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Foreword

Prediction is very difficult, especially about the future. – Niels Bohr

I know that in the study of material things number, order, and position are the
threefold clue to exact knowledge: and that these three, in the mathematician’s
hands, furnish the ‘first outlines for a sketch of the Universe’. – D’Arcy Thomp-
son, On Growth and Form (1917)

The subject of differential equations has a long and storied history. At its founda-
tion is the fundamental nature of physical change. More than two centuries ago, dif-
ferential equations describing physical change were studied and applied with monu-
mental success. The subject has grown ever since with extraordinary productivity in
mathematical theory and scientific applications. The development of recent models
of dynamical processes offer ever-increasing mathematical challenge. At the core of
this mathematical challenge, there are fundamental ideas.

One of the most important fundamental ideas in models of physical change is the
assumption of determinism. The basic idea is that the present determines the future.
This idea is encompassed into differential equations of dynamical processes as a
known initial condition at a specified time 0. Newton’s second law states that the rate
of change of momentum of a body is directly proportional to the force applied: F =
mdv/dt, where m is the mass and v is the velocity. If the initial velocity v(0) of the
body is known, then the future velocity is known for all time. This conceptualization
of deterministic behavior is a foundational mathematical description of scientific
phenomena.

An alternative view of determinism is that the past determines the future. This
idea encompasses into the differential equations of dynamical processes a require-
ment that the future forward from an initial time 0 is dependent on the history of the
process up to time 0. The initial condition of such a process must incorporate more
than the current state, but in addition, a past history of the current state.

The mathematical theory of the differential equations of history-determined pro-
cesses has a much more recent development. The subject is known as functional
differential equations. A key role in the development of functional differential equa-
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tions was played by Jack Hale. In his 1977 monograph (Theory of Functional Dif-
ferential Equations, Springer-Verlag), the theory of ordinary differential equations
in finite dimensional spaces was extended to functional differential equations in
a comprehensive treatment. Theoretical results about existence, uniqueness, initial
conditions, stability, periodicity, asymptotic behavior, and other basic ideas were
developed. One of the key ideas was the formulation of functional differential equa-
tions as abstract ordinary differential equations in infinite dimension spaces. This
idea is accomplished by utilizing the theory of semigroups of linear operators in
infinite dimensional spaces.

The theory of linear semigroups of operators has been developed extensively and
key roles were played by the monographs of E. Hille and R.S. Phillips (Functional
Analysis and Semi-Groups, Amer. Math. Soc.,1948; 1957), K. Yosida (Functional
Analysis, Springer-Verlag, 1965), T. Kato (Perturbation Theory of Linear Opera-
tors, Springer-Verlag, 1966), and A. Pazy (Semigroups of Linear Operator and Ap-
plications to Partial Differential Equations, Springer-Verlag, 1983). The basic idea
of a semigroup of operators is the idea of an exponential process. The solution of
the abstract differential equation dx(t)/dt = Ax(t), in an infinite dimensional space
X , with initial condition x(0) = x0, is x(t) = etAx0, where x0 ∈ X and etA is the ex-
ponential of tA. If A is a bounded operator (matrix), then etA is ∑

∞
n=0 tnAn/n!. If A is

an unbounded linear operator, then etA = limn→∞(I− t/nA)−n, where (I−λA)−1 is
the resolvent of A. The operator A is called the infinitesimal generator of the semi-
group of linear operators T (t) = etA, t ≥ 0. In classical linear semigroup theory, A is
densely defined in the state space X .

A linear semigroup of operators can be viewed as a generalized version of the ex-
ponential of the infinitesimal generator. Linear operator semigroup theory is called
abstract Cauchy theory. The theory of first-order nonlinear perturbations of under-
lying linear abstract Cauchy problems is called abstract semi-linear Cauchy theory.
A history dependent deterministic dynamical process can be viewed, in an appropri-
ate setting and an appropriate formulation, as an exponential process or a nonlinear
version of an exponential process. There are many applications of abstract Cauchy
problems, both linear and nonlinear.

In this monograph Pierre Magal and Shigui Ruan develop an extension of linear
operator semigroup theory to the case that the semigroup has an integrated form.
This case arises when the infinitesimal generator is not densely defined in the state
space of the operators. In this case the theoretical results for the classical case of
densely defined infinitesimal generators must be extended, and sometimes with very
elaborate theoretical extensions. The theory of integrated semigroups of operators
with non-densely defined infinitesimal generators reveals the power of the funda-
mental concept of exponential processes. Pierre Magal and Shigui Ruan have been
at the forefront of this development, in both its theoretical aspects and it applications
to scientific problems.

One of these applications is to functional differential equations with partial
derivative terms. These models have applications to problems involving spatial be-
havior, for example in models in which spatial diffusion plays a role. Another ap-
plication is to structured population models. These models track the evolution of a
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population in time, but also in the organization of their structure with respect to age,
size, or other individual variation. Age structure is very useful in describing many
biological species, such as humans in demographic contexts. The continuum version
of such models leads to an abstract Cauchy problem in a space of possible age den-
sities of the given population. Size structured populations are another version of a
useful way to organize population investigations. Size structure is sometimes more
appropriate for analyzing population behavior, for example in micro-species such
as cell populations. The evolution of a size structured population can be modeled as
an abstract Cauchy problem in an appropriate infinite dimensional space of possible
size densities. All the issues of population behavior, such as existence, uniqueness,
asymptotic behavior, stability, and periodicity, can be investigated using abstract
Cauchy theory and semi-linear abstract Cauchy theory.

There is a connection between structured population equations and functional
differential equations. For example, the evolution of age structure in a population
can be viewed as determined by the initial age structure of the population in an in-
finite dimensional space of age densities at initial time 0. It can also be viewed as
determined by a history-dependent age structure of the population before the initial
time 0. If the age of all individuals in a population is known, then their birth dates are
known. Conversely, if the birth dates and the history of all individuals are known,
then their age is known at the present time. Structured population models and func-
tional differential equations models have great utility in scientific applications, and
their theoretical analysis is grounded in the development found in this monograph.

The subject of abstract Cauchy theory has developed rapidly in recent years,
with an expanding community of researchers. There is an important need for a com-
prehensive treatment of this expanding subject. This monograph provides such a
comprehensive treatment and has great value to researchers in this field, both theo-
reticians and applied scientists.

Nashville, USA Glenn Webb
July 2017





Preface

Although mathematics ranks last in the Six Arts (rites, music, archery, chariot
racing, calligraphy and mathematics), it is used in the most practical issues and
affairs. Maximally, it enables understanding of the underlying myths of things and
comprehension of their nature and developmental regularities. Minimally, it can be
used in dealing with small affairs and solving multiple trivial issues. – QIN Jiushao,
Preface to “Mathematical Treatise in Nine Sections” (1247)

Mathematics has a threefold purpose. It must provide an instrument for the study
of nature. But this is not all: it has a philosophical purpose, and, I daresay, an
aesthetic purpose. – Henri Poincaré

We first met in Nashville, Tennessee in the fall of 2001, when one of us (SR) was
on sabbatical at Vanderbilt University while the other one (PM) was visiting the
school. Both of us were working with Glenn Webb on various problems in math-
ematical biology, in particular age-structured biological models described by first
order hyperbolic partial differential equations.

There are different approaches to study age-structured population models. One
approach, using the theory of semigroups of operators since the late 1970s, became
very powerful and important, mainly due to the work by Glenn Webb. His mono-
graph, “Theory of Nonlinear Age-Dependent Dynamics” (Marcel Dekker, 1985),
remains the classical reference in treating age-structured models using functional
analytic techniques of nonlinear semigroups and evolution operators. The principle
of linearized stability, established in Webb’s monograph, says that a steady state is
exponentially stable if the spectrum of the infinitesimal generator of the linearized
semigroup lies entirely in the open left half-plane, whereas it is unstable if there is
at least one spectral value lying in the open right half-plane (i.e. with positive real
part). This not only provides a fundamental tool to study stability of age-structured
models, but also indicates that periodic solutions may exist in age-structured mod-
els via Hopf bifurcation when spectral values leave the left half-plane, cross the
purely imaginary axis, and enter the right half-plane as some parameter varies. The
existence of non-trivial periodic solutions in age-structured models was observed
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in some studies by Cushing [77] (1980), Levine [227] (1983), Prüss [294] (1983),
Diekmann et al. [103] (1986), Hastings [182] (1987), Swart [324] (1988) and so
on in the 1980s. Our original goal was to establish a Hopf bifurcation theorem for
general age-structured models. The project turned out to be much bigger than we
expected.

Consider a general age-structured model
∂v(t,a)

∂ t
+

∂v(t,a)
∂a

=−D(a)v(t,a)+M(µ,v(t, .))(a), a≥ 0, t ≥ 0,

v(t,0) = B(µ,v(t, .))
v(0, .) = v0 ∈ Lp ((0,+∞) ,Rn) ,

(1)

where p∈ [1,+∞), µ ∈R is a parameter, D(.)= diag(d1(.), ...,dn(.))∈ L∞((0,+∞),
Mn(R+)), M :R×L1((0,+∞),Rn)→ L1((0,+∞),Rn) is the mortality function, and
B : R×L1((0,+∞),Rn)→ Rn is the birth function. Consider the Banach space

X = Rn×Lp ((0,+∞) ,Rn) ,

the linear operator A : D(A)⊂ X → X defined by

A
(

0
ϕ

)
=

(
−ϕ(0)
−ϕ ′−Dϕ

)
with D(A) = {0}×W 1,p ((0,+∞)) ,

and the function F : R×D(A)→ X defined by

F
(

µ,

(
0
ϕ

))
=

(
B(µ,ϕ)
M(µ,ϕ)

)
.

Setting u(t) =
(

0
v(t, .)

)
, we can rewrite the age-structured model as the following

abstract Cauchy problem

du(t)
dt

= Au(t)+F (u(t),µ) , t ≥ 0; u(0) =
(

0
v0

)
∈ D(A). (2)

Observe that A is non-densely defined since

D(A) = {0}×Lp ((0,+∞) ,Rn) 6= X

and A is a Hille-Yosida operator if and only if p = 1. Thus, problem (2) is a non-
densely defined Cauchy problem in which the operator A might not be a Hille-
Yosida operator. In fact, several other types of differential equations, such as func-
tional differential equations, transport equations, parabolic partial differential equa-
tions, and partial differential equations with delay, can be formulated as non-densely
defined Cauchy problems in the form of (2). Some fundamental theories for such
problems have been very well studied. For example, Da Prato and Sinestrari [85]
investigated the existence of different types of solutions for partial differential equa-
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tions of hyperbolic and ultraparabolic type as well as equations arising from stochas-
tic control theory that can be formulated as non-densely defined Cauchy problems.

When A is densely defined and is a Hille-Yosida operator, abstract Cauchy prob-
lems have been extensively studied (we refer to, among others, the monographs of
Cazenave and Haraux [58], Engel and Nagel [126], Henry [183], Pazy [281], Sell
and You [314], Temam [327], van Neerven [346], Yagi [376], and especially to the
books of Haragus and Iooss [179], Hassard et al. [181], Kielhőfer [213], and Wu
[374] regarding the nonlinear dynamics such as the local bifurcation, center mani-
fold theory and normal forms). When A is non-densely defined, the constant of vari-
ation formula may not be well-defined and one must integrate the equation twice
to recover the well-posedness (this is how integrated semigroups are introduced).
Using integrated semigroup theory to investigate non-densely defined Cauchy prob-
lems started by Arendt in the 1980s and has been followed by many researchers
(we refer to the monograph of Arendt et al. [22] for a systematic treatment of such
problems).

The purpose of this monograph is to provide a self-contained presentation of
the fundamental theory of nonlinear dynamics for non-densely defined semilinear
Cauchy problems (in which the operator A may or may not be a Hille-Yosida opera-
tor), including the existence of integrated solutions, positivity of solutions, Lipschitz
perturbation, differentiability of solutions with respect to the state variable, time
differentiability of solutions, stability of equilibria, center manifold theory, normal
form theory, Hopf bifurcation, and applications to age-structured models, functional
differential equations and parabolic equations. It assumes a basic knowledge of real,
complex and functional analyses, ordinary and partial differential equations at the
senior undergraduate level and the graduate level.

In Chapter 1 we start by introducing some fundamental properties of matrices,
such as the spectrum, spectral bound, spectral radius, growth bound (rate), resolvent,
resolvent set, Laurent’s expansion of the resolvent, and the integral resolvent for-
mula, which can be served as a preview of the corresponding concepts for operators
that will be introduced in the following chapters. Then we review some fundamen-
tal results on nonlinear dynamics, in particular the center manifold theory, Hopf
bifurcation theorem, and normal form theory for Ordinary Differential Equations
(ODEs) and Retarded Function Differential Equations (RFDEs). Finally we demon-
strate that several classes of equations, including RFDEs, age structured models,
parabolic equations, and reaction-diffusion equations with delay, can be formulated
as abstract semilinear Cauchy problems.

Chapters 2-4 provide fundamentals in semigroup theory, spectral theory and
Cauchy problems. Chapter 2 provides a review of the basic concepts and results
on semigroups, resolvents, infinitesimal generators for linear operators and presents
the Hille-Yosida theorem for strongly continuous semigroups. We also introduce
Arendt’s theorem which gives a Laplace transform characterization for the infinites-
imal generator of a strongly continuous semigroup of bounded linear operators. Ba-
sic results on nonhomogeneous Cauchy problems with dense domain are given.

In Chapter 3 the integrated semigroup theory developed by Arendt, Hieber,
Kellermann, Neubrander, Thieme and others is introduced, and the Arendt-Thieme
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theorem on the necessary and sufficient conditions for the existence of a non-
degenerate integrated semigroup and its generator is stated. Then integrated semi-
group theory is used to investigate the existence and uniqueness of integrated solu-
tions of nonhomogeneous Cauchy problems; namely the Kellermann-Hieber theo-
rem when A is a Hille-Yosida operator and our own results when A is not a Hille-
Yosida operator are presented. Next we apply the results in this chapter to a vector
valued age-structured model in Lp.

Chapter 4 covers the spectral theory for linear operators. After listing some basic
properties for analytic mappings, fundamental results on the spectral theory, includ-
ing Fredholm alternative theorem and Nussbaum’s theorem on the radius of essential
spectrum, of bounded linear operators are presented. Then the growth and essential
growth bounds of linear operators are introduced and the main results are included
in Webb’s theorem on the relationship between the spectrum of semigroups and
the spectrum of their infinitesimal generators. Finally spectral decomposition of the
state space, the estimate of growth and essential growth bounds of linear operators
are given which will be used in the proof of the center manifold theorem.

Chapters 5-6 present the main theory in abstract semilinear equations. In Chap-
ter 5 we develop the fundamental theory for non-densely defined semilinear Cauchy
problems, including the existence of integrated solutions, positivity of solutions,
Lipschitz perturbation, differentiability of solutions with respect to the state vari-
able, time differentiability of solutions, and stability of equilibria.

In Chapter 6 we establish the center manifold theory, Hopf bifurcation theorem,
and normal form theory for abstract semilinear Cauchy problems with nondense
domain.

Chapters 7-9 deal with applications of the results developed in Chapters 5-6.
The goal of Chapter 7 is to apply the theories developed in Chapter 6 to functional
differential equations, including retarded functional differential equations, neutral
functional differential equations, and partial functional differential equations.

In Chapter 8 we treat age-structured models. Firstly we establish a Hopf bifurca-
tion theorem for the general age-structured systems. Then we consider a susceptible-
infectious epidemic model with age of infection, uniform persistence of the model
is established, local and global stability of the disease-free equilibrium is studied by
spectral analysis, and global stability of the unique endemic equilibrium is discussed
by constructing a Liapunov functional. Finally we focus on a scalar age-structured
model, detailed results on the existence of integrated solutions, local stability of
equilibria, Hopf bifurcation, and normal forms are presented.

In Chapter 9, we first consider linear abstract Cauchy problems with non-densely
defined and almost sectorial operators. Such problems naturally arise for parabolic
equations with nonhomogeneous boundary conditions. By using the integrated
semigroup theory, we then prove an existence and uniqueness result for integrated
solutions. We also study the linear perturbation problem. Finally we provide detailed
stability and bifurcation analyses for a scalar reaction-diffusion equation, namely, a
size-structured model.

All assumptions, corollaries, definitions, examples, lemmas, propositions, re-
marks, and theorems are enumerated consistently by three numbers, with the first
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representing the chapter, the second representing the section, and the third repre-
senting the number. For instance, Proposition 3.4.3 means in Chapter 3, Section 4,
property (Proposition) 4. All equations are enumerated in the same style. For exam-
ple, equation (3.4.5) represents equation 5 in Chapter 3, Section 3.

We would like to express our gratitude to our Ph.D. thesis supervisors, Ovide
Arino (PM) and Herbert I. Freedman1 (SR), for their influence and inspiration which
are lifetime. We are very grateful to Glenn Webb for his continuous guidance and
support, not only as our mentor but also as our collaborator and friend, the writing
of this monograph is indeed encouraged by his classical monograph. We are in-
debted to Wolfgang Arendt, Horst R. Thieme and Andre Vanderbauwhede for their
mathematical work that inspired our studies on this subject. Special thanks are due
to our collaborators, Jixun Chu, Arnaud Ducrot, Zhihua Liu, and Kevin Prevost, as
it would have been impossible to complete this monograph without their contribu-
tions. Some parts of the book have been taught by us at Beijing Normal University,
Harbin Institute of Technology and the University of Miami, and we thank the stu-
dents for their feedbacks and comments. We thank the six anonymous reviewers of
the earlier versions of the manuscript for their helpful comments and suggestions.
Thanks are also due to our Springer editors, Donna Chernyk and Achi Dosanjh, for
their patience and professional assistance.

We acknowledge the financial support by the French Ministry of Foreign and
European Affairs program EGIDE (PFCC 20932UL), National Institutes of Health
(R01GM083607), National Natural Science Foundation of China (No. 11771168),
and National Science Foundation (DMS-0412047, DMS-0715772, DMS-1022728,
DMS-1412454) during the years we spent doing research related to this monograph.
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Chapter 1
Introduction

The goal of this chapter is to introduce some fundamental theories for Ordi-
nary Differential Equations (ODEs), Retarded Functional Differential Equations
(RFDEs), and Age-structured Models and to derive abstract semilinear Cauchy
problems from these equations. It serves two purposes: to present a brief review
of the basic results on the nonlinear dynamics of these three types of equations and
to give a quick preview about the types of results we will develop for the abstract
semilinear Cauchy problems in this monograph.

1.1 Ordinary Differential Equations

1.1.1 Spectral Properties of Matrices

Let Mn(R) be the space of all n× n real matrices with the usual matrix norm.
Consider a matrix A ∈Mn(R). Define a family of matrices

{
eAt
}

t∈R by

eA := I +A+
A2

2!
+ ...=

+∞

∑
k=0

Ak

k!
, (1.1.1)

where I is the n×n identity matrix. Then

eA+B = eAeB

whenever A and B commute (i.e., AB = BA). Then we know that {eAt}t∈R forms a
group (flow) under composition:

(i) eA0 = I; (ii) eAteAs = eA(t+s); (iii) eAte−At = I, ∀t,s ∈ R.

One may also observe that the map t → eAt is continuously differentiable from R
into Mn (R) and

1
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d
dt

eAt = AeAt = eAtA, ∀t ∈ R.

Let λ1,λ2, · · · ,λm ∈C (m≤ n) be the eigenvalues of A with algebraic multiplicity
n1,n2, ...,nm, respectively, n1+n2+ · · ·+nm = n. Then Jordan’s decomposition says
that there exists an invertible matrix P ∈Mn (C) such that

A = P−1JP,

where J ∈Mn(R) is a block diagonal matrix

J =



Jλ1
n1 0 · · · · · · 0

0 Jλ2
n2

. . .
...

...
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · 0 Jλm

nm


,

in which the elementary Jordan blocks are defined by

Jλk
nk

= [λk] if nk = 1

and

Jλk
nk

=



λk 1 0 · · · 0

0 λk 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 λk


∈Mnk (C) if nk > 1.

Since J is a triangular matrix, its diagonal elements are the eigenvalues of A. The
spectrum of A is the set of all eigenvalues of A given by

σ (A) = {λ1, ...,λm} . (1.1.2)

Observe that for each k = 1, ...,m, one has

Jλk
nk

= λkI +Nnk ,

where Nnk is nilpotent of order nk; that is,

Nnk 6= 0, (Nnk)
2 6= 0, . . . ,(Nnk)

nk−1 6= 0, and (Nnk)
nk = 0.

Now we have

eJ
λk
nk t = e

(
λkI+J0

nk

)
t
= eλkt eJ0

nk
t

and
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eJ0
nk

t
=



1 t t2/2! · · · t(nk−1)/(nk−1)!

0 1 t
. . .

...
...

. . . . . . . . . t2/2!
...

. . . . . . t
0 · · · · · · 0 1


.

Therefore, by using the spectral theory of matrices, the asymptotic behavior of eAt

is entirely determined by
eAt = PeJtP−1,∀t ≥ 0.

The growth bound (rate) of A is defined as

ω(A) := lim
t→+∞

ln
(∥∥eAt

∥∥
L (Rn)

)
t

∈ (−∞,+∞) , (1.1.3)

where L (Rn) is the space of all linear operators on Rn with the operator norm ‖.‖ ,
namely,

‖A‖L (Rn) := sup
x∈Rn:0<‖x‖≤1

‖Ax‖
‖x‖

= sup
x∈Rn:‖x‖=1

‖Ax‖ . (1.1.4)

Remark 1.1.1. In general

e−ω(A)t ∥∥eAt∥∥→+∞ as t→+∞.

Indeed, for example, take

A =

[
0 1
0 0

]
.

Then we have
ω(A) = 0.

By using the explicit formula for the elementary Jordan blocks we have∥∥eAt∥∥
L (Rn)

→+∞ as t→+∞.

We have the following result.

Theorem 1.1.2. For the growth bound of a matrix A, one has

ω(A) = sup{Re(λ ) : λ ∈ σ (A)} . (1.1.5)

The right hand side of the above equality (1.1.5) is called the spectral bound of
A, denoted by s(A); namely,

s(A) = sup{Re(λ ) : λ ∈ σ(A)}. (1.1.6)

The spectral radius of A is defined as
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r(A) := lim
k→+∞

‖Ak‖1/k. (1.1.7)

For any given matrix it is usually more convenient to use the following characteri-
zation of the spectral radius

r(A) = max{|λ | : λ ∈ σ(A)}. (1.1.8)

Fig. 1.1: The spectrum σ(A), spectral radius r(A), and spectral bound s(A) of a matrix A.

If λ /∈ σ(A) (that is, λ is not an eigenvalue of the matrix A), then the matrix
λ I−A is invertible, so we can define a function

(λ I−A)−1 : C\σ(A)→L (Rn) ,

which is called the resolvent of A. The set C\σ(A) is called the resolvent set of A,
denoted by ρ(A); that is,

ρ(A) = C\σ(A) = {λ ∈ C : λ I−A is invertible}. (1.1.9)

For each λ ∈ ρ (A) , J is invertible and

(λ I− J)−1 =



(
λ I− Jλ1

n1

)−1
0 · · · 0

0
(

λ I− Jλ2
n2

)−1 . . .
...

...
. . . . . . 0

0 · · · 0
(
λ I− Jλm

nm

)−1

 ,
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where (note that Jλk
nk = λkI +Nnk )(

λ I− Jλk
nk

)−1
=
(
(λ −λk) I−Nnk

)−1

= (λ −λk)
−1
(

I− (λ −λk)
−1 Nnk

)−1

= (λ −λk)
−1

nk−1

∑
j=0

1

(λ −λk)
j N j

nk
.

Hence (
λ I− Jλk

nk

)−1
=

nk

∑
j=1

(λ −λk)
− j N j−1

nk
.

It follows that λ → (λ I−A)−1 is analytic from ρ (A) into L (Rn). Since a given
eigenvalue λ̂ ∈ σ(A) may appear in several Jordan’s blocks, we deduce that the
resolvent of A has the following Laurent’s expansion of resolvent (for matrices)
around λ̂ :

(λ I−A)−1 =
+∞

∑
n=−m̂

(
λ − λ̂

)n
Bn, (1.1.10)

where m̂ := max{nk : k = 1, ...,m and λk = λ̂} and Bn is given by

Bn =
1

2πi

∫
SC
(

λ̂ ,ε
)+ (λ − λ̂

)−(n+1)
(λ I−A)−1 dλ

for each ε > 0, where SC
(

λ̂ ,ε
)
=
{

λ ∈ C :
∣∣∣λ − λ̂

∣∣∣= ε

}
, and SC

(
λ̂ ,ε
)+

is the

counter-clockwise oriented circumference
∣∣∣λ − λ̂

∣∣∣ = ε for sufficiently small ε > 0

such that
∣∣∣λ − λ̂

∣∣∣≤ ε does not contain other point of the spectrum than λ̂ . A point of
the spectrum that is isolated and around which the resolvent has the above expansion
(i.e. (1.1.10)) is called a pole of the resolvent (λ I−A)−1.

Remark 1.1.3. The expansion formula (1.1.10) is also interesting because the pro-
jector on the generalized eigenspace associated to λ̂ is B−1.

We can also establish a relationship between the resolvent (λ I−A)−1 and eAt .

Theorem 1.1.4 (Integral Resolvent Formula (for Matrices)). Consider a matrix
A ∈Mn(R). For each λ ∈ C with Re(λ )> ω(A), λ I−A is invertible and

(λ I−A)−1 =
∫ +∞

0
e−λ teAtdt. (1.1.11)

Proof. We have

(λ I−A)
∫ +∞

0
e−λ teAtdt =

∫ +∞

0
e−λ teAtdt (λ I−A)
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= λ

∫ +∞

0
e−λ teAtdt−

∫ +∞

0
e−λ tAeAtdt

= λ

∫ +∞

0
e−λ teAtdt−

∫ +∞

0
e−λ t d

dt
eAtdt.

By integrating by parts the last integral we obtain

(λ I−A)
∫ +∞

0
e−λ teAtdt =

∫ +∞

0
e−λ teAtdt (λ I−A) = I.

The result follows. ut

1.1.2 State Space Decomposition

Consider the linear Cauchy problem

dx(t)
dt

= Ax(t) for t ≥ 0, x(0) = x0 ∈ Rn, (1.1.12)

where A ∈Mn(R). Problem (1.1.12) has a unique solution given by

x(t) = eAtx0 for each t ≥ 0.

In order to be more precise about the asymptotic behavior of the linear system, we
introduce some notation. Define

σs(A) = {λ ∈ σ(A) : Re(λ )< 0} (stable spectrum),
σc(A) = {λ ∈ σ(A) : Re(λ ) = 0} (central spectrum),
σu(A) = {λ ∈ σ(A) : Re(λ )> 0} (unstable spectrum).

By using Jordan’s theorem again, we have a state space decomposition

Rn = Xs⊕Xc⊕Xu,

where Xs,Xc and Xu are three linear subspaces of Rn (with possibly Xk = {0} for
some k = s,c,u) satisfying the following properties:

AXk ⊂ Xk, ∀k = s,c,u,

and the spectrum of the linear map Ak : Xk→ Xk is defined by

Akx = Ax,

and
σ(Ak) = σk(A), ∀k = s,c,u.
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Remark 1.1.5. In this book, we will often use the notion of the part of a linear
operator in a subspace. Actually Ak defined above is the part of A in Xk. One may
observe that Ak : Xk→ Xk is a linear map on Xk such that

Akx = Ax, ∀x ∈ Xk,

The linear map Ak is not equal to A |Xk , the restriction of A to Xk, since A |Xk goes
from Xk into Rn and

A |Xk x = Ax, ∀x ∈ Xk.

Definition 1.1.6. The spaces Xs,Xc, and Xu are called the linear stable, center, and
unstable subspaces, respectively.

Define the projections Πs,Πc,Πu ∈Mn (R) such that

Πs (Rn) = Xs and (I−Πs)(Rn) = Xc⊕Xu,

Πc (Rn) = Xc and (I−Πc)(Rn) = Xs⊕Xu,

Πu (Rn) = Xu and (I−Πu)(Rn) = Xs⊕Xc.

