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a b s t r a c t 

We consider a population dynamic model describing the growth of wild pine tree forest. This type of 

model incorporates the demography of the tree population (i.e. reproduction and death of trees), and also 

incorporates a maturation time that depends on the number of adult trees. 

The goal of this article is to introduce a parasite called nematode into such a forest. Since this para- 

site colonizes pine trees to reproduce, it is natural to introduce a predator-prey (or consumer-resource) 

relationship between the trees and the parasites. 

In order to investigate the behaviour of the resulting system, we will use numerical simulations, and 

we will introduce a parasite into a population of trees that: (1) is not oscillating around the positive 

equilibrium; (2) has some damped oscillations; (3) has some undamped oscillations. This will correspond 

to three scenarios for parameter values. As one may expect, this will lead to complex dynamics, since 

we combine the oscillations produced by the predator-prey system with the oscillations coming from the 

demographic properties of the prey. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Pine wilt disease (PWD) is one of the most serious disease of

ine species in all over the world. The pathogenic agent of PWD is

he pine wood nematode (PWN) Bursaphelenchus xylophilus , and it

s transmitted from tree to tree by a species of insect Monochamus .

his PWN is a native nematode species in North America. It was

rst introduced in Japan in the early 20th century and spreaded

nto other Asian countries (China, Korea, etc.) in the 1980s. In 1999,

t was first detected in Portugal ( Mota et al., 1999 ) and its only in-

ect vector in this region was Monochamus galloprovincialis ( Sousa

t al., 20 01, 20 02 ). In 20 08, with the detection of this PWN in other

reas of Portugal and even on Madeira Island, the entire territory

f Portugal was affected ( Rodrigues, 2008 ). PWD also spreads into

ther European countries due to the wood transportation. For more

nformation about the spread of PWD in Europe and in the world,

e refer in addition to Mota et al. (2009); Mota and Vieira (2008);

icente et al. (2012) and the references therein. 

In this paper we consider the population of nematode, which is

 parasite spreading into a wild pine tree forest. This means that

e totally neglect the way the nematode spreads in between the
∗ Corresponding author at: Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, 

rance. 
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ine trees, namely the insect vector Monochamus galloprovincialis .

he life cycle of nematode is very short (around 4 days). In com-

arison, the pine tree’s life cycle is rather slow. Therefore it makes

ense to use instantaneous production of new nematodes when

ine trees are degraded by nematodes and serve as a resource to

roduce new nematodes. We refer to Koutroumpa (2007) for more

nformation about the biology of nematode. 

There have been some attempts to build a model to describe

he dynamics in the pine-nematode community ( Gruffudd et al.,

016 and the references therein). In this paper, in order to describe

he relationship between pine trees and nematodes, we will use a

redator-prey system which goes back to Lotka (1925) and Volterra

1927, 1928) in the early 20th century. More generally speaking,

he class of system we have in mind is the so-called consumer-

esource model which attracts a lot of interests in ecology dur-

ng the last four decades. We refer to Holland and DeAngelis

2009, 2010); Lafferty et al., (2015); MacArthur (1972); May (1972);

osenzweig and MacArthur (1963) and the references therein for a

ice overview on this subject. Let A ( t ) be the number of adult pine

rees, and I ( t ) be the number of nematodes. We consider a simpli-

https://doi.org/10.1016/j.ecocom.2017.05.001
http://www.ScienceDirect.com
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fied model for the population dynamics of pine trees and nema-

todes {
dA (t) 

dt 
= (β − μA ) A (t) − γA I(t) A (t) 

1 + κA (t) 
, pine tree destruction 

dI (t) 

dt 
= 

(
εχγA A (t) 

1 + κA (t) 
production of new nematodes − μI 

)
I(t) , 

(1.1)

where β > 0 is the birth rate of trees, μA > 0 is the natural mor-

tality of adult trees, γ A > 0 is the number of adult trees consumed

per nematode per unit time, κ � 0 is interpreted as a constant han-

dling time for each prey captured ( Accolla, 2015; Dawes and Souza,

2013; Kazarinoff and Driessche, 1978 ), ε > 0 is the conversion effi-

ciency from tree biomass to nematode biomass, χ > 0 is the birth

rate of nematodes, μI > 0 is the natural mortality of nematodes. 

One may observe that the special case κ = 0 of system (1.1) cor-

responds to the classical Lotka-Volterra model, while the case κ >

0 corresponds to the Holling’s type II functional response ( Holling,

1959a , 1959b ). In the article we will investigate both cases for κ . 

In order to incorporate the vital dynamics of the population of

trees, we need to add a limitation of the growth of trees due to the

competition for light. This can be achieved by using the so-called

size-structured models. We refer to Magal and Zhang (2017a);

Smith (1993, 1994); Webb (2008) for a nice survey on this topic.

In Magal and Zhang (2017a) a comparison of size-structured model

with a forest computer simulator has been successfully done, and

the model considered takes the following form {
∂ t u (t, s ) + f (A (t )) ∂ s u (t , s ) = −μ(s ) u (t, s ) , for t ≥ 0 , s ≥ s −, 

f (A (t)) u (t, s −) = βA (t) , for t ≥ 0 

(1.2)

with the initial distribution of trees 

u (0 , . ) = u 0 (. ) ∈ L 1 (0 , + ∞ ) , 

where s − > 0 is the minimal size of juvenile trees and s �→ u ( t , s ) is

the density of population of trees of size s at time t , which means

that for each s 2 � s 1 � s −, 

∫ s 2 

s 1 

u (t, s ) ds 

is the number of trees of size in between s 1 and s 2 at time t .

