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Abstract

A deterministic model is developed for the spatial spread of an epidemic disease in a geo-
graphical setting. The model is focused on outbreaks that arise from a small number of infected
individuals in sub-regions of the geographical setting. The goal is to understand how spatial
heterogeneity influences the transmission dynamics of susceptible and infected populations.
The model consists of a system of partial differential equations with a diffusion term describing
the spatial spread of an underlying microbial infectious agent. The model is applied to sim-
ulate the spatial spread of the 2016-2017 seasonal influenza epidemic in Puerto Rico. In this
simulation, the reported case data from the Puerto Rican Department of Health are used to
implement a numerical finite element scheme for the model. The model simulation explains
the geographical evolution of this epidemic in Puerto Rico, consistent with the reported case
data.

1 Introduction

Epidemic outbreaks evolve in geographical regions with considerable variability in spatial loca-
tions. This spatial variability is important in understanding the impact of public health policies
and interventions in controlling these epidemics. A major difficulty in developing models to de-
scribe spatial variability in epidemics is accounting for the movement of people in spatial contexts.
Many approaches to produce such descriptions have been developed, including individual based
models, network models, stochastic models, and partial differential equations models. Individual
based, network, and stochastic models employ societal data of human movement and interaction
to simulate human behavior at spatial and temporal levels based on probabilistic assumptions ([6],
[14], [18], [22], [23], [27], [28], [29], [31], [38], [34], [40], [46], [47], [50], [54], [61], and many others).
These models sometimes require intensive informational input, as well as intensive computational
output. Partial differential equations models offer an alternative approach, with advantages for
both informational input and computational output.

Partial differential equations models have been developed by many authors to study the spread of
diseases in spatial settings, with diffusion terms used to describe the movement of both susceptible
and infectious individuals ([1], [13], [19], [24], [37], [57], [59], and many others). Some studies
have used diffusion to describe only infectious populations ([12], [20], [25], [26], [33], [53], [35]).
Our objective here is two-fold: (1) to analyze a reaction-diffusion epidemic model, with diffusion
modeling only the infectious population (viewed indirectly as the movement of an infectious agent
through the susceptible population); and (2) to apply the model to the 2016-2017 seasonal influenza
epidemic in Puerto Rico, with comparison to reported case data.
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Seasonal influenza epidemics recur annually during the cold half of the year in each hemisphere.
Each annual flu season is normally associated with a major influenza-virus subtype. The associated
subtype typically changes each year, due to development of immunological resistance to a previous
year’s strain through exposure and vaccinations, and mutational changes in previously dormant
viral strains. The exact mechanism behind the seasonal nature of influenza outbreaks is unknown
(https://en.wikipedia.org/wiki/Flu-season). We refer to [11, 15, 17, 32] for studies on the spatial-
temporal transmission of influenza and to [39, 48, 62] for studies on the seasonality of influenza.

Our objective for the simulation of the 2016-2017 Puerto Rico influenza epidemic is to match
our model to reported case data, focusing on epidemic duration, attack rates, turning points, final
size, and geographical features. Our simulations indicate that epidemic duration depends strongly
on the local depletion of the susceptible population to levels that no longer sustain transmission of
the infection. This depletion happens rapidly in local geographical regions, while the general level
of the epidemic lasts longer in larger geographical regions. These geographical distinctions offer
opportunity for public health policy interventions to control epidemic severity.

This paper is organized as follows: In Section 2 we formulate a general deterministic model
for the evolution of an epidemic outbreak in a spatial domain. In Section 3 we state and prove
theorems for our deterministic model of a spatial epidemic. In Section 4 we specify the model to
the 2016-2017 seasonal influenza epidemic in Puerto Rico. In Section 5 we discuss implications of
our results for public health policies for controlling an epidemic outbreak.