By using the properties of the elementary Jordan blocks, one may observe that η > 0
can be chosen such that

ω (As) := sup
λ∈σs(A)

Re(λ )<−η < 0 < η < inf
λ∈σu(A)

Re(λ ) =: ω (−Au) .

Since the inequalities are strict and η < min(−ω (As) ,ω (−Au)), we have

Ms := sup
t≥0

eηt ∥∥eAt
Πs
∥∥

L (Rn)
= sup

t≥0
eηt ∥∥eAst

∥∥
L (Xs)

<+∞,

Mu := sup
t≥0

eηt ∥∥e−At
Πu
∥∥

L (Rn)
= sup

t≥0
eηt ∥∥e−Aut∥∥

L (Xu)
<+∞.

(1.1.13)

Remark 1.1.7. In general we have

‖AΠk‖L (Rn) 6= ‖A‖L (Xk)
.

But this property becomes true if we use the equivalent norm

|x|= ‖Πsx‖+‖Πcx‖+‖Πux‖ .

By fixing a constant M ≥max(Ms,Mu)≥ 1, we obtain∥∥eAt
Πs
∥∥≤Me−ηt ,

∥∥e−At
Πu
∥∥≤Me−ηt , ∀t ≥ 0.

Actually, the non-exponentially growing part is contained in the center part. It is
described by

eAct = eAt
Πc,

which grows like a polynomial when t goes to ±∞.
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1.1.3 Semilinear Systems

Consider the nonhomogeneous Cauchy problem

dx(t)
dt

= Ax(t)+ f (t), t ∈ [0,τ] ; x(0) = x0 ∈ Rn, (1.1.14)

where f ∈ L1 ((0,τ) ,Rn).

Lemma 1.1.8. The solution of (1.1.14) is given by the so-called variation of con-
stants formula

x(t) = eAtx0 +
∫ t

0
eA(t−s) f (s)ds, ∀t ∈ [0,τ] . (1.1.15)

We should emphasize here that the variation of constants formula plays a crucial
role in analyzing the qualitative behavior of nonlinear differential equations locally
around an equilibrium.

Consider a semilinear ordinary differential system of the form

dx(t)
dt

= Ax(t)+F (x(t)) , t ≥ 0; x(0) = x0 ∈ Rn, (1.1.16)

where A ∈Mn (R) and F : Rn→ Rn is a k-time (k ≥ 1) continuously differentiable
function. The notion of a solution of system (1.1.16) must be understood as a con-
tinuous function x ∈C ([0,τ] ,Rn) satisfying

x(t) = eAtx0 +
∫ t

0
eA(t−s)F(x(s))ds for each t ∈ [0,τ] . (1.1.17)

In other words, x is a solution of the fixed point problem

x(t) =Ψ(x)(t),∀t ∈ [0,τ] ,

where Ψ : C ([0,τ] ,Rn)→C ([0,τ] ,Rn) is a nonlinear operator defined by

Ψ(x)(t) := eAtx0 +
∫ t

0
eA(t−s)F(x(s))ds.

Definition 1.1.9. The map F is said to be Lipschitz continuous if there exists a con-
stant k > 0 such that

‖F(x)−F(y)‖ ≤ k‖x− y‖ , ∀x,y ∈ Rn,

and the Lipschitz norm of F is defined by

‖F‖Lip := sup
x,y∈Rn:x 6=y

‖F(x)−F(y)‖
‖x− y‖

.
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The map F is said to be Lipschitz continuous on bounded sets of Rn if for each
constant M > 0 there exists k = k(M)> 0 such that

‖F(x)−F(y)‖ ≤ k‖x− y‖ , ∀x,y ∈ BRn(0,M),

where BRn(0,M) is the closed ball of radius M centered at 0; namely,

BRn(0,M) := {x ∈ Rn : ‖x‖ ≤M} .

Remark 1.1.10. Assume that F is C1. Set

G(s) = F(sx+(1− s)y).

Then

G(1)−G(0) =
∫ 1

0
G′(s)ds.

Therefore, we obtain the fundamental formula of differential calculus (Lang [224])

F(x)−F(y) =
∫ 1

0
DF(sx+(1− s)y)(x− y)ds.

From this formula, one deduces that every C1 map on Rn is Lipschitz continuous on
bounded sets. This property is only true in spaces with finite dimensions.

(a) Flows and semiflows. A very important concept in the context of dynamical
systems is the notion of a semiflow or a flow whenever the semiflow can be extended
in a unique manner for negative time.

Definition 1.1.11. Let (M,d) be a metric space. Let {U(t)}t≥0 (respectively {U(t)}t∈R)
be a familly of continuous maps from M into itself. {U(t)}t≥0 is called a continuous
semiflow on M (respectively {U(t)}t∈R is a continuous flow on M) if the following
properties are satisfied:

(i) U(0) = I;
(ii) U(t)U(s) =U(t + s),∀t,s≥ 0 (respectively ∀t,s ∈ R);
(iii) The map (t,x)→U(t)x is continuous from [0,+∞)×M into M (respectively

continuous from R×M into M).

Now we recall the classical Picard’s existence theorem for flows.

Theorem 1.1.12 (Picard’s Theorem). Assume that F is Lipschitz continuous. Then
equation (1.1.16) generates a unique flow {U(t)}t∈R onRn; that is, for each x0 ∈Rn

there exists a unique solution t→ x(t) of system (1.1.16) on R. Moreover,

U(t)x0 := x(t)

defines a flow on Rn.
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If F is only Lipschitz continuous on bounded sets, then blowup may occur. Thus,
we need to define the time of (eventual) blowup, τ (x0) ∈ (0,+∞] , as follows

τ (x0) := sup{τ̂ ≥ 0 : equation (1.1.16) has a solution x ∈C ([0, τ̂] ,Rn)} .

For simplicity, we only introduce the notion of a maximal semiflow. One can define
a maximal flow similarly, but would need to introduce two times of blowup for both
positive and negative times.

Definition 1.1.13. Let (M,d) be a metric space. Let τ : M → (0,+∞] be a map.
Define

Dτ := {(t,x) : 0≤ t < τ(x)} .

Let U : Dτ → Rn be a map. For convenience we denote

U(t)x :=U(t,x),∀(t,x) ∈ Dτ .

We say that U is a maximal semiflow if the following properties are satisfied:

(i) τ(U(t)x) = τ(x)− t,∀(t,x) ∈ Dτ ;
(ii) U(0) = I;
(iii) U(t)U(s)x =U(t + s)x,∀(t,x) ∈ Dτ ,∀(s,x) ∈ Dτ such that (t + s,x) ∈ Dτ ;
(iv) If τ(x)<+∞, then

lim
t(<τ(x))→τ(x)

‖U(t)x‖=+∞.

Moreover, we say that U is a maximal continuous semiflow if it satisfies in addition
the following property:

(v) The set Dτ is relatively open in [0,+∞)×M and the map (t,x)→ U(t)x is
continuous from Dτ into M.

When F is only Lipschitz continuous on bounded sets we have the following
theorem.

Theorem 1.1.14 (Existence and Uniqueness). Assume that F is Lipschitz continu-
ous on bounded sets. Then system (1.1.16) generates a unique maximal continuous
semiflow U on Rn. More precisely, there exists τ : Rn → (0,+∞] , which is lower
semi-continuous, such that for each x0 ∈ Rn there exists a unique solution t→ x(t)
of system (1.1.16) on [0,τ(x0)) , and

U(t)x0 := x(t)

defines a maximal semiflow on Rn.

In order to understand the notion of linearized equations around a given solution,
we introduce the following result.
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Theorem 1.1.15 (Linearized Semiflow). Assume that F is one-time continuously
differentiable. Then for each x0 ∈ Rn and each t ∈ [0,τ(x0)) , the map x→U(t)x is
well defined locally around x0 (in other words, there is an ε > 0 such that t∗ < τ(x)
for each x ∈ B(x0,ε)). Moreover, the map x→U(t)x is differentiable, and if we set
V (t)y := ∂xU(t)(x0)y, then the map t → V (t)y is defined on [0,τ(x0)) and satisfies
the following (nonautonomous and linear) ordinary differential equation

dV (t)y
dt

= AV (t)y+∂xF(U(t)(x0))(V (t)y) , ∀t ∈ [0,τ(x0)) ; V (0)y = y.

Definition 1.1.16. We say that x ∈Rn is an equilibrium (or equilibrium solution) of
system (1.1.16) if

x(t) = x for all t ≥ 0

is a constant solution of system (1.1.16), or equivalently if

Ax+F(x) = 0Rn .

(b) Linearized equation around an equilibrium. Assume that x ∈ Rn is an
equilibrium of system (1.1.16). By applying Theorem 1.1.15 around U(t)x= x, ∀t ≥
0, we deduce that

∂xU(t)(x)y = eBty,

where
B = A+∂xF(x).

The linear system

dy(t)
dt

= (A+∂xF(x))y(t), t ≥ 0; y(0) = y

is called the linearized system of (1.1.16) at x.

Assumption 1.1.17. Assume that F : Rn → Rn is continuously differentiable. As-
sume in addition that there exists an equilibrium x ∈ Rn of system (1.1.16) such
that

F(x) = 0 and DF(x) = 0Mn(R).

Assumption 1.1.17 is equivalent to assuming that Ax is the only linearized part
of system (1.1.16).

Definition 1.1.18. The equilibrium x is said to be hyperbolic if and only if

Re(λ ) 6= 0, ∀λ ∈ σ (A) .

Otherwise, it is nonhyperbolic.

For convenience, we assume that

x = 0.
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Indeed, we can use the change of variables

V (t)x =U(t)(x+ x)− x

and obtain that

dV (t)x
dt

=
dU(t)(x+ x)

dt
= AU(t)(x+ x)+F(U(t)(x+ x)).

Therefore, V (t) is a semiflow generated by

dV (t)x
dt

= AV (t)x+G(V (t)x)

and
G(x) = F(x+ x)+Ax.

The problem is unchanged since

DG(0) = DF(x).

Theorem 1.1.19 (Exponential Stability). Let Assumption 1.1.17 be satisfied. As-
sume that the spectrum σ (A) of the matrix A contains only complex numbers with
strictly negative real part. Then the equilibrium x of system (1.1.16) is exponentially
asymptotically stable; that is, there exist η > 0 and M > 0 such that

‖x− x‖ ≤ η ⇒‖U(t)x− x‖ ≤Me−αt ‖x− x‖ , ∀t ≥ 0.

Theorem 1.1.20 (Instability). Let Assumption 1.1.17 be satisfied. Assume that
there exists λ ∈ σ (A) such that

Re(λ )> 0,

then the equilibrium x of system (1.1.16) is unstable. This means that there exist a
constant ε > 0, a sequence {xn}→ x, and a sequence {tn}→+∞, such that

‖U(tn)xn− x‖ ≥ ε.

(c) Center Manifold Theorem. We return to the state space decomposition

Rn = Xs⊕Xc⊕Xu.

Set

Xh : = Xs⊕Xu (the hyperbolic subspace)
Xcu : = Xc⊕Xu (the linear center-unstable subspace).

Before stating the main result about the local center manifold theorem, we will first
explain the idea about the global center manifold theorem. Actually this class of



1.1 Ordinary Differential Equations 13

problems can be regarded as persistent results for manifolds. Consider first the linear
Cauchy problem (1.1.12). Then the linear center subspace Xc is invariant under eAt ;
that is,

eAtXc = Xc, ∀t ∈ R.

Moreover, Xc is a linear manifold. More precisely, we can find a map Lc : Xc→ Xh
such that

Xc = {xc +Lc(xc) : xc ∈ Xc} ,

and Lc is defined by
Lcxc = 0, ∀xc ∈ Xc.

So it is natural to ask if such an invariant set Xc persists if one considers a “reason-
able” perturbation of the linear Cauchy problem (1.1.12). Consider the perturbed
system (1.1.16). Let η ∈ (0,min(−ω (As) ,ω (−Au))) . For the linear problem we
have

Xc :=
{

x ∈ Rn : sup
t∈R

e−η |t|∥∥eAtx
∥∥<+∞

}
.

Based on this observation, it becomes “natural” to define

Mη
c :=

{
x ∈ Rn : sup

t∈R
e−η |t| ‖U(t)x‖<+∞

}
,

and the global center manifold theorem says that if ‖F‖Lip is small enough, then
there exists a map Ψc : Xc→ Xh, which is Lipschitz continuous, such that

Mc := {xc +Ψc (xc) : xc ∈ Xc} .

By the definition of Mc, one may realize that

U(t)Mc = Mc, ∀t ∈ R.

Let x ∈Mc be given. Consider a solution u(t) = U(t)x. Since

u(t) ∈Mc, ∀t ∈ R,

we have
u(t) = Πcu(t)+Ψc (Πcu(t))

and uc(t) = Πcu(t) = ΠcU(t)x satisfies the equation on Xc :

duc(t)
dt

= Acuc(t)+ΠcF (uc(t)+Ψc (uc(t))) .

The last equation is called the reduced system since the dimension of Xc is smaller
than the dimension of the original phase space.

Theorem 1.1.21 (Global Center Manifold). Let Assumption 1.1.17 be satisfied.
Assume that



14 1 Introduction

x = 0

and
σc(A) 6=∅.

Let η ∈ (0,min(−ω (As) ,ω (−Au))) . Then there exists a constant κ = κ (η)> 0 so
that if

‖F‖Lip ≤ κ,

then there exists a map Ψc : Xc→ Xh, which is Lipschitz continuous and satisfies

Ψc (0) = 0,

such that
Mη

c := {xc +Ψc (xc) : xc ∈ Xc} .

Proof. Recall that

BCη (R,Rn) :=
{

u ∈C (R,Rn) : sup
t∈R

e−η |t| ‖u(t)‖<+∞

}
is a Banach space endowed with the norm

‖u‖
η
= sup

t∈R
e−η |t| ‖u(t)‖ .

Assume that x ∈Mη
c . Then the map t→ u(t) :=U(t)x belongs to BCη (R,Rn) , and

by using the variation of constants formula we have

u(t) = eA(t−s)u(s)+
∫ t

s
eA(t−l)F (u(l))dl, ∀t ≥ s. (1.1.18)

By projecting on Xs we obtain

Πsu(t) = eAs(t−s)
Πsu(s)+

∫ t

s
eAs(t−l)

ΠsF (u(l))dl

and by using the fact that u ∈ BCη (R,Rn) , we deduce when s goes to −∞ that

Πsu(t) =
∫ t

−∞

eAs(t−l)
ΠsF (u(l))dl.

Similarly, by projecting on Xu we obtain

Πuu(t) = eAu(t−s)
Πuu(s)+

∫ t

s
eAu(t−l)

ΠuF (u(l))dl.

Therefore,

Πuu(s) = e−Au(t−s)
Πuu(t)−

∫ t

s
e−Au(l−s)

ΠuF (u(l))dl
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and when t goes to +∞, we obtain

Πuu(t) =−
∫ +∞

t
e−Au(l−t)

ΠuF (u(l))dl.

Thus, u must satisfy the following equality for each t ∈ R :

u(t) = eAct
Πuxc +

∫ t

0
eAc(t−l)

ΠcF (u(l))dl

+
∫ t

−∞

eAs(t−l)
ΠsF (u(l))dl−

∫ +∞

t
e−Au(l−t)

ΠuF (u(l))dl.

We leave as an exercise on the converse implication; namely, if u ∈ BCη (R,Rn)
satisfies the above equality then u satisfies (1.1.18). One then observes that this
problem can be reformulated as a fixed point problem:

u = K1xc +K2F(u), (1.1.19)

where K1 : Xc→ BCη (R,Rn) is a bounded linear operator defined by

K1(xc) := eAct
Πuxc

and (by using (1.1.13)) K2 : BCη (R,Rn)→BCη (R,Rn) is a bounded linear operator
defined by

K2( f ) : =
∫ t

0
eAc(t−l)

Πc f (l)dl +
∫ t

−∞

eAs(t−l)
Πs f (l)dl

−
∫ +∞

t
e−Au(l−t)

Πu f (l)dl.

Assume that
‖F‖Lip ‖K2‖L (BCη (R,Rn)) < 1,

it follows that (1.1.19) has a unique fixed point

uxc = (I−K2F)−1 K1xc ∈ BCη (R,Rn) .

Therefore, the first part of the theorem is proved by defining

Ψc (xc) := Πhuxc(0).

To prove that Ψc is Lipschitz continuous it is sufficient to observe that

uxc −ux̂c = K1 (xc− x̂c)+K2F(uxc)−K2F(ux̂c).

Therefore,∥∥uxc −ux̂c

∥∥
η
≤‖K1‖L (Xc,BCη (R,Rn)) ‖xc− x̂c‖+‖F‖Lip ‖K2‖L (BCη (R,Rn))

∥∥uxc −ux̂c

∥∥
η
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and we obtain

∥∥uxc −ux̂c

∥∥
η
≤

‖K1‖L (Xc,BCη (R,Rn))

1−‖F‖Lip ‖K2‖L (BCη (R,Rn))

‖xc− x̂c‖ .

The result follows since

‖Ψc (xc)−Ψc (x̂c)‖ ≤ ‖Πh‖
∥∥uxc −ux̂c

∥∥
η
.

This completes the proof. ut

(d) Truncation method. Let {Uε(t)x}t≥0 be the semiflow generated by the trun-
cated problem

dUε (t)
dt

= AUε (t)x+Fε(Uε (t)x)

for ε > 0 small enough. The map Fε is a truncation of F ; namely,

Fε(x) = ρ
(
ε
−1x
)

F(x),

where ρ : Rn→ [0,+∞) is a Ck map satisfying

ρ(x) =

1 if ‖x‖ ≤ 1
∈ [0,1] if 1≤ ‖x‖ ≤ 2
0 if ‖x‖ ≥ 2,

where ‖.‖ is the Euclidean norm.
Since DF(0) = 0, one deduces that

‖Fε‖Lip→ 0 as ε → 0.

Moreover, U and Uε coincide in BRn (x,ε) . This means that for each x ∈ BRn (x,ε)
and t > 0,

Uε(s)x ∈ BRn (x,ε) or U(s)x ∈ BRn (x,ε) ,∀s ∈ [0, t]

implies that
Uε(t)x =U(t)x.

Since in general F is Lipschitz continuous, a local center manifold result is in order.
The main difficulty to prove the local center manifold theorem is the regularity part
(i.e., it is not an application of the implicit function theorem).

Theorem 1.1.22 (Local Center Manifold). Let Assumption 1.1.17 be satisfied. As-
sume that

x = 0

and
σc(A) 6=∅.

Then there exists a one-time continuously differentiable map Ψc : Xc→ Xh such that
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Ψc (0) = 0 and DΨc (0) = 0.

The local center manifold (which is not uniquely determined)

Mc := {xc +Ψc (xc) : xc ∈ Xc}

is locally invariant under U(t) in some neighbordhood of 0. More precisely, there
exists an ε > 0 such that the following properties hold:

(i) If I ⊂ R is an interval and uc : I→ Xc is a solution of the ordinary differential
equation on Xc

(Reduced equation)

{ duc(t)
dt

= Acuc(t)+ΠcF (uc(t)+Ψc (uc(t))) for t ∈ R,
uc(0) = xc ∈ Xc

satisfying
uc(t)+Ψc (uc(t)) ∈ BRn(0,ε), ∀t ∈ I,

then x(t) := uc(t)+Ψc (uc(t)) is a solution of (1.1.16);
(ii) If x : R→ Rn is a solution of (1.1.16) such that

x(t) ∈ BRn(0,ε), ∀t ∈ R,

then
x(t) ∈Mc, ∀t ∈ R,

and uc(t) := Πcx(t) is a solution of the reduced equation;
(iii) (Regularity) Let k≥ 1 be an integer. If F is k-time continuously differentiable

locally around 0, then Ψc is also k-time continuously differentiable.

(e) Normal form theory. To determine the qualitative behavior of a nonlin-
ear system in the neighborhood of a nonhyperbolic equilibrium point, the center
manifold theorem implies that it could be reduced to the problem of determining
the qualitative behavior of the nonlinear system restricted on the center manifold,
which reduces the dimension of a local bifurcation problem near the nonhyperbolic
equilibrium point. The normal form theory provides a way of finding a nonlinear
analytic transformation of coordinates in which the nonlinear system restricted to
the center manifold takes the “simplest” form, called normal form.

Assume that the reduced system takes the form

du(t)
dt

= Au(t)+F2(u)+F3(u)+ · · ·+Fm−1(u)+O(|u|m), (1.1.20)

where Fk(u) contains the terms of precise order k. The idea is to choose a coordinate
transformation to simplify or eliminate the quadratic terms. Let u= x+h2(x), where
h2 is a quadratic polynomial. Substituting into system (1.1.20) yields that

(I +Dh2(x))
dx
dt

= A(x+h2(x))+F2(x+h2(x))+ · · ·+Fm−1(x+h2(x))+O(|x|m).
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Note that
Fk(x+h2(x)) = Fk(x)+O(|x|k+1), 2≤ k ≤ m−1.

Thus we have

(I+Dh2(x))
dx
dt

= Ax+Ah2(x)+F2(x)+ F̃3(x)+ · · ·+ F̃m−1(x)+O(|x|m), (1.1.21)

where F̃k(x) are the corresponding modified O(|x|k) terms.
If |x| is sufficiently small, then I +Dh2(x) is invertible and

(I +Dh2(x))−1 = I−Dh2(x)+O(|x|2).

Substituting into system (1.1.21), we have

dx
dt

= Ax− [Dh2(x)Ax−Ah2(x)]+F2(x)+ F̃3(x)+ · · ·+ F̃m−1(x)+O(|x|m).
(1.1.22)

Now introduce the notation of Lie bracket (Marsden and McCracken [257]) as fol-
lows:

[A,h](x), LA(h(x)) = Dh(x)(Ax)−Ah(x).

One can see that the second term becomes [Ah2(x))−Dh2(x)Ax] = −[A,h2](x).
Thus, if h2(x) can be selected so that

[A,h2](x) = F2(x), (1.1.23)

then the quadratic terms in system (1.1.22) can be eliminated. Note that a solution to
(1.1.23) is possible only when F2(x) belongs to the range of linear operator [A,h2].

Notice that restricting [A,h2] to second order polynomials transforms (1.1.23)
to a linear algebraic problem. Let {−→e 1,

−→e 2, · · · ,−→e n} be a basis for Rn. A vector
monomial of degree k takes the form

(xm1
1 xm2

2 · · ·x
mn
n )−→e i,

n

∑
j=1

m j = k,

where m j ≥ 0 are integers. The vector monomials of degree k form a basis for the
finite dimensional vector space Hk of all vector-valued polynomials of degree k.

Take n = 2 and let −→e 1 =

(
1
0

)
and −→e 2 =

(
0
1

)
denote the standard basis for

R2. Then

H2 = span
{(

x2
1

0

)
,

(
x1x2

0

)
,

(
x2

2
0

)
,

(
0
x2

1

)
,

(
0

x1x2

)
,

(
0
x2

2

)}
.

For the linear map LA = [A, ·] : H2→ H2, we can write

H2 = LA(H2)⊕G2,
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where G2 is a complementary subspace of the range of LA acting on H2. Now rewrite

F2(x) = Fnr
2 (x)+Fr

2 (x), Fnr
2 ∈ LA(H2), Fr

2 ∈ G2.

Choosing h2 so that LA(h2(x)) = [A,h2](x) = Fnr
2 (x), we then obtain the following

theorem.

Theorem 1.1.23 (Poincaré Normal Form Theorem). Consider system (1.1.20)
and define a linear transmormation LA : Hk→ Hk by

LA(h(x)), [A,h](x) = Dh(x)(Ax)−Ah(x).

Then by using the decomposition Hk = LA(Hk)⊕Gk, there exists a sequence of trans-
mormations x→ x+hk(x) (with hk ∈ Hk) which transforms system (1.1.20) into the
normal form

dx
dt

= Ax+Fr
2 (x)+ · · ·+Fr

m−1(x)+O(|x|m), (1.1.24)

where
Fr

k ∈ Gk, ∀k = 2,3, · · · ,m−1.

Remark 1.1.24. Suppose that A = diag[λ1, · · · ,λn] is a diagonal matrix. Let h(x) =
(xm1

1 xm2
2 · · ·xmn

n )−→e i ∈ Hk, where ∑
n
j=1 m j = k. Then

LA(h(x)) = [A,h](x) = Dh(x)(Ax)−Ah(x) =

[
n

∑
j=1

m jλ j−λi

]
h(x).

Hence, LA is also diagonal on Hk in the standard basis and is not invertible if zero
is an eigenvalue; that is, if ∑

n
j=1 m jλ j − λi = 0 for some i. If the eigenvalues of

A satisfy a relation of this form where the m j are non-negative integers, then the
eigenvalues are in resonance of order ∑

n
j=1 m j. For this reason, the terms Fr

k (x) in
(1.1.24) are called resonance terms.

Remark 1.1.25. It is important to understand that the simplified system (1.1.24) is
strongly depending on the specific choice of the complementary spaces Gk. In other
words, changing the complementary spaces will change the form of the simplified
system (1.1.24) which is obtained by making a succession of changes of variables.

(f) Hopf bifurcation theorem. In order to explain the idea of Hopf bifurcation
theorem (see Hopf [191]), we first consider a system of two scalar ordinary differ-
ential equations(

x′(t)
y′(t)

)
=

[
α −ω

ω α

](
x(t)
y(t)

)
+κ

(
x(t)2 + y(t)2)( x(t)

y(t)

)
,

where the bifurcation parameter α varies from negative values to positive values,
and the parameters

ω 6= 0 and κ 6= 0
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Fig. 1.2: When κ < 0 we use µ := α as a bifurcation parameter, and when µ passes through 0 a stable periodic orbit is
appearing. The case κ > 0 can be understood from the case κ < 0 by going backward in time; that is, by considering
x̂(t) := x(−t) and ŷ(t) := y(−t). When κ > 0 we use µ :=−α as a bifurcation parameter, when µ passes through 0 an
unstable periodic orbit is appearing.

are fixed.
Embedding the system into the complex plan, namely, setting

λ (t) = x(t)+ iy(t)⇔ x(t) := Re(λ (t)) and y(t) = Im(λ (t)),

we obtain the Poincaré normal form [291, 290]

λ
′(t) = (α + iω)λ (t)+κ |λ (t)|2 λ (t). (1.1.25)

Therefore,
d
dt
|λ (t)|2 = λ (t)λ ′(t)+λ (t)

′
λ (t)

= (α + iω) |λ (t)|2 +κ |λ (t)|2 |λ (t)|2

+(α− iω) |λ (t)|2 +κ |λ (t)|2 |λ (t)|2 .

So by setting r(t) := |λ (t)|2 we deduce that r(t) satisfies the logistic equation

dr(t)
dt

= 2r(t)(α +κr(t)). (1.1.26)

By using this equation, we deduce that the curve

x(t)2 + y(t)2 = r2 :=−α

κ

is invariant by the flow as long as

−α

κ
> 0.

Moreover, on this curve (i.e. when x(t)2 + y(t)2 = r2), the Poincaré normal form
(1.1.25) becomes

λ
′(t) = iωλ (t),
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which gives
λ (t) =

√
reiωt .

Thus, this curve is a periodic orbit of period 2π

ω
. By using the logistic equation

(1.1.26) one may also analyze the stability of this periodic solution.
The Hopf bifurcation theorem is an extension of the above idea. Consider a

parametrized system of ordinary differential equations

dx(t)
dt

= Ax(t)+F (µ,x(t)) for t ≥ 0 with x(0) = x0 ∈ Rn, (1.1.27)

where µ ∈ R is a parameter. In order to clarify the statement under the assumptions
for the Hopf bifurcation theorem, we first recall a definition.

Definition 1.1.26. An eigenvalue λ0 ∈ σ (A) is said to be simple if one of the fol-
lowing equivalent conditions are satisfied:

(i) λ0 is a root of order 1 of the characteristic polynomial of A; namely, a root of
order 1 of the polynomial

λ → det(λ I−A) ;

(ii) dim(ker(λ0I−A)) = 1 and dim(ker(λ0I−A)2) = 1.

We make the following assumption.