Therefore the total number of trees in the population is 

(t) = 

∫ + ∞ 

s −
u (t, s ) ds . 

We assume that the number of adult and juvenile trees are respec-

tively given by 

A (t) := 

∫ + ∞ 

s ∗
u (t , s ) ds and J(t ) := 

∫ s ∗

s −
u (t, s ) ds 

where s ∗ > s − is the size of maturity for trees, namely the mini-

mal size of adult trees. 

Moreover, to describe the fact that the more adult trees there

are, the less light is left to juvenile trees to grow, we assume that

the growth speed depends on the number of adults, namely 

f (A (t)) := 

α

1 + δA (t) 
, 

where α > 0 and δ > 0 are parameters that will be determined

later on. 

The full model combining both the parasite destruction and the

vital dynamics of the population of tree is the following 
{
∂ t u (t, s ) + f (A (t )) ∂ s u (t , s ) = −

[
μ(s ) + 

γ (s ) I(t) 

1 + κA (t) 

]
u (t, s ) , 

or s ≥s −, t ≥0 , f (A (t)) u (t, s −) = βA (t) , for t ≥ 0 , 
dI (t) 

dt 

= 

εχ

1 + κA (t) 

∫ + ∞ 

s −
γ (s ) u (t, s ) dsI (t)

−μI I(t) , for t ≥ 0 , (1.3)

ith the initial distributions 

 (0 , . ) = u 0 (. ) ∈ L 1 (0 , + ∞ ) ; I(0) = I 0 ≥ 0 . 

n system (1.3) μ( s ) > 0 is the mortality of trees of size s and

( s ) � 0 is the number of trees of size s consumed per nematode

er unit time. We assume for simplicity that 

(s ) = 

{
μA > 0 , if s ≥ s ∗, 

μJ > 0 , if s < s ∗, 
γ (s ) = 

{
γA ≥ 0 , if s ≥ s ∗, 

γJ ≥ 0 , if s < s ∗. 

s is described in Appendix A (see also Magal and Zhang, 2017a;

mith, 1993, 1994 ), we can transform system (1.3) into the follow-

ng state-dependent delay differential equations 
 

 

 

 

 

 

 

 

 

 

 

dA (t) 

dt 
= f (A (t)) 

βA (t − τ (t)) 

f (A (t − τ (t))) 
e −μJ τ (t) −γJ 

∫ t 
t −τ (t ) 

I(l) 
1+ κA (l) 

dl 

−μA A (t) − γA I(t) A (t) 
1+ κA (t) 

, 

∫ t 

t −τ (t ) 
f ( A ( σ )) dσ = s ∗ − s −, 

dI (t) 

dt 
= 

[ 
εχ

1 + κA (t) 
(γA A (t) + γJ J(t)) − μI 

] 
I(t) , 

(1.4)

ith the initial distributions 

 (t) = A 0 (t) ≥ 0 , ∀ t ∈ (−∞ , 0] ; τ (0) = τ0 ≥ 0 ; I(0) = I 0 ≥ 0 . 

n system (1.4) , the function τ ( t ) describes the time needed by a

ree to grow to the maturity size s ∗ at time t from the minimal

ize s −. Namely τ ( t ) the time needed for a tree to become mature

t time t . Then we must have τ 0 � 0 the initial length of matura-

ion satisfying 

 0 

−τ0 

f (A 0 (σ )) dσ = s ∗ − s −, 

nd the second equation of (1.4) is equivalent to 

 t 

t −τ (t ) 
f (A (σ )) dσ = 

∫ 0 

−τ0 

f (A 0 (σ )) dσ, 

here the initial value τ (0) = τ 0 is derived. Therefore we can fix

ither τ ( t ) at time t = 0, or equivalently s ∗ − s −, which is the dif-

erence between the size of maturity s ∗ and the size at birth s −. A

etailed explanation will also be found in Appendix A. 

In the following we will assume for simplicity that γ A > 0 and

J = 0. Therefore in this article we consider the following model 

 

 

 

 

 

 

 

 

 

 

 

 

 

dA (t) 

dt 
= f (A (t)) 

βA (t − τ (t)) 

f (A (t − τ (t))) 
e −μJ τ (t) − μA A (t) − γA I(t) A (t) 

1 + κA (t) 
,∫ t 

t −τ (t ) 
f (A (σ )) dσ = 

∫ 0 

−τ0 

f (A 0 (σ )) dσ, 

dI (t) 

dt 
= 

(
εχγA A (t) 

1 + κA (t) 
− μI 

)
I(t) 

(1.5)

ith the initial distributions 

 (t) = A 0 (t) ≥ 0 , ∀ t ∈ (−∞ , 0] ; τ (0) = τ0 ≥ 0 ; I(0) = I 0 ≥ 0 . 

The first basic fact about system (1.5) is that when I 0 = 0 then 

(t) = 0 , ∀ t ≥ 0 . 

herefore I 0 = 0 corresponds to the model without parasite, namely

q. (1.2) . 
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Table 1 

We show in this table the parameter values used in the numerical simulations of system (1.5) . The first six parameter values come from Magal and Zhang (2017a) . We set 

s − = 0 for simplicity and we use the formula 
∫ 0 
−τ0 

f (A (s )) ds = s ∗ − s − to calculate s ∗ . Notice also that with Holling’s type II functional response, we will investigate three 

cases regarding different values of the conversion efficiency ε = 0.68, ε = 1 and ε = 10 for each scenario. Scenario 1-3 correspond to three different dynamics of adult tree 

population. This will serve to investigate the effect of the introduction of nematodes depending on the type of dynamics of adult tree population. 