2 A General Deterministic Spatial Epidemic Model

In most applications of reaction-diffusion models to epidemics, diffusion does not provide a re-
alistic description of the way people move in societal settings. Diffusion provides only an averaging
process that cannot account for the extreme spatial and temporal heterogeneity of human move-
ment. Diffusion alters the home-base of individuals, which is not realistic during the time-evolution
of an epidemic. We argue, alternatively, that the spatial movement of the micro-organisms causing
the epidemic, rather than the spatial movement of humans, is a realistic way to account for epi-
demic spatial development. The movement of the infectious agent can be viewed indirectly, as the
movement of infectious individuals, described with diffusion processes.

It is clear that the contributions of local-distance and long-distance transmission are both in-
volved in the spatial evolution of epidemics Arino [5], Arino and Khan [4], Charu [16]. In [28],
however, it is argued that for the 2009 H1N1 influenza epidemic, local transmissions were of greater
importance than distant transmissions, as outbreaks in proximate communities resulted in success-
ful infection chains, whereas, distant transmissions died out after a small number of generations.
The underlying assumption is that most infections occur close to home-base of infectious indi-
viduals, which spread to nearby susceptible individuals. In our model, the diffusion of infected
individuals occurs only during their time-span of infectiousness, which is typically only a few days.
We claim that this movement, while not significant for them, is significant for the virus they spread
to susceptible individuals nearby. Our simplifying assumption is that susceptible individuals do not
move, but have highest infection probability at their home-base, to which they regularly return.

Our model has the following formulation: Ω ⊂ R2 is a bounded domain, S(t,x) and I(t,x)
are the spatial densities at location x ∈ Ω and at time t of susceptible and infected individuals,
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respectively.

∂

∂t
S(t,x) = − τ(x) I(t,x)p

1 + κ(x) I(t,x)q
S(t,x), x ∈ Ω, t > 0

∂

∂t
I(t,x) = α∆I(t,x) +

τ(x) I(t,x)p

1 + κ(x) I(t,x)q
S(t,x)− λ(x)I(t,x), x ∈ Ω, t > 0

∂

∂η
I(t,x) = 0,x ∈ ∂Ω, t > 0

S(0,x) = S0(x), I(0,x) = I0(x), x ∈ Ω

where α is the diffusion parameter for infected individuals, τ(x), κ(x), p and q are transmission pa-
rameters, and λ(x) is the removal rate of infected individuals. The transmission rate has nonlinear
incidence form (Hethcote [30], Liu [38], Ruan [52]), where τI(t,x)p measures the force of infec-
tiousness and 1/(1 + κI(t,x)q) measures reduced infectiousness resulting from behavioral change
as the number of infected individuals increases (1 ≤ p ≤ q + 1). Also, κ(x), τ(x), λ(x) are positive
continuous functions on Ω, and the initial data S0 and I0 are nonnegative continuous functions on
Ω. The theoretical analysis of the model is given in the next section.

3 Analysis of the model

In this section we investigate the long term behavior of the system. One may observe that
some special case of our model have been considered by Britton [7], Murray [49] and more recently
by Ducrot and Gilletti [8]. Since they consider some special case of our system they can reduce
the system to a single equation. In the general case we were not able to extend this kind of idea.
Therefore we need to provide an alternative approach.

We start with the ordinary differential equation case which corresponds for (2.1) to the case
where the distributions x→ I(t, x) and x→ S(t, x) (as well as the parameters) are constants.

Theorem 3.1 Let τ, κ, λ, p, q > 0 with 1 ≤ p ≤ q + 1, and let S0, I0 > 0. There exists a unique
solution S(t) ≥ 0, I(t) ≥ 0, satisfying S(0) = S0, I(0) = I0, and

S′(t) = − τ I(t)p

1 + κ I(t)q
S(t), (3.1)

I ′(t) =
τ I(t)p

1 + κ I(t)q
S(t)− λI(t). (3.2)

Let R0 = τIp−1
0 S0/(λ(1 +κIq0 )). If R0 < 1, then S(t) decreases to a limiting value S∞ > 0 and I(t)

decreases to 0. If R0 > 1, then S(t) decreases to a limiting value S∞ > 0 and I(t) first increases,
then decreases to 0.

