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Abstract. The basic reproduction number R serves as a threshold parameter of many epidemic
models for disease extinction or spread. The purpose of this paper is to investigate Ro for spatial
reaction-diffusion partial differential equation epidemic models. We define Ry as the spectral radius
of a product of a local basic reproduction number R and strongly positive compact linear operators
with spectral radii one. This definition of R, viewed as a multiplication operator, is motivated by
the definition of basic reproduction numbers for ordinary differential equation epidemic models. We
investigate the relation of Rp and R.
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1. Introduction. For epidemic differential equation models, the basic reproduc-
tion number Ry is a threshold value such that below this value the disease vanishes,
while above this value the disease spreads. The calculation of Ry for ordinary differen-
tial equations epidemic models has been developed extensively based on [9, 10]. Many
authors have used reaction-diffusion partial differential equation models to study the
transmission of diseases in geographical regions (see [1, 5, 6, 7, 8, 11, 12, 16, 19, 20, 22,
23, 27, 29, 30, 32, 33, 34, 35]). The purpose of this paper is to connect basic reproduc-
tion numbers for partial differential equations epidemic models to basic reproduction
numbers for ordinary differential equation models.

In a recent study, Thieme [28] provided a general theoretical approach to define
Ry as the spectral radius of a resolvent-positive operator for a wide range of epidemic
models, which is a generalization of the finite dimensional version in [9, 10]. Another
approach to characterize Ry for reaction-diffusion epidemic models relied on a varia-
tional characterization of Ry, which works when the model is relatively simple (the
stability of the disease free equilibrium is determined by the sign of an eigenvalue
problem consisting of only one equation). For example, Allen et al. [1] characterize
Ry for a simple diffusive SIS model by the formula

Jo Bo?dx .
Jo(dr|Vel? +yp?)de

Rozsup{ wEHl(Q),go;éO},

where § = S(z) is the transmission rate, v = () is the removal rate, and d; is the
diffusion coefficient. This allows the authors to show that Ry is strictly decreasing in
dr, Ry — [qB/vdx as df — 0, and Ry — [ 8/ [q7 as di — oo. Here f(z)/v(x) is
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the basic reproduction number for the corresponding model without diffusion (which
we will call the local basic reproduction number).

For some reaction-diffusion epidemic models, Ry is related to the principal eigen-
value of an elliptic system, which makes the analysis more difficult. Peng and Zhao
[27] write Ry as the principal eigenvalue of an eigenvalue problem consisting of a sin-
gle equation. Cui and Lou [6] study the impact of the advection rate on Ry for a
reaction-diffusion-advection SIS model, where they take advantage of the variational
characterization of Ry. We note that calculations of R for reaction-diffusion epidemic
models have been discussed by Wang and Zhao [31]. We also note the papers [14, 25]
for Ry analysis of stream population models, and [36] for Ry analysis of time-delayed
compartmental population models in periodic environments. Other investigations of
Ry for partial differential equation epidemic models are found in [19, 26, 29, 30, 32],
where the computation of Ry is mostly for constant coefficients in space. Here we
explore this question with nonconstant coefficients, which will allow us to explore the
impact of the (small and large) diffusion coefficients and spatial heterogeneity.

Although our approach is applicable to a wide range of reaction-diffusion epidemic
models, we will focus on the vector-host model in [12] (see also [24]). Suppose that
individuals are living in a bounded domain Q C R™ with smooth boundary 0f). Let
H,(z),H;i(z,t),V,(z,t), and V;(x,t) be the density of uninfected hosts, infected hosts,
uninfected vectors, and infected vectors at position x and time ¢, respectively. Then
the model in [12] to study the outbreak of Zika in Rio De Janerio is the following
reaction-diffusion system:

OH;/0t — Vv -5 VH; = =\H; + 01 H,(z)V},

OV JOt =V - 63VVy = —0o Vi H; + B(Vey + Vi) — (Vi + Vi)V,
(1.1) OV; /ot —V - 6oVV, = ooV, H; — (Vo + Vi) V3,

0H;/On = 0V, /on = 0V;/Oon = 0,

(H;(-,0),Vy(.,0), Vi(z,0)) = (Hio, Vuo, Vio) € C(;R3),

where 1,8, € C'+%(Q) are strictly positive, and the functions H,, \, 3,01, 02, and
w are strictly positive and belong to C®(2). It is assumed that uninfected hosts are
stationary in space, and the diffusion of infected hosts corresponds indirectly to the
movement of the Zika virus in the spatial environment. Both uninfected and infected
vectors are assumed to diffuse in the spatial environment.

Following [28, 31], the basic reproduction number Rq for (1.1) is defined as the
spectral radius r(—CB™!) of ~CB~!, where B : D(B) C C(£;R?) — C(£;R?) and
C: C(Q;R?) — C(£;R?) are the linear operators

_ V-0V -\ o1H, . 0 0
I ) N Wt B S
D(B) =< (p,0) € m W2P(Q;R?) : 9 = % =0on 99 and B(p,9) € C(;R?)
’ o1 ’ on  On ’ ’

and V is the unique positive solution of the elliptic problem

13 —V - 0a(2)VV = B(z)V — p(x) V2, x €,
(1.3) 2V =0, x € 9N
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The system (1.1) in the case without diffusion, and viewed as an ordinary differ-
ential equation system at a specific location x is
(1.4)
dH;/dt = —N(x)Hi(t) + o1 (x) Hu(x)Vi(t),
dViy/dt = —oa(x)Viy (1) Hi(t) + B(x)(Vu (t) + Vi(t)) — () (Vu(t) + Vi(t)) Va(t),
dVi/dt = o3(x)Vau(t)Hi(t) — p(x)(Vu(t) + Vi(t)) V().
1.

)
The basic reproduction number of (1.4) at a specific location x, obtained by the next

generation method, is

o1(x)H,(x) 0 . :O'Q(l‘)
Mo R =G

Ry (z) and Ra(x) have their own biological meanings: at a specific location z, Ry(x)
measures the impact of one infected vector on susceptible hosts while Ry(2) measures
the impact of one infected host on the susceptible vectors. Since Ry is difficult to
visualize, our main purpose of this research is to study the relation between Ry and
R(z), the latter being a function of x € Q.