Parameter Lotka-Volterra form Holling’s type II functional response 

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 

μJ 0.03 0.031 0.0036 0.03 0.031 0.03 

μA 0.001 0.0037 0.001 0.001 0.0037 0.06 

β 2 4 2 2 4 2 

δ 0.1 0.1 0.1 0.1 0.1 0.1 

α 0.1709 0.249 0.1709 0.1709 0.249 0.1709 

τ 0 121 127 121 121 127 121 

s − 0 0 0 0 0 0 

s ∗ 0.5318 0.4164 0.5318 0.5318 0.4164 0.5318 

γ A 0.001 0.001 0.001 0.001 0.001 0.001 

κ 0 0 0 0.0 0 01 0.0 0 01 0.0 0 01 

ε 1 1 1 0.68/1/10 0.68/1/10 0.68/1/10 

χ 0.1 0.1 0.1 0.1 0.1 0.1 

μI 0.05 0.05 0.05 0.05 0.05 0.05 
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Table 2 

In this table we calculate the positive interior equilibrium of system (1.5) with 

the parameter values given in Table 1 for Scenario 1–3 of Lotka-Volterra form 

and for Scenario 1 with Holling’s type II functional response. 

Equilibrium Lotka-Volterra form 

Scenario 1 Scenario 2 Scenario 3 

A 500 500 500 

τ 158.6998 85.2867 158.6998 

I 16.1142 280.6375 1128.56 

Equilibrium Holling’s type II functional response, Scenario 1 

ε = 0.68 ε = 1 ε = 10 

A 793.6508 526.3158 50.2513 

τ 250.0769 166.8887 18.7488 

I 0.1118 13.0384 1144.3 
One can also prove that (see Magal and Zhang, 2017b ) when

0 = 0 then 

(t) = 0 , ∀ t ≥ 0 . 

his means that when τ 0 = 0, the system (1.5) becomes (1.1) . 

The goal of this article is to investigate the influence of intro-

ucing nematodes into a pine tree forest population. This can be

egarded as a predator-prey system where the prey has (possibly)

 complex dynamics describing a state-dependent delay differen-

ial equation. We will investigate some scenarios of the tree popu-

ation and add the parasite into such a population. 

The article is organized as follows. In the second section we

ompute the positive interior equilibrium. In the third section, we

ill conduct the numerical simulations of system (1.5) . We will

tart by reviewing some “classical” results about the predator-prey

odel in ODE case (1.1) . Then we will conduct some simulations of

ystem (1.5) in several cases and scenarios (see Table 1 ). We con-

lude the paper by discussing the numerical results to see what

nfluence the maturation delay and the introduction of nematodes

ring to the solutions. 

. Positive interior equilibrium 

The system (1.5) has a unique interior equilibrium 

 := 

μI 

εχγA − μI κ
, τ := 

s ∗ − s −
f ( A ) 

and I := 

(
βe −μJ τ − μA 

)1 + κA 

γA 

. 

herefore system (1.5) will have a unique positive interior equilib-

ium if and only if 

χγA − μI κ > 0 and βe −μJ τ − μA > 0 . (2.1) 

n particular if we assume that τ = 0 (i.e. s ∗ − s − = 0), we obtain

 unique positive interior equilibrium for system (1.1) if and only

f 

χγA − μI κ > 0 and β − μA > 0 . (2.2) 

emark 2.1. Even though we don’t know how to investigate an-

lytically the uniform persistence for system (1.5) , we strongly

uspect that the parasite will persist if and only if the condition

2.1) is satisfied. Therefore one may compare conditions (2.1) and

2.2) to see the effect of the vital dynamics of the tree population

n the persistence of parasite. 

. Numerical simulations 

In this section we will conduct some numerical simulations of

ystem (1.5) . According to the analysis in Magal and Zhang (2017a) ,
e have two scenarios of population dynamics of adult trees pop-

lation A ( t ) without nematodes (namely when I 0 = 0): a steady so-

ution (Scenario 1), a damped oscillating solution (Scenario 2). And

y changing one parameter μJ in Scenario 1, we will get a third

cenario: a periodic solution (Scenario 3). We list all the parame-

ers used in the numerical simulations for the three scenarios in

able 1 and calculate the positive interior equilibrium in Table 2 . 

.1. Model without maturation period – case τ = 0 

In this subsection we will review some results about the classi-

al predator-prey ODE system (1.1) . 

.1.1. Lotka-Volterra form – case κ = 0 

Set κ = 0, then system (1.1) becomes the classical Lotka-Volterra

odel 

 

 

 

dA (t) 

dt 
= (β − μA ) A (t) − γA I(t) A (t) , 

dI (t) 

dt 
= (εχγA A (t) − μI ) I(t) . 