Proof. Add (3.1) and (3.2) and integrate over (0, t) to obtain

0 ≤ S(t) + I(t) + λ

∫ t

0

I(s)ds = S0 + I0. (3.3)

The existence of a unique nonnegative solution on [0,∞) follows from standard theory. Since
S′(t) ≤ 0, S(t) converges to a limt S∞ ≥ 0. Also, S(t) and I(t) are bounded on [0,∞), I ′(t) is
bounded on [0,∞), and
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∫ ∞
0

I(t)dt <∞,

which implies that limt→∞ I(t) = 0. Noticing 1 ≤ p ≤ q + 1, a simple calculation shows that

zp

1 + κ zq
≤ max(1, 1/κ)z, z ≥ 0. (3.4)

Thus, ∫ ∞
0

τ I(t)p

1 + κ I(t)q
dt ≤ τ max(1, 1/κ)

∫ ∞
0

I(t)dt < ∞. (3.5)

Divide both sides of (3.1) by S(t) and integrate over (0, t) to obtain

ln

(
S(t)

S0

)
= −

∫ t

0

τ I(s)p

1 + κ I(t)q
ds (3.6)

which implies

S∞ = S0 exp

(
−
∫ ∞

0

τ I(t)p

1 + κ I(t)q
dt

)
6= 0.

Then, to show that I(t) can have at most one peak, observe from (3.2)

I ′′(t) =

((
1 + κI(t)q

)(
τpI(t)p−1I ′(t)S(t) + τI(t)pS′(t)

)

−
(
τI(t)pS(t)

)(
κqI(t)q−1I ′(t)

))/(
1 + κI(t)q

)2

− λI ′(t).

If I ′(t̄) = 0, then

I ′′(t̄) =
τI(t̄)pS′(t̄)

1 + κI(t̄)q
< 0,

which implies I(t) is concave down wherever I ′(t̄) = 0.
Rewrite (3.2) as

I ′(t) = λ

(
τ I(t)p−1S(t)

1 + κ I(t)q
− 1

)
I(t).

Then we can see that I(t) decreases at t = 0 if R0 < 1 and increases at t = 0 if R0 > 1. So the
claim on I(t) follows from the fact that I(t) converges to zero and has at most one peak.

Remark 3.2 If p = 1 and κ = 0, one can combine (3.3) and (3.6) to obtain

S∞ +
λ

τ
ln

(
S∞
S0

)
= S0 + I0.

Theorem 3.3 Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. Let α, τ, κ, p, q be
positive constants with 1 ≤ p ≤ q and κ > 0, let λ ∈ C+(Ω) with λ(x) ≥ λ0 > 0 for all x ∈ Ω, and
let S0, I0 ∈ L1

+(Ω) with S0 6= 0 and I0 6= 0 and there exists a constant S+
0 > 0 such that

S0(x) ≤ S+
0 , for a.e. x ∈ Ω.
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Then, there exists unique S(t, ·), I(t, ·) : [0,∞)→ L1
+(Ω) satisfying

∂

∂t
S(t,x) = − τ I(t,x)p

1 + κ I(t,x)q
S(t,x), x ∈ Ω, t > 0 (3.7)

∂

∂t
I(t,x) = α∆I(t,x) +

τ I(t,x)p

1 + κ I(t,x)q
S(t,x)− λ(x)I(t,x), x ∈ Ω, t > 0 (3.8)

∂

∂η
I(t,x) = 0, x ∈ ∂Ω, t > 0 (3.9)

S(0,x) = S0(x), I(0,x) = I0(x), x ∈ Ω. (3.10)

Moreover
lim
t→∞

S(t, ·) = S∞(·) ≥ 0, lim
t→∞

I(t, ·) = 0 in L1(Ω), (3.11)

with ∫∫
Ω

S∞(x)dx > 0,

whenever there exists a constant δ > 0 such that S0(x) ≥ δ for a.e. x ∈ Ω.