In sections 3 and 4, we study the relation of Ry and R(x), where our approach is
based on the formula

(1.6) Ry =7r(L1R1LyRs), Ly := (A—=v-6,V)"'A, and Ly := (uV —V-6,V) 1V,

(1.5) R(z) = Ri(z)Ra(xz), where Ry(x) =

where R; and Ry are viewed as multiplication operators on C(f2), and L; and Lo
are strongly positive compact linear operators on C(£2). This formula establishes
an interesting connection between Ry and R as r(LiLg) = 7(L1) = r(L2) = 1 (see
Lemma 3.4). Consequences of this formula are

e if Ry and Ry are constant, then Ry = R (see Corollary 3.5);

e Rp>1if Ri(x)>1,i=1,2,forallz € Qand Ry <1if Ry(z) <1,i=1,2,

for all 2 € Q (see Theorem 3.6).

When the diffusion coefficients d; and 2 are constant, we establish a quantitative
connection of Ry and R. To this end, we prove a result (Theorem 4.1) about the con-
vergence of spectral radii for a sequence of strongly positive compact linear operators

in an ordered Banach space. Based on Theorem 4.1, we show
o limg, oo Ry = W for 83 > 0 and limg, ,oo Ro =
Q
for 6; > 0 (see Theorem 4.5);

. ARd W Rod
o 1im(s, 5 (o000 Bo = 257550 L3282 (sce Remark 4.8).

fQ /J,Rz (LlRl)d{L’
Jo pdz

e lims, olims, 50 Ry = limg,0lims, 0 Ro = lims, 5,)0,00 B0 =
max{R(z) : x € Q} (see Theorems 4.9-4.11).

In section 5, we conduct numerical simulations to illustrate our results. In section 6,

we give concluding remarks and provide two examples about adopting our approach
to analyze Ry for reaction-diffusion epidemic models.

2. Preliminaries. The global dynamics of (1.1) have been analyzed in [24], and
we first summarize here the results that will be used. Let V =V, +V;. Then V(z,¥)
satisfies

Vi = V- 62(2)VV = B(2)V — u(x)V?,  x€Q,t>0,
(2.1) oV/on =0, x € 08, t >0,
V(,O) = V() S C+(Q)

The following result about (2.1) is well known (see [4, Proposition 3.17] [15, Lemma
A.1], and [18, Proposition 2.5]).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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LEMMA 2.1. For any nonnegative nontrivial initial data Vo € C(), (2.1) has a
unique global classic solution V (z,t). Moreover, V(x,t) > 0 for all (z,t) € 2 x (0, 00)
and

(2:2) Jlim V(1) = V] =0,

where V is the unique positive solution of the elliptic problem (1.3). Moreover, if do
is a constant parameter, then

. d _
i Vo0 and tm v 2P o(9Q).
530 i S52—>00 Jq nda
The definition of Ry for (1.1) is closely related to the stability of the semitrivial
equilibrium Fy = (0,V,0) of (1.1). Linearizing the model at E;, one can see that the
stability of E; is determined by the sign of the principal eigenvalue of the problem:

kp =V -61Vp — g+ o1 Hy, x €,
(2.3) K =V - 65V + 0oV — uVh, x € Q,
Op/On = 0y/0n =0, x € 0N
Problem (2.3) is cooperative, so it has a principal eigenvalue kg associated with a
positive eigenvector (¢, o) [17].

Let A = B+ C, where B and C are defined in section 1. Then A and B are
resolvent positive [28], and A is a positive perturbation of B. By [28, Theorem 3.5],
ko = s(A) and r(—CB~!) — 1 have the same sign, where s(A) is the spectral bound
of A. We then have the following result.

THEOREM 2.2. Ry—1 and ko have the same sign. Moreover, Ey is locally asymp-
totically stable if Ry < 1 and unstable if Ry > 1.

The main results proved in [24] about the global dynamics of the model (1.1) are
as follows.

THEOREM 2.3. The following hold: -
e If Ry < 1, then for any nonnegative initial data (H;o, Vuo, Vio) € C(Q;Ri)
with Vyo 4+ Vio £ 0, the solution (H;,V,, Vi) of (1.1) satisfies

(24) tllglo H(Hl(vt)v Vu(vt)v ‘/1(7t)) - ElHoo =0,
where By = (0,V,0).

e If Ry > 1, then for any initial data (H;o, Vo, Vio) with Vo + Vip Z 0 and
H;o + Vo £ 0, the solution (H;,V,,V;) of (1.1) satisfies

tgr& ”Hi('vt)»vu('vt)v ‘/;(at)) - (ﬁu Vu"};)”m = 0’

where By = (H;,V,,, V;) is the unique epidemic equilibrium of (1.1).

Let X be an ordered Banach space with positive cone X, andlet L1, Ly : X — X
be two bounded linear operators. Then it is well known that

(2.5) r(L1Lo) = r(LoLy) < ||L1||||L2]|,

where r(L;) denotes the spectral radius of L;, i = 1,2. Indeed, this can be derived
easily from Gelfand’s formula

(2.6) r(Ly) = lim |3,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Remark 2.4. Tt is very important to note that (2.6) does not imply (L1 LoL3) =
T(L3L2L1).

Suppose that X, has a nonempty interior int(X;). Then L; is strongly positive
if L1(X4+\0) Cint(X1). The operator Ly is compact if the image of the unit ball
is relatively compact in X. We will need the following generalization of the Krein—
Rutman theorem [2].

THEOREM 2.5. Let X be an ordered Banach space with positive cone X such that
X+ has nonempty interior. Suppose that T : X — X is a strongly positive compact
linear operator. Then the spectral radius v(T) is positive and a simple eigenvalue
of T associated with a positive eigenvector, and there is no other eigenvalue with a
positive eigenvector. Moreover if S : X — X is a linear operator such that S > T,
i.e., S(v) > T(v) for allv e X4, then r(S) > r(T). If, in addition, S —T is strongly
positive, then r(S) > r(T).