Assumption 1.1.27. Let ε > 0 and F ∈Ck ((−ε,ε)×BRn (0,ε) ;Rn) for some k ≥
4. Assume that the following conditions are satisfied:

(i) F (µ,0) = 0, ∀µ ∈ (−ε,ε) , and ∂xF (0,0) = 0.
(ii) (Transversality condition) For each µ ∈ (−ε,ε) , there exists a pair of conju-

gated simple eigenvalues of (A+∂xF(µ,0))0, denoted by λ (µ) and λ (µ), such
that

λ (µ) = α (µ)+ iω (µ) ,

the map µ → λ (µ) is continuously differentiable,

ω (0)> 0, α (0) = 0,
dα (0)

dµ
6= 0,

and
σ (A)∩ iR=

{
λ (0) ,λ (0)

}
. (1.1.28)

To prove the Hopf bifurcation theorem one may apply the center manifold theo-
rem to obtain a 3-dimensional reduced system for the system

dµ(t)
dt

= 0
dx(t)

dt
= Ax(t)+F (µ(t),x(t)) .

Then by using the Hopf bifurcation theorem for the 2-dimensional parametrized
system, one may prove the following theorem (Hopf [191] and Hassard et al. [181]).
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Theorem 1.1.28 (Hopf Bifurcation). Let Assumption 1.1.27 be satisfied. Then
there exist a constant ε∗ > 0 and three Ck−1 maps, ε → µ(ε) from (0,ε∗) into R,
ε → xε from (0,ε∗) into Rn, and ε → T (ε) from (0,ε∗) into R, such that for each
ε ∈ (0,ε∗) there exists a T (ε)-periodic function xε ∈Ck

(
Rn+1

)
, which is a solution

of (1.1.27) with the parameter value µ = µ(ε) and the initial value xε(0) = x0. So
for each t ≥ 0, xε(t) satisfies

dxε(t)
dt

= Axε(t)+F (µ(ε),xε(t)) for t ≥ 0 and xε(0) = x0.

Moreover, we have the following properties:

(i) There exist a neighborhood N of 0 inRn and an open interval I inR containing
0, such that for µ̂ ∈ I and any periodic solution x̂(t) in N with minimal period T̂
close to 2π

ω(0) of (1.1.27) for the parameter value µ̂, there exists ε ∈ (0,ε∗) such

that x̂(t) = xε(t +θ) (for some θ ∈ [0,γ (ε))), µ(ε) = µ̂, and T (ε) = T̂ ;
(ii) The map ε → µ(ε) is a Ck−1 function and we have the Taylor expansion

µ(ε) =
[ k−2

2 ]

∑
n=1

µ2nε
2n +O(εk−1), ∀ε ∈ (0,ε∗) ,

where [ k−2
2 ] is the integer part of k−2

2 ;
(iii) The period T (ε) of t→ xε(t) is a Ck−1 function and

T (ε) =
2π

ω(0)
[1+

[ k−2
2 ]

∑
n=1

τ2nε
2n]+O(εk−1), ∀ε ∈ (0,ε∗) ,

where ω(0) is the imaginary part of λ (0) defined in Assumption 1.1.27;
(iv) The nonzero Floquet exponent β (ε) is a Ck−1 function satisfying β (ε)→ 0

as ε → 0 and having the Taylor expansion

β (ε) =
[ k−2

2 ]

∑
n=1

β2nε
2n +O(εk−1), ∀ε ∈ (0,ε∗) .

The periodic solution xε(t) is orbitally asymptotically stable with asymptotic
phase if β (ε)< 0 and unstable if β (ε)> 0.

Remark 1.1.29. In applications, we usually have the following approximations

µ(ε) = µ2ε
2 +O(ε4), T (ε) =

2π

ω(0)
[1+ τ2ε

2]+O(ε4), β (ε) = β2ε
2 +O(ε4)

for allε ∈ (0,ε∗) . Therefore, the direction of the Hopf bifurcation, the stability and
period of the bifurcation periodic solutions are determined as follows: if µ2 > 0(<
0), then the bifurcating periodic solutions exist for µ > 0(< 0) and the bifurcation
is called supercritical (subcritical); if β2 < 0(> 0), then the bifurcating periodic
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solutions are stable (unstable); if τ2 > 0(< 0), then the period of the bifurcating
periodic solutions increases (decreases).

1.2 Retarded Functional Differential Equations

In this section we introduce some concepts in Retarded Functional Differen-
tial Equations (RFDEs), also called Delay Differential Equations (DDEs), and state
some very basic results on the subject. This part will be especially useful to read-
ers who are not familiar with delay differential equations. Our goal is to use delay
differential equations as a motivating example for the applications of the semigroup
theory. We refer to the monographs of Hale [170], Hale and Verduyn Lunel [175],
Diekmann et al. [106], Wu [374], and Arino et al. [27] for fundamental theories
and results on RFDEs. See also the books of Kuang [221] and the surveys of Ruan
[299, 300] for more examples of RFDEs in the context of population dynamics.

Let r > 0 be a fixed constant. The first prototype equation is the following delay
differential equation { dx(t)

dt
= f (x(t− r)) for t ≥ 0,

x(θ) = φ (θ) , ∀θ ∈ [−r,0] ,
(1.2.1)

where φ ∈ C ([−r,0] ,R) , the space of all continuous functions from [−r,0] to R,
and f : R→ R is a continuous function.
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Fig. 1.3: The solution of a RFDE depending on the initial value φ(θ),θ ∈ [−r,0].

In such a problem the function φ is called the initial value of system (1.2.1).
Moreover, a solution of system (1.2.1) is understood as a continuous function x ∈
C ([−r,τ) ,R) satisfying
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x(t) =
{

φ (0)+
∫ t

0 f (x(s− r))ds if t ≥ 0,
φ (t) if − r ≤ t ≤ 0.

(1.2.2)

We observe that in this case the solution can be constructed inductively. Indeed, for
each t ∈ [0,r] , we have

x(t) = φ (0)+
∫ t

0
f (φ(s− r))ds if t ≥ 0.

Since φ is given, we know that x(t) exists and is uniquely determined on [0,r] by
φ . Similarly, we deduce that for each n ≥ 0, the solution x(t) restricted to [n,n+ r]
is entirely and uniquely determined by x(t) on [n− r,n] . By using this inductive
procedure, we deduce that there exists a solution x ∈ C ([−r,+∞) ,R) of system
(1.2.1) which is uniquely determined by the initial value φ .

Now we reformulate this example in a general form. Let τ > 0 be a given constant
and let x ∈C ([−r,τ] ,R) . For each t ∈ [0,τ] , define xt ∈C ([−r,0] ,R) by

xt (θ) = x(t +θ) , ∀θ ∈ [−r,0] .

Consider a map G : C ([−r,0] ,R)→ R defined by

G(φ) = f (φ (−r)) .

Then the delay differential equation (1.2.1) can be rewritten as{ dx(t)
dt

= G(xt) for t ≥ 0,

x(θ) = φ (θ) , ∀θ ∈ [−r,0] ,
(1.2.3)

and a solution of system (1.2.3) is understood as

x(t) =
{

φ (0)+
∫ t

0 G(xs)ds if t ≥ 0,
φ (t) if − r ≤ t ≤ 0.

(1.2.4)

The second prototype delay differential equation is the following{ dx(t)
dt

= bx(t)+ f (x(t− r)) for t ≥ 0,

x(θ) = φ (θ) , ∀θ ∈ [−r,0] ,
(1.2.5)

Again we define G : C ([−r,0] ,R)→ R as

G(φ) = bφ (0)+ f (φ (−r)) ,

and as before we can rewrite the problem in the form (1.2.3).

Remark 1.2.1. In equation (1.2.5) the solution can also be computed step by step
by writing it as a continuous function satisfying
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x(t) =
{

ebtφ (0)+
∫ t

0 eb(t−s) f (x(s− r))ds if t ≥ 0,
φ (t) if − r ≤ t ≤ 0.

Example 1.2.2 (Nicholson’s Blowflies Model). Let N(t) denote the population of
sexually mature adult blowflies. Assume that the average per capita fecundity drops
exponentially with increasing population, then the following delay differential equa-
tion describes the total number of mature individuals (Gurney et al. [160])

dN
dt

= PN(t− τ)e−
N(t−τ)

N0︸ ︷︷ ︸
birth

− δN(t)︸ ︷︷ ︸
mortality

, (1.2.6)

where P is the maximum per capita daily egg production rate, N0 is the size at which
the blowflies population reproduces at its maximum rate, δ is the per capita daily
adult death rate, and τ is the time units that all eggs take to develop into sexually
mature adults.

1.2.1 Existence and Uniqueness of Solutions

Let n≥ 1 be an integer. Consider C :=C ([−r,0] ,Rn) , the space of all continuous
functions from [−r,0] to Rn, endowed with the usual supremum norm

‖φ‖= sup
θ∈[−r,0]

|φ (θ) |.

In this section we consider the delay differential equation of the form{ dx(t)
dt

= Bx(t)+G(xt),

x0 = φ ∈ C ,
(1.2.7)

where G : C → Rn is a continuous map and B ∈Mn (R) is an n×n real matrix.
In the following definition we introduce some terminology commonly used for

delay differential equations.

Definition 1.2.3. The equation (1.2.7) is called a scalar delay differential equation
if n = 1. The delay differential equation (1.2.7) is called a discrete delay differential
equation if it can be written as the following special form{ dx(t)

dt
= Bx(t)+H(x(t− r1) , ...,x(t− rp)),

x0 = φ ∈C ([−r,0] ,Rn) ,
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where r1, ...,rp ∈ [0,r], and H :Rn×Rn× ...×Rn︸ ︷︷ ︸
p times

→Rn is a continuous map. Other-

wise, the delay differential equation (1.2.7) is called a distributed delay differential
equation.

Definition 1.2.4. For each τ ∈ (0,+∞] , we say that x ∈C ([−r,τ) ,Rn) is a solution
of (1.2.7) if it satisfies

x(t) =
{

eBtφ (0)+
∫ t

0 eB(t−s)G(xs)ds if 0≤ t < τ,
φ (t) if − r ≤ t ≤ 0.

The first main result of this section is the following theorem in which we sum-
marize some basic results on delay differential equations (Hale and Verduyn Lunel
[175]).

Theorem 1.2.5. Assume that G : C → Rn is Lipschitz continuous; that is, there ex-
ists some K > 0 such that

|G(φ)−G(ψ)| ≤ K ‖φ −ψ‖ , ∀φ ,ψ ∈ C .

Then for each φ ∈ C , there exists a unique solution xφ ∈C ([−r,+∞) ,Rn) . More-
over, there exist two constants C > 0 and M ≥ 1 such that

|xφ (t)− xψ(t)| ≤MeCt ‖φ −ψ‖ , ∀t ≥ 0,∀φ ,ψ ∈ C .

Furthermore, if we consider the family of operators {U(t)}t≥0 from C into itself
defined by

U(t)(φ) = xφ ,t ⇔U(t)(φ)(θ) = xφ (t +θ) , ∀θ ∈ [−r,0] ,

then {U(t)}t≥0 defines a continuous semiflow; that is,

(i) U(t)◦U(s) =U(t + s),∀t,s≥ 0, and U (0) = I;
(ii) (t,φ)→U(t)φ is continuous from [0,+∞)×C into C .

Definition 1.2.6. An equilibrium solution of (1.2.7) is a solution which is constant
in time; that is

x(t) = x, ∀t ≥−r.

So
0 = Bx+G

(
x1[−r,0](.)

)
,

where

1[a,b](x) =
{

1 if x ∈ [a,b]
0 otherwise.

Remark 1.2.7. One may also observe that if x is an equilibrium of the RFDE, then
x1[−r,0](.) satisfies

U(t)
(
x1[−r,0](.)

)
= x1[−r,0](.), ∀t ≥ 0.
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So x1[−r,0](.) an equilibrium of the semiflow {U(t)}t≥0 . Thus, we also have an
interpretation in terms of semiflows.

Example 1.2.8 (Hutchinson’s Equation). Consider the equation (Hutchinson [194])

dx(t)
dt

= αx(t)
(

1− x(t− r)
κ

)
(1.2.8)

with α ∈ R, r > 0, and κ > 0. Then the equilibria are

x = 0 and x = κ.

The second main result of this section is the following theorem on linearized
delay differential equations (Hale and Verduyn Lunel [175]).

Theorem 1.2.9 (Linearized Equation). Assume that G is Lipschitz continuous and
continuously differentiable. Then for each t ≥ 0, the semiflow φ →U(t)(φ) is con-
tinuously differentiable. Moreover, if for each ψ ∈ C we set

v(t) =V (t)(ψ) = ∂φU(t)(φ)(ψ) ,

then
v(t)(θ) = yψ (t +θ) ,∀θ ∈ [−r,0] ,

where yψ (t) is the unique solution of
dyψ (t)

dt
= Byψ(t)+Dφ G

(
xφ ,t
)(

yψ,t
)
, ∀t ≥ 0

yψ,0 = ψ,

in which xφ ,t =U(t)(φ) is the solution of (1.2.7) with the initial value φ .

1.2.2 Linearized Equation at an Equilibrium

If we consider the special case of an equilibrium solution x(t) = x, ∀t ≥−r, then
the linearized equation of (1.2.7) is given by dyψ (t)

dt
= Byψ(t)+Dφ G

(
x1[−r,0](.)

)(
yψ,t
)
, ∀t ≥ 0,

yψ,0 = ψ ∈C ([−r,0] ,Rn) .
(1.2.9)

By applying Theorem 1.2.5 to system (1.2.9) and by using the fact that ψ →
Bψ(0) + Dφ G

(
x1[−r,0](.)

)
(ψ) is a bounded linear operator from C into Rn, we

deduce that if we set

T (t)(ψ) := ∂φU(t)
(
x1[−r,0](.)

)
(ψ) = yψ,t ,
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then {T (t)}t≥0 satisfies the following properties:

(i) For each t ≥ 0, T (t) is a bounded linear operator from C into itself;
(ii) T (t)T (s) = T (t + s),∀t,s≥ 0, and T (0) = I;
(iii) (t,φ)→ T (t)φ is continuous from [0,+∞)×C into C .

Such a family of linear operators {T (t)}t≥0 is called a strongly continuous semi-
group of bounded linear operators on C .

Next we explain how to compute the linearized equation for a discrete delay
differential equation. Consider a delay differential equation

dx(t)
dt

= f (x(t− r1) , ...,x(t− rp)) , (1.2.10)

where 0≤ r1 < r2 < ... < rp−1 < rp =: r and f : Rp→ R is a C1-map satisfying

f (x, ...,x) = 0

for some x ∈ R. Then x is an equilibrium solution and we can rewrite (1.2.10) as

dx(t)
dt

= G(xt)

with
G(φ) = ( f ◦L1)φ ,

in which L1 : C ([−r,0] ,R)→ Rp is the bounded linear operator defined by

L1φ =

 φ (−r1)
...

φ (−rp)

 .

By using the differentiation of composed maps we obtain

Dφ G
(
x1[−r,0](.)

)
(ψ) = D f

(
L1
(
x1[−r,0](.)

))
L1 (ψ) .

Thus,

Dφ G
(
x1[−r,0](.)

)
(ψ) =

(
∂ f (x, ...,x)

∂x1
,

∂ f (x, ...,x)
∂x2

, ...,
∂ f (x, ...,x)

∂xp

)ψ (−r1)
...

ψ (−rp)


=

p

∑
i=1

∂ f (x, ...,x)
∂xi

ψ (−ri) .

So the linearized equation around x is given by

dy(t)
dt

=
p

∑
i=1

∂ f (x, ...,x)
∂xi

y(t− ri) .
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Example 1.2.10. For the Hutchinson equation (1.2.8), the linearized equation at x =
0 is { dy(t)

dt
= αy(t),

yψ,0 = ψ ∈C ([−r,0] ,R) ,

which is an ordinary differential equation, and the linearized equation at x = κ{ dy(t)
dt

=−αy(t− r),

yψ,0 = ψ ∈C ([−r,0] ,R)

is a linear delay differential equation.

1.2.3 Characteristic Equations

Consider a linear delay differential equation{ dx(t)
dt

= Bx(t)+ L̂(xt)

x0 = φ ∈ C ,
(1.2.11)

where B ∈ Mn (R) and L̂ ∈ L (C ,Rn) , the space of all bounded linear operators
from C to Rn.

One may observe that we can apply Riesz’s representation theorem for the dual
of the space of continuous functions and deduce that

L̂(ϕ) =
∫ 0

−r
dη (θ)ϕ(θ)

is a Stieltjes integral, where η : [−r,0]→Mn (R) is a function with bounded varia-
tion. We recall that η has a bounded variation on [−r,0] if

V (η , [−r,0]) = sup
n

∑
i=1
‖η (θi+1)−η (θi)‖<+∞,

where the supremum is taken over all subdivisions−r = θ1 < θ2 < ... < θn < θn+1 =
0. Then the Stieltjes integral has the following limit∫ 0

−r
dη (θ)ϕ(θ) = lim

∆→0

n

∑
i=1

[η (θi+1)−η (θi)]ϕ(θ̂i),

where
∆ := max

i=1,...,n
(θi+1−θi)

and
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θ̂i ∈ [θi,θi+1] ,∀i = 1, ...,n.

Example 1.2.11. Consider
L̂(ϕ) = Mϕ(−r1)

for some matrix M ∈Mn (R) and some r1 ∈ [−r,0] . If r1 = 0, take

η (θ) =

{
M if θ = 0,
0 if θ < 0,

and if r1 < 0, take

η (θ) =

{
M if θ > r1,
0 if θ ≤ r1.

Then we obtain the desired property.

In order to describe the behavior of such a linear system one needs to study the
spectral properties of (1.2.11). An elementary approach to do that is to look for
solutions of (1.2.11) of the following form

x(t) = eλ tz, ∀t ≥−r

with λ ∈ C and z ∈ Cn \{0} . Substituting x(t) = eλ tz into (1.2.11), we obtain

λeλ tz =
dx(t)

dt
= Beλ tz− L̂

(
e−λ (t+.)z

)
.

Cancelling eλ t , we have

λ z−Bz− L̂
(

e−λ .z
)
= 0.

The characteristic function of (1.2.11) is defined by

∆ (λ ) = λ ICn −B− L̂
(

e−λ .ICn

)
(1.2.12)

and the characteristic equation of (1.2.11) is defined by

det(∆ (λ )) = 0. (1.2.13)

The spectrum of the linear RFDE (1.2.11) is defined by

σ = {λ ∈ C : det(∆ (λ )) = 0} .

Definition 1.2.12. The equilibrium x of the RFDE (1.2.7) is exponentially asymp-
totically stable if there exist three constants ε > 0 (sufficiently small), M ≥ 1, and
α > 0, such that for each φ ∈ C ,∥∥φ − x1[−r,0](.)

∥∥≤ ε ⇒
∥∥U(t)φ − x1[−r,0](.)

∥∥≤Me−αt ∥∥φ − x1[−r,0](.)
∥∥ , ∀t ≥ 0,
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or equivalently there exist three constants ε > 0 (small enough), M̂ ≥ 1, and α > 0,
such that for each φ ∈ C ,∥∥φ − x1[−r,0](.)

∥∥≤ ε ⇒ |xφ (t)− x| ≤ M̂e−αt ∥∥φ − x1[−r,0](.)
∥∥ , ∀t ≥ 0.

Theorem 1.2.13 (Exponential Asymptotic Stability). Let G : C → Rn be a con-
tinuous map. Assume that x ∈Rn is an equilibrium of the RFDE (1.2.7) and G is C1

locally around x1[−r,0](.). Then the equilibrium is (locally) exponentially asymptot-
ically stable if the spectrum of the linearized equation RFDE (1.2.9) at x contains
only complex numbers with strictly negative real part.

Example 1.2.14. As an example consider the linearized equation of the Hutchinson
equation (1.2.8) at the positive equilibrium x = κ,{ dy(t)

dt
=−αy(t− r)

yψ,0 = ψ ∈C ([−r,0] ,R)
(1.2.14)

Looking for solutions of (1.2.14) of the form

y(t) = eλ t ,

we obtain the characteristic equation

λ =−αe−λ r, λ ∈ C. (1.2.15)

Assume that λ = a+ ib is a solution of the characteristic equation (1.2.15). Then by
taking the modulus on both sides we obtain

a2 +b2 = α
2e−2ar.

So
b2 = α

2e−2ar−a2.

We must have
a2 ≤ α

2e−2ar

and
b =±

√
α2e−2ar−a2. (1.2.16)

Moreover, by taking the real and the imaginary parts, we have

a =−αe−ar cos(rb) , b = αe−ar sin(rb) . (1.2.17)

Proposition 1.2.15. If rα <
π

2
, then all roots of characteristic equation (1.2.15)

have strictly negative real parts. Hence, the positive equilibrium x = κ of the
Hutchinson equation (1.2.8) is exponentially asymptotically stable.

Proof. Indeed, assume by contradiction that there exists a solution of the character-
istic equation λ = a+ ib with a≥ 0. From (1.2.16) and the characteristic equation,
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we can assume that b > 0 and must have

b≤ α.

Now by using (1.2.17) we deduce that

0 < cos(rα)< cos(rb)< 1,

a contradiction. This proves the claim. ut
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Fig. 1.4: The exponential asymptotic stability of the positive equilibrium of the Hutchinson equation (1.2.8) with r = 1
and α = 1.

1.2.4 Center Manifolds

Consider the linear RFDE{ dx(t)
dt

= Bx(t)+L(xt)

x0 = φ ∈ C ,
(1.2.18)

where B ∈Mn (R) and L ∈L (C ,Rn) is a bounded linear operator.
The infinitesimal generator of the strongly continuous semigroup generated by

the linear RFDE (1.2.18) is defined by A0 : D(A0)⊂ C → C as

A0ϕ := ϕ
′
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with domain

D(A0) := {ϕ ∈C1([−r,0],Rn) : ϕ
′(0) = Bϕ(0)+L(ϕ)}.

The linear RFDE can be rewritten into the following abstract form

u′(t) = A0u(t) for t ≥ 0 with u(0) = ϕ ∈ C . (1.2.19)

Since the strongly continuous semigroup generated by A0 is eventually compact,
the space C can be decomposed accordingly to the spectral decomposition σ =
σu∪σc∪σs in which σu,σc, and σs are the sets of eigenvalues with positive, zero,
and negative real parts, respectively. We can find three closed subspace of C

C =U⊕N⊕S,

which define three bounded linear projectors

πUC =U and (I−πU )C = N⊕S,
πNC = N and (I−πN)C =U⊕S,
πSC = S and (I−πS)C =U⊕N.

It is well known that the dual space of C is the space of random measures
which is a space much bigger than C([0,r],(Rn)∗). In order to compute the pro-
jectors on the eigenspaces, one can define a formal adjoint relationship between
C =C([−r,0],Rn) and C ∗ :=C([0,r],(Rn)∗) by using the following bilinear form

〈ψ,φ〉= ψ(0)φ(0)−
∫ 0

−r

∫
θ

0
ψ(ξ −θ)dη(θ)φ(ξ )dξ

for φ ∈ C and ψ ∈ C ∗.
The subspace N ⊂ C ([−r,0] ,Rn) is a direct sum of the generalized eigenspace

associated with eigenvalues with zero real part for the infinitesimal generator of the
linear RFDE (1.2.18) which can be rewritten as{ dx(t)

dt
= Bx(t)+

∫ 0
−r dη(θ)x(t +θ), t ≥ 0,

x0 = ϕ ∈C ([−r,0] ,Rn) .

The subspace N∗ ⊂ C ([0,r] ,(Rn)∗) is a direct sum of the generalized eigenspace
associated with eigenvalues with zero real part for the infinitesimal generator of the
linear RFDE  dy(s)

ds
=−y(s)B−

∫ 0
−r y(s−θ)dη(θ), s≤ 0,

y0 = ψ ∈C ([0,r] ,(Rn)∗) .

Then N and N∗ have the same finite dimension. Moreover, let Φ be a basis for N
and Ψ be a basis for N∗ with
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〈Φ ,Ψ〉= I.

Assume that dimN =m≥ 1. One may observe that Φ ∈D(A0). Then one can rewrite
A0 in the basis Φ which gives an m×m matrix Bm. Furthermore, by projecting
(1.2.19) on N (i.e. by applying πN on both sides of (1.2.19) and expressing this into
the basis Φ), it follows that

Φ̇ = BmΦ .

Let BC be the set of all functions from [−r,0] to Rn that are uniformly continuous
on [−r,0) and may have a possible jump discontinuity at 0. Define X0 : [−r,0]→
Mn(Rn) by

X0(θ) =

{
I if θ = 0,
0 if θ ∈ [−r,0).

Then
BC = {φ +X0ξ : φ ∈ C ,ξ ∈ Rn}.

Clearly BC is a Banach space equipped with norm

‖φ +X0ξ‖BC = ‖φ‖+ |ξ |.

Consider an extension A : D(A)⊂ C → BC of A0 to BC

Aψ = ψ̇ +X0[Bψ(0)+Lψ− ψ̇(0)]

with domain
D(A) :=C1 ([−r,0] ,Rn) .

Remark 1.2.16. One may observe that A0 is the part of A in C ; that is,

A0ϕ := Aϕ for ϕ ∈ D(A0)

and
D(A0) := {φ ∈ D(A) : Aϕ ∈ C }.

Now consider the functional differential equation{ dx(t)
dt

= Bx(t)+L(xt)+F(xt)

x0 = φ ∈ C ,
(1.2.20)

where F : C → Rn is a k-time continuously differentiable map satisfying

F(0C ) = 0Rn and DF(0C ) = 0L (C ,Rn).

By setting
u(t,θ) := xt(θ) = x(t +θ),

the RFDE (1.2.20) can be rewritten as an abstract Cauchy problem in the Banach
space C :
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du(t)
dt

= Au(t)+X0F(u(t)) for t ≥ 0 with u(0) = ϕ ∈ C . (1.2.21)

Remark 1.2.17. Of course this problem is not classical since the ranges of A and
X0F do not belong to C .

Then consider a map π̂N : BC→ N defined as follows

π̂N(φ +X0ξ ) = Φ [〈Ψ ,φ〉+Ψ(0)ξ ]

for φ ∈ C and ξ ∈ Rn. One can observe that π̂N extends the projector πN and we
have

BC = N⊕ker π̂N

with
S⊕U ⊂ ker π̂N .

Next we can decompose the solution xt of (1.2.20) as

xt = Φz(t)+ y(t)

with
z(t) ∈ Rn and y(t) := (I−πN)xt ∈ (I−πN)C .

Then (1.2.20) is equivalent to

ż(t) = Bmz(t)+Ψ(0)F(Φz+ y),
dy
dt

= Bhy+(I− π̂N)X0F(Φz+ y),
(1.2.22)

where Bh is the part of B : D(B)⊂ C → C

Bφ = φ
′ and D(B) :=C1 ([−r,0] ,Rn)

in the hyperbolic space
Xh := (I− π̂N)BC;

that is,
Bhϕ = Bϕ = φ

′ for ϕ ∈ D(Bh)

and
D(Bh) := {ϕ ∈ D(B)∩Xh : Bϕ ∈ Xh}.

Remark 1.2.18. The variable u(t) = Φz(t) + y(t) satisfies the original equation
(1.2.21).

We have the following result.

Theorem 1.2.19 (Center Manifold). Assume that N 6= 0 and F is a k-time contin-
uously differentiable map satisfying

F(0C ) = 0Rn and DF(0C ) = 0L (C ,Rn).
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Then there exist a map W ∈Ck(Rm,kerπN) with

W (0) = 0 and DzW (0) = 0,

and a neighborhood V of 0 in C such that the center manifold

W c
loc(0) = {Φz+W (z) : z ∈ Rm}

has the following properties

(i) W c
loc(0) is locally invariant with respect to (1.2.21); that is, if φ ∈W c

loc(0)∩V
and

u(t,φ) = xt(φ) ∈V, ∀t ∈ I(φ),

then
u(t,φ) = xt(φ) ∈WC

loc(0)

for all t ∈ I(φ) (the interval of existence);
(ii) W c

loc(0) contains all solutions of (1.2.21) remaining in V for all t ∈ R.

Note that W c
loc(0) is a Ck-manifold of (1.2.21) parameterized by z ∈ Rm. Thus,

W c
loc(0) has the same dimension m, passes through 0, and is tangent to N at 0.