Proof. The map f(z) := zp

1+κ zq is Lipschitz continuous on [0,∞) whenever 1 ≤ p ≤ q+1 and κ > 0,
because its derivative

f ′(z) =
pzp−1 + κ(p− q)zp+q−1

(1 + κzq)2

is bounded on [0,∞). Moreover since p ≤ q and κ > 0, the map f is bounded. It follows that the
map (S, I)→ f(I)S is Lipschitz continuous from M into L1(Ω), where

M :=
{

(S, I) ∈ L1
+(Ω)2 : S(x) ≤ S+

0 , for almost every x ∈ Ω
}
.

Indeed we have

‖f(I)S − f(Î)Ŝ‖L1 ≤ ‖f(I)S − f(Î)S‖L1 + ‖f(Î)S − f(Î)Ŝ‖L1

hence
‖f(I)S − f(Î)Ŝ‖L1 ≤

[
‖f‖LipS

+ + ‖f‖∞
] [
‖I − Î‖L1 + ‖S − Ŝ‖L1

]
.

Therefore by using standard argument, the system (3.7)-(3.10) generates a unique maximal contin-
uous semiflow in M .
By using the standard blowup conditions we can see that for each (S0, I0) ∈ M the blowup time
is +∞ because t → S(t, x) is positive and decreasing and by adding (3.7) and (3.8) and integrate
over (0, t) and Ω to obtain∫∫

Ω

(S(t,x) + I(t,x))dx +

∫∫
Ω

(∫ t

0

λ(x)I(s,x)ds

)
dx =

∫∫
Ω

(S0(x) + I0(x))dx, (3.12)

which implies ∫∫
Ω

I(t,x)dx ≤
∫∫

Ω

(S0(x) + I0(x))dx.
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Therefore the solution starting in M remains in M and is bounded. Moreover by using again (3.12),
we deduce that ∫∫

Ω

(∫ ∞
0

λ(x)I(t,x)dt

)
dx ≤

∫∫
Ω

(S0(x) + I0(x))dx.

Therefore, by using (3.4) and the fact that λ(x) ≥ λ0 > 0, we deduce that∫∫
Ω

(∫ ∞
0

τ I(t,x)p

1 + κ I(t,x)q
dt

)
dx ≤ τ max(1, 1/κ)

∫∫
Ω

(∫ ∞
0

I(t,x)dt

)
dx <∞.

As in the ODE case, (3.7) implies that for a.e. x ∈ Ω, ∂
∂tS(t,x) ≤ 0 and since the norm of L1 is

additive on L1
+ (i.e. by using the fact that ‖S(t, .)‖L1 = ‖S(t, .)−S(t+l, .)‖L1 +‖S(t+l, .)‖L1 ,∀t, l ≥

0,). We deduce that for each increasing sequence tn ∈ (0,∞) → ∞ as n → ∞, the sequence
n→ S(tn, .) is a Cauchy in L1(Ω). Therefore

lim
t→∞

S(t,x) = S∞(x) ≥ 0 in L1(Ω).

Integrate (3.7) over t to obtain for a.e. x ∈ Ω,

ln

(
S∞(x)

)
= ln

(
S0(x)

)
−
∫ ∞

0

τ I(s,x)p

1 + κ I(s,x)q
ds.

Assume that S0(x) ≥ δ for a.e. x ∈ Ω for some δ > 0. Then we have

|Ω|−1

∫∫
Ω

ln(S∞(x))dx = |Ω|−1

∫∫
Ω

ln(S0(x))dx− |Ω|−1

∫∫
Ω

∫ ∞
0

τ I(s,x)p

1 + κ I(s,x)q
dsdx

and since the function ln(x) is concave, by using the Jensen’s inequality we obtain

ln(|Ω|−1

∫∫
Ω

S∞(x)dx) ≥ |Ω|−1

∫∫
Ω

ln(S∞(x))dx

it follows that ∫∫
Ω

S∞(x)dx > 0.