3. General diffusion rates. Our basic result about the basic reproduction
number Ry of (1.1) is the following.

THEOREM 3.1. Let Ry = r(—CB™1), where B and C are defined in (1.2). Then,
(3.1) RO = T(LlRlLQRQ),

where Ry and Ry defined in (1.5) are multiplication operators on C(Q), and Ly and
Lo defined in (1.6) are strongly positive compact linear operators on C(S).

Proof. 1t is not hard to compute

gt (V817 =N (V817 = N0 Hy (V- 627 — pV)—t
- 0 (V-89 — V)1 '

Therefore,

-CB™ ' = 0 0
o O'QV(/\ — V- 51V)71 O'QV(/\ — V- 51V)*101Hu(m/ — V- 52V)71 ’
It then follows that
Ry = ’I“(—CB_l) =r (0'2‘7(/\ - V- (51V)_10'1Hu(/ﬂ7 - V- 52V)_1)

N 1
=T (O’QVLlRlLQ = ) .
n4

From (2.5), we have

1 ~
RO =T (L1R1L2 = UQV) = T(LlRngRg).
n4
It is well known that the elliptic estimates and maximum principles imply that L;
and Lo are strongly positive compact linear operators on C((2). 0

LEMMA 3.2. ||L1|| =1 and || Le|| = 1.

Proof. Notice that L;(+1) = £1 for i = 1,2. For any u € C(Q) with |lule < 1,
we have —1 < u < 1. By the comparison principle, we have

Therefore, ||Liul|co <1 = ||u||oo, which implies ||L;|| < 1 for ¢ = 1,2. Moreover, since
L1 =1 and Lyl = 1, we must have ||L|| = || L2] = 1. |

We immediately have the following result from (2.5).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 3.3. If Rij(z) < 1,i=1,2, for all z € Q, then Ry < 1.
Proof. Ry = r(L1RyLaRy) < |[La|[| Ra[|[| L[| Rzl| = [| Rall[| Rell < 1. O

We apply the Krein—Rutman theorem to study the spectral radii of Lq, Lo, and
Ly L.

LEMMA 3.4. The spectral radii of Ly, Lo, and LiLs are all 1, i.e., r(Ly) =
T(Lg) = T’(Lng) =1.

Proof. Since L; and Lo are strongly positive compact operators on C(2), so is
LiLy. By Theorem 2.5, r(Ly), r(L2), and r(LqL2) are simple positive eigenvalues of
L1, Lo, and Ly Lo, associated with positive eigenvectors, respectively. Moreover, there
is no other eigenvalue of L1, Ls, or Ly Ly associated with a positive eigenvector. Since
L11 = Lgl = L1L21 = 1, we must have T(Ll) = T(Lg) = T‘(Lng) =1. O

Noticing that Ry = r(L1R1LaRs), Lemma 3.4 implies that there is a significant
connection between the basic reproduction number Ry and the local basic reproduc-
tion number R(z). A consequence of Lemma 3.4 is the following result.

COROLLARY 3.5. If R; and Rs are constant, then Ry = R.

Our next result, based on the Krein—Rutman theorem, is stronger than Theorem
3.3.

THEOREM 3.6. The following hold:
1. If Ri(x) > 1,i=1,2, for all z € Q, then Ry > 1. If, in addition, Ry(x) # 1
or Ro(x) # 1, then Ry > 1.
2. If Ri(z) <1,i=1,2, for all x € Q, then Ry < 1. If, in addition, Ry(z) #Z 1
or Ry(x) # 1, then Ry < 1.
3. RimRom < Ry < RipRon, where Ry = mln{Rl(x) S Q} and Ry =
max{R;(z) :x € Q},i=1,2.

Proof. We only prove part 1 as the proof of the rest is similar. If R;(z) > 1
for all € Q, then L1R1LaRy > L1Ly. By Theorem 2.5 and Lemma 3.4, we have
R() = T(LlRlLQRQ) > T(LlLQ) =1.

Let ¢ be a positive eigenfunction corresponding to principal eigenvalue Ry of
LiRyLoRs. If, in addition, Ri(x) # 1 or Ry(x) # 1, by the strong positivity of L,
and Lo, we have

Ryp = LiR1LoRo¢ >> L1Lag.

Therefore, there exists e > 0 such that Ry¢ > (1+¢€)L1La¢. Let ¢y, = min g5 ¢(x) >
0. Then, by the positivity of L1 Ly and L L1 = 1, we have
Rop > (1+ €)L1L2¢p > (14 €)L1La¢m = (1 + €)m.

Therefore, Ry¢ > (1 + €)¢m, which implies Ry > 1+ € > 1. O
We next study the monotonicity of Ry. Here, we need the assumption
(H1) o1H, = o5V or both o1 H, and o5V are constants.

THEOREM 3.7. Suppose that (H1) holds. If §, is constant, then Ry is decreasing
mn (51.

Proof. Let k = 1/Ry. By the Krein—Rutman theory, « is an eigenvalue associated
with a positive eigenvector ¢ (we normalize ¢ such that ||@|l2 = 1) of the following
problem:

kLiR1LaRygp = ¢.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Therefore, we have

(3.2) KAR1LaRad = (A — §1A) .
Differentiating both sides with respect to d;, we have

(3.3) ks, AR1 LoRog + kAR1 LoRogps, = —Ad + (A — 01A)ds, -

Multiplying (3.3) by ¢ and (3.2) by ¢s,, and integrating their difference over Q, we
obtain

ﬁ51/¢AR1L2R2¢dx:/ |V |2de,
Q Q

where we used the assumption (H1) to derive

[ o5 ABsLaRagida = [ 6AR:LaRads, do
Q Q

Since ARjLsRy is strongly positive, AR;LaRa¢ > 0. Therefore, k5, > 0 and & is
increasing in d;. Hence, Ry is decreasing in 4. O

Remark 3.8. If 5/u is constant, V is independent of do. Then, similarly to The-
orem 3.7, Ry = r(LaRsL1Ry) is decreasing in dy if (H1) holds. Moreover, from the
proof of Theorem 3.7, Ry is strictly decreasing if the eigenvector is nonconstant.