(3.1) 

e use the parameter values of Scenario 1 of Lotka-Volterra form

n Table 1 for the numerical simulation in Fig. 1 . 
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Fig. 1. We plot the simulation of system (3.1) with parameters of Scenario 1 of Lotka-Volterra form in Table 1 : β = 2, μA = 0.001, γ A = 0.001, ε = 1, χ = 0.1, μI = 0.05. The 

initial values ( A 0 , I 0 ) are (550, 2200) (orange), (20 0 0, 250 0) (red) and (901.3603, 10 0 0) (blue). Figure (a) and (b) show the adult tree population number A ( t ) and the 

nematode population number I ( t ) respectively. Figure (c) shows the trajectory on the phase plane. The positive interior equilibrium is (500, 1999). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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For the parameter values of the other two scenarios of Lotka-

olterra form, the behaviours are similar and we omit those figures

here. 

3.1.2. Holling’s type II functional response – case κ > 0 

We use the parameter values of Scenario 2 with Holling’s type

II functional response in Table 1 for the numerical simulations of

system (1.1) and we get the following trajectory spiraling around

the positive interior equilibrium on the phase plane. 

We can see from Fig. 2 that after spiraling around the positive

equilibrium, the solution follows a line and blow up when the time

t goes to infinity. For the remaining sets of parameters correspond-

ing to the other two scenarios in Table 1 , similar behaviours hap-

pen. 

3.2. Simulation with maturation period – case τ > 0 

In this section we conduct numerical simulations of system

(1.5) with parameter values given in Table 1 . 
.2.1. Lotka-Volterra form – case κ = 0 

We set κ = 0, then system (1.5) is of Lotka-Volterra form. 

Scenario 1 (no oscillations): In this part, the parameters of

he system are chosen such that in absence of parasite (i.e. when

 0 = 0), the number of adult trees A ( t ) has no oscillations around

he positive equilibrium A (see Fig. 3 ). 

Now we introduce the nematodes, namely we set I 0 = 10 0 0, and

e have the following figures. 

We find that after the introduction of nematodes, the steady

olution A ( t ) becomes oscillated with a varying amplitude and the

aturation period τ ( t ) of trees is decreased. But after conducting

 longtime simulation, we see that the amplitude of A ( t ) is grad-

ally stablized and the trajectory converges to a limit cycle (see

ig. 5 ). This seems to be related to the periodic solution of the

otka-Volterra model. Moreover, the maximal value of A ( t ) is also

ncreased after we introduce the nematodes. However, compared

ith the Lotka-Volterra model (the blue curve in Fig. 1 ), the am-

litudes of oscillations of both A ( t ) and I ( t ) are reduced here. 

Scenario 2 (damped oscillations): In this part, the parameters

f the system are chosen such that in absence of parasite (i.e. when
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Fig. 2. We plot the simulation of system (1.1) with parameters of Scenario 2 with Holling’s type II functional response in Table 1 : β = 4, μA = 0.0037, γ A = 0.001, ε = 1, 

χ = 0.1, μI = 0.05, κ = 0.0 0 01. The initial values are A 0 = 526, I 0 = 4206. Figure (a) and (b) show the adult tree population number A ( t ) and the nematode population number 

I ( t ) respectively. Figure (c) shows the trajectory on the phase plane. A simple calculation shows that the positive interior equilibrium is (526.3158, 4206.6). 

Fig. 3. We plot the simulation of forest model (1.5) with parameters of Scenario 1 of Lotka-Volterra form in Table 1 : μA = 0.001, μJ = 0.03, β = 2, δ = 0.1, γ A = 0.001, κ = 0, 

ε = 1, χ = 0.1, μI = 0.05. We take the distribution of A ( t ) on the time interval [0, 200] (which comes from the data in Magal and Zhang (2017a) ) and τ 0 = 121 as the initial 

distribution and at the time t = 200 we introduce the nematodes with the initial value I 0 = 0. Figure (a) shows the adult tree population number A ( t ) and Figure (b) shows 

the corresponding time delay τ ( t ). 
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Fig. 4. We plot the simulation of the system (1.5) for Scenario 1 of Lotka-Volterra form in this figure. The parameters and the initial distributions are the same as in Fig. 

3 except that at the time t = 200 we introduce the nematodes with the initial value I 0 = 10 0 0. Figure (a) and (b) show the adult tree population number A ( t ) and the 

nematode population number I ( t ) respectively. Figure (c) shows the corresponding time delay τ ( t ) and Figure (d) shows the behaviour on the phase plane. 
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I 0 = 0), the number of adult trees A ( t ) has some damped oscilla-

tions around the positive equilibrium A (see Fig. 6 ). 

Now if we fix I 0 = 10 0 0, we obtain Fig. 7 . 

We can see that the damped oscillating solution A ( t ) becomes

undamped and the amplitude is varying more significantly and

more rapidly after we introduce the nematodes. However, the max-

imal value of A ( t ) is decreased instead and the maturation pe-

riod τ ( t ) of the trees is also decreased. Compared with the Lotka-

olterra model (the blue curve in Fig. 1 ), the amplitudes of oscilla-

tions of both A ( t ) and I ( t ) are also reduced here. On the other hand,

compared with Scenario 1, the longtime behaviour is different. The

solutions A ( t ) and I ( t ) is still periodic but the limit cycle doesn’t

exist any more (see Fig. 8 ). The nematode population number I ( t )

is also increased and the maturation period τ ( t ) is decreased com-

pared with Scenario 1. 

Scenario 3 (undamped oscillations): In this scenario, the only

change is the parameter μJ , which passes from 0.03 in Scenario

1 to 0.0036 in Scenario 3. As a consequence, in absence of par-

asite (i.e. when I 0 = 0), the number of adult trees A ( t ) has some

undamped oscillations around the positive equilibrium A (see Fig.