For S0, I0 ∈ L1
+(Ω), define the ω-limiting set of (S0, I0) in [L1(Ω)]2 as

{(u, v) ∈ [L1(Ω)]2 : (S(tn, ·), I(tn, ·))→ (u, v) in [L1(Ω)]2 for some {tn}}.

The ω-limiting set of (S0, I0) is bounded in L1(Ω). Since S(t, ·) is convergent in L1(Ω), {S(t, ·) : t ≥
0} has a compact closure in L1(Ω). Since the linear operator semigroup generated by the Laplacian
with Neumann boundary conditions is compact in L1(Ω), the nonlinear term in (3.8) is bounded in
t, and since λ0 > 0, {I(t, ·) : t ≥ 0} has compact closure in L1(Ω) (see Martin [45, Proposition 5.4],
Webb [60] or Magal and Thieme [43]). Thus, the ω-limiting set of (S0, I0) is non-empty in L1(Ω).

To prove limt→∞ I(t) = 0, define V (S, I)(t) =
∫∫

Ω
(S(t,x) + I(t,x))dx and add (5) and (6) to

obtain

V̇ (S, I)(t) = −
∫∫

Ω

λ(x)I(t,x)dx ≤ 0.

By LaSalle’s [36] invariance principle (S(t), I(t)) converges to (S∞, 0) in L1(Ω), since the maximal
invariant subset of {(S, I) ∈M : V̇ (S, I) = 0 and S = S∞} is (S∞, 0).
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Remark 3.4 If we assume 1 ≤ p ≤ q + 1 and S0, I0 ∈ L∞+ (Ω) in Theorem 3.3, then (3.7)-(3.10)
has a unique solution (S(t, ·), I(t, ·)) : [0,∞)→ L∞+ (Ω) and the convergence I(t, ·)→ 0 is in L∞(Ω).
Indeed, the existence of local solution is standard, and the solution is global if it does not blow up in
finite time. Since S(t,x) is decreasing in t, it is uniformly bounded in L∞(Ω) by ‖S0‖L∞ . Equation
(3.8) can be written as

∂

∂t
I(t,x) = α∆I(t,x) + g(t,x)I(t,x), (3.13)

where g(t,x) is uniformly bounded in L∞(Ω) since p ≤ q + 1. (3.13) can be viewed as a linear
equation, and the solution does not blow up. Therefore, the solution of (3.7)-(3.10) exists globally
in L∞(Ω).

To see the convergence of I(t,x) in L∞(Ω), by (3.11), it suffices to show that {I(t, ·)}t>1 is pre-
compact in L∞(Ω). Since ‖I(t, ·)‖L1 is uniformly bounded for t ≥ 0, by (3.13) and [2, Theorem 3.1],
we have that ‖I(t, ·)‖L∞ is uniformly bounded for t ≥ 0. The compactness of the orbit {I(t, ·)}t>1

follows from the fact that the semigroup generated by the Laplacian with Neumann boundary con-
ditions is precompact in C(Ω̄) (see Martin [45, Proposition 5.4], Webb [60] or Magal and Thieme
[43]).

4 The 2016-2017 Influenza Epidemic in Puerto Rico

The island of Puerto Rico consists of 76 municipalities, with total population of almost 3,500,000,
in a geographical region of approximately 170 km by 60 km. Four major population centers are the
municipalities San Juan (northeast - population 395,000), Ponce (south central - population 262,
000), Arecibo (northwest - population 193,000), and Mayagűez (far west - population 89,000) (see
Figure 1).
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Figure 1: Top. The 76 municipalities in Puerto Rico (wikipedia.org). Bottom. The population
density of Puerto Rico (wikipedia.org).