1.3 Age-structured Models

Let u(t,a) be the density of a population with age a at time t ≥ 0, so that for each
0≤ a1 ≤ a2, ∫ a2

a1

u(t,a)da

is the number of individuals with age a between a1 and a2 and the total number of
individuals at time t is ∫ +∞

0
u(t,a)da.

Consider the following age-structured model

∂u(t,a)
∂ t

+
∂u(t,a)

∂a
=−µ(a)u(t,a)︸ ︷︷ ︸

mortality

for t ≥ 0 and a≥ 0

u(t,0) = αh
(∫ +∞

0
β (a)u(t,a)da

)
︸ ︷︷ ︸

birth

for t ≥ 0
(1.3.1)

with the initial distribution

u(0, .) = φ ∈ L1
+((0,+∞),R).
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In (1.3.1) the function
µ ∈ L1

+,loc((0,+∞),R)

is the mortality rate, α > 0 is the birth rate of mature individuals, and the function

β (.) ∈ L∞
+((0,+∞),R)

is the probability for an individual with age a to be mature. Therefore,∫ +∞

0
β (a)u(t,a)da

is the total number of mature individuals at time t.
The function h(x) describes the birth limitation whenever the size of the popu-

lation increases. A classical example for such a function is the Ricker’s function of
the form

h(x) = xe−δx,

where δ ≥ 0, which was introduced by Ricker [297, 298] to describe cannibalism in
fish population. Ricker’s function can be derived by using a singular limit procedure.
We refer to Ducrot et al. [118] for more results about this topic.

1.3.1 Volterra formulation

We observe that if the map (t,a)→ u(t,a) is C1 and

lim
h→0

u(t +h,a+h)−u(t,a)
h

=
∂u(t,a)

∂ t
+

∂u(t,a)
∂a

,

then the first equation of (1.3.1) means that U(h) := u(t + h,a+ h) satisfies an or-
dinary differential equation along the characteristic curve a = t +c. More precisely,
we have

U ′(h) = µ(a+h)U(h), (1.3.2)

or equivalently

U(0) = exp
(
−
∫ a

a−h
µ(s))ds

)
U(−h). (1.3.3)

Some characteristic curves a = t + c are represented in Fig. 1.5. This figure shows
that we need to distinguish the case a > t and the case a < t in order to compute the
solution from the value of the distribution on the boundary of the domain (0,+∞)2.

Set

B(t) :=
∫ +∞

0
β (a)u(t,a)da.

Then the first equation of (1.3.1) means that
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Fig. 1.5: Some characteristics curves a = t + c.

u(t,a) =
{

exp(−
∫ a

a−t µ(s)ds)φ(a− t) if a > t,
exp(−

∫ a
0 µ(s)ds)αh(B(t−a)) if a < t,

or equivalently in a more condensed form

u(t,a) =


Π(a)

Π(a− t)
φ(a− t) if a > t,

Π(a)αh(B(t−a)) if a < t,
(1.3.4)

where
Π(a) := exp(−

∫ a

0
µ(s)ds) (1.3.5)

is the probability for a newborn to survive to the age a. Now we have

B(t) =
∫ +∞

0
β (a)u(t,a)da =

∫ t

0
β (a)u(t,a)da+

∫ +∞

t
β (a)u(t,a)da.

So by using (1.3.4) we deduce that B(t) must satisfy a nonlinear Volterra integral
equation

B(t) =
∫ t

0
β (a)Π(a)αh(B(t−a))da+F(t), (1.3.6)

where F(t) corresponds to the contribution of the initial distribution φ(.) to the
number of mature individuals at time t; namely,

F(t) :=
∫ +∞

t
β (a)

Π(a)
Π(a− t)

φ(a− t)da. (1.3.7)
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Set
K(a) := β (a)Π(a). (1.3.8)

Then the nonlinear Volterra integral equation (1.3.6) can be rewritten as

B(t) := (K ∗G(B))(t)+F(t), (1.3.9)

which is also called the Lotka integral equation, where

G(x) := αh(x)

and the operator of convolution is defined by

(K ∗B)(t) :=
∫ t

0
K(a)B(t−a)da =

∫ t

0
K(t−a)B(a)da. (1.3.10)

1.3.2 Age-structured Models without Birth

Assume first that the birth rate

α = 0.

Then the solution becomes

u(t,a) =

 e(−
∫ a

a−t µ(s)ds)
φ(a− t) =

Π(a)
Π(a− t)

φ(a− t) if a > t,

0 if a < t.
(1.3.11)

The following theorem summarizes some known results about this special case.

Theorem 1.3.1. Under the above assumptions, the family of bounded linear opera-
tors {TÂ0

(t)}t≥0 on L1((0,+∞),R) defined by

TÂ0
(t)(φ)(a) =

{
e(−

∫ a
a−t µ(s)ds)

φ(a− t) if a > t,
0 if a < t.

(1.3.12)

is a strongly continuous semigroup of bounded linear operators; that is,

(i) TÂ0
(t)TÂ0

(s) = TÂ0
(t + s),∀t,s≥ 0, and TÂ0

(0) = I;
(ii) (t,φ)→TÂ0

(t)φ is continuous from [0,+∞)×L1((0,+∞),R) into L1((0,+∞),R).

Moreover, the linear operator Â0 : D(Â0) ⊂ L1((0,+∞),R)→ L1((0,+∞),R) de-
fined by

Â0φ = φ
′

with domain
D(Â0) = {φ ∈W 1,1((0,+∞),R) : φ(0) = 0}
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is the infinitesimal generator of {TÂ0
(t)}t≥0; that is,

lim
h→0

(
TÂ0

(h)φ −φ

)
h

exists and is equal to χ if and only if

φ ∈ D(Â0) and Â0(φ) = χ.

We also have the following result.

Lemma 1.3.2. Assume that there exist a constant µ0 > 0 and an age a0 > 0 such
that

µ(a)> µ0 for almost every a > a0. (1.3.13)

Then there exists a constant M > 0 such that

‖TÂ0
(t)‖L (L1((0,+∞),R)) ≤Me−µ0t , ∀t ≥ 0.

Since the map φ→
∫ +∞

0 β (a)φ(a)da is a bounded linear functional on L1((0,+∞),R)
and since

F(t) =
∫ +∞

0
β (a)TÂ0

(t)(φ)(a)da,

by applying Theorem 1.3.1, it follows that F(t) is a continuous map and by Lemma
1.3.2

|F(t)| ≤ ‖β‖L∞Me−µ0t , ∀t ≥ 0.

1.3.3 Age-structured Models with Birth

Observe that with our assumptions on µ(a) and β (a) the map

K := βΠ ∈ L∞
+((0,+∞),R).

Moreover, the map h(x) is Lipschitz continuous on [0,+∞). In order to prove the
existence of solutions we can apply the following fixed point procedure

Bn+1(t) = (K ∗G(Bn))(t)+F(t), ∀t ≥ 0 (1.3.14)

in some convenient space of continuous functions. Namely, we consider

Cη([0,+∞),R) = {χ ∈C([0,+∞),R) : sup
t≥0

e−ηt |χ(t)|<+∞},

which is a Banach space endowed with the norm
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‖χ‖η := sup
t≥0

e−ηt |χ(t)|.

Theorem 1.3.3. Under the above assumptions, for each η > 0 such that∫ +∞

0
e−η lK(l)dl < 1,

there exists a unique function B ∈ Cη([0,+∞),R) (for some η > 0 large enough)
satisfying the Volterra integral equation (1.3.6). Moreover,

B(t)≥ 0, ∀t ≥ 0.

If, in addition, µ satisfies the condition (1.3.13), then B(t) is bounded and

limsup
t→+∞

B(t)≤
∫ +∞

0
K(a)dasup

x≥0
G(x).

Proof. Let B1 and B2 be two functions in Cη([0,+∞),R). Then

e−ηt |(K ∗G(B1))(t)− (K ∗G(B2))(t)|

= e−ηt |
∫ t

0
K(t−a)[G(B1)(a)−G(B2)(a)]da|

=

∣∣∣∣∫ t

0
e−η(t−a)K(t−a)e−ηa[G(B1)(a)−G(B2)(a)]da

∣∣∣∣
≤
∫ t

0
e−η(t−a)K(t−a)da‖G‖Lip‖B1−B2‖η .

Thus,
‖(K ∗G(B1))− (K ∗G(B2))‖η ≤ kη‖B1−B2‖η ,

where

kη := ‖G‖Lip

∫ +∞

0
e−η lK(l)dl→ 0 as η →+∞.

By applying the Banach fixed point procedure to (1.3.14), the first part of Theorem
1.3.3 follows.

To prove the last part of Theorem 1.3.3 we use Lemma 1.3.2 and observe that
under the additional condition K ∈ L1((0,+∞),R). Therefore,

limsup
t→+∞

B(t)≤ limsup
t→+∞

∫ +∞

0
K(t−a)G(B(a))da+F(t).

Hence
limsup
t→+∞

B(t)≤ limsup
t→+∞

∫ +∞

0
K(t−a)dasup

x≥0
G(x)

and the result follows. ut

As a consequence we obtain the following theorem.
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Theorem 1.3.4. Under the above assumptions, there exists a unique continuous
semiflow {U(t)}t≥0 generated by the solutions integrated along the characteristics
for age-structured model (1.3.1). In other words, if for each φ ∈ L1

+((0,+∞),R) we
define U(t)(φ) as

U(t)(φ)(a) = uφ (t,a),

where uφ (t,a) is given by

uφ (t,a) =


Π(a)

Π(a− t)
φ(a− t) if a > t,

Π(a)G
(
Bφ (t−a)

)
if a < t

(1.3.15)

with Bφ (t) being a solution of the nonlinear Volterra integral equation

Bφ (t) =
∫ t

0
β (a)Π(a)G

(
Bφ (t−a)

)
da+Fφ (t) (1.3.16)

and

Fφ (t) :=
∫ +∞

t
β (a)

Π(a)
Π(a− t)

φ(a− t)da, (1.3.17)

then U is a continuous semiflow on φ ∈ L1
+((0,+∞),R); that is,

(i) U(t)◦U(s) =U(t + s),∀t,s≥ 0, and U (0) = I;
(ii) (t,φ)→U(t)φ is continuous from [0,+∞)×L1((0,+∞),R) into L1

+((0,+∞),R).

1.3.4 Equilibria and Linearized Equations

A positive equilibrium solution for the age-structured model (1.3.1) satisfies u ∈
W 1,1((0,+∞),R) (i.e. u ∈ L1((0,+∞),R) and u′ ∈ L1((0,+∞),R)) and{

u′(a) =−µ(a)u(a) for a.e. a≥ 0,
u(0) = G(

∫ +∞

0 β (a)u(a)da).
(1.3.18)

Thus
u(a) = Π(a)u(0) for all a≥ 0

and
u(0) = ru(0)exp(−κu(0)),

where

r := α

∫ +∞

0
β (a)Π(a)da and κ := δ

∫ +∞

0
β (a)Π(a)da.

Lemma 1.3.5. We have the following alternatives:

(i) If r≤ 1, then u0(a) = 0,∀a≥ 0, is the unique equilibrium of the age-structured
model (1.3.1);
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(ii) If r > 1, then u0(a) = 0,∀a ≥ 0, and u1(a) = Π(a)
ln(r)

κ
,∀a ≥ 0, is the only

positive equilibrium of the age-structured model (1.3.1).

The linearized equation around u is given by ∂v(t,a)
∂ t

+
∂v(t,a)

∂a
=−µ(a)v(t,a), t ≥ 0, a≥ 0

v(t,0) = G′(
∫ +∞

0 β (a)u(a)da)
∫ +∞

0 β (a)v(t,a)da, t ≥ 0.
(1.3.19)

But
G′(x) = α(1− xδ )exp(−δx).

It follows that
G′(0) = α. (1.3.20)

For the positive equilibrium (when it exists) we have∫ +∞

0
β (a)u1(a)da =

∫ +∞

0
β (a)Π(a)da

ln(r)
κ

=
ln(α

∫ +∞

0 β (a)Π(a)da)
δ

,

G′
(∫ +∞

0
β (a)u1(a)da

)
=

1− ln
(
α
∫ +∞

0 β (a)Π(a)da
)∫ +∞

0 β (a)Π(a)da
.

Assume for simplicity that ∫ +∞

0
β (a)Π(a)da = 1,

we obtain

G′
(∫ +∞

0
β (a)u1(a)da

)
= 1− ln(α) . (1.3.21)

By using (1.3.19) and (1.3.20), we deduce that the linearized equation around u0 = 0
is given by ∂v(t,a)

∂ t
+

∂v(t,a)
∂a

=−µ(a)v(t,a) for t ≥ 0 and a≥ 0

v(t,0) = α
∫ +∞

0 β (a)v(t,a)da for t ≥ 0,
(1.3.22)

and by using (1.3.19) and (1.3.21), we deduce that the linearized equation around
u1 is given by ∂v(t,a)

∂ t
+

∂v(t,a)
∂a

=−µ(a)v(t,a) for t ≥ 0 and a≥ 0

v(t,0) = (1− ln(α))
∫ +∞

0 β (a)v(t,a)da for t ≥ 0.
(1.3.23)

In order to derive the characteristic equation we look for (nontrivial) solution of the
form

v(t,a) = eλ tv0(a). (1.3.24)
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By substituting it into the linearized equation we obtain{
λv0(a)+ v′0(a) =−µ(a)v0(a) for all a≥ 0
v0(0) = G′

(∫ +∞

0 β (a)u(a)da
)∫ +∞

0 β (a)v0(a)da.
(1.3.25)

By using the first equation of (1.3.25) we have

v0(a) = v0(0)Π(a)e−λa.

So by plugging this last expression into the second equation of (1.3.25), we obtain
the characteristic equation to find λ ∈ C :

1 = G′
(∫ +∞

0
β (a)u(a)da

)∫ +∞

0
β (a)Π(a)e−λada. (1.3.26)

1.3.5 Age-structured Models Reduce to DDEs and ODEs

We consider the age-structured model (1.3.1) in the following cases.
(i) β (a) = e−βa1[τ,+∞)(a), µ(0) = µ, where β > 0, τ ≥ 0 and µ > 0 are con-

stants. Let û(t) =
∫

∞

0 e−βau(t,a)da. Then, we obtain a delay differential equation
dû(t)

dt = αe−µτ h(û(t− τ))− (µ +β )û(t), t ≥ τ,

û(t) = e−µt ∫ ∞

τ
e−βau0(a− t)da

= e−(µ+β )t ∫ ∞

t−τ
e−βbu0(b)db, t ∈ [0,τ].

(1.3.27)

(ii) β (a) = 1[0,∞)(a). Let ũ(t) =
∫

∞

0 u(t,a)da. Then we obtain an ODE{ dũ
dt = αh(ũ(t))−µ ũ(t), t ≥ 0,
ũ(0) = ũ0 ≥ 0.

(1.3.28)

(iii) With juveniles and adults. Let

A(t) =
∫

∞

τ

u(t,a)da

denote the number of adults in the population at time t. Consider the boundary
condition

u(t,0) =
∫

∞

τ

β (A(t))u(t,a)da = β (A(t))A(t).

Then A(t) satisfies a delay differential equation

dA
dt

= u(t,τ)−µA(t)

= β (A(t− τ))A(t− τ)e−µτ −µA(t). (1.3.29)
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Let
β (A) = β0e−

A
N0 , δ = µ.

Then equation (1.3.29) becomes

dA
dt

= β0e−δτ A(t− τ)e
−

A(t− τ)

N0 −δA(t), (1.3.30)

which is the Nicholson’s blowflies model (1.2.6) if we denote P = β0e−δτ .

1.4 Abstract Semilinear Formulation

In this section we formulate several types of equations, including functional dif-
ferential equations, age-structured models, parabolic equations, and partial func-
tional differential equations, as abstract Cauchy problems with nondense domain.

1.4.1 Functional Differential Equations

(a) From RFDE to PDE. Consider the retarded functional differential equations
of the form { dx(t)

dt
= Bx(t)+ L̂(xt)+G(xt), ∀t ≥ 0,

x0 = φ ∈C ([−r,0] ,Rn) ,
(1.4.1)

where B ∈ Mn (R) is an n× n real matrix, L̂ : C ([−r,0] ,Rn)→ Rn is a bounded
linear operator, and G : C ([−r,0] ,Rn)→ Rn is a continuous map.

In order to study the RFDE (1.4.1) by using the integrated semigroup theory, we
need to consider RFDE (1.4.1) as an abstract non-densely defined Cauchy problem.
Firstly, we regard the RFDE (1.4.1) as a Partial Differential Equation (PDE). Define
v ∈C ([0,+∞)× [−r,0] ,Rn) by

v(t,θ) = x(t +θ), ∀t ≥ 0, ∀θ ∈ [−r,0] .

Note that if x ∈C1 ([−r,+∞) ,Rn) , then

∂v(t,θ)
∂ t

= x′(t +θ) =
∂v(t,θ)

∂θ
.

Hence, we must have

∂v(t,θ)
∂ t

− ∂v(t,θ)
∂θ

= 0, ∀t ≥ 0, ∀θ ∈ [−r,0] .
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Fig. 1.6: Some characteristics curves θ = c− t.

In Fig. 1.6 we take r =−4. The PDE ∂v(t,θ)
∂ t −

∂v(t,θ)
∂θ

= 0 implies that the solution
v(t,θ) must be constant along the characteristics θ = c− t. So in order to define the
solutions of the PDE, we need an additional boundary condition at θ = 0 for t > 0.
For θ = 0, we obtain

∂v(t,0)
∂θ

= x′(t) = Bx(t)+ L̂(xt)+G(xt) = Bv(t,0)+ L̂(v(t, .))+G(v(t, .)),∀t ≥ 0.

Therefore, we deduce formally that v must satisfy a PDE
∂v(t,θ)

∂ t
− ∂v(t,θ)

∂θ
= 0, ∀t ≥ 0,∀θ ∈ [−r,0] ,

∂v(t,0)
∂θ

−Bv(t,0) = L̂(v(t, .))+G(v(t, .)), ∀t ≥ 0,

v(0, .) = φ ∈C ([−r,0] ,Rn) .

(1.4.2)

The above PDE is a linear transport type equation with nonlinear Robin’s type
boundary condition. One may observe that the delay induces some nonlocal terms in
the boundary condition. Because of that the problem becomes difficult to study from
the PDE point of view, and the real question is how to define the solutions of such
a PDE problem. To do so, we rewrite the PDE (1.4.2) as an abstract non-densely
defined Cauchy problem.

We start by extending the state space to take into account the boundary condi-
tions. This can be accomplished by adopting the following state space

X = Rn×C ([−r,0] ,Rn) = Rn×C
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taken with the usual product norm∥∥∥∥( x
φ

)∥∥∥∥= ‖x‖Rn +‖φ‖ .

Define the linear operator A : D(A)⊂ X → X by

A
(

0Rn

φ

)
=

(
−φ ′(0)+Bφ(0)

φ ′

)
, ∀
(

0Rn

φ

)
∈ D(A),

with
D(A) = {0Rn}×C1 ([−r,0] ,Rn) .

Note that A is non-densely defined because

D(A) = {0Rn}×C 6= X .

We also define L : D(A)→ X by

L
(

0Rn

φ

)
=

(
L̂(φ)
0C

)
and F : D(A)→ X by

F
(

0Rn

φ

)
=

(
G(φ)
0C

)
.

Set

u(t) =
(

0Rn

v(t)

)
.

Now we consider the RFDE (1.4.2) as the following non-densely defined Cauchy
problem

du(t)
dt

= Au(t)+L(u(t))+F(u(t)), t ≥ 0, u(0) =
(

0Rn

φ

)
∈ D(A). (1.4.3)

The abstract Cauchy problem can be written as

d
dt

(
0

v(t, .)

)
=

−dv(t,0)
dθ

+Bv(t,0)+ L̂(v(t, .))+G(v(t, .))
dv(t, .)

dθ

 . (1.4.4)

Unfortunately, depending on the initial value of the problem, such a solution
does not exist in general. In fact for a RFDE, if we take an initial value φ ∈
C1 ([−r,0] ,Rn) satisfying the so called compatibility condition

φ
′(0) = Bφ(0)+ L̂(φ)+G(φ) ,
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then the solution x(t) of the RFDE belongs to C1 ([−r,+∞) ,Rn) and u(t, .) = xt
satisfies (1.4.4).

But if we only assume that φ ∈C ([−r,0] ,Rn) , then we need to extend this notion
of solution by considering the so-called integrated solutions (or mild solutions); that
is, ∫ t

0
u(l)dl ∈ D(A)

and

u(t) =
(

0Rn

φ

)
+A

∫ t

0
u(l)dl +

∫ t

0
L(u(l))+F(u(l))dl, t ≥ 0.

In fact, it is not difficult to prove that v(t, .) = xt satisfies the following properties∫ t

0
v(l, .)dl ∈C1 ([−r,0] ,Rn) ,

(
0

v(t, .)

)
=

(
0Rn

φ

)
+

 (− d
dθ

+B) |θ=0
∫ t

0 v(l, .)dl +
∫ t

0 L̂(v(l, .))+G(v(l, .))dl
d

dθ

∫ t
0 v(l, .)dl

 .

(b) Linear RFDEs. Consider the linear RFDE{ dx(t)
dt

= Bx(t)+ L̂(xt),∀t ≥ 0,

x0 = φ ∈ C .
(1.4.5)

As we saw, the linear RFDE can be formulated as the following PDE
∂v(t,θ)

∂ t
− ∂v(t,θ)

∂θ
= 0, ∀t ≥ 0,∀θ ∈ [−r,0] ,

∂v(t,0)
∂θ

−Bv(t,0) = L̂(v(t, .)),∀t ≥ 0,

v(0, .) = φ ∈ C .

(1.4.6)

The first way (see Webb [356, 357] and Travis and Webb [340, 341]) to give an
abstract formulation for this problem is to incorporate the boundary condition into
the definition of the domain. More precisely, consider the linear operator Â : D(Â)⊂
C → C defined by

Âφ = φ
′

with the boundary condition incorporated into the domain

D(Â) =
{

φ ∈C1 ([−r,0] ,Rn) : φ
′(0)−Bφ(0) = L̂(φ)

}
.

Then the PDE (1.4.6) can be formulated as an abstract Cauchy problem

du(t)
dt

= Âu(t) for t ≥ 0 with u(0) = φ ∈ C . (1.4.7)
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In order to define the solutions of (1.4.7), we use the theory of linear strongly con-
tinuous semigroups, and the solutions (1.4.7) satisfy∫ t

0
u(s)ds ∈ D(Â)

and
u(t) = φ + Â

∫ t

0
u(s)ds, ∀t ≥ 0.

In fact we will see that Â is the infinitesimal generator of
{

T̂ (t)
}

t≥0
, a strongly

continuous semigroup of bounded linear operators. Of course one needs to establish
a relationship between

{
T̂ (t)

}
t≥0

and the solutions of (1.4.5), and we will see that

xt = T̂ (t)φ , ∀t ≥ 0.

In particular the spectrum defined in section 1.2.3 is the spectrum of the linear op-
erator Â. But now, we can use the spectral theory of linear operators and can also
compute the projectors on the generalized eigenspaces. This part becomes important
when one needs to project on the eigenspace.

(c) Relationship between Â and A+L. Next we can observe that Â is (A+L)D(A) ,

the part of A+L : D(A)⊂ X → X in D(A). Indeed the linear operator (A+L)D(A) is
defined by

(A+L)D(A) x = (A+L)
(

0
φ

)
, ∀

(
0
φ

)
∈ D

(
(A+L)D(A)

)
and

D
(
(A+L)D(A)

)
=
{

x ∈ D(A) : (A+L)x ∈ D(A)
}
.

So this is equivalent to

(A+L)D(A)

(
0
φ

)
=

(
−φ ′(0)+Bφ(0)+ L̂(φ)

φ ′

)
and

D
(
(A+L)D(A)

)
=


(

0
φ

)
∈ {0}×C1 ([−r,0] ,Rn) :(
−φ ′(0)+Bφ(0)+ L̂(φ)

φ ′

)
∈ {0}×C ([−r,0] ,Rn)

 .

Therefore,

(A+L)D(A)

(
0
φ

)
=

(
0
φ ′

)
and
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D
(
(A+L)D(A)

)
=

{(
0
φ

)
∈ {0}×C1 ([−r,0] ,Rn) :−φ

′(0)+Bφ(0)+ L̂(φ) = 0
}
.

Thus

(A+L)D(A)

(
0
φ

)
=

(
0

Âφ

)
and

D
(
(A+L)D(A)

)
= {0}×D(Â).

(d) Nonlinear RFDE. Consider the nonlinear RFDE{ dx(t)
dt

= Bx(t)+ L̂(xt)+G(xt), ∀t ≥ 0,

x0 = φ ∈ C .
(1.4.8)

As before we can consider the PDE associated to this problem
∂v(t,θ)

∂ t
− ∂v(t,θ)

∂θ
= 0, ∀t ≥ 0,∀θ ∈ [−r,0] ,

∂v(t,0)
∂θ

−Bv(t,0) = L̂(v(t, .))+G(v(t, .)), ∀t ≥ 0,

v(0, .) = φ ∈ C .

(1.4.9)

In that case, the first attempt is to formalize this problem as an abstract Cauchy
problem which was done by Travis and Webb [340, 341], and the idea is again to
use the nonlinear semigroup theory. In order to do this, the idea is to incorporate the
boundary condition into the definition of the domain. More precisely, they showed
that the nonlinear semiflow (or nonlinear semigroup) {U(t)}t≥0 defined by

U(t)φ = xφ t

is generated by the nonlinear unbounded operator ÂN : D(ÂN)⊂ C → C defined by

ÂNφ = φ
′

with

D(ÂN) =
{

φ ∈C1 ([−r,0] ,Rn) : φ
′(0)−Bφ(0) = L̂(φ)+G(φ)

}
.

As we have seen, if G is C1, G(0) = 0 and DG(0) = 0, then

T (t)φ̂ = ∂φU(t)(0)φ̂ .

This property can be sufficient to establish the stability or the unstability properties
of the equilibrium solution 0. We refer to Desch and Schappacher [94] for more
results about that. Unfortunately, this property does not seem to be sufficient to built
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a complete bifurcation theory, in particular if we would like to compute the reduced
system.

1.4.2 Age-structured Models

We consider the age-structured model (1.3.1). Let X = R× L1(0,∞) with the
usual product norm. Let A : D(A)⊂ X → X be the linear operator on X defined by

A
(

0
φ

)
=

(
−φ(0)
−φ ′−µφ

)
(1.4.10)

with

D(A) = {0}×W 1,1(0,+∞), D(A) = {0}×L1(0,+∞) = X0 6= X .

Define the map F : X0→ X by

F
((

0
φ

))
=

(
αh(

∫
∞

0 β (a)φ(a)da)
0L1

)
. (1.4.11)

Denote

v(t) =
(

0
u(t, ·)

)
∈ X0.

Then the age-structured model can be reformulated as the abstract Cauchy problem
with nondense domain 

dv
dt

= Av(t)+F(v(t)), t ≥ 0

v(0) =
(

0
φ

)
∈ D(A).

(1.4.12)

1.4.3 Size-structured Models

Consider the system
∂u(t,x)

∂ t
+

∂u(t,x)
∂x

= ε
2 ∂ 2u(t,x)

∂x2 −µu(t,x), t ≥ 0,x≥ 0,

−ε
2 ∂u(t,0)

∂x
+u(t,0) = αh(

∫
∞

0
γ(x)u(t,x)dx),

u(0, ·) = φ ∈ L1
+(0,+∞),

(1.4.13)

where u(t,x) represents the population density of certain species at time t with size
x, ε > 0, µ > 0, α > 0, γ ∈ L∞

+(0,+∞)\{0}, and h : R→ R is defined by
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h(x) = xe−ξ x, x ∈ R.

Let

X = R×L1(0,+∞),

∣∣∣∣(α

φ

)∣∣∣∣= |α|+‖φ‖L1(0,+∞).

Define the operator A : D(A)⊂ X → X by

A
(

0
φ

)
=

(
ε2φ ′(0)−φ(0)
ε2φ ′′−φ ′−µφ

)
with domain

D(A) = {0}×W 2,1(0,+∞).

Then we have
D(A) = X0 = {0}×L1(0,∞) 6= X .

Define the map F : X0→ X by

F
(

0
φ

)
=

(
αh(

∫
∞

0 γ(x)φ(x)dx)
0

)
,

and denote

v(t) =
(

0
u(t, ·)

)
.