4. Small or large diffusion rates. We prove the following result on the con-
vergence of spectral radii for strongly positive compact linear operators, which is
essential for our investigation of the role of diffusion rates for the basic reproduction
number Ry.

THEOREM 4.1. Let X be an ordered Banach space with positive cone X, such
that X1 has nonempty interior. Let T,,,n > 1, and T be strongly positive compact

linear operators on X. Suppose T, 50T, p (strong operator topology) which means
T,(u) = T(u) for any v € X. If Up>1T,(B) is precompact, where B is the closed
unit ball of X, and r(T},) > 1o for some ro > 0, then r(T,,) — r(T).

Proof. Since T and T,, are compact and strongly positive, by Theorem 2.5, r(T')
and 7(T,,) are positive simple eigenvalues of T' and T,,, respectively. So there exists
en € int(X4) with ||e, || = 1 such that T,e,, = (T}, )e, for alln > 1. Since U, 17T, (B)
is precompact and r(7,,) > ro > 0, {e, } is precompact. So there exists a subsequence
{en, } of {en} such that e,, — e for some e € X.

We claim T, en, — Te. Note that sup,,~; |7 (u)| < oo for any u € X by the

convergence assumption T, SO 7 Then by the uniform boundedness principle,

there exists M > 0 such that sup,,~; [|T5]| < M. Let € > 0 be arbitray. Since e,, — e
and T, e — Te, there eixsts N > 0 such that ||e,, —¢|| < € and ||T},, e — Tel|| < € for
all K > N. Hence for all £ > N, we have

[T, — Tell < [Tug (e, — )l + [T — Tel| < Me +e.

Since € > 0 was abitrary, T}, e,, — Te.

Since Ty, en, = 7(Thy)eny, Inpen, — Te, and e, — e, we have r(T,,) =
|Th,en,ll — ||Te|ll and Te = || Telle. Since e, € X+ and |e,]| = 1, e € X4 and
lle]l = 1. Thus e is a positive eigenvector of T' corresponding to eigenvalue ||Tel.

Again by Theorem 2.5, we have r(T') = ||Te|. Hence (T}, ) — r(T) and r(T},) — r(T)
(here we use a well-known result: if every subsequence of the sequence {a,} has a
convergent subsequence with limit a, then a,, — a). 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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The convergence of a sequence of compact operators in the SOT is not sufficient
to guarantee the convergence of their spectral radii. We use the following simple
example to illustrate this fact.

Ezample 4.2. Let H be a Hilbert space with an orthonormal basis {e;}°,. For
n > 1, define T,, : H — H by

o0
T.(a) = ape, for any a = Zaiei € H.
i=1

Then {T,} is a sequence of compact operators with 7(T},) = 1, and T, 59T, . Since
r(T,) =1and r(T) =0, r(T,) 4 r(T).

It is interesting to see whether some of the hypotheses in Theorem 4.1 can be
dropped. We leave this as an open problem.

4.1. Large diffusion rates. In the following two subsections, we investigate Ry
quantitatively when the diffusion rates are large or small. To this end, we assume that
91 and Jy are constants. Define two integral operators L o, L2, o : C'(£2) = C(€) by

L100() = fQ Ax)dx and - Ly oo(¢) = fQ p(z)dz

for any ¢ € C(9).

LemMa 4.3. L; 290 L1 o in C(Q) as 6; — oo.

Proof. Let u € C(2) be given. We need to prove that L;i(u) — L1 o0 (u) in C(Q)
as 01 — oco. For any 6; > 0, let v5, = Li(u). Then vy, is the solution of the problem

{ Avs, — 01Avs, = A, x €,

(4.1) %vgl =0, x € 0N).

By the comparison principle, we have —||ulcc < v5, < |lul|oo for all 6; > 1. Hence
by the LP estimate, {vs, }s,~1 is uniformly bounded in W?2? () for any p > 1. Since
the embedding W2P(Q) C C(Q) is compact for p > n, up to a subsequence, vs, — v
weakly in W?2P(Q) and strongly in C(Q) for some v € W?2P(Q) as §; — oo. Moreover,

v satisfies

{AU—O, z € Q,

6—3”1):0, x € 0N.

By the maximum principle, v is a constant. Integrating both sides of the first equation

of (4.1) and taking §; — oo, we find v = ff‘;)\/\gﬁ. o

LEMMA 4.4. Lo sot, L o in C(Q) as 63 — o00.

Proof. Let u € C(Q) be given. We need to prove that La(u) — La oo (u) in C()
as 02 — oco. For any d2 > 0, let v, = La(u). Then vy, is the solution of the problem

(4.2) { vaéz — 2Avg, = uVu, x €N,

Lvs, =0, x € 0.
Noticing that V is the positive solution of

— 0, AV = BV — uV?, x € Q,
2V =0, x € 09,
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it satisfies

. d
(4.3) V%fﬂﬂx as g — 00
Jo ndw
(see [4, Proposition 3.17] and [18, Proposition 2.5]). The rest of the proof is essentially
the same as the proof of Lemma 4.3. ]

We now investigate Ry for large diffusion rates by Theorem 4.1.

THEOREM 4.5. The following statements hold:
1. For fized 69 > 0,

AR (Lo Ro)d
Ry = (L1, s R1L2R2) = fQ fl(/\jiaj 2)dz as 01 — oo.
Q
2. For fized 61 > 0,
Ro(L1Ry)d
Ry — r(La,coRoL1R1) = fQu fz(uéx 1)da as dg — 00.
Q

Proof. For i = 1,2, define two bounded linear operators H; o, : C(2) — C(£2) by

. fQ )\RlLQRQ(bdx

Jo nR2Ly Ry pdx:
H = _ Jorr2HIAuYaRs
1o (9) Jo Adz

and Hioo(¢) = f i
Q

Then Hl,oo = Ll,ooRngRQ and HQ’OO = LQ,OORQLlRl . By Lemmas 43*44, we have

for any ¢ € C(9Q).