Our numerical simulations use the finite element method package in Matlab. The first step is to
describe the geographical region of Puerto Rico in Matlab. The boundary data of Puerto Rico are lat-
itudes and longitudes obtained from Mathematica using CountryData[”PuertoRico”, ”SchematicPolygon”],
which forms a polygon with 66 points. The latitude bounds for Puerto Rico are {17.9, 18.5}, the
longitude bounds are {−67.3,−65.3}. The latitudes and longitudes are converted into kilometers
for convenience. The boundary data is then used to generate a mesh with 23,772 mesh nodes.

We assume that everyone is susceptible at the beginning of the epidemic season, and there-
fore S0(x) equals the population density. This assumption is a simplification, since a significant,
but unknown, fraction of the population has immunity due to prior infections, vaccination, or
other reasons. We obtain the population density data and the geographical location data (lat-
itude and longitude) for the center of each municipality from Mathematica using the function
AdministrativeDivisionData. Then, in Matlab, we use the interpolation function scatteredInterpolant
to calculate the population density at the 23772 mesh nodes (see Figure 2 for a heat map of S0(x)).
This method generates a total population of about 4,000,000, which slightly over-estimates the
total population of Puerto Rico in 2016-2017. This over-estimation, however, is compensated by
the fact that Puerto Rico attracts about 4 million visitors a year (https://en.wikipedia.org/
wiki/Tourism.in.Puerto.Rico).
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Figure 2: The population density of the initial susceptible population S0(x).

The determination of the initial infected population I0(x) and the parameters of the model
will be discussed later. After preparing the mesh, parameters, and initial data, we use the finite
element method package in MATLAB to numerically approximate the model equations, which gives
the values of S(x, t) and I(x, t) at the 23,772 mesh nodes (See Figure 3 for the mesh with 552 nodes).

Figure 3: The geographical mesh with 552 nodes. In the simulations, 23772 nodes are used. The
spatial units are kilometers.

Another difficulty in the simulations is to determine the number of infected cases in a particular
municipality. Here, we obtain the administrative boundary data of the 76 municipalities of Puerto
Rico from http://gadm.org, which is stored in a shapefile. Then, we determine which municipality
each small triangle in the mesh belongs to, and compute the number of infected cases in a particular
municipality by approximating the integral of I(x, t) on all its triangles (the number of infected
cases in a triangle is computed as the average of the values of I(x, t) at its three nodes times its
area).

4.1 Parameterization of the Model for Puerto Rico

The parameterization of any model of a seasonal influenza epidemic presents enormous chal-
lenges, because of the incompleteness of data. In the United States, typical epidemic data consist of

9
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Morbidity and Mortality Weekly Reports (MMWR) published by the Centers for Disease Control
(CDC). For seasonal influenza, these data are very incomplete, and record only a small fraction of
total cases. Recent analyses have argued that unreported cases and attack rates (the fractions of
the total susceptible populations that become infected over the course of an epidemic) are largely
underestimated. In [51] a statistical estimator model was used to estimate the ratio of unreported
to reported cases for the H1N1 influenza epidemic in the United States from April to July 2009 as
79-1, and the ratio of total cases to confirmed cases as 140-1.

In an earlier study we developed a formalism for estimating the ratio of reported to unreported
cases for the seasonal influenza epidemics in Puerto Rico in 2015-2016 and 2016-2017 [44]. The
estimates in [44] claimed attack rates of approximately 40% to 50% with a ratio of unreported
to reported cases of approximately 38-1. These attack rates are higher than usually claimed for
seasonal influenza epidemics. In the analysis in [44], mass action rather than nonlinear incidence
form of disease transmission was used, which may have over-estimated the attack rate.

In [55] it was estimated that approximately 60.8 million cases (attack rate approximately 19%)
occurred in the US 2009 H1N1 influenza epidemic, with the US population approximately 325
million during this time period. In [10] data for the 2010-2011 influenza season in the United States
was obtained by landline telephone survey of approximately 90,000 people. Of these, 8.9% of adults
and 33.9% of children reported influenza like symptoms. In [14] the reporting of serological data
is analyzed with respect to measurement errors. In [56], the authors report that 5%-20% of the
population in the United States are infected with influenza each year.