Then, we obtain system (1.4.12).

1.4.4 Partial Functional Differential Equations

Taking the interactions of spatial diffusion and time delay into account, a single
species population model can be described by a partial differential equation with
time delay as follows:

∂u(t,x)
∂ t

= d
∂ 2u(t,x)

∂x2 −au(t− r,x)[1+u(t,x)], t > 0, x ∈ [0,π] ,
∂u(t,x)

∂x
= 0, x = 0,π,

u(0, .) = u0 ∈C ([0,π] ,R) ,

(1.4.14)

where u(t,x) denotes the density of the species at time t and location x, d > 0 is the
diffusion rate of the species, r > 0 is the time delay constant, and a > 0 is a constant.

Consider the Banach space Y =C ([0,π] ,R) endowed with the usual supremum
norm. Define the operator B : D(B)⊂ Y → Y by

Bφ = dφ
′′
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with
D(B) =

{
φ ∈C2 ([0,π] ,R) : φ

′(0) = φ
′ (π) = 0

}
.

Denote
L̂(φ) =−aφ(−r), f (φ) =−aφ(0)φ(−r).

Equation (1.4.14) can be written as an abstract partial functional differential equa-
tions (PFDE) (see, for example, Travis and Webb [340, 341], Wu [374] and Faria
[133]): { dy(t)

dt
= By(t)+ L̂(yt)+ f (yt), ∀t ≥ 0,

y0 = φ ∈CB,
(1.4.15)

where
CB := {φ ∈C ([−r,0] ;Y ) : φ(0) ∈ D(B)},

yt ∈CB satisfies yt (θ) = y(t +θ) ,θ ∈ [−r,0], L̂ : CB→Y is a bounded linear opera-
tor, and f :R×CB→Y is a continuous map. As in subsection 1.4.1, system (1.4.15)
can be formulated as an abstract Cauchy problem with nondense domain.

1.5 Remarks and Notes

(a) Ordinary Differential Equations. Fundamental theories of ordinary differ-
ential equations can be found in many classical textbooks, such as Hartman [180]
and Hale [171]. The classical center manifold theory was first established by Pliss
[289] and Kelley [208] and was developed and completed in Carr [56], Sijbrand
[319], Vanderbauwhede [343], etc. There are two classical methods to prove the
existence of center manifolds. The Hadamard (Hadamard[167]) method (the graph
transformation method) is a geometric approach which is based on the construction
of graphs over linearized spaces, see Hirsch et al. [188] and Chow et al. [65, 66].
The Liapunov-Perron (Liapunov [228], Perron [286]) method (the variation of con-
stants method) is more analytic in nature, which obtains the manifold as a fixed point
of a certain integral equation. The technique originated in Krylov and Bogoliubov
[220] and was further developed by Hale [169, 171], see also Ball [36], Chow and
Lu [67], Yi [378], etc. The smoothness of center manifolds can be proved by us-
ing the contraction mapping in a scale of Banach spaces (Vanderbauwhede and van
Gils [344]), the Fiber contraction mapping technique (Hirsch et al. [188]), the Henry
lemma (Henry [183], Chow and Lu [68]), among other methods (Chow et al. [64]).
For further results and references on center manifolds, we refer to the monographs
of Carr [56], Chow and Hale [62], Chow et al. [63], Sell and You [314], Wiggins
[373], and the survey papers of Bates and Jones [39], Vanderbauwhede [343] and
Vanderbauwhede and Iooss [345].

A normal form theorem was obtained first by Poincaré [291, 290] and later by
Siegel [317] for analytic differential equations. Simpler proofs of Poincaré’s theo-
rem and Siegel’s theorem were given in Arnold [32], Meyer [267], Moser [272], and
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Zehnder [382]. For more results about normal form theory and its applications see,
for example, the monographs by Arnold [32], Chow and Hale [62], Guckenheimer
and Holmes [155], Meyer and Hall [?], Siegel and Moser [318], Chow et al. [63],
Kuznetsov [223], and others.

The Hopf bifurcation theorem was proved by several researchers (see Andronov
et al. [18], Hopf [191], Friedrichs [145], Hale [171]) and has been used to study bi-
furcations in many applied subjects (see Marsden and McCraken [257] and Hassard
et al. [181]). Golubitsky and Rabinowitz [151] gave a nice commentary on Hopf
bifurcation theorem and provided more references.

(b) Functional Differential Equations. The fundamental theories can be found
in Hale and Verduyn Lunel [175] and Diekmann et al. [106]. The center man-
ifold theorem in functional differential equations has been studied in Diekmann
and van Gils [104, 105], Hupkes and Verduyn Lunel [193]), etc. Normal form the-
ory has been extended to functional differential equations in Faria and Magalhães
[136, 137]. Hopf bifurcation theorem can be found in the monographs of Hale and
Verduyn Lunel [175], Hassard et al. [181], Diekmann et al. [106], Guo and Wu
[159].

(c) Age-Structured Models. The first linear age-structured model described by
a first-order hyperbolic equation was proposed by McKendrick [263] in 1926 to
study problems in medicine, namely various transitions in epidemology. In the fa-
mous series of three papers on mathematical epidemiology published from 1927
to 1933, Kermack and McKendrick [209, 210, 211] used systems of age-structured
equations to develop a general theory of infectious disease transmission. The first
nonlinear age-structured model in population dynamics was due to Gurtin and Mac-
Camy [162]. Since then, age-structued models have been studied extensively. We
refer to the monographs of Webb [362], Metz and Diekmann [266], Iannelli [195],
Busenberg and Cook [50], Cushing [79], Anita [19], and Inaba [199] on the theories
of age-sructured models. To investigate age-structured models, one can use the clas-
sical method, that is, to use solutions integrated along the characteristics and work
with nonlinear Volterra equations. We refer to Webb [362] and Iannelli [195] on this
method. A second approach is the variational method, we refer to Anita [19], Ain-
seba [8] and the references cited therein. One can also regard the problem as a semi-
linear problem with non-dense domain and use the integrated semigroups method.
We refer to Thieme [328, 330, 331], Magal [242], Thieme and Vrabie [339], Magal
and Thieme [251], Thieme and Vosseler [338] for more details on this approach.

(d) Abstract Semilinear Formulation. Various types of equations, such as func-
tional differential equations (Hale and Verduyn Lunel [175]), age-structured models
(Webb [362]), size-structured models (Webb [364]), parabolic partial differential
equations (Henry [183], Lunardi [240]), and partial functional differential equations
(Wu [374]) can be written as abstract semilinear equations in Banach spaces. Semi-
group theory then can be used to study such abstract semilinear equations (Arendt et
al. [22], Cazenave and Haraux [58], Chicone and Latushkin [60], Engel and Nagel
[126], Henry [183], Pazy [281], Tanabe [325], van Neerven [346], Yagi [376]).



Chapter 2
Semigroups and Hille-Yosida Theorem

The aim of this chapter is to introduce the basic concepts and results about semi-
groups, resolvents, infinitesimal generators for linear operators and to present the
Hille-Yosida theorem for strongly continuous semigroups.

2.1 Semigroups

Let (X ,‖.‖X ) and (Y,‖.‖Y ) be two Banach spaces. Denote by L (X ,Y ) the space
of bounded linear operators from X into Y endowed with the usual norm

‖L‖L (X ,Y ) = sup
x∈X :‖x‖X≤1

‖L(x)‖Y

and denote by L (X) =L (X ,X) if X =Y. We will study the existence and unique-
ness of solutions for the Cauchy problem

du
dt

= Au(t), t ≥ 0; u(0) = x ∈ D(A), (2.1.1)

where A : D(A)⊂ X → X is a linear operator on a Banach space (X ,‖.‖) .
First, we introduce a basic definition.

Definition 2.1.1. A family {T (t)}t≥0 ⊂ L (X) is a semigroup of bounded linear
operators on a Banach space X if the following properties are satisfied

T (t)T (s) = T (t + s), ∀t,s≥ 0, and T (0) = I.

55
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2.1.1 Bounded Case

When A is bounded (i.e. A ∈ L (X)) the solution of (2.1.1) is uniquely deter-
mined (in the sense that there exists a unique C1-function satisfying (2.1.1) for each
t ≥ 0) and is given by

u(t) = eAtx, ∀t ≥ 0,

where

eAt :=
∞

∑
n=0

Antn

n!
, ∀t ≥ 0.

The family of bounded linear operators
{

eAt
}

t≥0 satisfies the semigroup properties

eAt ◦ eAs = eA(t+s), ∀t,s≥ 0, and eA0 = I.

Definition 2.1.2. Let {T (t)}t≥0 be a semigroup of bounded linear operators on a
Banach space X . Then {T (t)}t≥0 is said to be uniformly continuous (or operator
norm continuous) if the map t→ T (t) is continuous from [0,+∞) into L (X) ; that
is,

lim
t→s
‖T (t)−T (s)‖L (X) = 0, ∀s≥ 0.

Note that for each t ≥ 0,

∥∥eAt − I
∥∥

L (X)
≤

∞

∑
n=1

‖A‖n
L (X) |t|

n

n!
≤ e‖A‖L (X)t −1.

So ∥∥eAt − eAs∥∥
L (X)

→ 0 as t→ s.

It follows that the semigroup
{

eAt
}

t≥0 is uniformly continuous. Actually the con-
verse is also true.

Lemma 2.1.3. Let {T (t)}t≥0 be a uniformly continuous semigroup of bounded lin-
ear operators on a Banach space X . Then there exists A ∈L (X) such that

T (t) = eAt , ∀t ≥ 0.

Proof. As {T (t)}t≥0 is uniformly continuous, we can find h > 0 (small enough)
such that ∥∥∥∥h−1

∫ h

0
T (l)dl− I

∥∥∥∥
L (X)

< 1.

So

L1 =
∫ h

0
T (l)dl = h

[
I +h−1

∫ h

0
T (l)dl− I

]
is invertible. Set

A = (T (h)− I)L−1
1 .
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Then

(T (t)− I)L1 = T (t)
∫ h

0
T (l)dl−

∫ h

0
T (l)dl

=
∫ h

0
T (l + t)dl−

∫ h

0
T (l)dl

=
∫ t+h

t
T (l)dl−

∫ h

0
T (l)dl

=
∫ t+h

h
T (l)dl−

∫ t

0
T (l)dl

=
∫ t

0
T (l)dl (T (h)− I) .

Hence,

T (t)− I =
∫ t

0
T (l)dlA, ∀t ≥ 0.

This implies that t→ T (t) is operator norm differentiable and

dT (t)
dt

= T (t)A, ∀t ≥ 0.

Let t > 0 be fixed. Consider

L(s) = T (s)eA(t−s), ∀s ∈ [0, t] .

Then
dL(s)

ds
= T (s)AeA(t−s)−T (s)AeA(t−s) = 0.

So
T (t) = L(t) = L(0) = eAt .

This completes the proof. ut

After Lemma 2.1.3, it becomes clear that when A is unbounded, the semigroup
{T (t)}t≥0 must satisfy a weaker time continuity condition.

2.1.2 Unbounded Case

When A : D(A)⊂ X → X is unbounded, the formula

eAt =
∞

∑
n=0

Antn

n!

makes no sense for t ≥ 0. Also if {T (t)}t≥0 is an extension in someway of the notion
of the exponential of A, it is clear from Lemma 2.1.3 that we need a weaker notion of
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time continuity of the family {T (t)}t≥0 . The appropriate notion of time continuity
is as follows.

Definition 2.1.4. Let J ⊂ R be an interval. Let X and Y be two Banach spaces.
A family {L(t)}t∈J ⊂ L (X ,Y ) is strongly continuous if for each x ∈ X the map
t→ L(t)x is continuous from J into Y.

Definition 2.1.5. A family {T (t)}t≥0 ⊂L (X) of bounded linear operators on X is
a strongly continuous semigroup of bounded linear operators on X (or for short a
linear C0-semigroup on X) if the following assertions are satisfied:

(i) {T (t)}t≥0 is a semigroup;
(ii) {T (t)}t≥0 is strongly continuous.

The strong continuity can be expressed by saying that for every x ∈ X the map

t→ T (t)x

is continuous from R+ to X .

Definition 2.1.6. A map f from [0,+∞) into a Banach space (X ,‖.‖) is said to be
exponentially bounded if there exist two constants, M ≥ 0 and ω≥0, such that

‖ f (t)‖ ≤Meωt , ∀t ≥ 0.

For a strongly continuous semigroup {T (t)}t≥0 ⊂L (X) of bounded linear oper-
ators on X , the orbit {T (t)x : t ∈ [0, t0]} is the continuous image of a closed interval
[0, t0]. Thus, it is bounded for each x ∈ X . Uniform boundedness principle implies
that each strongly continuous semigroup is uniformly bounded on each closed in-
terval, which in turn implies exponential boundedness of the strongly continuous
semigroup in R+.

Proposition 2.1.7. Let {T (t)}t≥0 be a linear C0-semigroup on a Banach space X .
Then {T (t)}t≥0 is exponentially bounded and the map (t,x)→ T (t)x is continuous
from [0,+∞)×X into X .

Proof. Since {T (t)}t≥0 is strongly continuous, we deduce that

sup
t∈[0,1]

‖T (t)x‖<+∞, ∀x ∈ X .

So by the principle of uniform boundedness, we deduce that

M = sup
t∈[0,1]

‖T (t)‖L (X) <+∞.

Since T (0) = I, we have M ≥ 1. Set ω = ln(M)> 0. Then we have

‖T (t)‖L (X) ≤Meωt , ∀t ∈ [0,1] ,
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and for each integer n≥ 0 and each t ∈ [n,n+1] ,

‖T (t)‖L (X) ≤ ‖T (t−n)‖L (X) ‖T (1)‖
n
L (X)

≤ MnMeω(t−n) = Meωt .

We deduce that {T (t)}t≥0 is exponentially bounded. The last part of the proposition
is now an immediate consequence of continuity of x→ T (t)x uniform with respect
to t in bounded sets of [0,+∞) . ut

To further describe the relationship between {T (t)}t≥0 and A, we will see that
t → T (t)x turns to be a mild solution (or an integrated solution) of the Cauchy
problem (2.1.1); that is,∫ t

0
T (l)xdl ∈ D(A), ∀t ≥ 0, ∀x ∈ X ,

and
T (t)x = x+A

∫ t

0
T (l)xdl, ∀t ≥ 0, ∀x ∈ X .

It is important to note that in general we have

T (t)x /∈ D(A)

when x /∈ D(A) and t ≥ 0. Nevertheless, when x ∈ D(A) we will see that

T (t)x ∈ D(A), ∀t ≥ 0,

the map t → AT (t)x is continuous from [0,+∞) into X , the map t → T (t)x is con-
tinuously differentiable, and

dT (t)x
dt

= AT (t)x, ∀t ≥ 0.

So when x ∈ D(A), the map t → T (t)x is the so-called classical solution of the
Cauchy problem (2.1.1).

2.2 Resolvents

Assume A is an n×n symmetric matrix. Then A has n real eigenvalues λ1,λ2, . . . ,λn
(counted with respect to algebraic multiplicity) and there is an orthonormal basis
{e1,e2, . . . ,en} for Rn such that ei is an eigenvector corresponding to λi. To gener-
alize the eigenvalue problems of linear algebra to operators on Banach spaces, we
introduce the concept of resolvent.

Definition 2.2.1. Let A : D(A) ⊂ X → X be a linear operator on a K-Banach space
X with K= R or C. The resolvent set ρ (A) of A is the set of all points λ ∈K such



60 2 Semigroups and Hille-Yosida Theorem

that λ I−A is a bijection from D(A) into X and the inverse (λ I−A)−1 , called the
resolvent of A, is a bounded linear operator from X into itself.

Definition 2.2.2. A linear operator A : D(A)⊂X→X on a Banach space X is closed
if and only if the graph

G(A) := {(x,Ax) : x ∈ D(A)}

of A is a closed subspace of X×X endowed with the usual product norm.

Lemma 2.2.3. Let A : D(A)⊂ X → X be a linear operator on a Banach space X. If
ρ (A) 6= /0, then A is closed.

Proof. Consider two sequences {xn} ⊂D(A) with xn→ x and {yn} ⊂ X with yn→
y. Assume that

yn = Axn, ∀n≥ 0.

Let λ ∈ ρ (A) be given. Then

λxn− yn = λxn−Axn, ∀n≥ 0⇔ (λ I−A)−1 (λxn− yn) = xn, ∀n≥ 0.

Now since (λ I−A)−1 is bounded, when n goes to +∞ we have

(λ I−A)−1 (λx− y) = x.

So x ∈ D(A) and y = Ax. ut

Let L : D(L)⊂ X →Y be a linear operator from a Banach space X into a Banach
space Y. Define the null space (or kernel) of L by

N (L) = {x ∈ D(L) : Lx = 0}

and the range of L by

R(L) = {y ∈ Y : ∃x ∈ D(L) satisfying y = Lx} .

Lemma 2.2.4. Let A : D(A)⊂X→X be a closed linear operator on a Banach space
X. Then λ /∈ ρ (A) if and only if N (λ I−A) 6= {0} or R (λ I−A) 6= X .

Proof. We first observe that if N (λ I−A) 6= {0} or R (λ I−A) 6= X , then λ I−A
is not a bijection from D(A) into X . So λ /∈ ρ (A) .

Conversely, assume that N (λ I−A) = {0} and R (λ I−A) = X . We can con-
sider λ I−A : D(A) ⊂ X0 → X as a linear operator from X0 = D(A) into X . Then
λ I − A is closed and densely defined in X0. Moreover, by the assumption that
N (λ I−A) = {0} and R (λ I−A) is closed, Brezis [47, Theorem II.20] implies
that there exists a constant C > 0 such that

‖x‖ ≤C‖(λ I−A)x‖ , ∀x ∈ D(A).
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Thus, setting y = (λ I−A)x and using the fact that R (λ I−A) = X , we obtain∥∥∥(λ I−A)−1 y
∥∥∥≤C‖y‖ , ∀y ∈ X .

So λ ∈ ρ (A) . ut

From the definition of (λ I−A)−1 we have the resolvent formula.

Proposition 2.2.5 (Resolvent Formula). Whenever λ ,µ ∈ ρ (A), we have

(λ I−A)−1− (µI−A)−1 = (µ−λ )(λ I−A)−1 (µI−A)−1 . (2.2.1)

Proof. By applying λ I−A on both sides of equation (2.2.1) we obtain

I− (λ I−A)(µI−A)−1 = (µ−λ )(µI−A)−1

⇔ I− ((λ −µ) I +µI−A)(µI−A)−1 = (µ−λ )(µI−A)−1

⇔ I− (λ −µ)(µI−A)−1− I = (µ−λ )(µI−A)−1 .

The resolvent formula is proved. ut

One may also observe from the resolvent formula that (λ I−A)−1 and (µI−A)−1

commute; that is,

(λ I−A)−1 (µI−A)−1 = (µI−A)−1 (λ I−A)−1 , ∀λ ,µ ∈ ρ (A) .

Another consequence of the resolvent formula is the following result.

Lemma 2.2.6. Let A : D(A)⊂ X → X be a linear operator on a K-Banach space X
withK=R or C. Then the resolvent set ρ (A) is an open set. Moreover, if ρ (A) 6= /0,
µ ∈ ρ (A), and λ ∈ R lies in the interval (or λ ∈ C lies in the disk)

|λ −µ|< 1

‖(µI−A)−1 ‖
,

then

(λ I−A)−1 =
+∞

∑
n=0

(µ−λ )n (µI−A)−(n+1) .

Proof. If ρ (A) = /0, it is trivial. Assume that ρ (A) 6= /0. Let µ ∈ ρ (A) . Set

Lλ =
+∞

∑
n=0

(µ−λ )n (µI−A)−(n+1)

when |λ −µ|‖(µI−A)−1 ‖< 1. Then

Lλ =
[
I− (µ−λ )(µI−A)−1

]−1
(µI−A)−1
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= (µI−A)−1
[
I− (µ−λ )(µI−A)−1

]−1

and

(λ I−A)(µI−A)−1 = (λ −µ)(µI−A)−1 + I = I− (µ−λ )(µI−A)−1 .

It follows that
(λ I−A)Lλ x = x, ∀x ∈ X

and
Lλ (λ I−A)x = x, ∀x ∈ D(A).

The result follows. ut

As an immediate consequence of the previous lemma one has the following re-
sult.

Lemma 2.2.7. Let A : D(A)⊂ X → X be a linear operator on a real Banach space
X . Assume ρ (A) 6= /0. Then λ → (λ I−A)−1 belongs to C∞ (ρ (A) ,L (X)) and

dn

dλ n (λ I−A)−1 = (−1)n n!(λ I−A)−(n+1) , ∀λ ∈ ρ (A) .

We now turn to non-densely defined linear operators. We consider some easy
consequences for the part of a linear operator.

Definition 2.2.8. Let A : D(A) ⊂ X → X be a linear operator on a Banach space X
and let Y be a subspace of X . The part of A in Y is the linear operator AY : D(AY )⊂
Y → Y defined by

AY x = Ax, ∀x ∈ D(AY ) := {x ∈ D(A)∩Y : Ax ∈ Y} .

Lemma 2.2.9. Let A : D(A) ⊂ X → X be a linear operator on a Banach space X
with ρ (A) 6= /0. Assume that

(λ I−A)−1 Y ⊂ Y

for some λ ∈ ρ (A) . Then λ ∈ ρ (AY ) and

D(AY ) = (λ I−A)−1 Y, (λ I−AY )
−1 = (λ I−A)−1 |Y .

Proof. We have

D(AY ) : = {x ∈ D(A)∩Y : Ax ∈ Y}
= {x ∈ D(A)∩Y : (λ I−A)x ∈ Y}

=
{

x ∈ D(A)∩Y : x ∈ (λ I−A)−1 Y
}

= (λ I−A)−1 Y.
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Moreover, if x ∈ D(AY ) and y ∈ Y, we have

(λ I−AY )x = y⇔ x = (λ I−A)−1 y.

The proof is completed. ut

In the non-dense case, we consider a linear operator A : D(A) ⊂ X → X which
satisfies

X0 := D(A) 6= X .

We will be especially interested in A0 := AD(A), the part of A in D(A), which is
defined by

A0x = Ax, ∀x ∈ D(A0) =
{

x ∈ D(A) : Ax ∈ D(A)
}
.

From Lemma 2.2.9 we have λ ∈ ρ (A) . Thus,

λ ∈ ρ (A0) ,

D(A0) = (λ I−A)−1 D(A),

(λ I−A0)
−1 = (λ I−A)−1 |D(A) .

The following result shows that ρ (A0) and ρ (A) are in fact equal when ρ (A) 6= /0.

Lemma 2.2.10. Let (X ,‖.‖) be a K-Banach space (with K= R or C) and let A :
D(A)⊂ X → X be a linear operator. Assume that ρ (A) 6= /0. Then

ρ (A0) = ρ (A) .

Moreover, we have the following:

(i) For each λ ∈ ρ (A0)∩K and each µ ∈ ρ (A)∩K,

(λ I−A)−1 = (µ−λ )(λ I−A0)
−1 (µI−A)−1 +(µI−A)−1 ;

(ii) For each λ ∈ ρ (A)∩K,

D(A0) = (λ I−A)−1 X0 and (λ I−A0)
−1 = (λ I−A)−1 |X0 .

Proof. Without loss of generality we can assume that X is a complex Banach space.
Assume that λ ∈ ρ (A0) , µ ∈ ρ (A)∩K, and set

L = (µ−λ )(λ I−A0)
−1 (µI−A)−1 +(µI−A)−1 .

Then one can check that

Lx ∈ D(A), (λ I−A)Lx = x, ∀x ∈ X ,

and
L(λ I−A)x = x, ∀x ∈ D(A).
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Thus, λ I−A is invertible and (λ I−A)−1 = L is bounded, so λ ∈ ρ (A) . This implies
that (i) and ρ (A0) ⊂ ρ (A) hold. To prove the converse inclusion, let λ ∈ ρ (A) .
Since (λ I−A)−1 X ⊂ D(A), we can apply Lemma 2.2.9 with Y = D(A) and (ii)
follows, and we also deduce that ρ (A)⊂ ρ (A0) . ut

The following lemma basically provides necessary and sufficient conditions to
ensure that

D(A0) = D(A).

Lemma 2.2.11. Let A : D(A)⊂ X→ X be a linear operator on a real Banach space
X . Assume that there exist two constants, ω ∈ R and M > 0, such that (ω,+∞) ⊂
ρ (A) and∥∥∥λ (λ I−A0)

−1
∥∥∥

L (X0)
=
∥∥∥λ (λ I−A)−1

∥∥∥
L (D(A))

≤M, ∀λ > ω.

Then the following properties are equivalent:

(i) lim
λ→+∞

λ (λ I−A)−1 x = x, ∀x ∈ D(A);

(ii) lim
λ→+∞

(λ I−A)−1 x = 0, ∀x ∈ X ;

(iii) D(A0) = D(A).

Proof. (i)⇒(ii). Let λ ,µ > ω and x ∈ D(A). Set y = (µI−A)x. Then by using the
resolvent formula, we have

(λ I−A)−1 (µI−A)−1 y =
1

λ −µ
(µI−A)−1 y− 1

λ −µ
(λ I−A)−1 y,

so

λ (λ I−A)−1 x =
λ

λ −µ
x− λ

λ −µ
(λ I−A)−1 y.

It follows that

lim
λ→+∞

λ (λ I−A)−1 x = x, ∀x ∈ D(A)⇔ lim
λ→+∞

(λ I−A)−1 x = 0, ∀x ∈ X .

This equivalence first implies that (i)⇒(ii).
(ii)⇒(i). Conversely assume that (ii) holds. We have[

λ (λ I−A)−1− I
]
(µI−A)−1 =

λ

µ−λ

[
(λ I−A)−1− (µI−A)−1

]
− (µI−A)−1 .

It implies that
lim

λ→+∞

λ (λ I−A)−1 x = x, ∀x ∈ D(A).

Let x ∈ D(A) be fixed and let {xn}n≥0 ⊂ D(A)→ x. Then we have for each n ≥ 0
that



2.2 Resolvents 65∥∥∥λ (λ I−A)−1 x− x
∥∥∥ ≤ ∥∥∥λ (λ I−A)−1 (x− xn)

∥∥∥
+
∥∥∥λ (λ I−A)−1 xn− xn

∥∥∥+‖x− xn‖ .

It follows that

limsup
λ→+∞

∥∥∥λ (λ I−A)−1 x− x
∥∥∥≤ [M+1]‖x− xn‖ , ∀n≥ 0,

and the result follows as n→+∞.
(i)⇒(iii). Recall that

D(A0) = (λ I−A)−1 D(A), ∀λ > ω.

So it is clear that (i)⇒(iii).
It remains to prove (iii)⇒(i). By applying the same argument as above to A0, we

have

lim
λ→+∞

λ (λ I−A0)
−1 x = x, ∀x ∈ D(A0)⇔ lim

λ→+∞

(λ I−A0)
−1 x = 0, ∀x ∈ D(A).

But by the assumption on A0 we have∥∥∥λ (λ I−A0)
−1
∥∥∥

L (D(A))
=
∥∥∥λ (λ I−A)−1

∥∥∥
L (D(A))

≤M, ∀λ > ω,

so
lim

λ→+∞

λ (λ I−A0)
−1 x = x, ∀x ∈ D(A0).

Let x ∈ D(A). Now since D(A0) = D(A), as in the proof of (ii)⇒(i) we can find a
sequence {xn}n≥0 ⊂ D(A0)→ x such that

limsup
λ→+∞

∥∥∥λ (λ I−A)−1 x− x
∥∥∥≤ [M+1]‖x− xn‖ , ∀n≥ 0.

Since xn→ x ∈ D(A), (i) follows. ut

For some applications the operator A is not explicitly known. Nevertheless, if we
know some pseudo-resolvent {Jλ}λ∈∆

, i.e. a family of bounded linear operators
satisfying the resolvent formula, then it becomes important to know that there exists
some linear operator A on X such that

(λ I−A)−1 = Jλ , ∀λ ∈ ∆ .