L1R1L2R2 E)—T‘—) Hl,oo as 51 — 00 and L2R2L1R1 E)—T‘—) H2,oo as 52 — OQ.

Clearly, L1 Ri1LoRy, LoRo L1 Ry, Hy , and Hj o are strongly positive compact oper-
ators on C(£). In the proof of Lemma 3.2, we have shown that L;(B) C B, i = 1,2.
This implies that U51>1L1R1L2R2(B) C LlRl(RQMB) and U52>1L2R2L1R1(B) C
LyRy(RypB) are precompact in C(f2), where Riy and Rgys are defined in Theo-
rem 3.6. By Theorem 3.6, we have r(L1R;LoRs) = r(LaRsL1R1) > RymRom > 0.
Then by Theorem 4.1, we have Ry = r(L1R1LaRy) — 7(H1,00) as 61 — oo and
Ry = r(LaRaL1Ry) — r(Hz,00) as 62 — oco. Finally, we observe that the eigenfunc-
tions of His and Hsoo must be constants, and

_ fQ )\Rl (LgRg)d$

Jo nR2(Ly Ry)da
H )=
T'( 1; ) fﬂ )\dx

fsz pdz . O

and r(Hz o) =

Remark 4.6. If Ry is constant, then Lo Ry = Ro and

Jo AR (LoRo)dx [, ARda

Boo o de T [oade

as d1 — 00,

which is independent of d5. Similarly, if R; is constant, then

Jo nR2(Ly Ry)dx B Jo nRdx
fQ Adx B fQ pdz

Ro—)

which is independent of §7.
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Define

R Jo ARy dx _ Jqo1Hudx and By — Jo nR2dx _ Jo Ugdx'
Jo Az Jo Adz Jo, ndz [, pdae

THEOREM 4.7. The following statements hold:
1. T(LLOORlLQRQ) — RlRQ. as 52 — OQ.
2. T(LgpoRngRl) — R1Rs as (51 — OQ.

Proof. By Lemmas 4.3—4.4, we have

Rod ARyd _
Lol - Jodr gy Je A
Jo ndz Jo Adz
Our claim now just follows from Theorem 4.5. O

Remark 4.8. By Theorems 4.5-4.7, we have

lim lim Ro= lim lim Ry = R Ro.

51 —00 3 —00 d2—00 81— 00

We can actually prove

(4.4) lim Ro = Ri R,

(51,52)*}(00,00)

by making use of L1 R1LaRo g)—T% Ly o R1Ly oo Ry and Theorem 4.1.

4.2. Small diffusion rates. We next study Ry when the diffusion rates are
small.

THEOREM 4.9. The following statements hold:
1. For fized §3 > 0, Ry — r(RL3) as 1 — 0.
2. For fized 61 > 0, Ry — r(RL1) as d3 — 0.
Proof. 1. Tt is well known that, for each ¢ € C(Q), L1¢ — ¢ in C(Q) as §; — 0.
So we have RiLyRsLi % RiLyRy as 6, — 0. Let B be the closed unit ball
in C(Q2). Since L1(B) C B, we have Us,<1R1LaRoL1(B) C RiLaRy(B). By the
compactness of Ly, Us, <1 R1L2R2L1(B) is precompact in C(€2). By Theorem 3.6,
we have T(RlLQRQLl) Z RhnRQm > 0. NOEiCiIlg that R1L2R2L1 and R1L2R2 are
strongly positive compactor operators on C(2), by Theorem 4.1, we have

Ry =71(R1LaR2Ly) — r(R1LaRs) = r(RaR1Lo) = r(RLy) as 6 — 0.

2. By [15, Lemma A.1], V — 8/u in C(Q) and Ly¢ — ¢ for any ¢ € C(Q) as

0o — 0. Hence RoL1R1Ls sot, RyL1R; as 05 — 0. The rest of the proof is similar
to part 1. O

Let Ry = max{R(z) : z € Q}. The proof of the following result is similar to [21,
Lemma 3.1], and we attach it in the appendix for readers’ convenience. Unfortunately,
we cannot apply Theorem 4.1, since R is not compact. Can we generalize Theorem
4.1 so that it can be used to prove the following result? We leave this as an open
question.

THEOREM 4.10. The following statements hold:
1. T(RLQ) — Ry as 69 — 0.
2. 7(RL1) — Ry as 61 — 0.
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Combining Theorems 4.9-4.10, we actually have

(4.5) lim lim Ry = lim lim Ry = max{R(z):z € Q}.

51*)0 524}0 52*)0 51%0

We can apply [17] to prove the following result.
THEOREM 4.11. The following statement holds:

(4.6) Ro = max{R(z) : z € Q}.

lim
(61,62)—(0,0)

Proof. Let Ry = max{R(x) : x € Q}. First, suppose Ry = 1 and V is indepen-
dent of d2. We need to show that Ry — 1 as (d1,02) — (0,0). Let k = 1/Ry and
view it as a function of (d1,d3). Since Rq is the principal eigenvalue of L; R;LoRa,
there exists a positive @ = (po,%0)7 (satisfying homogeneous Neumann boundary
conditions) such that k satisfies

(4.7) Ady + kB®, = 0,

where

(A=) 0 _ (0 AR
A‘(WRQ 52A—W> and B_(O 0)'

For any positive a, 01, and d, let e = e(a, d1,02) be the principal eigenvalue of the
following eigenvalue problem (with homogeneous Neumann boundary conditions):

(4.8) A® + aB® = ed.