9 ). 

Now we set I 0 = 10 0 0, and we have the following figures. 

We can see that after we introduce the nematodes, the periodic

solution of A ( t ) is no longer periodic but with complex oscillations

around the positive equilibrium (500, 1128.56) (see Fig. 11 for a

detailed view). Compared with the Lotka-Volterra model (the blue

curve in Fig. 1 ), the range of oscillations of both A ( t ) and I ( t ) is also
 u  
educed, as the previous two scenarios do. Compared with the pre-

ious two scenarios, the range of the oscillation of A ( t ) is reduced,

hile the number of nematodes I ( t ) is largely increased. The mat-

ration delay of the tree population is also increased, which might

e the consequence of the large quantity of nematodes slowing

own the growth of trees. 

.2.2. Holling’s type II functional response – case κ > 0 

Now we turn to the Holling’s type II functional response. We

ill set κ = 0.0 0 01 in this part. 

We start with the numerical simulation of Scenario 1. When

 0 = 0, this will be the same result as in Fig. 3 , namely the for-

st model without nematode will have no oscillations. Now we set

 0 = 10 0 0 and ε = 0.68, and we get the following results. 

We can see that after the introduction of nematodes, the so-

ution A ( t ) is oscillating and both solutions A ( t ) and I ( t ) converge

o the positive interior equilibrium (793.6508, 0.1118), and as the

quilibrium of I ( t ) is very small (0.1118), the longtime behaviour

s actually still similar to the system without nematode, namely

ig. 3 . This is probably due to the small value of the conversion

fficiency ε and thus the biomass transformed from trees to ne-

atodes is rather little, which is a disadvantage for the nematodes

o persist in a large quantity. Something else happens if we set ε
arger ( Fig. 13 ). 

With the increase of the conversion efficiency ε = 1, which cre-

tes some benefits for the nematode at some level, we get the

niform persistence for both solutions A ( t ) and I ( t ), and both so-
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Fig. 5. We plot the longtime behaviour of the simulation in Fig. 4 in the time interval [14,0 0 0, 15,0 0 0]. The parameters and the initial distribution are the same as in Fig. 

4 . Figure (a) and (b) show the adult tree population number A ( t ) and the nematode population number I ( t ) respectively. Figure (c) shows the trajectory on the phase plane. 

The trajectory converges to a limit cycle. 

Fig. 6. We plot the simulation of forest model (1.5) with parameters of Scenario 2 of Lotka-Volterra form in Table 1 : μA = 0.0037, μJ = 0.031, β = 4, δ = 0.1, γ A = 0.001, κ = 0, 

ε = 1, χ = 0.1, μI = 0.05. We take the distribution of A ( t ) on the time interval [0, 180] (which comes from the data in Magal and Zhang (2017a) ) and τ 0 = 127 as the initial 

distribution and at the time t = 180 we introduce the nematodes with the initial value I 0 = 0. Figure (a) shows the adult tree population number A ( t ) and Figure (b) shows 

the corresponding time delay τ ( t ). 
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Fig. 7. We plot the simulation of the system (1.5) for Scenario 2 of Lotka-Volterra form in this figure. The parameters and the initial distributions are the same as in Fig. 

6 except that at the time t = 180 we introduce the nematodes with the initial value I 0 = 10 0 0. Figure (a) and (b) show the adult tree population number A ( t ) and the 

nematode population number I ( t ) respectively. Figure (c) shows the corresponding time delay τ ( t ) and figure (d) shows the behaviour on the phase plane. 

Fig. 8. We plot the longtime behaviour of the simulation in Fig. 7 in the time interval [156,0 0 0, 160,0 0 0]. The parameters and the initial distribution are the same as in Fig. 

7 . Figure (a) and (b) show the adult tree population number A ( t ) and the nematode population number I ( t ) respectively. Figure (c) shows the trajectory on the phase plane. 

The trajectory doesn’t converge to a limit cycle any more. 
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Fig. 9. We plot the simulation of forest model (1.5) with parameters of Scenario 3 of Lotka-Volterra form in Table 1 : μA = 0.001, μJ = 0.0036, β = 2, δ = 0.1, γ A = 0.001, κ = 0, 

ε = 1, χ = 0.1, μI = 0.05. We take the distribution of A ( t ) on the time interval [0, 200] (which comes from the data in Magal and Zhang (2017a) ) and τ 0 = 121 as the initial 

distribution and at the time t = 200 we introduce the nematodes with the initial value I 0 = 0. Figure (a) shows the adult tree population number A ( t ) and Figure (b) shows 

the corresponding time delay τ ( t ). 

Fig. 10. We plot the simulation of the system (1.5) for Scenario 3 of Lotka-Volterra form in this figure. The parameters and the initial distributions are the same as in 

Fig. 9 except that at the time t = 200 we introduce the nematodes with the initial value I 0 = 10 0 0. Figure (a) and (b) show the adult tree population number A ( t ) and the 

nematode population number I ( t ) respectively. Figure (c) shows the corresponding time delay τ ( t ) and Figure (d) shows the behaviour on the phase plane. 
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Fig. 11. We plot the longtime behaviour of the simulation in Fig. 10 in the time interval [190 0 0, 20 0 0 0]. The parameters and the initial distribution are the same as in 

Fig. 10 . Figure (a) and (b) show the adult tree population number A ( t ) and the nematode population number I ( t ) respectively. The solutions oscillate around the positive 

equilibrium (500, 1128.56). 