Definition 2.2.12. Let X be a K-Banach space with K = R or C. Let ∆ ⊂ K. A
family of bounded linear operators {Jλ}λ∈∆

on X is called a pseudo-resolvent if the
following property is satisfied

Jλ − Jµ = (µ−λ )Jλ Jµ , ∀λ ,µ ∈ ∆ . (2.2.2)
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Lemma 2.2.13. Let {Jλ}λ∈∆
be a pseudo-resolvent on a Banach space X . Then

Jλ Jµ = Jµ Jλ , ∀λ ,µ ∈ ∆ . (2.2.3)

The null space N (Jλ ) and the range R (Jλ ) are independent of λ ∈ ∆ . The sub-
space N (Jλ ) is closed.

Proof. Commutativity of Jλ and Jµ follows from (2.2.2). Rewritting (2.2.2) as

Jλ = Jµ [I +(µ−λ )Jλ ] . (2.2.4)

Let y ∈R (Jλ ) . Then y = Jλ x for some x ∈ X and

y = Jµ [x+(µ−λ )Jλ x] .

So y ∈R
(
Jµ

)
, and we deduce that

R (Jλ )⊂R
(
Jµ

)
.

By symmetry we also have R
(
Jµ

)
⊂R (Jλ ) . Thus, R

(
Jµ

)
= R (Jλ ) .

Let x ∈N (Jλ ) . Then Jλ x = 0, and by (2.2.4) we have

0 = Jλ x = Jµ [x+(µ−λ )Jλ x] = Jµ x.

So Jµ x = 0 and N (Jλ ) ⊂ N
(
Jµ

)
. Again by symmetry we obtain N (Jλ ) =

N
(
Jµ

)
. ut

Proposition 2.2.14. Let ω ∈ R and let {Jλ}λ∈(ω,+∞) be a pseudo-resolvent on a
Banach space X . Then Jλ is the resolvent of a unique closed linear operator A :
D(A)⊂ X → X if and only if N (Jλ ) = {0} .

Proof. It is clear that if Jλ is the resolvent of a linear operator A : D(A)⊂ X → X ,
then we must have N (Jλ ) = {0} . Conversely, assume that N (Jλ ) = {0} . The
map Jλ is one to one. Let λ0 ∈ (ω,+∞) . Define

Ax :=
(

λ0I− J−1
λ0

)
x, ∀x ∈ D(A) := R

(
Jλ0

)
. (2.2.5)

The operator A is linear and closed. From (2.2.5) we have

(λ0I−A)Jλ0x = J−1
λ0

Jλ0x = x, ∀x ∈ X ,

and
Jλ0 (λ0I−A)x = Jλ0J−1

λ0
x = x, ∀x ∈ D(A).

Therefore, Jλ0 = (λ0I−A)−1 . If λ ∈ (ω,+∞) and x ∈ X ,

(λ I−A)Jλ x = (λ I−λ0I +λ0I−A)Jλ x

= (λ −λ0)Jλ x+(λ0I−A)Jλ0 [I +(λ0−λ )Jλ ]x
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= (λ −λ0)Jλ x+[I +(λ0−λ )Jλ ]x

= x.

Similarly, if λ ∈ (ω,+∞) and x ∈ D(A),

Jλ (λ I−A)x = Jλ (λ I−λ0I +λ0I−A)x

= (λ −λ0)Jλ x+[I +(λ0−λ )Jλ ]Jλ0(λ0I−A)x

= (λ −λ0)Jλ x+[I +(λ0−λ )Jλ ]x

= x.

Therefore, Jλ = (λ I−A)−1 , ∀λ ∈ (ω,+∞) . ut

Corollary 2.2.15. Let ω ∈ R and let {Jλ}λ∈(ω,+∞) be a pseudo-resolvent on a Ba-
nach space X . Assume that there exists a closed subspace X0 of X such that

(a) N (Jλ )⊂ X0 and R (Jλ )⊂ X0 for some λ ∈ (ω,+∞) ;
(b) There exists a sequence {λn}n≥0 ⊂ (ω,+∞) such that λn→+∞ as n→+∞,

and
lim

n→+∞
λnJλnx = x, ∀x ∈ X0.

Then Jλ is the resolvent of a unique closed linear operator A : D(A)⊂ X → X with
D(A) = X0.

Proof. By (a), (b), and Lemma 2.2.13, it follows that N (Jλ ) = {0} . The result
follows from Proposition 2.2.14. Moreover, by Lemma 2.2.13 and (b) it follows that
D(A) = R (Jλ ) is dense in X0. ut

Example 2.2.16 (Pseudo-resolvent for an age-structured model). Let t→A(t) be
continuous from [0,1] into Mn (R) . Consider a family of matrices {U(t,s)}1≥t≥s≥0
which are the solutions of the nonautonomous differential equation

dU(t,s)
dt

= A(t)U(t,s), 1≥ t ≥ s, U(s,s) = I

for each s∈ [0,1] . Then U(t,s) satisfies the properties of nonautonomous semiflows

U(t,r)U(r,s) =U(t,s) for t ≥ r ≥ s,
U(s,s) = I,
(t,s)→U(t,s) is continuous.

For each λ ∈ R, consider the linear operator Jλ on L1 (0,1) defined by

Jλ (ϕ)(x) =
∫ x

0
e−λ (x−s)U(x,s)ϕ(s)ds.

We can check that the family {Jλ}λ∈R is a pseudo-resolvent. Indeed,

(λ −µ)Jλ Jµ (ϕ)(x) = (λ −µ)
∫ x

0
e−λ (x−s)U(x,s)

∫ s

0
e−µ(s−l)U(s, l)ϕ(l)dlds
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= (λ −µ)
∫ x

0

∫ s

0
e−λ (x−s)e−µ(s−l)U(x, l)ϕ(l)dlds

= e−λx
∫ x

0

∫ x

l
(λ −µ)e(λ−µ)sdseµlU(x, l)ϕ(l)dl

= e−λx
∫ x

0

[
e(λ−µ)x− e(λ−µ)l

]
eµlU(x, l)ϕ(l)dl

=
∫ x

0
e−µ(x−l)U(x, l)ϕ(l)dl−

∫ x

0
e−λ (x−l)U(x, l)ϕ(l)dl

= Jµ (ϕ)(x)− Jλ (ϕ)(x).

Remark 2.2.17. As an exercise, one can prove that Corollary 2.2.15 applies to the
family {Jλ}λ∈R .

2.3 Infinitesimal Generators

By Lemma 2.1.3 we know that every uniformly continuous semigroup {T (t)}t≥0
on a Banach space can be characterized as an exponential T (t) = eAt for a linear
operator A and all t ≥ 0. Now we define the analogue of A for strongly continuous
semigroups, called the generator of a semigroup.

Definition 2.3.1. Let {T (t)}t≥0 be a linear C0-semigroup on a Banach space X . The
infinitesimal generator of {T (t)}t≥0 is a linear operator A : D(A)⊂X→X satisfying
the following properties

D(A) =
{

x ∈ X : lim
t→0+

T (t)x− x
t

exists
}

and

Ax = lim
t→0+

T (t)x− x
t

, ∀x ∈ D(A).

Lemma 2.3.2. Let {T (t)}t≥0 be a linear C0-semigroup on a Banach space X . A
linear operator A : D(A)⊂ X → X is the infinitesimal generator of {T (t)}t≥0 if and
only if the following properties are satisfied:

(i)
∫ t

0 T (s)xds ∈ D(A), ∀t ≥ 0,∀x ∈ X ;
(ii) T (t)x = x+A

∫ t
0 T (s)xds, ∀t ≥ 0,∀x ∈ X ;

(iii) A
∫ t

0 T (s)xds =
∫ t

0 T (s)Axds, ∀t ≥ 0, ∀x ∈ D(A);
(iv) A is closed.

Proof. Let x∈ X be fixed. For each h> 0, we have by using the semigroup property
that

(T (h)− I)
∫ t

0
T (s)xds =

∫ t

0
T (h)T (s)xds−

∫ t

0
T (s)xds
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=
∫ t

0
T (h+ s)xds−

∫ t

0
T (s)xds

=
∫ t+h

0
T (s)xds−

∫ h

0
T (s)xds−

∫ t

0
T (s)xds.

So

(T (h)− I)
∫ t

0
T (s)xds =

∫ t+h

t
T (s)xds−

∫ h

0
T (s)xds

and we deduce that

lim
h↘0

(T (h)− I)
h

∫ t

0
T (s)xds = T (t)x− x.

By the definition of D(A), we have∫ t

0
T (s)xds ∈ D(A), ∀t ≥ 0,

and
A
∫ t

0
T (s)xds = T (t)x− x, ∀t ≥ 0.

Let x ∈ D(A) be fixed. Then for each h > 0 we have

(T (h)− I)
∫ t

0
T (s)xds =

∫ t

0
T (s)(T (h)− I)xds

Dividing by h, we obtain (iii) as h↘ 0.
Let {xn}n≥0 ⊂D(A) be a sequence such that xn→ x and yn = Axn→ y. Using (ii)

and (iii), we have

T (t)xn = xn +
∫ t

0
T (s)ynds, ∀t ≥ 0,∀n≥ 0.

When n→+∞, we obtain

T (t)x = x+
∫ t

0
T (s)yds, ∀t ≥ 0.

Thus

lim
t↘0

T (t)x− x
t

= y.

By using the definition of the infinitesimal generator, we deduce that

x ∈ D(A) and y = Ax.

It follows that A is closed.
Conversely, assume that (i)-(iv) are satisfied. Let B : D(B) ⊂ X → X be the in-

finitesimal generator of {T (t)}t≥0 . Let x∈D(B) be fixed. Then by using (i) and (ii),
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we have
T (h)x− x

h
= A

(
1
h

∫ h

0
T (s)xds

)
, ∀h > 0,∀x ∈ X .

Notice that A is closed, since the limit

lim
h↘0

T (h)x− x
h

exists, we have x ∈ D(A) and Bx = Ax. It follows that Graph(B)⊂ Graph(A).
Let x ∈ D(A) be fixed. By using (ii) and (iii), we deduce for each x ∈ D(A) that

lim
h↘0

T (h)x− x
h

= Ax.

Now by the definition of B, we have x ∈ D(B) and Bx = Ax. So Graph(A) ⊂
Graph(B) and the proof is completed. ut

Lemma 2.3.3. Let {T (t)}t≥0 be a linear C0-semigroup on a Banach space X and
let A : D(A)⊂ X → X be its infinitesimal generator. Then D(A) is dense in X .

Proof. From (i) in Lemma 2.3.2, we know that

1
h

∫ h

0
T (s)xds ∈ D(A), ∀h > 0,∀x ∈ X .

But since t→ T (t)x is continuous, we have

lim
h↘0

1
h

∫ h

0
T (s)xds = x.

So D(A) is dense in X . ut

The following result provides another characterization for the infinitesimal gener-
ator. This definition is closely related to the definition of the generator for integrated
semigroups introduced by Thieme [328].

Proposition 2.3.4. Let {T (t)}t≥0 be a linear C0-semigroup on a Banach space X . A
linear operator A : D(A)⊂ X → X is the infinitesimal generator of {T (t)}t≥0 if and
only if

x ∈ D(A) and y = Ax⇔ T (t)x = x+
∫ t

0
T (s)yds, ∀t ≥ 0. (2.3.1)

Proof. Assume first that A : D(A) ⊂ X → X is the infinitesimal generator of
{T (t)}t≥0 . Then by Lemma 2.3.2, we have for each x ∈ D(A) that

T (t)x = x+
∫ t

0
T (s)yds, ∀t ≥ 0, (2.3.2)
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with y = Ax. Conversely, assume that (2.3.2) is satisfied for some x,y ∈ X . Then

lim
t→0+

T (t)x− x
t

= y.

So x ∈ D(A) and y = Ax.
Now assume that (2.3.1) is satisfied. Let B : D(B) ⊂ X → X be the infinitesimal

generator of {T (t)}t≥0 . Let x ∈ D(A). Then (2.3.1) implies that

lim
t→0+

T (t)x− x
t

= Ax.

So x ∈ D(B) and Ax = Bx. We deduce that Graph(A)⊂ Graph(B).
Let x ∈ D(B) be fixed. Then by Lemma 2.3.2, we have

T (t)x = x+
∫ t

0
T (s)yds,∀t ≥ 0,

with y = Bx. So by using (2.3.1), we deduce that x ∈D(A),y = Ax, and Graph(B)⊂
Graph(A). So we conclude that A = B. ut

Corollary 2.3.5. Let {T (t)}t≥0 be a linear C0-semigroup on a Banach space X and
let A : D(A) ⊂ X → X be its infinitesimal generator. Then for each x ∈ D(A), the
map t→ T (t)x is continuously differentiable, T (t)x ∈ D(A),∀t ≥ 0, and

d
dt

T (t)x = AT (t)x = T (t)Ax, ∀t ≥ 0.

Proof. Let x ∈ D(A). Using (ii) and (iii) of Lemma 2.3.2, we have

T (t)x = x+
∫ t

0
T (s)Axds.

So t→ T (t)x is continuously differentiable and

d
dt

T (t)x = T (t)Ax, ∀t ≥ 0.

Moreover, by (ii) of Lemma 2.3.2, we have

T (t +h)x−T (t)x
h

= A
(

1
h

∫ t+h

t
T (s)xds

)
.

Since A is closed, taking the limit when h↘ 0 on both sides, it follows that T (t)x ∈
D(A),∀t ≥ 0, and

d
dt

T (t)x = AT (t)x,∀t ≥ 0.

This completes the proof. ut
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In the following we will show that if a C0-semigroup {T (t)}t≥0 is exponentially
bounded, then the resolvent of its generator has a very nice integral representation.

Proposition 2.3.6 (Integral Resolvent Formula (for Operators)). Let {T (t)}t≥0
be a C0-semigroup on a Banach space (X ,‖.‖) . Assume that there are two constants,
ω ∈ R and M ≥ 1, such that

‖T (t)‖L (X) ≤Meωt , ∀t ≥ 0.

Then (ω,+∞)⊂ ρ (A) and

(λ I−A)−1 x =
∫ +∞

0
e−λ sT (s)xds, ∀λ > ω,∀x ∈ X .

Proof. For each λ > ω, set

Lλ x =
∫ +∞

0
e−λ sT (s)xds, ∀x ∈ X .

Let λ > ω be fixed. Then we have∫ t

0
T (l)Lλ xdl = Lλ

∫ t

0
T (l)xdl, ∀t ≥ 0,

and

λ

∫ t

0
T (s)Lλ xds = λ

∫ +∞

0
e−λ s

∫ t

0
T (l)T (s)xdlds

= λ

∫ +∞

0
e−λ s

∫ s+t

s
T (l)xdlds

=

[
−e−λ s

∫ s+t

s
T (l)xdl

]+∞

0
+
∫ +∞

0
e−λ s [T (t + s)x−T (s)x]ds.

So
λ

∫ t

0
T (s)Lλ xds =

∫ t

0
T (l)xdl +T (t)Lλ x−Lλ x.

Thus, for each t > 0,

T (t)Lλ x−Lλ x
t

=
1
t

[
λ

∫ t

0
T (s)Lλ xds−

∫ t

0
T (l)xdl

]
.

Therefore, when t↘ 0 we obtain

Lλ x ∈ D(A),∀x ∈ X ,

(λ I−A)Lλ x = x,∀x ∈ X ,

and
Lλ (λ I−A)x = x,∀x ∈ D(A).
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It follows that λ I−A is invertible and (λ I−A)−1 = Lλ . ut

Suggested by the above result we turn to the Laplace transform. Let (X ,‖.‖) be
a Banach space. Let f : [0,+∞)→ X be a continuous map. Set

ω ( f ) := inf
{

ω ∈ R : sup
t≥0

e−ωt ‖ f (t)‖<+∞

}
.

Notice that ω ( f ) can be regarded as the growth bound of the map f and ω ( f ) =−∞

may occur. If ω ( f )<+∞, we can define the Laplace transform of f by

f̂ (λ ) :=
∫ +∞

0
e−λ s f (s)ds, ∀λ > ω ( f ) .

Recall that the Gamma function is defined as

Γ (x) =
∫ +∞

0
tx−1e−tdt, ∀x > 0.

Then
Γ (x+1) = xΓ (x), ∀x > 0,

so
Γ (n+1) = n!, ∀n ∈ N.

We have the Stirling’s formula

lim
x→+∞

Γ (x+1)
(x/e)x√2πx

= 1.

We now state a version of the Post-Widder theorem and refer to Arendt et al. [22,
Theorem 1.7.7, p. 43] for a more general version of this result.

Theorem 2.3.7 (Post-Widder). Let (X ,‖.‖) be a Banach space. Let f : [0,+∞)→
X be an exponentially bounded and continuous map. Then

f (t) = lim
n→+∞

(−1)n

n!

(n
t

)n+1
f̂ (n)
(n

t

)
, ∀t > 0,

where f̂ (n) is the nth derivative of f̂ .

Proof. Let t > 0 be fixed. We have for each integer n≥ 0 and each λ > ω ( f ) that

f̂ (n) (λ ) = (−1)n
∫ +∞

0
sne−λ s f (s)ds.

Consider an integer n0 > max(0, tω ( f )) . We have for each n≥ n0 that

(−1)n

n!

(n
t

)n+1
f̂ (n)
(n

t

)
=
∫ +∞

0
ρn (s) f (s)ds,



74 2 Semigroups and Hille-Yosida Theorem

where

ρn (s) :=
(n

t

) ( ns
t

)n e−
ns
t

n!
.

So ∫ +∞

0
ρn (s)ds =

∫ +∞

0 lne−ldl
n!

=
Γ (n+1)

n!
= 1

and
(−1)n

n!

(n
t

)n+1
f̂ (n)
(n

t

)
− f (t) =

∫ +∞

0
ρn (s) [ f (s)− f (t)]ds.

It is sufficient to consider

In :=
nn+1

n!

∫ +∞

0

(
re−r)n

[ f (rt)− f (t)]dr. (2.3.3)

Given ε > 0, we choose 0 < a < 1 < b <+∞ such that

‖ f (rt)− f (t)‖ ≤ ε when r ∈ [a,b] .

Then we break the integral on the right-hand side of (2.3.3) into three integrals I1
n ,

I2
n , and I3

n on the intervals [0,a] , [a,b] , and [b,+∞) , respectively. Notice that re−r

is monotonely non-decreasing on [0,1] and monotonely non-increasing on [1,+∞) ,
we have ∥∥I1

n
∥∥ ≤ nn+1

n!
(
ae−a)n

∫ a

0
‖ f (rt)− f (t)‖dr,

∥∥I2
n
∥∥ ≤ ε

nn+1

n!

∫ b

a

(
re−r)n dr ≤ ε,

∥∥I3
n
∥∥ ≤ C

nn+1

n!

∫ +∞

b

[
eωrt +1

](
re−r)n dr

for some constants C > 0 and ω > 0. Note that ae−a < e−1. Set δ = ae−a

e−1 < 1, we
deduce by using Stirling’s formula that

limsup
n→+∞

∥∥I1
n
∥∥ ≤ lim

n→+∞

nn+1δ ne−n
√

2πnnne−n

∫ a

0
‖ f (rt)− f (t)‖dr

= lim
n→+∞

n1/2δ n
√

2π

∫ a

0
‖ f (rt)− f (t)‖dr = 0

and ∥∥I3
n
∥∥≤ 2C

nn+1

n!

∫ +∞

b
ek0r (re−r)n dr,

where k0 is an integer such that k0 > ωt. We have∫ +∞

b
ek0r (re−r)n dr =

∫ +∞

b
rne−(n−k0)rdr
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=

(
n+1
n− k0

)n+1 ∫ +∞

b
lne−(n+1)ldl

≤
(

n+1
n− k0

)n+1 ∫ +∞

b
e−ldl

(
be−b

)n
.

Since

lim
n→+∞

(
n+1
n− k0

)n+1

= lim
n→+∞

(
1+1/n
1− k0/n

)n+1

= e1−k0 ,

also be−b < e−1, δ̂ = be−b

e−1 < 1, we obtain

limsup
n→+∞

∥∥I3
n
∥∥≤ e1−k0 limsup

n→+∞

2C
nn+1e−nδ̂ n

n!

∫ +∞

b
e−ldl = 0.

From the above estimates we deduce that

limsup
n→+∞

∥∥∥∥ (−1)n

n!

(n
t

)n+1
f̂ (n)
(n

t

)
− f (t)

∥∥∥∥≤ ε.

Since ε > 0 is chosen arbitrarily, the result follows. ut

Corollary 2.3.8 (Uniqueness of Laplace Transform). Let (X ,‖.‖) be a Banach
space. Let f : [0,+∞)→ X and g : [0,+∞)→ X be two exponentially bounded con-
tinuous maps. Assume that there exists λ0 > max(ω ( f ) ,ω (g)) such that∫ +∞

0
e−λ s f (s)ds =

∫ +∞

0
e−λ sg(s)ds, ∀λ ≥ λ0.

Then g = f .

The following theorem is due to Arendt [20], which provides a Laplace transform
characterization for the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators.

Theorem 2.3.9 (Arendt). Let {T (t)}t≥0 be an exponentially bounded and strongly
continuous family of bounded linear operators on a Banach space X and let A :
D(A)⊂ X → X be a linear operator. Then {T (t)}t≥0 is a C0-semigroup and A is its
infinitesimal generator if and only if there exists ω ∈ R such that

sup
t≥0

e−ωt ‖T (t)‖L (X) <+∞,

(ω,+∞)⊂ ρ (A) ,

and

(λ I−A)−1 x =
∫ +∞

0
e−λ sT (s)xds, ∀λ > ω, ∀x ∈ X .

Proof. For µ > λ > ω, we have
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(λ I−A)−1 x− (µI−A)−1 x
µ−λ

=
∫ +∞

0
e(λ−µ)t (λ I−A)−1 xdt− 1

µ−λ

∫ +∞

0
e(λ−µ)te−λ tT (t)xdt

=
∫ +∞

0
e(λ−µ)t

∫ +∞

0
e−λ sT (s)xdsdt−

∫ +∞

0
e(λ−µ)t

∫ t

0
e−λ sT (s)xdsdt

=
∫ +∞

0
e(λ−µ)t

∫ +∞

t
e−λ sT (s)xdsdt

=
∫ +∞

0
e−µt

∫ +∞

t
e−λ (s−t)T (s)xdsdt

=
∫ +∞

0
e−µt

∫ +∞

0
e−λ lT (l + t)xdldt.

On the other hand,

(µI−A)−1 (λ I−A)−1 x =
∫ +∞

0
e−µt

∫ +∞

0
e−λ sT (t)T (s)xdsdt.

So by the uniqueness of the Laplace transform (first for µ and next for λ ) we deduce
that

T (s+ t) = T (t)T (s), ∀s, t ≥ 0.

From the semigroup property we deduce that T (0) is a projection. Moreover, if
T (0)x = 0, then T (t)x = T (t)T (0)x = 0,∀t ≥ 0, so (λ I−A)−1 x = 0,∀λ > ω. Thus
x = 0. It implies that T (0) = Id. We deduce that {T (t)}t≥0 is a C0-semigroup. De-
note its generator by B. Then

(λ I−B)−1 =
∫ +∞

0
e−λ sT (s)ds = (λ I−A)−1 ,∀λ > ω.

Hence A = B. This proves one implication. The other implication follows from
Proposition 2.3.6. ut

As an immediate consequence of Theorem 2.3.9 we have the following result.

Corollary 2.3.10. Let A : D(A) ⊂ X → X be the infinitesimal generator of a linear
C0-semigroup {T (t)}t≥0 on a Banach space X . Then for each α ∈ R, A+αI is the
infinitesimal generator of the C0-semigroup {eαtT (t)}t≥0 .

Combining the Post-Widder theorem and the Arendt theorem, we obtain the fol-
lowing exponential formula for the strongly continuous semigroup.

Corollary 2.3.11 (Exponential Formula). Let A : D(A)⊂ X → X be the infinites-
imal generator of a linear C0-semigroup {T (t)}t≥0 on a Banach space X . Then

lim
n→+∞

(n
t

)n(n
t

I−A
)−n

x = T (t)x, ∀t > 0, ∀x ∈ X .
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Proof. First it is easy to see that

λ (λ I−A)−1 x = λ

∫ +∞

0
e−λ tT (t)xdt→ x as λ →+∞.

Moreover, we have

dn (λ I−A)−1

dλ n = (−1)n n!(λ I−A)−(n+1) .

Applying the Post-Widder theorem to the resolvent, we deduce that ∀t > 0,(n
t

)(n+1)(n
t

I−A
)−(n+1)

x→ T (t)x as n→+∞.

Note that ∥∥∥∥(n
t

)n(n
t

I−A
)−n

x−
(n

t

)(n+1)(n
t

I−A
)−(n+1)

x
∥∥∥∥

≤
∥∥∥∥(n

t

)n(n
t

I−A
)−n

∥∥∥∥∥∥∥∥x−
(n

t

)(n
t

I−A
)−1

x
∥∥∥∥

≤M
( n

t
n
t −ω

)n∥∥∥∥x−
(n

t

)(n
t

I−A
)−1

x
∥∥∥∥→ 0 as n→+∞.

The result follows. ut

2.4 Hille-Yosida Theorem

The goal of this section is to prove the Hille-Yosida theorem which provides the
relationship between a strongly continuous semigroup and its generator. First, we
introduce the notion of a Hille-Yosida operator.

Definition 2.4.1. A linear operator A : D(A) ⊂ X → X on a Banach space (X ,‖.‖)
(densely defined or not) is called a Hille-Yosida operator if there exist two constants,
ω ∈ R and M ≥ 1, such that

(ω,+∞)⊂ ρ (A)

and ∥∥(λ I−A)−n∥∥
L (X)

≤ M
(λ −ω)n , ∀λ > ω, ∀n≥ 1.

Proposition 2.4.2. Let A : D(A) ⊂ X → X be the infinitesimal generator of a lin-
ear C0-semigroup {T (t)}t≥0 on a Banach space (X ,‖.‖) . Then A is a Hille-Yosida
operator and there exists a norm |.| on X , which is equivalent to ‖.‖ , such that∣∣∣(λ I−A)−1

∣∣∣
L (X)

≤ 1
λ −ω

, ∀λ > ω.
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Proof. Let ω > 0 be given such that

‖T (t)‖L (X) ≤Meωt , ∀t ≥ 0.

Then the map |.| : X → R+

|x|= sup
t≥0

e−ωt ‖T (t)x‖ , ∀x ∈ X

defines a norm on X . Moreover,

‖x‖ ≤ |x| ≤M ‖x‖

and
|T (t)x| ≤ eωt |x| , ∀t ≥ 0,∀x ∈ X ,

So ∣∣∣(λ I−A)−1
∣∣∣
L (X)

≤ 1
λ −ω

, ∀λ > ω,

and ∥∥(λ I−A)−n∥∥
L (X)

≤ M
∣∣(λ I−A)−n∣∣

L (X)

≤ M
∣∣∣(λ I−A)−1

∣∣∣n
L (X)

≤ M
(λ −ω)n , ∀λ > ω.

This completes the proof. ut

Before stating and proving the Hille-Yosida theorem, we give two lemmas.

Lemma 2.4.3. Let A : D(A) ⊂ X → X be a Hille-Yosida operator (densely defined
or not). Then there exists a norm |.| on X such that∣∣∣(λ I−A)−1 x

∣∣∣≤ |x|
λ −ω

, ∀λ > ω,∀x ∈ X ,

and
‖x‖ ≤ |x| ≤M ‖x‖ , ∀x ∈ X ,

where M is introduced in Definition 2.4.1.

Proof. Replacing A by A−ωI, we can always assume that ω = 0. For each µ > 0,
set

‖x‖
µ
= sup

n≥0

∥∥µ
n (µI−A)−n x

∥∥ .
Then

‖x‖ ≤ ‖x‖
µ
≤M ‖x‖ , ∀x ∈ X ,

and
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∥∥∥

µ

≤ ‖x‖
µ
, ∀x ∈ X .

Moreover, if µ ≥ λ > 0 and x ∈ X , we have by the resolvent formula that

(λ I−A)−1 = (µI−A)−1 +(µ−λ )(µI−A)−1 (λ I−A)−1 .