Then, we have e(k, 01, 02) = 0.
It has been shown in [17, Theorem 1.4] that

lim e =maxé(Cy(x)),
(51,52)4}(0,0) xeQ)

where é(C,(z)) denotes the eigenvalue of the matrix C,(x) with a greater real part
for each z € Q (by the Perron-Frobenius theorem, the eigenvalues of C,(x) are real),

and
(S WRY
WV Ry  —pV

Therefore, for each a, e = e(a, d1,02) can be extended to be a continuous function of
(01, 02) on (0,00) x (0,00) U{(0,0)} by e(a,0,0) := max,cq é(Cy(z)).

We claim that e is increasing in a for each (d1,d2) € (0,00) x (0,00). To see this,
we can choose ® = (p,1) to be a positive eigenvector with ||i||2 + [[¢|l2 = 1 of (4.8).
Then differentiate both sides of (4.8) with respect to a, we obtain

(4.9) AD, + aBP, + BD = e,® + ed,,.

Multiplying (4.9) by ®7 to the left and (4.8) by ®1 to the left, and integrating their
difference over Q, we obtain ®TB® = e¢,®T ®. Therefore, e, = fQ AR1ppdz > 0 and
e is strictly increasing in a.

Noticing max{R(x) : * € Q} = 1, it is not hard to check that e(a,0,0) =
max,cq é(Co(z)) = 0 if and only if a = 1. Moreover, e(a,0,0) is strictly increas-
ing in a. Assume to the contrary that x(d1,02) # 1 as (01,02) — (0,0). Then there
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exists a sequence {(d1p,02,)}52, and ag # 1 such that x, := K(d1n,d2n) — ao as
n — co. Without loss of generality, we may assume ag > 1. Choose ¢y > 0 such that
ap — €9 > 1, which implies k(ag — €,0,0) > x(1,0,0) = 0. Then there exists N > 0
such that k, > ag — €g for all n > N. By the monotonicity of e, we have

0= B(HH, 61na 62n) > e(aO — €0, 51n7 52n) for all n > N.
Taking n — oo and by the continuity of e(ag — €, -, ), we have

0> lim e(ao — €0, (517” 5271) = 6((10 — €9, 0, 0) > 0,
n—oo
which is a contradiction. Therefore, x(d1,02) — 1 as (d1,02) — (0,0). This proves
the case max{R(z):z € Q} = 1. )
Then, we drop the assumption Ry; = 1 but still suppose that V is independent
of §. We have

— = LlRngﬁ — max Rl(x)R2<m) cx ey =1as (61,62) — (0,0).
RM RM

This means Ry — Rys as (d1,92) — (0,0).

Finally, we drop the assumption that V is independent of d5. Let € > 0 be given.
By Lemma 2.1, there exists & > 0 such that ||V — 8/pul|« < € for all §; < §. By the
comparison principle, for d2 < J, we have

o 2)-sa) 4G =

= (uV — 6A)1uV < (u <i - e> - 62A>_1 I <B - e> :

I
Define
—1
(4.10) Lo = (u <ﬂ — e> — 52A> 1 <B — e>
0 0

and

. 8 1e
(4.11) Rye = 5—Ro.

ﬁ — €

Similarly, we define Ly, and Ry, only with € replaced by —e in (4.10)—(4.11). Then,
we have

L1RiLocRoe < LiR1LoRy < LiRyLoc Ry, for 83 < 6.
It follows from Theorem 2.5 that
(4.12) r(L1RyLocRoc) < Ro < (L1 RyLocRo.) for 6y < 6.
By the previous step,

(6176513(070)T(L1R1L26R26) = InaX{Rl(.T)RQE(l') cx €Q) = Ruse

and

I LiRyLocRy.) = Ri(2)Roc(z) : 7 € Q) = Rage.
(61,621)r11>(0,0)r( 1R1L2cRyc) = max{R;(v)Rae(x) : v € Q} "
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Taking (01, d2) — (0,0) in (4.12), we obtain

Ruye < liminf Ry < lim sup ROSRME.
(01,62)—(0,0) (81,82)—(0,0)

Taking € — 0, we have

liminf Ry= limsup Rg= Ry.
(61,62)—(0,0) (61,62)—(0,0) 0

By Theorem 4.11, we have the following result.

PROPOSITION 4.12. The following statements hold:
1. If R(z) < 1 for all x € 0, then there ewists 6 > 0 such that Ry < 1 for all
(51,52) with 51,52 S 8
2. If R(z) > 1 for some x € S0, then there exists 6 > 0 such that Ry > 1 for all
((51,62) with (51,62 S 5

5. Simulations.

5.1. Dependence on §;. In this section, we investigate the dependence of
Ry on 61. Let Q@ = [0,1] x [0,1]. We fix all the coefficients except for d;: o =
4,01 = 5sin(z) + 3,00 = p = B = (v +1)2 +0.1,H, = cos(y) + 1.5, X = 12.
Since 8/p = 1, the unique positive solution of (1.3) is V = 1. By Theorem 3.6,
Ry < max{R(z) : z € Q} = 1.5015. Noticing that Ry = o2/p = 1 and \ are
constant, by Remark 4.6,

ARd Rd
(5.1) Ry — f? - T fﬂm T —0.5854 as §; — co.
Q XL

We then find r(RLsy). Using the fact that ' = 1/r(RLs) is the principal eigenvalue
of the following problem (with homogenous Neumann boundary conditions),

(uV — 62)¢ = kpuV Ro,
we can compute r(RLg) = 1.0075 numerically. By Theorem 4.9, we expect
(5.2) Ry — r(RLg) = 1.0075 as 6; — 0.

We now compute Rg. By definition, kK = 1/Ry is the principal eigenvalue of the
following problem (with homogeneous Neumann boundary conditions):

—V -6,V n A —JlAI'Iu ¢\ _ OA 0\ (¢
—V - 83V 0 uv ) T\owV 0)\Y)°
For different values of §; € [0.001,400], we solve the eigenvalue problem numer-
ically and plot Ry in Figure 1. In particular, Ry = 1.0074 when é; = 0.001 and

Ry = 0.5904 when §; = 400, which agrees with (5.1)—(5.2). Moreover, we observe
that Ry is decreasing in o;. We conjecture that this is true in general.