Fig. 12. We plot the simulation of the system (1.5) with parameters of Scenario 1 with Holling’s type II functional response in Table 1 : μA = 0.001, μJ = 0.03, β = 2, δ = 0.1, 

γ A = 0.001, κ = 0.0001, ε = 0.68, χ = 0.1, μI = 0.05. We take the distribution of A ( t ) on the time interval [0, 200] and τ 0 = 121 as the initial distribution and at the time 

t = 200 we introduce the nematodes with the initial value I 0 = 10 0 0. Figure (a) and (b) show the adult tree population number A ( t ) and the nematode population number I ( t ) 

respectively. Figure (c) shows the corresponding time delay τ ( t ) and Figure (d) shows the behaviour on the phase plane. The solutions A ( t ) and I ( t ) converge to the positive 

interior equilibrium (793.6508, 0.1118) (calculated in Table 2 ). 
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Fig. 13. We plot the simulation of the system (1.5) for Scenario 1 with Holling’s type II functional response in this figure. The parameters and initial distributions and the 

meaning of each figure are the same as in Fig. 12 except that ε = 1. We get oscillating solutions. 
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utions exhibit oscillations and the amplitude is largely varying at

he beginning and then become stable (actually a long time sim-

lation shows that the “stable” amplitude is still increasing very

lowly). This also shows that the positive equilibrium (526.3158,

3.0384) (calculated in Table 2 ) is not stable. Moreover, the max-

mal value of A ( t ) is increased and the maturation period τ ( t ) of

rees is decreased compared with both the case ε = 0.68 ( Fig. 12 )

nd the case I 0 = 0 ( Fig. 3 ). 

We increase ε again to see what happens next. 

When we set ε = 10, no complex oscillations are occurring as in

he case ε = 1. The nematode population I ( t ) reaches a large quan-

ity quickly after it is introduced, due to the high conversion effi-

iency, and thus the tree population is decreased quickly. After this

he tree population oscillates to almost an extinction state but they

ersist again. This is possibly because the decrease of the tree pop-

lation leads to the decrease of the nematode population, which

reates again a favorable environment for the trees to survive. The

olutions both persist in the end and are continuously oscillating

ith small amplitudes (see Fig. 15 ). 

emark 3.1. We have run some simulations for the other two sce-

arios with different values of ε and we find that the system ex-

ibits similar behaviours as Scenario 1. We have also run some

imulations for the system with Holling’s type III functional re-

ponse, namely the following system 
 

 

 

 

 

 

 

 

 

 

 

 

 

dA (t) 

dt 
= f (A (t)) 

βA (t − τ (t)) 

f (A (t − τ (t))) 
e −μJ τ (t) − μA A (t) − γA I(t) A 

2 (t)

1 + κA 

2 (t)∫ t 

t −τ (t ) 
f (A (σ )) dσ = 

∫ 0 

−τ0 

f (A 0 (σ )) dσ, 

dI (t) 

dt 
= 

(
εχγA A 

2 (t) 

1 + κA 

2 (t) 
− μI 

)
I(t) , 

nd we also have similar behaviours as in the case of Holling’s type

I functional response. 

. Discussion 

Predator-prey systems, or more generally, consumer-resource 

ystems, play a fundamental role in ecology. Different mechanisms

etween predator and prey will lead to different models with dif-

erent functional responses ( Accolla, 2015; Poggiale, 1998 ). In this

aper, we build a predator-prey model with Lotka-Volterra form

ompetition and Holling’s type II functional response and with a

tate-dependent maturation delay for the prey population. This is

ased on a forest model, which is constructed in Magal and Zhang

2017a) and in general leads to three scenarios of forest population

ynamics (no oscillations, damped oscillations, undamped oscilla-

ions), and we incorporate the nematode population into this forest

odel. 

We conduct numerical simulations for the three scenarios and

wo types of functional responses. First, with Lotka-Volterra form

ompetition, after we introduce a non-null state-dependent delay

o describe the maturation period of the tree population, the so-

utions start with complex oscillations and then become regular,
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Fig. 14. We plot the simulation of the system (1.5) for Scenario 1 with Holling’s type II functional response in this figure. The parameters and initial distributions and the 

meaning of each figure are the same as in Fig. 12 except that ε = 10. We get slightly oscillating solutions. 

Fig. 15. We plot the simulation of the solution A ( t ) and I ( t ) in Fig. 14 in the time interval [1800, 2000] in this figure. The solutions are oscillating with small amplitude. 
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that is to say, the solutions converge to a limit cycle again in Sce-

nario 1 and undergo some superposition of two oscillations in Sce-

nario 2 and 3. Moreover, for all the three scenarios, the two so-

lutions still persist, only with a reduced amplitude of oscillations

compared with the corresponding system without the maturation

delay (system (3.1) ). 

With Holling’s type II functional response, the system is per-

turbed vastly after the introduction of the maturation delay, and

the previous unbounded solution becomes bounded. But this also

depends on the rate of conversion efficiency of the energy from

prey to predator. When this rate is too low, the predator can’t per-

sist, and thus the system has similar behaviours as the case when
here is no predator. If this rate of conversion efficiency is rather

igh, the system risks of going to extinction for both predator and

rey but it adapts itself to a persisting state again. 