So ∥∥∥(λ I−A)−1 x
∥∥∥

µ

≤
∥∥∥(µI−A)−1 x

∥∥∥
µ

+(µ−λ )
∥∥∥(µI−A)−1 (λ I−A)−1 x

∥∥∥
µ

and ∥∥∥(λ I−A)−1 x
∥∥∥

µ

≤
‖x‖

µ

µ
+

(
1− λ

µ

)∥∥∥(λ I−A)−1 x
∥∥∥

µ

.

It follows that ∥∥∥(λ I−A)−1 x
∥∥∥

µ

≤
‖x‖

µ

λ
, ∀µ ≥ λ > 0,∀x ∈ X

and∥∥λ
n (λ I−A)−n x

∥∥≤ ∥∥∥λ (λ I−A)−1 x
∥∥∥

µ

≤ ‖x‖
µ
, ∀µ ≥ λ > 0,∀x ∈ X ,∀n≥ 0.

Therefore,
‖x‖

λ
≤ ‖x‖

µ
, ∀µ ≥ λ > 0,∀x ∈ X .

Setting
|x|= lim

µ→+∞
‖x‖

µ
,∀x ∈ X ,

the result follows. ut

Lemma 2.4.4. Let A : D(A)⊂X→X be a Hille-Yosida operator with dense domain.
Then

lim
λ→+∞

λ (λ I−A)−1 x = x, ∀x ∈ X .

Proof. This lemma follows from the fact that D(A) = X and Lemma 2.2.9. ut

Theorem 2.4.5 (Hille-Yosida). A linear operator A : D(A)⊂ X→ X is the infinites-
imal generator of a C0-semigroup {T (t)}t≥0 if and only if A is a Hille-Yosida op-
erator with dense domain (i.e. D(A) = X). Moreover, if M and ω are the constants
introduced in Definition 2.4.1, we must have

‖T (t)‖ ≤Meωt , ∀t ≥ 0.

Proof. From Lemma 2.3.3 and Proposition 2.4.2 we already know that the condi-
tion is necessary. So it remains to prove the sufficient part of the theorem.

First, assume that A : D(A) ⊂ X → X is a densely defined linear operator such
that (0,+∞)⊂ ρ (A) and
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∥∥∥≤ 1, ∀λ > 0.

Set
Aλ = λA(λ I−A)−1 .

We have

Aλ = λ (A−λ I +λ I)(λ I−A)−1 = λ
2 (λ I−A)−1−λ I.

So
eAλ t = e[λ

2(λ I−A)−1−λ I]t = e−λ teλ 2(λ I−A)−1t .

Thus ∥∥eAλ t∥∥≤ e−λ t
∥∥∥eλ 2(λ I−A)−1t

∥∥∥≤ e−λ te‖λ 2(λ I−A)−1‖t ,

which implies that ∥∥eAλ t∥∥≤ 1, ∀t ≥ 0.

Set
H(s) = etsAλ et(1−s)Aµ , ∀s ∈ R.

Then the map H is continuously differentiable from R into L (X) . Since Aλ and
Aµ commute, we have

etAλ − etAµ = H(1)−H(0)

=
∫ 1

0
H ′(s)ds

=
∫ 1

0
t
(
Aλ −Aµ

)
etsAλ et(1−s)Aµ ds.

Hence ∥∥etAλ − etAµ
∥∥≤ t

∥∥Aλ −Aµ

∥∥ .
Let x ∈ D(A). We have∥∥etAλ x− etAµ x

∥∥≤ t
∥∥Aλ x−Aµ x

∥∥≤ t
[
‖Aλ x−Ax‖+

∥∥Ax−Aµ x
∥∥] .

But Lemma 2.4.4 implies that

lim
λ→+∞

Aλ x = lim
λ→+∞

λ (λ I−A)−1 Ax = Ax.

It follows that t→ etAλ x converges, as λ →+∞, uniformly in t on bounded intervals
of [0,+∞) . Since D(A) is dense in X and

∥∥eAλ t
∥∥ ≤ 1,∀t ≥ 0, it follows for each

x ∈ X that
lim

λ→+∞

eAλ tx = T (t)x,
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where the limit is uniform on bounded intervals of [0,+∞) . Therefore, {T (t)}t≥0
is a strongly continuous semigroup of bounded linear operators on X and ‖T (t)‖ ≤
1,∀t ≥ 0.

Next we prove that A is the generator of {T (t)}t≥0 . First, note that for each
x ∈ D(A) and each t ≥ 0, we have

T (t)x− x = lim
λ→+∞

eAλ tx− x = lim
λ→+∞

∫ t

0
eAλ sAλ xds =

∫ t

0
T (s)Axds.

So
T (t)x− x =

∫ t

0
T (s)Axds, ∀x ∈ D(A), ∀t ≥ 0. (2.4.1)

Since (µI−A)−1 commutes with eAλ t , we also deduce that

(µI−A)−1 T (t)x = T (t)(µI−A)−1 x, ∀x ∈ X ,∀t ≥ 0,∀µ > 0. (2.4.2)

We now apply Proposition 2.3.4. Assume first that x ∈D(A) and y = Ax. Then from
(2.4.1) it follows that

T (t)x− x =
∫ t

0
T (s)yds, ∀t ≥ 0. (2.4.3)

Assume now that (2.4.3) is satisfied for some x and y in X . Let µ > 0 be fixed. Then
from (2.4.2) and (2.4.3), we have for each t ≥ 0 that

(µI−A)−1 T (t)x− (µI−A)−1 x =
∫ t

0
T (s)(µI−A)−1 yds.

By (2.4.1) and (2.4.2), we have

(µI−A)−1 T (t)x− (µI−A)−1 x = T (t)(µI−A)−1 x− (µI−A)−1 x

=
∫ t

0
T (s)A(µI−A)−1 xds.

So we deduce that∫ t

0
T (s)A(µI−A)−1 xds =

∫ t

0
T (s)(µI−A)−1 yds, ∀t ≥ 0.

It follows that

T (t)A(µI−A)−1 x = T (t)(µI−A)−1 y, ∀t ≥ 0,

and for t = 0 we obtain

A(µI−A)−1 x = (µI−A)−1 y.

Since
A(µI−A)−1 x = µ (µI−A)−1 x− x,
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it follows that
x = (µI−A)−1 [µx− y] ,

so x ∈ D(A) and
Ax = y.

Therefore,

x ∈ D(A) and Ax = y⇔ T (t)x = x+
∫ t

0
T (s)yds,∀t ≥ 0.

By applying Proposition 2.3.4, we conclude that A is the infinitesimal generator of
{T (t)}t≥0 and

‖T (t)‖ ≤ 1, ∀t ≥ 0.

To complete the proof, it is sufficient to note that by Lemma 2.4.3, we can find a
norm |.| on X such that

|(λ I−A)x| ≤ 1
λ −ω

, ∀λ > ω,

and
‖x‖ ≤ |x| ≤M ‖x‖ , ∀x ∈ X .

So when X is endowed with the norm |.| , the linear operator A−ωI satisfies the
assumptions of the first part of the proof, the result follows from Corollary 2.3.10.
ut

When the domain of A of is not dense in X , the following result will be useful.

Corollary 2.4.6. Let A : D(A) ⊂ X → X be a linear operator on a Banach space
X . The part AD(A) of A in D(A) is the infinitesimal generator of a C0-semigroup{

TAD(A)
(t)
}

t≥0
on D(A) if and only if the following two conditions are satisfied:

(a) (λ I−A)−1 x→ 0 as λ →+∞, ∀x ∈ X ;
(b) There exist ω ∈ R and M > 0 such that∥∥(λ I−A0)

−n∥∥
L (D(A)) =

∥∥(λ I−A)−n∥∥
L (D(A)) ≤

M
(λ −ω)n , ∀λ > ω,∀n≥ 1.

Proof. This corollary is an immediate consequence of the Hille-Yosida theorem
and Lemmas 2.2.10-2.2.11. ut

2.5 Nonhomogeneous Cauchy problem

Let A : D(A) ⊂ X → X be a linear operator on a Banach space (X ,‖.‖) . Let
I ⊂ [0,+∞) be an interval. Define
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C (I,D(A)) =
{

ϕ ∈C (I,X) : ϕ(t) ∈ D(A), ∀t ∈ I, and the map
t→ Aϕ(t) is continuous from I into X

}
and

L1
Loc (I,X) =

{
ϕ : I→ X : ∀a,b ∈ I with a < b, ϕ |I∈ L1 ((a,b) ,X)

}
.

In this section we consider the nonhomogeneous Cauchy problem
du(t)

dt
= Au(t)+ f (t), t ∈ [0,τ) ,

u(0) = x ∈ D(A),
(2.5.1)

where τ ∈ (0,+∞] and f ∈ L1
Loc ([0,τ) ,X) .

The Cauchy problem (2.5.1) is said to be densely defined if

D(A) = X ,

and non-densely defined otherwise.

Definition 2.5.1. (a) Assume that f ∈C ([0,τ) ,X) . Then a function u∈C ([0,τ) ,X)
is called a classical solution of (2.5.1) if u∈C1 ([0,τ) ,X)∩C ([0,τ) ,D(A)) , and
satisfies

du(t)
dt

= Au(t)+ f (t),∀t ∈ [0,τ) ; u(0) = x.

(b) Assume that f ∈ L1
Loc ([0,τ) ,X) . A function u ∈C ([0,τ) ,X) is called an in-

tegrated solution (or a mild solution) of (2.5.1) if∫ t

0
u(s)ds ∈ D(A), ∀t ∈ [0,τ)

and
u(t) = x+A

∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ) .

The following result describes the relationships between classical and integrated
solutions.

Lemma 2.5.2. Assume that A is closed and f ∈C ([0,τ) ,X). If u is a classical so-
lution of (2.5.1) then u is an integrated solution of (2.5.1). Conversely, if u is an
integrated solution of (2.5.1) and u ∈C1 ([0,τ) ,X) or u ∈C ([0,τ) ,D(A)) , then

u ∈C1 ([0,τ) ,X)∩C ([0,τ) ,D(A))

and u is a classical solution of (2.5.1).

Proof. Assume first that u is classical solution. Then by integrating (2.5.1) we obtain

u(t) = x+
∫ t

0
Au(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ) .
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Moreover, since A is closed, we have∫ t

0
u(s)ds ∈ D(A) and

∫ t

0
Au(s)ds = A

∫ t

0
u(s)ds,∀t ∈ [0,τ) .

It follows that u is an integrated solution of (2.5.1).
Assume that u is an integrated solution of (2.5.1). Suppose first that u∈C1 ([0,τ) ,X) ,

then

A
1
h

∫ t+h

t
u(s)ds =

1
h
[u(t +h)−u(t)]− 1

h

∫ t+h

t
f (s)ds.

By using the fact that A is closed, we deduce when h↘ 0 that

u(t) ∈ D(A), ∀t ∈ [0,τ) , and Au(t) = u′(t)− f (t),∀t ∈ [0,τ) .

So u ∈C1 ([0,τ) ,X)∩C ([0,τ) ,D(A)) and u is a classical solution.
Assume that u ∈ C ([0,τ) ,D(A)) . Since u is an integrated solution and A is

closed, we deduce that

u(t) = x+
∫ t

0
Au(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ) .

So u ∈C1 ([0,τ) ,X) and the result follows. ut

Lemma 2.5.3 (Uniqueness). Let A : D(A) ⊂ X → X be the infinitesimal generator
of a linear C0-semigroup {T (t)}t≥0 on a Banach space X . Let u : [0,τ)→ X be
continuous such that ∫ t

0
u(s)ds ∈ D(A)

and
u(t) = A

∫ t

0
u(s)ds, ∀t ∈ [0,τ) .

Then
u(t) = 0, ∀t ∈ [0,τ) .

Proof. Let t ∈ [0,τ) be fixed. We have for each r ∈ [0, t] that

d
dr

(
T (t− r)

∫ r

0
u(s)ds

)
=−T (t− r)A

∫ r

0
u(s)ds+T (t− r)u(r) = 0.

So by integrating this equation from 0 to t, we obtain∫ t

0
u(s)ds = 0.

By differentiating we obtain u = 0.

As an immediate consequence of the previous lemma we obtain the following
theorem.
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Theorem 2.5.4. A strongly continuous semigroup of bounded linear operators is
uniquely determined by its infinitesimal generator.

Theorem 2.5.5. Let A : D(A) ⊂ X → X be the infinitesimal generator of a linear
C0-semigroup {T (t)}t≥0 on a Banach space X . Then for each f ∈ L1

Loc ([0,τ) ,X)
and for each x ∈ X , there exists at most one integrated solution u ∈C ([0,τ) ,X) of
(2.5.1). Moreover,

u(t) = T (t)x+
∫ t

0
T (t− s) f (s)ds, ∀t ∈ [0,τ) .

Furthermore, u is a classical solution of (2.5.1) if

u ∈C1 ([0,τ) ,X) or u ∈C ([0,τ) ,D(A)) .

In particular if x ∈ D(A) and either f ∈C ([0,τ) ,D(A)) or f ∈C1 ([0,τ) ,X) , then
u is a classical solution of (2.5.1).

Proof. The uniqueness follows from Lemma 2.5.3. To prove the existence it is suf-
ficient to prove that

u(t) = T (t)x+
∫ t

0
T (t− s) f (s)ds, ∀t ∈ [0,τ) ,

is an integrated solution. Set

v(t) = T (t)x and w(t) =
∫ t

0
T (t− s) f (s)ds, ∀t ∈ [0,τ) .

We already know that

v(t) = x+A
∫ t

0
v(s)ds, ∀t ∈ [0,τ) .

So it is sufficient to prove that w satisfies

w(t) = A
∫ t

0
w(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ) . (2.5.2)

Indeed, we have ∫ t

0
w(l)dl =

∫ t

0

∫ l

0
T (l− s) f (s)dsdl

=
∫ t

0

∫ t

s
T (l− s) f (s)dlds

=
∫ t

0

∫ t−s

0
T (l) f (s)dlds,

so
∫ t

0 w(l)dl ∈ D(A) and
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A
∫ t

0
w(l)dl =

∫ t

0
A
∫ t−s

0
T (l) f (s)dlds

=
∫ t

0
T (t− s) f (s)ds−

∫ t

0
f (s)ds

= w(t)−
∫ t

0
f (s)ds.

Hence, w satisfies (2.5.2) and it is follows that u(t) = T (t)x+
∫ t

0 T (t−s) f (s)ds is an
integrated solution of (2.5.1). By using Lemma 2.5.2 it follows that u is a classical
solution whenever u∈C1 ([0,τ) ,X) or u∈C ([0,τ) ,D(A)) . Finally, if x∈D(A) and
f ∈C ([0,τ) ,D(A)) , we have

u(t) = (λ −A)−1
[

T (t)(λ −A)x+
∫ t

0
T (t− s)(λ −A) f (s)ds

]
,∀t ∈ [0,τ) ,

so u ∈C ([0,τ) ,D(A)). If x ∈ D(A) and f ∈C1 ([0,τ) ,X) , we have

u(t) = T (t)x+
∫ t

0
T (s) f (t− s)ds.

Thus, u ∈C1 ([0,τ) ,X) , and

u′(t) = AT (t)x+T (t) f (0)+
∫ t

0
T (s) f ′(t− s)ds,∀t ∈ [0,τ) .

By using Lemma 2.5.2 the result follows. ut

Combining the Hille-Yosida Theorem (Theorem 2.4.5) and Theorem 2.5.5, we
know that the nonhomogeneous Cauchy problem (2.5.1) is well-posed with respect
to the integrated or mild solution whenever the linear operator A is a densely defined
Hille-Yosida operator. In practice the following result can be useful in obtaining
integrated solutions of a Cauchy problem.

Lemma 2.5.6. Let A : D(A) ⊂ X → X be a linear operator on a Banach space X .
Assume that ρ (A)∩R 6= /0 and f ∈C ([0,τ) ,X) . Then u ∈C ([0,τ) ,X) is an inte-
grated solution solution of (2.5.1) if and only if there exists λ ∈ ρ (A)∩R such that
uλ := (λ I−A)−1 u ∈C1 ([0,τ) ,X) and uλ satisfies the following ordinary differen-
tial equation

duλ (t)
dt

= λuλ (t)−u(t)+(λ I−A)−1 f (t), ∀t ∈ [0,τ) ,

uλ (0) = (λ I−A)−1 x.
(2.5.3)

Proof. Assume first that u is an integrated solution of (2.5.1). Then

uλ (t) = (λ I−A)−1 x+A(λ I−A)−1
∫ t

0
u(s)ds+

∫ t

0
(λ I−A)−1 f (s)ds,∀t ∈ [0,τ) .
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Since A(λ I−A)−1 =−I+λ (λ I−A)−1 is bounded, we deduce that uλ ∈C1 ([0,τ) ,X) .
By differentiation,

duλ (t)
dt

= A(λ I−A)−1 u(t)+(λ I−A)−1 f (t),∀t ∈ [0,τ) ,

and it follows that uλ satisfies (2.5.3).
Conversely, assume that uλ satisfies (2.5.3). By integrating (2.5.3) from 0 to t,

we obtain for each ∀t ∈ [0,τ) that

(λ I−A)−1 u(t) = (λ I−A)−1 x+A(λ I−A)−1 ∫ t
0 u(s)ds

+(λ I−A)−1 ∫ t
0 f (s)ds.

(2.5.4)

Since A(λ I−A)−1 =−I +λ (λ I−A)−1 , we obtain∫ t

0
u(s)ds = (λ I−A)−1

[
x−u(t)+λ

∫ t

0
u(s)ds+

∫ t

0
f (s)ds

]
, ∀t ∈ [0,τ) ,

so ∫ t

0
u(s)ds ∈ D(A), ∀t ∈ [0,τ) .

By using (2.5.4), we obtain

(λ I−A)−1 u(t) = (λ I−A)−1
[

x+A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds

]
,∀t ∈ [0,τ) ,

and since (λ I−A)−1 is injective, we deduce that u is an integrated solution. ut

2.6 Examples

Roughly speaking, the Hille-Yosida theorem says that a linear operator A is the
infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 on a Banach
space X if and only if the following conditions are satisfied:

(a) A is densely defined, i.e. D(A) = X ;
(b) A is a Hille-Yosida operator; that is, there exist two constants M≥ 1 and ω ∈R

such that for each λ > ω, λ I−A is a bijection from D(A) into X , (λ I−A)−1 is
bounded (for short λ ∈ ρ (A) where ρ (A) is the resolvent set of A), and∥∥(λ I−A)−n∥∥

L (X)
≤ M

(λ −ω)n , ∀λ > ω.

In this section we give some examples to show how to use the Hille-Yosida theorem.

Example 2.6.1. Let X = L1 ((0,1) ,R) be the space of integrable maps from (0,1)
into R endowed with the usual norm
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‖ϕ‖L1((0,1),R) =
∫ 1

0
|ϕ(x)|dx.

Consider the Cauchy problem

du(t)
dt

= χu(t) , t ≥ 0, u(0) = ϕ ∈ L1 ((0,1) ,R) , (2.6.1)

where χ ∈C ([0,1) ,R) , and assume that

lim
x↗1

χ(x) =−∞.

Set
χ := sup

x∈[0,1)
χ(x)<+∞.

Here the linear operator A : D(A)⊂ X → X is defined by

A(ϕ)(x) = χ(x)ϕ (x) for almost every x ∈ (0,1)

with
D(A) =

{
ϕ ∈ L1 ((0,1) ,R) : χϕ ∈ L1 ((0,1) ,R)

}
.

A natural formula for the semigroup solution of (2.6.1) is

T (t)(ϕ)(x) = eχ(x)t
ϕ(x), ∀t ≥ 0.

Clearly, the family {T (t)}t≥0 defines a semigroup of bounded linear operators on
X .

We prove that {T (t)}t≥0 is strongly continuous. Let s≥ 0 and ϕ ∈ L1 ((0,1) ,R)
be fixed. Since Cc ((0,1) ,R) (the space of continuous functions with compact sup-
port in (0,1)) is dense in L1 ((0,1) ,R) , given a sequence ϕn ∈Cc ((0,1) ,R)→ ϕ in
L1 ((0,1) ,R) , we have for each n≥ 0 that

lim
t→s
‖T (t)ϕn−T (s)ϕn‖L1((0,1),R) = 0.

Let ε > 0 be fixed. Then we can find n0 ≥ 0 such that

emax(χ,0)(s+1) ‖ϕ−ϕn‖L1((0,1),R) <
ε

2
, ∀n≥ n0.

Then for each t ∈ [0,s+1] and each n≥ n0, we have

‖T (t)ϕ−T (s)ϕ‖L1((0,1),R)

≤ ‖T (t) [ϕ−ϕn]‖L1((0,1),R)

+‖T (t)ϕn−T (s)ϕn‖L1((0,1),R)+‖T (s) [ϕ−ϕn]‖L1((0,1),R)

≤ ε +‖T (t)ϕn−T (s)ϕn‖L1((0,1),R) .
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Thus,
limsup

t→s
‖T (t)ϕ−T (s)ϕ‖L1((0,1),R) ≤ ε.

It follows that {T (t)}t≥0 is a strongly continuous semigroup of bounded linear op-
erators on X .

We now turn to the linear operator A. It is easy to prove that D(A) endowed with
the norm

‖ϕ‖A = ‖ϕ‖L1((0,1),R)+‖χϕ‖L1((0,1),R)

is a Banach space. So A is closed. Moreover, D(A) is dense in X since

Cc ((0,+∞) ,R)⊂ D(A)⊂ L1 ((0,1) ,R) ,

and for each λ > χ,

(λ I−A)ϕ = ψ ⇔ (λ −χ(x))ϕ(x) = ψ (x)⇔ ϕ(x) =
ψ (x)

λ −χ(x)

and
0≤ 1

λ −χ(x)
≤ 1

λ −χ
.

So for each λ > χ, the linear operator λ I−A is one-to-one and onto from D(A) into
X . Moreover, the resolvent (λ I−A)−1 : X → X defined by

(λ I−A)−1 (ψ)(x) =
ψ (x)

λ −χ(x)

is a bounded linear operator and∥∥∥(λ I−A)−1
∥∥∥≤ 1

λ −χ
, ∀λ > χ.

It follows that ∥∥(λ I−A)−n∥∥ =
∥∥∥((λ I−A)−1

)n∥∥∥
≤
∥∥∥(λ I−A)−1

∥∥∥n

≤ 1
(λ −χ)n , ∀λ > χ, ∀n≥ 0.

So A satisfies the conditions of the Hille-Yosida theorem. Furthermore, A is the
infinitesimal generator of a C0-semigroup {T (t)}t≥0 ; that is,

D(A) =
{

ϕ ∈ X : lim
t↘0

T (t)ϕ−ϕ

t
exists

}
and
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Aϕ = lim
t↘0

T (t)ϕ−ϕ

t
,∀ϕ ∈ D(A).

Example 2.6.2. Let X = BC ([0,1) ,R) be the space of bounded and continuous
maps from [0,1) into R endowed with the supremum norm

‖ϕ‖
∞
= sup

x∈[0,1)
|ϕ(x)|.

Then it is well known that (X ,‖.‖
∞
) is a Banach space. As an exercise, one can

prove the following statements:

(a) {T (t)}t≥0 defined by

T (t)(ϕ)(x) := eχ(x)t
ϕ(x),∀t ≥ 0,

is a semigroup of bounded linear operators on X ;
(b) {T (t)}t≥0 is not strongly continuous (Hint: Consider ϕ(x) = 1,∀x ∈ [0,1));
(c) Define

X0 =

{
ϕ ∈Cb ([0,1) ,R) : lim

x↗1
ϕ(x) = 0

}
.

Consider the family of bounded linear operators {T0 (t)}t≥0 on X0 defined by

T0(t) := T (t) |X0 ,∀t ≥ 0.

Then {T0 (t)}t≥0 is a strongly continuous semigroup on X0 (Hint: Observe that
Cc ([0,1) ,R) is dense in X0).

Example 2.6.3. Let X = C ([−1,0] ,R) be the space of continuous maps from
[−1,0] into R endowed with the usual supremum norm

‖ϕ‖
∞
= sup

θ∈[−1,0]
|ϕ (θ)| .

Consider the partial differential equation
∂u(t,θ)

∂ t
− ∂u(t,θ)

∂θ
= 0, t > 0, θ ∈ (−1,0)

∂u(t,0)
∂θ

= 0, t > 0

u(0,x) = ϕ ∈ X .

Consider the linear operator A : D(A)⊂ X → X defined by

Aϕ = ϕ
′, ∀ϕ ∈ D(A)

with
D(A) =

{
ϕ ∈C1 ([−1,0] ,R) : ϕ

′(0) = 0
}
.

Then for each λ > 0,
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λϕ−Aϕ = ψ and ϕ ∈ D(A)⇔ λϕ−ϕ ′ = ψ and ϕ ∈ D(A)

⇔ ϕ(θ) = eλ(θ−θ̂)ϕ(θ̂)−
∫

θ

θ̂
eλ (θ−s)ψ(s)ds, ∀θ , θ̂ ∈ [−1,0] with θ ≥ θ̂

and λϕ (0) = ψ(0)

⇔ ϕ(θ̂) = eλ θ̂ ϕ(0)+
∫ 0

θ̂
eλ(θ̂−s)ψ(s)ds, ∀θ̂ ∈ [−1,0] and λϕ (0) = ψ(0)

⇔ ϕ(θ̂) = eλ θ̂ ψ(0)
λ

+
∫ 0

θ̂
eλ(θ̂−s)ψ(s)ds, ∀θ̂ ∈ [−1,0] .

So for each λ > 0, the linear operator λ I−A : D(A)→ X is one to one and onto.
Moreover, the resolvent (λ I−A)−1 : X → X is defined by

(λ I−A)−1 (ψ)(θ̂) = eλ θ̂ ψ(0)
λ

+
∫ 0

θ̂

eλ(θ̂−s)ψ(s)ds,∀θ̂ ∈ [−1,0] .

Note that ∥∥∥(λ I−A)−1 (ψ)
∥∥∥

∞

≤ sup
θ̂∈[−1,0]

[
eλ θ̂

λ
+
∫ 0

θ̂

eλ(θ̂−s)ds

]
‖ψ‖

∞

= sup
θ̂∈[−1,0]

[
eλ θ̂

λ
+
∫ 0

θ̂

eλ ldl

]
‖ψ‖

∞

=
‖ψ‖

∞

λ
,

so ∥∥∥(λ I−A)−1
∥∥∥

L (X)
≤ 1

λ
, ∀λ > 0.

It follows that ∥∥(λ I−A)−n∥∥
L (X)

≤ 1
λ n , ∀λ > 0, ∀n≥ 1.

Consider now a family of bounded linear operators {T (t)}t≥0 on X defined by

T (t)(ϕ)(θ) =
{

ϕ (0) if t +θ ≥ 0,
ϕ (t +θ) if t +θ ≤ 0.

Then it can be checked that {T (t)}t≥0 is a linear C0-semigroup on X . Moreover, A
is the infinitesimal generator of {T (t)}t≥0 .

Example 2.6.4. Note that here we incorporate the boundary condition into the def-
inition of the domain (i.e. ϕ(0) = 0 in the definition of D(A)). It is also possible to
proceed differently. Consider the space

X = R×C ([−1,0] ,R)

endowed with the usual product norm. Consider

A
(

0
ϕ

)
=

(
−ϕ ′(0)

ϕ ′

)
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with
D(A) = {0}×C1 ([−1,0] ,R)

and A0, the part of A in D(A) = {0}×C ([−1,0] ,R) , that is,

A0x = Ax, ∀x ∈ D(A0) ,

where

D(A0) =
{

x ∈ D(A) : Ax ∈ D(A)
}

=

{(
0
ϕ

)
∈ {0}×C1 ([−1,0] ,R) :

(
−ϕ ′(0)

ϕ ′

)
∈ {0}×C ([−1,0] ,R)

}
.

Thus,

D(A0) =

{(
0
ϕ

)
∈ {0}×C1 ([−1,0] ,R) : ϕ

′(0) = 0
}

and

A0

(
0
ϕ

)
=

(
0
ϕ ′

)
.

One can prove that A0 is the infinitesimal generator of the linear C0-semigroup{
TA0 (t)

}
t≥0 on D(A). Actually, TA0 (t) is defined by

TA0 (t)
(

0
ϕ

)
=

(
0

T̂A0 (t)ϕ

)
,

where

T̂A0 (t)(ϕ)(θ) =
{

ϕ (0) if t +θ ≥ 0,
ϕ (t +θ) if t +θ ≤ 0.