5.2. Simulations in a realistic situation. In this section, we will simulate the
model using geometric and population data of Puerto Rico. The domain €2 is taken
as the geometric boundary of Puerto Rico, which can be obtained from Mathematica
as a polygon. The population density data of the 76 districts of Puerto Rico can
also be found in Mathematica, which can be used to construct the susceptible human
distribution, i.e., H,(z), by interpolation. H;g is assumed to be 100 people, distributed
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1.05

Fi1c. 1. The basic reproduction number Rq for different values of 61 .

— — v v %

F1G. 2. Local basic reproduction number R(x).

normally, centered at (0,—20). Set V;o = 10H;0, Vo = 150, o1 = 0.000001, oo =
0.7, A =1, p =5, and p = 0.0005. The local basic reproduction number R(z) =
o109H,, /A is shown in Figure 2.

Then we compute max{R(z) : x € Q} = 4.3167 and Jo /\E}l(isfz)dx = f“‘gldx =
Q

0.6513. By Theorems 2.3, (4.5)—(4.7), and (4.9)—(4.10), we expect that the solution

of (1.1) converges to a positive steady state when the diffusion rates are small and

to the semitrivial equilibrium (0, f/70) when Jy is large. For verification, we choose

different diffusion rates and use the finite element method in MATLAB to solve (1.1).

Case 1. Set §; = 6 = 4. We plot the total infected host cases in Figure 3 and the
density of infected hosts for t = 4,8,12,16 in Figure 4. In this case, the
solution converges to the positive steady state and the disease persists.

Case 2. Set §; = 4 and d2 = 4000. We plot the total infected host cases in Figure
5 and the density of infected hosts in Figure 6. In this case, the density of
infected hosts converges to zero and the disease dies out.

6. Discussion. In this paper, we have shown that the basic reproduction number
Ry of the reaction-diffusion model (1.1) can be written as Ry = r(L; Ry LaRs), where
the local basic reproduction number R(z) = Ry(z)Rz(x) is a multiplication operator
on C(Q), and L; and Ly are strongly positive compact linear operators with spectral
radii one. We are then able to study the relation of Ry and R(x). We prove that
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F1a. 3. Total infected host cases, i.e., [q Hi(z,t)dz with 61 = 62 = 4.
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Fi1G. 4. The density of infected hosts, i.e., H;(xz,t), at t = 4,8,12,16 with §1 = 02 = 4.

Ro > 1if Ry(z) > 1 and Ryo(x) > 1 for all x € Q, and Ry < 1 if Ry(x) < 1 and
Rs(x) < 1. Actually, Ry is bounded below and above by the products of the minimum
and maximum of R; and Ry. When the diffusion rates are small, Ry > 1 provided that
R(z) > 1 for some z € 2. When the diffusion rates are large, Ry approximates RiRo.
Moreover, our numerical simulations suggest that R is decreasing in 1, however, we
are only able to prove it under the assumption (H1). The dependence of Ry on 09 is
more difficult to study since V is also dependent on 5. We only know that if 3 /i is
constant, then Vis independent of d5 and Ry is decreasing in d2 under the assumption
(H1).

We remark that our approach can be applied to many other reaction-diffusion
epidemic models. For example, if we adopt our approach to analyze R, for the diffusive
SIS model in Allen et al. [1], we will compute Ry = r(—CB~!) = r(B8(y — d;A)71).
Then we can write Ry as Ry = r(RL), where R(z) = B(x)/v(z) is the local basic
reproduction number and L = (y — d;A)~ 1y is a strongly positive compact linear
operator in C({2) with spectral radius one. To further illustrate this, we briefly adopt
this approach to study the basic reproduction number of some other models in the
following two subsections.
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F1G. 6. The density of infected hosts, i.e., H;(xz,t), at t = 4,8,12,16 with §1 = 4, 2 = 4000.

6.1. A within-host model on viral dynamics. Suppose that T'(x,t), I(z,1),
and V(z,t) are the density of target cells, infected cells, and free virus particles at
position z and time ¢, respectively. The model proposed in [19] to study the repulsion
effect of superinfecting virion by infected cells is the following;:

9L — Dy AT + h(z) — drT — B(z)TV,
(6.1) 9L = D;AI + B(x)TV —d;,
W = (Dy(I)VV) +7(z)I — dvV,
subject to homogeneous Neumann boundary conditions and nonnegative initial con-

ditions.
Let T(x) be the unique positive solution of

DpAT + h(z) — drT = 0.

Linearizing (6.1) at the equilibrium (T ,0,0), the stability of it is related to the fol-
lowing eigenvalue problem,

{ Kk = DiAp — drp + BT,
kY = DoAY + vp — dy i,
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where Dy = Dy (0). As before, we define
DA 0 —d; BT 0 0
B = =
( 0 DOA)+( 0 —dyv) M C=14 o
and the basic reproduction number

Ry =r(—CB™).

Similarly to Theorem 3.1, we write Ry as

Ro=r (v(dl — DiA) BT (dy — DO)‘l) .

We have
(6.2) Ro = ’I“(LlRlLQRQ)
with
Ly = (d; — D;A)'d;, Ly = (dy — DoA)tdy,
and R
BT Y
Ry =— Ry = —.
1 4 2 v
The local basic reproduction number is defined as
vBT
R=RiRy = .
142 drdy

Here, Ly and Ly are strongly positive compact linear operators on C' () with spectral
radius one, and T' = (dr — DrA)~!h satisfies

. . drRsd
lim 7 =Ry, lim T:M,
Dr—0 Dr—00 fQ drdz
and - R -
min{R3(z) : v € Q} <T < max{R3(z) : x € Q}
with L
Ry = —.

37 ur

An immediate consequence of (6.2) is the following result.