Now, from another point of view, after we introduce the nema-

odes into the forest, no matter which type of functional response

t is, we see that the solution A ( t ) which doesn’t oscillate before

Scenario 1) starts to oscillate, and which has oscillations (damped

r periodic) before (Scenario 2 and 3) undergoes undamped oscil-

ation after the introduction of nematodes. 

We might also notice that after the introduction of nematodes,

he maturation delay τ ( t ) is also reduced for all three scenarios

nd two types of functional responses. That is because with the
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Fig. 16. In this figure we present the characteristic curves (A.2) . 
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ntroduction of nematodes I ( t ), the adult tree population number

 ( t ) is affected, then by the second equation of system (1.5) , which

s used to solve τ ( t ), this maturation delay will also be affected.

oreover, we need to point out that the unit of the solution τ ( t )

s “year”. Then there seems to be something unrealistic here in

hat in some cases, the equilibrium of τ ( t ) is more than 100, which

eans that it needs more that 100 years for a tree to grow mature.

ctually, the delay τ ( t ) is used to describe the time needed for the

rees to grow to be adults, and also, to be able to produce new

enerations in the middle of a forest. This means that the trees

an be affected by the other surrounding trees, then not so many

rees can survive to be able to produce an adult tree and thus on

verage it takes a longer time for them to grow. 

ppendix A. Derivation of the state-dependent delay 

ifferential equation 

We can transform the system (1.3) into a state-dependent de-

ay differential equation using the method in Magal and Zhang

2017a); Smith (1993, 1994) . Differentiating the following formula 

 (t) = 

∫ + ∞ 

s ∗
u (t, s ) ds 

ith respect to t , we have 

dA (t) 

dt 
= 

∫ + ∞ 

s ∗
∂ t u (t, s ) ds 

= − f (A (t)) 

∫ + ∞ 

s ∗
∂ s u (t, s ) ds −

∫ + ∞ 

s ∗

[
μ(s ) + 

γ (s ) I(t) 

1 + κA (t) 

]
u ( t, s ) ds 

= f (A (t)) u (t, s ∗) −
∫ + ∞ 

s ∗

[
μ(s ) + 

γ (s ) I(t) 

1 + κA (t) 

]
u (t, s ) ds . 

(A.1) 

ext we deal with the term u ( t , s ∗). The characteristic curves for the first

quation in (1.3) are (shown in Fig. 16 ) 

ds (t) 

dt 
= f (A (t)) . (A.2) 

Then we will have the following representation of s 

 (t) = C + 

∫ t 

0 

f (A (σ )) dσ. (A.3) 

uppose t ∗ is the time when juveniles present at time 0 become

dults, namely 

 t ∗

f (A (σ )) dσ = s ∗ − s −. 

0 
e can see that the curve 

 = 

{
(t, s ) : 0 ≤ t ≤ t ∗, s = s − + 

∫ t 

0 

f (A (σ )) dσ

}

ivides the strip [0 , + ∞ ) × [ s −, s ∗] into two parts R 1 and R 2 . As-

uming that s − s − ≤ ∫ t 
0 f (A (σ )) dσ , then we can find T ( t , s ) � 0

uch that 
 t 

t −T (t ,s ) 
f (A (σ )) dσ = s − s −

n the region R 2 , so it denotes the time it takes for a juvenile to

row to size s at time t from the minimal size s −. Replacing s in

 ( t , s ) with (A.3) , we can compute formally as follows, assuming

hat u is a C 1 -function: 

d 

dt 
u 

(
t, C + 

∫ t 

0 

f (A (σ )) dσ

)

= ∂ t u 

(
t, C + 

∫ t 

0 

f (A (σ )) dσ

)

+ f (A (t )) ∂ s u 

(
t , C + 

∫ t 

0 

f (A (σ )) dσ

)

= −
[ 

μ

(
C + 

∫ t 

0 

f (A (σ )) dσ

)
+ 

γ
(
C + 

∫ t 
0 f (A (σ )) dσ

)
I(t) 

1 + κA (t) 

]

u 

(
t, C + 

∫ t 

0 

f (A (σ )) dσ

)
. 

his is a separable ODE with respect to t . Integration of this equa-
ion, and by using the initial distribution and the boundary condi-
ion, we obtain the following expression of u ( t , s ) 

 (t, s ) = 
{

u 0 

(
s −

∫ t 

0 
f (A (σ )) dσ

)
exp 

{
−

∫ t 

0 

[
μ

(
s −

∫ t 

0 
f (A (σ )) dσ + 

∫ l 

0 
f (A (σ )) dσ

)

+ 
γ
(

s − ∫ t 
0 f (A (σ )) dσ + ∫ l 0 f (A (σ )) dσ

)
I(l) 

1 + κA (l) 

⎤ 

⎦ dl 

⎫ ⎬ 

⎭ 

, if s ≥ s − + 
∫ t 

0 
f (A (σ )) dσ, 

βA (t − T (t, s )) 

f (A (t − T (t, s ))) 
exp 

{
−

∫ t 

t −T (t ,s ) 

[
μ

(
s − + 

∫ l 

t −T (t ,s ) 
f (A (σ )) dσ

)

+ 
γ
(

s − + ∫ l t −T (t ,s ) f (A (σ )) dσ
)

I(l) 

1 + κA (l) 

⎤ 

⎦ dl 

⎫ ⎬ 

⎭ 

, if s ≤ s − + 
∫ t 

0 
f (A (σ )) dσ. (A.4) 

henever s ∗ − s − ≤ ∫ t 
0 f (A (σ )) dσ , we can specifically define τ ( t ) : = T ( t , s ∗) as the solu-

ion of 

 t 

t −τ (t ) 
f (A (σ )) dσ = s ∗ − s − . (A.5) 

ctually the term τ ( t ) = T ( t , s ∗) represents the maturation period of one individual. 