Here we have developed our parameters to reflect an attack rate of approximately 18% for the
2016-2017 epidemic in Puerto Rico, with the ratio of unreported to reported cases as approximately
24-1, based on a comparison of the graphs of the reported cases from CDC data and the graphs of
the total cases, both reported and unreported, obtained from our model simulations. The objective
was to match the duration of the epidemic, the turning point, and the character of the reported
cases graph.

Based on these considerations we estimate the parameters for Puerto Rico as follows:

1. Time units are weeks. For the 2016-2017 epidemic, the initial time t = 0 corresponds to week
43 of 2016. The 2016-2017 epidemic lasts approximately 18 weeks (http://www.salud.gov.
pr/Estadisticas-Registros-y-Publicaciones/Pages/Influenza.aspx).

2. Spatial units are kilometers. The spatial region Ω is as in Figure 1 and 3.

3. The average length of the infectious period of infected people is about 2 days or 1/3.5 weeks:
λ(x) = 3.5 per week (http://www.salud.gov.pr/Estadisticas-Registros\-y-Publicaciones/
Pages/Influenza.aspx).

4. The transmission parameters for the nonlinear incidence form are τ(x) = 0.02 per week,
κ(x) = 0.01, p = 1.0, and q = 1.0.

5. The diffusion parameter of infected individuals is α = 2.0 km2/week, which corresponds
indirectly to the geographical spread of the virus.

4.2 Simulation of the model for the 2016-2017 epidemic

The model simulates the 2016-2017 seasonal influenza epidemic for all infected cases, not only
reported cases. The total reported cases (Departamento de Salud, Puerto Rico) and the total
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simulated cases are graphed in Figure 4. The estimated number of total infected cases is 7.532×105

with attack rate 18.62% for the seasonal influenza 2016-2017 epidemic. The total cases of the
model simulation reflect the total number of reported cases. The ratio of total cases from the
model simulation to the total reported cases from Departamento de Salud is 24-1.

Figure 4: (top) Reported cases of seasonal influenza Puerto Rico in 2015-2016 (yellow graph) and
2016-2017 (black graph); (bottom) Total cases from the model simulation for 2016-2017.

For the comparison of the geographical distribution of cases from the model simulation and the
geographical distribution of cases reported by Departamento de Salud, we graph in Figure 5 the
reported case data of the four major municipalities Mayaqűez, Arecibo, San Juan, and Ponce from
data in http://www.salud.gov.pr/Estadisticas-Registros-y-\Publicacione. Although this
data is very rough and scattered, we see that the epidemic breaks out near Mayaqűez, then spreads
to San Juan and Arecibo, and then to Ponce.

11

http://www.salud.gov.pr/Estadisticas-Registros-y-\Publicacione


0 5 10 15 20 25
0

20

40

60

80

100

Weeks

T
o
ta
lr
ep
o
rt
ed

ca
se
s

Mayaquez

0 5 10 15 20 25
0

50

100

150

200

Weeks

T
o
ta
lr
ep
o
rt
ed

ca
se
s

Arecibo

0 5 10 15 20 25
0

50

100

150

200

Weeks

T
o
ta
lr
ep
o
rt
ed

ca
se
s

San Juan

0 5 10 15 20 25
0

50

100

150

200

Weeks

T
o
ta
lr
ep
o
rt
ed

ca
se
s

Ponce

Figure 5: Estimated reported case data (per 100,000 inhabitants) for four municipalities Mayaqűez,
Arecibo, San Juan, and Ponce in the 2016-2017 seasonal influenza epidemic in Puerto Rico. The
epidemic arises in Mayaqűez, spreads to Arecibo and San Juan, and last to Ponce.