THEOREM 6.1. The following statements hold:
e If Ry and Ry are constant, then Ry = R.
e Let Riy, = min{R;(z) : x € Q} and R;yr = max{R;(z) : x € Q} fori=1,2,
then
RimRom < Ry < RipRop.

i _ pah
m 0= =55
(D;,Dr,Dy)—(00,00,00) drdydr

where f denotes the average of f, i.e., f = [q fdx/|Q| for f =B, ~, h, dy,
dy,dr.
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lim lim Rg= lim lim Ry = lim Ro = max{R(z) : x € Q}.
D;—0Dv—0 Dy—0Dr—0 (Dr,Dv)—(0,0)
We notice that R is consistent with the basic reproduction number defined using
[13] (R can be viewed as the total number of newly infected cells produced by one
infected cell) for the corresponding ordinary differential equation model. We will
leave the interested readers to investigate the monotonicity of Ry with respect to the
diffusion rates.

6.2. An HIV model with cell-to-cell transmission. Let T'(z,t), T*(x,t),
and V(z,t) be the density of healthy T cells, infected T cells, and virions at position
2 and time ¢, respectively. The model proposed in [26] to describe the cell-to-cell HIV
transmission is the following:

9L — dy AT + N(z) — d(2)T — B1(2)TV — Bo(z)TT*,

(6.3) 9L = dyAT* + B1(2)TV + Bo(2)TT* — ()T,
B = d3AV + N(z)T* — e(z)V,

subject to homogeneous Neumann boundary conditions and nonnegative initial con-
ditions.
Let Tyh(x) be the unique positive solution of

A AT + Mx) —d(z)T = 0.

Linearizing (6.1) at the equilibrium (7, 0,0), we obtain the following eigenvalue prob-

lem,

(6.4) { kp = daAp + (B2To — 7)) + BrTorp,
. K = d3A + No — e.

We define

=(5 )+ (7 %) o=(F )
and the basic reproduction number
Ry =r(—CB™").
Similarly to Theorem 3.1, we compute Ry as

R() =T (ﬁgTo("}/ - dQA)il + BlT()(e - dgA)ilN(’)/ — dQA)il) .

So we have
(6.5) Ry = r(Lo(R3 4+ RIL3R3))
with
Ly = (y—doA)" "y, Lz=(e—dsA) e,
and

T T N
A 0 R%zﬂz 0 R =N
v

e

R} =

Here L; and Ly are strongly positive compact linear operators on C() with spectral
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radius one, and L;1 = 1 for ¢ = 1,2. The local basic reproduction number R is defined

as
N T
R: R% +R%R3 — (/81 _Z/rﬂQB) 0’
where Ty = (d — dyA) 71\ satisfies
dR
lm Ty = Ry, lim T, = 2
d1%0 d1—>00 fQ d
and - -
min{Ry(z) : v € Q} < Ty < max{Ry(z):z € Q}
with

A
R1 - E
We can also prove the following.

THEOREM 6.2. The following statements hold:
o If Ry, R%, and R3 are constant, then Ry = R.
o Let S, = min{S(z) : € Q} and Syy = max{S(z) : x€Q} for S =
Ry, R2, R3, then

R}, + R3, Ram < Ry <R3y, + B3y Ranr

b gy o BN RN
(dy1,d2,d3)—(00,00,00) erd
where f denotes the average of f over Q, ie., f = [qfdx/|Q| for f =

517,82,677"7d,)\. B
o limg, ,olimg, 0 Rp = max{R(x) : z € Q}.

Proof. We will only sketch the proof of the last part. Noticing that Ls¢p — ¢
in C(Q), we have Lo(R3 + RyLsR3) 25 Lo(R2 + RLR3) = LaR as dy — 0. Let
B C C(92) be the closed unit ball, then

Uss>0L2 (RS + RyLsRs)(B) C La((Rapy + Ry Ran)B),

which is compact. By Theorem 4.1, we have Ry = r(_Lg(Rg + RIL3R3)) — r(L2R)

as d3 — 0. The proof of r(L2R) — max{R(z) : z € Q} as da — 0 is the same with

Theorem 4.10. O
Appendix A. Proof of Theorem 4.10.

Proof. We only prove part 1. Define r5, =: r(RL2) = r(L2R). Then ks, = 1/rs,
is the principal eigenvalue of the problem

(1V — 83A)w = kuV R, x€Q,
(A1) { E%v =0, x € 0N.
By (A1),
82 [ |Vv)2d Vold
Ii(;Z:L:min 2 Jo V01 x:FfQu Y x:vEHl(Q)andv#O
s, Jo RuVv2da
82 [ |Vv)2d Vold
zimin 2Jo 70! xA+fQ,u Y Z:UGHI(Q)andv#O :L.
Ry Jo nVv2da Ry

It then follows that liminfs, o ks, > 1/Rp.
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We only need to show limsupg, ,o#s, < 1/Rps. Assume to the contrary that the
statement does not hold, i.e., limsupg, ,o x5, > 1/Rar. Then there exists ¢g > 0 and
a sequence {0z, } with da , — 0 such that ks, , > 1/(Ry —€o). Let 20 € Q and a > 0
such that R(xz) > Ry — €0/2 in B(xg,a). Let vs,, be a positive eigenvector of (A.1)
associated with the principal eigenvalue ks, . Then in B(zo,a), we have

(Rar — €0/2)uVvs,,
Ry — € '

(uV — 02,0 A)vs, ,, = /i(;“,uVRngm >

It follows that, in B(zg,a),

AU52 n € ~
— : 0 )MV

Vs 202 (R — €0

Let k' be the principal eigenvalue of —A in domain B(xg, a) with a Dirichlet boundary
condition. By a minimax formulation of &’ [3], we have
Au €0

A2 P sup inf — > inf  {uV}.
( ) wEW2:2(B(zg,a)),u>0 z€B(zo,a) U 252,n(RM — 60) meB(fﬁo,a){ }

Noticing that V > min{f(z) : € Q}/max{u(z) : 2 € Q}, the right-hand side of
(A.2) tends to oo as 3, — 0. This is a contradiction. Hence, ks, — 1/Rjs and
rs, — Rar as 92 — 0. a
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