We now assume 

(s ) = 

{
μA > 0 , if s ≥ s ∗, 

μJ > 0 , if s < s ∗, 
γ (s ) = 

{
γA ≥ 0 , if s ≥ s ∗, 

γJ ≥ 0 , if s < s ∗. 

hen the third equation of (1.3) becomes 

dI (t) 

dt 
= 

[ 
εχ

1 + κA (t) 
(γA A (t) + γJ J(t)) − μI 

] 
I(t) . (A.6) 

hen s = s ∗, we have for t ∈ [0, t ∗], 

 (t, s ∗) = u 0 

(
s ∗ −

∫ t 

0 

f (A (σ )) dσ

)
e −μJ t−γJ 

∫ t 
0 

I(l) 
1+ κA (l) 

dl 
, 

nd for t > t ∗, 

 (t, s ∗) = 

βA (t − τ (t)) 

f (A (t − τ (t))) 
e −μJ τ (t) −γJ 

∫ t 
t −τ (t ) 

I(l) 
1+ κA (l) 

dl 
. 
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Replacing u ( t , s ∗) back in (A.1) for t > t ∗, we get the equation of

A ( t ) in (1.4) : 

dA (t) 

dt 
= 

f (A (t)) 

f (A (t − τ (t))) 
e −μJ τ (t) −γJ 

∫ t 
t −τ (t ) 

I(l) 
1+ κA (l) 

dl βA (t − τ (t)) 

−μA A (t) − γA 

A (t) 

1 + κA (t) 
I(t) . 

(A.7)

Set γ J = 0. Then when t > t ∗, system (1.3) is transformed into sys-

tem (1.5) . 

Appendix B. Derivation of the numerical scheme 

We will give the numerical scheme in this appendix for the sys-

tem (1.5) . First we can rewrite system (1.5) in the following form: ⎧ ⎪ ⎨ 

⎪ ⎩ 

A 

′ (t) = F (A (t ) , I(t ) , τ (t ) , A (t − τ (t ))) , ∫ t 

t −τ (t ) 
f (A (σ )) dσ = s ∗ − s −, 

I ′ (t) = G (A (t ) , I(t )) . 

(B.1)

where 

F (A 0 , I, τ, A −τ ) := 

f (A 0 ) 

f (A −τ ) 
e −μJ τ βA −τ − μA A 0 − γA 

A 0 

1 + κA 0 

I 

and 

G (A, I) := 

(
εχγA A 

1 + κA 

− μI 

)
I. 

First we give a derivation of the numerical scheme of the compu-

tation of τ ( t ). From the second equation of (B.1) we have ∫ t 

t −τ (t ) 
f (A (σ )) dσ = 

∫ t+�t 

t +�t −τ (t +�t ) 
f ( A ( σ )) dσ, 

which is equivalent to ∫ t+�t 

t −τ (t ) 
f (A (σ )) dσ + 

∫ t 

t+�t 

f (A (σ )) dσ

= 

∫ t −τ (t ) 

t +�t −τ (t +�t ) 
f (A (σ )) dσ + 

∫ t+�t 

t −τ (t ) 
f ( A ( σ )) dσ. 

So ∫ t 

t+�t 

f (A (σ )) dσ = 

∫ t −τ (t ) 

t +�t −τ (t +�t ) 
f ( A ( σ )) dσ. (B.2)

Assume �t is small enough, then f ( A ( σ )) can be seen as a constant

function on the interval [ t , t + �t ] and [ t − τ ( t ), t + �t − τ ( t + �t )].

Thus we approximate f ( A ( σ )) by f ( A ( t )) in the first integral and by

f ( A ( t − τ ( t ))) in the second integral in (B.2) , and we have the fol-

lowing approximation 

�tf (A (t)) = (�t − τ (t + �t) + τ (t)) f (A (t − τ (t))) , 

and 

τ (t + �t) = τ (t) + �t 

(
1 − f (A (t)) 

f (A (t − τ (t))) 

)
. 

Then the numerical scheme used in this article will be ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

A (t + �t) = �tF (A (t ) , I(t ) , τ (t ) , A (t − τ (t ))) + A (t) , 

τ (t + �t) = �t 

(
1 − f (A (t)) 

f (A (t − τ (t))) 

)
+ τ (t) , 

I(t + �t) = �tG (A (t ) , I(t )) + I(t) . 

(B.3)

It remains to find a numerical approximation to calculate

A ( t − τ ( t )), namely the past value of A at time t − τ ( t ) in the above

approximation, which might not be given in the previous calcula-

tion because t − τ ( t ) might not be in our discretized sequence of

time for the simulation. In order to determine this value, we use
he method of linear interpolation. First we determine the time in-

erval [ t n , t n +1 ] (with t n : = n �t for some integer n ∈ Z ) to which

he time t − τ ( t ) belongs, then we use the following linear interpo-

ation 

 (t − τ (t)) ≈ A (t n ) + (t − τ (t) − t n ) 
A (t n +1 ) − A (t n ) 

t n +1 − t n 
(B.4)

o get the approximation of the value A ( t − τ ( t )). This will be

ore accurate than the rough approximation of using just A ( t n ) or

 ( t n +1 ). 
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