Separatrix 2 slope = −3.11 (Color figure online)

A B

Fig. 8 Graphs of U (n) (green), C(n) (red), and U (n) + C(n) (blue). The dots represent daily values. A:
U− = 8900.01 (blue line), C− = 689.54 (black line). U0 = 7000, C0 = 4000, total initial population
= 11,000. The total population decreases rapidly below the viable threshold 8900.01. B: U0 = 7000,
C0 = 6000, total initial population = 13,000.The populations U (n) and C(n) increase gradually to the
limiting valuesU+ = 14,889.1 (blue dashed line), C+ = 1153.55 (black dashed line), respectively (Color
figure online)

ical viability threshold, whereas studies that show a connection may have population
loss below this threshold. Consequently, the reduction of CCD, in managed honey
bee colonies, may be accomplished by decreasing pesticide use in their agricultural
environments and also by hive managers increasing hive population sizes to above
threshold values.
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