For the model simulation, we assume that there are initially, at time 0 (week 43 of 2016), thirty
cases normally distributed near Mayaqűez. We then solve the model numerically using the finite
element package in Matlab. In Figure 6, we graph the simulated total infected cases in the four
major municipalities of Puerto Rico. The simulation shows that the epidemic starts in Mayaqűez,
spreads to Arecibo and San Juan, and then to Ponce six weeks later, which agrees with the reported
case data in Figure 5. We remark that the information in the curves in Figure 5 is meaningful,
although the actual values are not accurate. From Figure 6, we can observe that the number of
infected cases peaks very quickly once the disease arrives and fades away in about 10 weeks in each
municipality, although the epidemic can last much longer in the whole island of Puerto Rico.
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Figure 6: Model simulation of total cases for four municipalities in the seasonal influenza 2016-2017
epidemic in Puerto Rico.

We graph the density of the total infected population from the model simulation at weeks 1, 5,
10, 14, 18, 22 in Figure 7, and in all municipalities at weeks 4, 6, 10, and 18 in Figure 8.
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Figure 7: Simulation of spatial spread of 2016-2017 influenza outbreak in Puerto Rico. The popula-
tion density of Puerto Rico is set as the initial value of the susceptible population. The initial size
of the infected population is assumed to be 30, concentrated in the northwest.
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Figure 8: Model simulation of the infected population densities (number of cases per 100,000 people)
in the 2016-2017 seasonal influenza epidemic in Puerto Rico in all municipalities for weeks 4 (top
left), 6 (top right), 10 (bottom left), and 18 (bottom right).

We remark that the reported case data in Figure 4(a) for the 2015-2016 influenza epidemic in
Puerto Rico shows two peaks, a main peak in the early stage and a small second peak in the late
stage. One possible explanation for the two peaks could be the geographical time evolution of the
epidemic, with late arrival in some region. In this case, however, the second peak is apparently
due to a second outbreak of a different strain than the strain of the initial outbreak (Figure 9, 10).
We also remark that for standard forms of disease transmission in ordinary differential equations
epidemic models (such as nonlinear incidence), the infected population can have at most one peak
([41], [42], Theorem 3.1).
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Figure 9: The total number of reported cases of influenza strain subtypes in 2015-2016. An outbreak
of type B strain peaks at week 21 in 2016 (Departamento de Salud, Puerto Rico).
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Figure 10: Estimated reported case data (per 100,000 inhabitants) from Departamento de Salud for
four municipalities San Juan, Arecibo, Ponce, and Mayaqűez in the 2015-2016 seasonal influenza
epidemic in Puerto Rico. The late second peak is present in all four municipalities.
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5 Conclusions and discussion

Our model indicates that influenza in Puerto Rico rises each season from initial small outbreak
locations, and spreads through most of the island, dependent on geographic population variation.
The initial outbreak locations and geographic heterogeneity of the population have a large impact
on the infected population density over time. In a general region, the epidemic lasts approximately
20-25 weeks, but in subregions the epidemic last approximately 6-12 weeks. The model indicates
that the epidemic duration depends strongly on the depletion of the susceptible population to a
level that no longer sustains transmission. This depletion happens rapidly in local regions, while
the general level of the epidemic occurs much longer in larger regions. Thus, geographic variation
is important in understanding the temporal evolution of seasonal influenza epidemics.

The model indicates that the most effective controls are to monitor the importation of infected
people into local regions, and to concentrate public health interventions in regions of high popula-
tion density, especially at the beginning of the epidemic outbreak. Measures such as compulsory
quarantine, targeted vaccination, school closings, public event cancellations, and other public health
policies can be implemented rapidly in strategic locations, if the severity of the epidemic is recog-
nized in the beginning stages. Future work involves the use of disease age to track infectiousness
levels of infected individuals, through an incubation period, and the rise and fall of the infectious
period. Particular emphasis will be given to pre-symptomatic infectiousness periods. The model
will be extended to include public policy measures such as quarantine, vaccination, and school clos-
ings. Future work will extend the model to study geographic variation in other diseases, including
vector-borne diseases such as zika, dengue, and malaria.
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