Example 2.6.5. Consider X = L1 ((0,+∞) ,R) endowed with the usual norm and
consider the PDE 

∂u(t,x)
∂ t

+
∂u(t,x)

∂x
= 0, t > 0, x > 0,

u(t,0) = 0, t > 0,
u(0, .) = ϕ ∈ L1((0,+∞) ,R).

Let A : D(A)⊂ X → X be the linear operator defined by

Aϕ =−ϕ
′

with
D(A) =

{
ϕ ∈W 1,1 ((0,+∞) ,R) : ϕ(0) = 0

}
.

The space W 1,1 ((0,+∞) ,R) can be identified to the space of absolutely continuous
maps, which turns to be differentiable almost everywhere (see Rudin [303]).

The above PDE can be reformulated as the following abstract Cauchy problem
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du
dt

= Au(t), t ≥ 0; u(0) = ϕ ∈ X .

By using similar computations as before, we obtain for each λ > 0 that

(λ I−A)ϕ = ψ

⇔ λϕ(x)+ϕ
′(x) = ψ(x) for almost every x≥ 0 and ϕ(0) = 0

⇔ ϕ(x) =
∫ x

0
e−λ (x−s)

ψ(s)ds for almost every x≥ 0.

So for λ > 0, the map λ I−A is one-to-one and onto from D(A) into X , and

(λ I−A)−1
ψ = ϕ ⇔ ϕ(x) =

∫ x

0
e−λ (x−s)

ψ(s)ds.

It follows that ∥∥∥(λ I−A)−1
∥∥∥≤ 1

λ
, ∀λ > 0.

So A satisfies the conditions of the Hille-Yosida theorem. Thus A is the infinitesimal
generator of the linear C0-semigroup {T (t)}t≥0 on X . Moreover, T (t) is defined by

T (t)(ϕ)(x) =
{

ϕ (t− x) if t ≥ x,
0 if t ≤ x.

Example 2.6.6. One can consider the same problem in Lp.

Example 2.6.7. Consider X = UBC(R,R) the space of uniformly continuous and
bounded maps endowed with the usual supremum norm

‖ϕ‖
∞
= sup

x∈R
|ϕ (x)|

Then UBC(R,R) is a Banach space. Consider now the diffusion equation in this
space:  ∂u(t,x)

∂ t
=

∂ 2u(t,x)
∂x2 , t > 0, x ∈ R,

u(0, .) = ϕ ∈UBC(R,R).

Let A : D(A)⊂ X → X be defined by

Aϕ = ϕ
′′

with
D(A) =

{
ϕ ∈C2(R,R)∩UBC(R,R) : ϕ

′,ϕ ′′ ∈UBC(R,R)
}
.

As before we can rewrite the above PDE as an abstract Cauchy problem

du
dt

= Au(t), t ≥ 0; u(0) = ϕ ∈UBC(R,R).
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It is well known that D(A) is dense in X . Let λ > 0. Then

(λ I−A)ϕ = ψ ⇔ λϕ−ϕ
′′ = ψ

Set ϕ̂ = ϕ ′. Then

(λ I−A)ϕ = ψ ⇔ ϕ
′ = ϕ̂ and ϕ̂

′ = λϕ−ψ

⇔


√

λϕ ′+ ϕ̂ ′ =
√

λ

(√
λϕ + ϕ̂

)
−ψ

√
λϕ ′− ϕ̂ ′ =−

√
λ

(√
λϕ− ϕ̂

)
+ψ.

Define
w =

(√
λϕ + ϕ̂

)
and ŵ =

(√
λϕ− ϕ̂

)
.

We obtain

(λ I−A)ϕ = ψ ⇔
{

w′ =
√

λw−ψ

ŵ′ =−
√

λ ŵ+ψ.
(2.6.2)

The first equation of system (2.6.2) is equivalent to

e−
√

λxw(x) = e−
√

λyw(y)−
∫ x

y
e−
√

λ l
ψ(l)dl, ∀x≥ y.

So when x→+∞ we obtain (since w is bounded)

w(y) =
∫ +∞

y
e
√

λ (y−l)
ψ(l)dl =

∫ +∞

0
e−
√

λ s
ψ(s+ y)dl.

Similarly, the second equation of system (2.6.2) is equivalent to

ŵ(x) = e−
√

λ (x−y)ŵ(y)+
∫ x

y
e−
√

λ (x−l)
ψ(l)dl, ∀x≥ y.

So when y→−∞ we obtain

ŵ(x) =
∫ x

−∞

e−
√

λ (x−l)
ψ(l)dl =

∫ 0

−∞

e
√

λ s
ψ(s+ x)dl.

Since
w+ ŵ = 2

√
λϕ

and ∫ +∞

−∞

e−
√

λ |s|
ψ(s+ x)ds =

∫ +∞

x
e
√

λ (x−l)
ψ(l)dl +

∫ x

−∞

e−
√

λ (x−l)
ψ(l)dl,

we have for each λ > 0 that

(λ I−A)−1 (ψ)(x) =
1

2
√

λ

∫ +∞

−∞

e−
√

λ |s|
ψ(s+ x)ds
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=
1

2
√

λ

∫ +∞

−∞

e−
√

λ |x−l|
ψ(l)dl.

One may observe that (λ I−A)−1 (ψ) is defined by a convolution operator and it
follows that

(λ I−A)−1 BC(R,R)⊂UBC(R,R)

where BC(R,R) is the space of bounded and continuous maps from R into itself.
But UBC(R,R) is not dense in BC(R,R). So in order to obtain D(A) = X we need
to use the space UBC.

In summary we deduce that for each λ > 0, the linear operator λ I−A is one-to-
one and onto from D(A) into X , and

(λ I−A)−1 (ψ)(x) =
1

2
√

λ

∫ +∞

−∞

e−
√

λ |s|
ψ(s+ x)ds.

Moreover, ∥∥∥(λ I−A)−1
ψ

∥∥∥≤ 1
λ
‖ψ‖ , ∀λ > 0.

It follows that A is the infinitesimal generator of a C0-semigroup {TA(t)}t≥0 . Fur-
thermore, by using Fourier transform, one can prove that A is the infinitesimal gen-
erator of

T (t)(ϕ)(x) =
1√
4πt

∫
R

e
−
(x− y)2

4t ϕ(y)dy.

Example 2.6.8. As an exercise one can consider the same problem in Lp(R,R).

2.7 Remarks and Notes

Linear semigroup theory started with Hille-Yosida generation theorem in 1948
(see Hille [186] and Yosida [380]). Since then, there have been many monographs
presenting various aspects of this theory, we refer to Hille and Phillips [187], Davies
[87], Yosida [381], Pazy [281], Goldstein [150], Engel and Nagel [126, 128], and
Arendt [22] for more results on semigroup theory. In this chapter we discussed the
notions of strongly continuous semigroups, resolvents, and pseudo-resolvents, as
well as the Hille-Yosida theorem. All these results of this chapter are well-known.
Section 2.3 perhaps is the most original part with respect to the literature in which
we discussed various equivalent relationships between mild solutions and the in-
finitesimal generator. The main idea of the part is to prepare for the chapter devoted
to integrated semigroup theory where similar ideas will be used.

There are several important concepts and results in semigroup theory that we
would like to briefly mention here.

(a) Lumer-Phillips Theorem. One can find a complete description of the Lumer-
Phillips theorem for example in the book of Pazy [281].
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Definition 2.7.1. Let A : D(A) ⊂ X → X be a linear operator on a Banach space X .
Then A is said to be dissipative if

‖(λ I−A)x‖ ≥ λ‖x‖, ∀x ∈ D(A),∀λ > 0.

Definition 2.7.2. A strongly continuous semigroup {T (t)}t≥0 of bounded linear op-
erators on a Banach space X is a semigroup of contractions if and only if

‖T (t)‖L (X) ≤ 1, ∀t ≥ 0.

Theorem 2.7.3 (Lumer-Phillips [239]). Let A : D(A)⊂X→X be a linear operator
on Banach space X. Then A generates a semigroup of contractions if and only if

• D(A) is dense in X;
• A is closed;
• A is dissipative;
• λ I−A is surjective for some λ > 0.

(b) Sectorial Linear Operators. For parabolic equations, it is not convenient
to use the Hille-Yosida condition, but it is possible to use the notion of sectorial
operators instead. We refer for instance to Friedman [146], Tanabe [325], Henry
[183], Pazy [281], Temam [327], Lunardi [240], Cholewa and Dlotko [61], Engel
and Nagel [126] for more results on the subject.

Definition 2.7.4. Let L : D(L)⊂ X → X a linear operator on a Banach space X . L is
said to be a sectorial operator if there are constants ω̂ ∈R, θ ∈ ]π/2,π[ , and M̂ > 0
such that

(i) ρ(L)⊃ Sθ ,ω̂ = {λ ∈ C : λ 6= ω̂, |arg(λ − ω̂)|< θ} ,

(ii)
∥∥∥(λ I−L)−1

∥∥∥≤ M̂
|λ − ω̂|

,∀λ ∈ Sθ ,ω̂ .

Definition 2.7.5. A strongly continuous semigroup {T (t)}t≥0 of bounded linear op-
erators on a Banach space X is said to be an analytic semigroup if the function
t → T (t) is analytic in (0,+∞[ with values in L (X) (i.e. T (t) = ∑

+∞

n=0 (t− t0)
n Ln

for |t− t0| small enough).

Theorem 2.7.6 (Sectorial Linear Operator Theorem). Assume that L : D(L) ⊂
X → X is a linear operator on a Banach space X and is sectorial. Then L is the
infinitesimal generator of an analytic semigroup {T (t)}t≥0 of bounded linear oper-
ators on X. Moreover,

TL(t) =
1

2πi

∫
ω̂+γr,η

(λ I−L)−1eλ tdλ , t > 0, and TL(0)x = x, ∀x ∈ X ,

where r > 0,η ∈ (π/2,θ) , and γr,η is the curve {λ ∈ C : |arg(λ )|= η , |λ | ≥ r}∪
{λ ∈ C : |arg(λ )| ≤ η , |λ |= r} oriented counterclockwise.
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One may realize that both Lumer-Phillips Theorem and the above Sectorial Lin-
ear Operator Theorem provide an alternative method to prove the existence of a
strongly continuous semigroup of bounded linear operators without using the Hille-
Yosida condition.

(c) Linear Perturbations. The following theorem is proved for example in Pazy
[281].

Theorem 2.7.7 (Perturbation Theorem). Let A : D(A)⊂ X → X be a Hille-Yosida
operator on a Banach space X. Let B ∈L (X) be a bounded linear operator on X.
Then A+B : D(A)⊂ X→ X is a Hille-Yosida operator. Let {TA(t)}t≥0 (respectively
{TA+B(t)}t≥0 ) be the semigroup generated by A (respectively generated by A+
B), then for each x ∈ X, the map t → TA+B(t)x is the unique continuous function
satisfying (the fixed point problem)

TA+B(t)x = TA(t)x+
∫ t

0
TA(t− s)BTA+B(s)xds, ∀t ≥ 0.

Theorem 3.5.1 in Chapter 3 is a generalization of this perturbation theorem in
the non-densely defined case. We refer to Desch-Schappacher [95] for a perturba-
tion theorem with B unbounded. When A is sectorial, we refer to Pazy [281] for a
perturbation theorem whenever B is unbounded and composed with some fractional
power of the resolvent of A being bounded (we will present the notion of fractional
power in Chapter 9).





Chapter 3
Integrated Semigroups and Cauchy Problems
with Non-dense Domain

The goal of this chapter is to introduce the integrated semigroup theory and use
it to investigate the existence and uniqueness of integrated (mild) solutions of the
nonhomogeneous Cauchy problems when the domain of the linear operator A is not
dense in the state space and A is not a Hille-Yosida operator.

3.1 Preliminaries

Let A : D(A) ⊂ X → X be a linear operator on a Banach space X . Consider the
nonhomogeneous Cauchy problem

du
dt

= Au(t)+ f (t) for t ≥ 0 and u(0) = x ∈ D(A), (3.1.1)

where f ∈ L1
Loc ((0,τ) ,X) for some τ > 0. Recall that u ∈ C ([0,τ] ,X) is an inte-

grated solution (or a mild solution) of (3.1.1) if u satisfies∫ t

0
u(s)ds ∈ D(A), ∀t ∈ [0,τ] ,

and
u(t) = x+A

∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ] .

From the results in Sections 2.4 and 2.5 we know that when the domain of A is dense
in X and A is a Hille-Yosida operator, the integrated solution of (3.1.1) is given by

u(t) = TA(t)x+
∫ t

0
TA(t− s) f (s)ds,

where {TA(t)}t≥0 is the linear C0-semigroup generated by A.
When D(A) 6= X , in order to define such an integrated solution we start by con-

sidering the special case

99
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du
dt

= Au(t)+ x for t ≥ 0 and u(0) = 0, (3.1.2)

where x ∈ X . Define
X0 := D(A).

Assume that A0, the part of A in X0, is the infinitesimal generator of a strongly con-
tinuous semigroup {TA0(t)}t≥0 of bounded linear operators on X0 and the resolvent
set ρ(A) of A is nonempty. We will see that the unique integrated solution of (3.1.2)
is given by

u(t) = SA(t)x,

where {SA(t)}t≥0 is a strongly continuous family of bounded linear operators on X ,
which is the integrated semigroup generated by A, and

SA(t)x := (λ I−A0)
∫ t

0
TA0(s)ds(λ I−A)−1x,

in which λ ∈ ρ(A).
We will study the relationship between {SA(t)}t≥0, A and ρ(A) as well as the

relationship between {SA(t)}t≥0 and the integrated solution of (3.1.2); that is,

SA(t)x = A
∫ t

0
SA(l)xdl + tx, ∀t ≥ 0, ∀x ∈ X ,

with ∫ t

0
SA(l)xdl ∈ D(A).

We will see that the integrated solution of (3.1.1) (when it exists) is given by

u(t) = TA0(t)x+
d
dt

∫ t

0
SA(t− s) f (s)ds

whenever the map t → (SA ∗ f )(t) :=
∫ t

0 SA(t − s) f (s)ds is continuously differ-
entiable. Then we will study the properties of A + B when B : D(A) → X is a
bounded linear operator from D(A) into X . Finally, we will derive some estimates
on d

dt
∫ t

0 SA(t − s) f (s)ds based on some growth rate estimation on the semigroup
{TA0(t)}t≥0.

In Section 3.8 we will consider the following example.

Example 3.1.1 (Abstract Age-structured Model in Lp). Let p,q ∈ [1,+∞). Con-
sider the PDE associated to this problem

∂v(t,a)
∂ t

+
∂v(t,a)

∂a
=−µ(a)v(t,a) for t ≥ 0 and a≥ 0,

v(t,0) = h(t),
v(0, .) = ϕ ∈ Lp ((0,+∞) ;R) ,

(3.1.3)

where
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h ∈ Lq((0,τ);R).

Assume that
µ ∈ L∞

+(0,+∞).

Usually, when the solution exists, it is given by

v(t,a) =


exp
(
−
∫ a

a−t
µ(s)ds

)
ϕ(a− t) if a− t ≥ 0

exp
(
−
∫ a

0
µ(s)ds

)
h(t−a) if a− t ≤ 0.

This suggests that in order to obtain the existence of solutions in Lp (in some sense
which still need to be specified) we will need to assume that q≥ p.

Consider the Banach space

X := R×Lp ((0,+∞) ;R)

endowed with the usual product norm∥∥∥∥(α

ϕ

)∥∥∥∥= |α|+‖ϕ‖Lp

and the linear operator A : D(A)⊂ X → X defined by

A
(

0R
ϕ

)
=

(
−ϕ(0)
−ϕ ′−µϕ

)
with domain

D(A) = {0R}×W 1,p ((0,+∞) ;R) .

The domain of A is not dense in X and one can show that A is a Hille-Yosida operator
if and only if p = 1. By identifying

u(t) :=
(

0R
v(t, ·)

)
,

the PDE (3.1.3) can be rewritten as an abstract nonhomogeneous Cauchy problem

du
dt

= Au(t)+ f (t) for t ≥ 0 and u(0) =
(

0R
ϕ

)
∈ D(A),

where

f (t) :=
(

h(t)
0Lp

)
.
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3.2 Integrated Semigroups

In this section we first give the definition of an integrated semigroup.

Definition 3.2.1. Let {S(t)}t≥0 be a family of bounded linear operators on a Ba-
nach space (X ,‖.‖). We say that {S(t)}t≥0 is an integrated semigroup on X if the
following properties are satisfied:

(i) S(0) = 0;
(ii) t→ S(t)x is continuous from [0,+∞) into X for each x ∈ X ;
(iii) S(t) satisfies

S(t)S(s) =
∫ t

0
[S(r+ s)−S(r)]dr, ∀t,s ∈ [0,+∞) . (3.2.1)

Remark 3.2.2. (i) Let {T (t)}t≥0 be a strongly continuous semigroup on a Banach
space (X ,‖.‖). Define

S(t) =
∫ t

0
T (s)ds.

Then {S(t)}t≥0 is an integrated semigroup on X×X . In other words, the integration
of a strongly continuous semigroup is an integrated semigroup.

(ii) We have∫ t+s

0
S(r)dr−

∫ t

0
S(r)dr−

∫ s

0
S(r)dr =

∫ t

0
[S(r+ s)−S(r)]dr.

Therefore, by using (3.2.1) it follows that

S(t)S(s) = S(s)S(t), ∀t,s ∈ [0,+∞) . (3.2.2)

Set
Xk =

{
x ∈ X : S(.)x ∈Ck ([0,+∞) ,X)

}
,∀k ≥ 1.

It is clear that X1 is a subspace of X , and we have the following properties.

Lemma 3.2.3. Let {S(t)}t≥0 be an integrated semigroup on a Banach space (X ,‖.‖).
The following properties are satisfied

(i) S(t)X ⊂ X1,∀t ≥ 0;
(ii) S′(t)S(s)x = S(t + s)x−S(t)x,∀t,s≥ 0,∀x ∈ X ;
(iii) S′(t)S(s)x = S(s)S′(t)x,∀t,s≥ 0,∀x ∈ X1;
(iv) S′(t)X1 ⊂ X1,∀t ≥ 0;
(v) S′(s)S′(t)x = S′(t + s)x,∀t,s≥ 0,∀x ∈ X1.

Proof. (i) and (ii) are immediate consequences of (3.2.1). (iii) follows from (3.2.2),
the property (i) and the fact that S(s) is bounded. To prove (iv) and (v), it is sufficient
to note that

S(s)S′(t)x = S(t + s)x−S(t)x,∀x ∈ X1,∀t,s≥ 0.
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Since the second member of the above equation is differentiable with respect to s,
we obtain (iv) and (v). ut

Definition 3.2.4. An integrated semigroup {S(t)}t≥0 is non-degenerate if

S(t)x = 0,∀t ≥ 0⇒ x = 0.

Lemma 3.2.5. Let {S(t)}t≥0 be a non-degenerate integrated semigroup on a Ba-
nach space (X ,‖.‖). Then S′(0) = IX1

Proof. We have

S(s)S′(t)x = S(t + s)x−S(t)x,∀t,s≥ 0,∀x ∈ X1.

So for t = 0, we obtain

S(s)
[
S′(0)x− x

]
= 0,∀s≥ 0,∀x ∈ X1.

Since {S(t)}t≥0 is non-degenerate, it follows that S′(0) = IX1 . ut

Definition 3.2.6. Let {S(t)}t≥0 be a non-degenerate integrated semigroup on a Ba-
nach space (X ,‖.‖). A linear operator A : D(A)⊂ X → X is said to be the generator
of {S(t)}t≥0 if and only if

x ∈ D(A) and y = Ax⇔ S(t)x = tx+
∫ t

0
S(s)yds,∀t ≥ 0,

or equivalently

Graph(A) =
{
(x,y) ∈ X×X : S(t)x = tx+

∫ t

0
S(s)yds,∀t ≥ 0

}
. (3.2.3)

It can be readily checked that

G =

{
(x,y) ∈ X×X : S(t)x = tx+

∫ t

0
S(s)yds,∀t ≥ 0

}
is a closed subspace of X ×X . Moreover, if {S(t)}t≥0 is non-degenerate, then G is
the graph of a linear operator A. Indeed, we define

D(A) = {x ∈ X : (x,y) ∈ G for some y ∈ X} .

Assume that x ∈ D(A) and there exist y ∈ X and z ∈ X such that

(x,y) ∈ G and (x,z) ∈ G.

Then
S(t)x = x+

∫ t

0
S(s)yds = x+

∫ t

0
S(s)zds, ∀t ≥ 0,
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so
S(t)(y− z) = 0,∀t ≥ 0.

Since {S(t)}t≥0 is non-degenerate, we deduce that

y = z.

Thus, G is the graph of a map A from D(A) into X . Moreover, since G is a closed
linear subspace of X×X , it follows that A : D(A)⊂X→X is a closed linear operator
on X .

From the above observation we have the following lemma.

Lemma 3.2.7. The generator of a non-degenerate integrated semigroup {S(t)}t≥0
on a Banach space (X ,‖.‖) is uniquely determined.

We also remark that

Graph(A) =
{
(x,y) ∈ X1×X : S′(t)x = x+S(t)y,∀t ≥ 0

}
. (3.2.4)

Lemma 3.2.8. Let {S(t)}t≥0 be a non-degenerate integrated semigroup on a Ba-
nach space (X ,‖.‖) and let A be its generator. Then A is a closed linear operator.

Proof. Assume that (xn,yn) ∈ Graph(A) −→ (x,y). Then for each n ∈ N and each
t ≥ 0, we have

S(t)xn = txn +
∫ t

0
S(s)ynds.

Taking the limit when n goes to +∞ (for t fixed), we obtain that

S(t)x = tx+
∫ t

0
S(s)yds, ∀t ≥ 0.

Therefore, (x,y) ∈ Graph(A). ut

Lemma 3.2.9. Let {S(t)}t≥0 be a non-degenerate integrated semigroup on a Ba-
nach space (X ,‖.‖) and let A be its generator. For each x ∈ X and each t ≥ 0, we
have ∫ t

0
S(s)xds ∈ D(A) and S(t)x = A

∫ t

0
S(s)xds+ tx.

Proof. By using (3.2.1), we obtain

S(t)
∫ s

0
S(σ)xdσ =

∫ s

0
S(t)S(σ)xdσ =

∫ s

0

∫ t

0
[S(r+σ)−S(r)]xdrdσ

and by Fubini’s theorem we obtain

S(t)
∫ s

0
S(σ)xdσ =

∫ t

0

∫ s

0
[S(r+σ)−S(r)]xdσdr.

Hence,
∫ s

0 S(σ)xdσ ∈ X1, and



3.2 Integrated Semigroups 105

dS(t)
dt

∫ s

0
S(σ)xdσ =

∫ s

0
[S(t +σ)−S(t)]xdσ

=
∫ s

0
[S(t +σ)−S(σ)]xdσ +

∫ s

0
S(σ)xdσ − sS(t)x

= S(t)(S(s)x− sx)+
∫ s

0
S(σ)xdσ .

Setting x̂ =
∫ s

0 S(σ)xdσ and ŷ = S(s)x− sx, we obtain

S′(t)x̂− x̂ = S(t)ŷ, ∀t ≥ 0,

and integrating the last equation yields that

S(t)x̂− tx̂ =
∫ t

0
S(σ)ŷdσ , ∀t ≥ 0.

Thus,

x̂ =
∫ t

0
S(l)xdl ∈ D(A) and ŷ = Ax̂.

It remains to observe that

ŷ = Ax̂⇔ S(s)x− sx = A
∫ s

0
S(σ)xdσ .

This completes the proof. ut

Lemma 3.2.10. Let {S(t)}t≥0 be a non-degenerate integrated semigroup on a Ba-
nach space (X ,‖.‖) and let A be its generator. We have the following properties

(i) D(A)⊂ X1;
(ii) S (t)X1 ⊂ D(A),∀t ≥ 0, and S′(t)x− x = AS(t)x,∀t ≥ 0,∀x ∈ X1;
(iii) AS(t)x = S(t)Ax,∀t ≥ 0,∀x ∈ D(A).

Proof. (i) Assume that x ∈D(A). By the definition of D(A), we can find y ∈ X such
that

S(t)x− tx =
∫ t

0
S(l)ydl, ∀t ≥ 0.

Now by taking the derivative of the last expression and by using the fact that y = Ax,
we have

S′(t)x = x+S(t)Ax,∀t ≥ 0, ∀x ∈ D(A). (3.2.5)

Let x ∈ X1 be fixed. Then from Lemma 3.2.9 we have

S(t)x− tx = A
∫ t

0
S(l)xdl,∀t ≥ 0,

so
[S(t +h)−S(t)]x

h
− x = A

1
h

∫ t+h

t
S(l)xdl, ∀t ≥ 0,∀h > 0.

Since A is closed, we deduce when h↘ 0 that
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S(t)x ∈ D(A) and S′(t)x− x = AS(t)x, ∀t ≥ 0. (3.2.6)

(ii) and (iii) follow from (3.2.5) and (3.2.6). ut

The following lemma provides the uniqueness of mild solutions whenever A gen-
erates an integrated semigroup.

Theorem 3.2.11 (Uniqueness). Let {S(t)}t≥0 be a non-degenerate integrated semi-
group on a Banach space (X ,‖.‖) and let A be its generator. Let τ ∈ (0,+∞] . As-
sume that u : [0,τ)→ X is continuous such that∫ t

0
u(σ)dσ ∈ D(A),∀t ∈ [0,τ) ,

and
u(t) = A

∫ t

0
u(σ)dσ ,∀t ∈ [0,τ) .

Then u(t) = 0,∀t ∈ [0,τ) .

Proof. Since D(A) ⊂ X1, we have
∫ s

0 u(σ)dσ ∈ X1,∀s ∈ [0,τ) . By Lemma 3.2.10
we have

d
ds

(S(t− s)
∫ s

0 u(σ)dσ) =−S′(t− s)
∫ s

0 u(σ)dσ +S(t− s)u(s)

and by using (3.2.5) we obtain

d
ds

(S(t− s)
∫ s

0 u(σ)dσ) =−
∫ s

0 u(σ)dσ −S(t− s)A
∫ s

0 u(σ)dσ +S(t− s)u(s).

By using the fact that u is a mild solution we deduce that

d
ds

(S(t− s)
∫ s

0 u(σ)dσ) =−
∫ s

0 u(σ)dσ .

Integrating the map s→ d
ds

(S(t− s)
∫ s

0 u(σ)dσ) from 0 to t and noting that S(0) =
0, we obtain

0 =−
∫ t

0

∫ s

0
u(σ)dσds, ∀t ∈ [0,τ) .

Differentiating twice we obtain u = 0. ut

As an immediate consequence of Lemma 3.2.9 and Theorem 3.2.11 we obtain
the following theorem.

Theorem 3.2.12. A non-degenerate integrated semigroup is uniquely determined by
its generator.

Proof. Assume that A generates two non-degenerates integrated semigroups, {S(t)}t≥0

and
{

Ŝ(t)
}

t≥0
. Then by Lemma 3.2.9 we have
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0

[
S(s)− Ŝ (s)

]
xds ∈ D(A) and

[
S(t)− Ŝ (t)

]
x = A

∫ t

0

[
S(s)− Ŝ (s)

]
xds.

Applying Theorem 3.2.11, we deduce that

S(t) = Ŝ (t) ,∀t ≥ 0.

This proves the theorem. ut

Another consequence of Theorem 3.2.11 is the uniqueness of mild (or integrated)
solutions of the Cauchy problem (3.1.1).

Theorem 3.2.13. Let A : D(A)⊂ X→ X be a linear operator on a Banach space X .
Assume that A generates a non-degenerate integrated semigroup {SA(t)}t≥0 . Then
the Cauchy problem (3.1.1) has at most one integrated solution; that is, there exists
at most one continuous function u : [0,τ)→ X such that∫ t

0
u(s)ds ∈ D(A), ∀t ∈ [0,τ) ,

and
u(t) = x+A

∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ) .

Theorem 3.2.14. Let {S(t)}t≥0 be a strongly continuous family of bounded linear
operators on a Banach space X and let A : D(A)⊂ X→ X be a closed linear opera-
tor. Then {S(t)}t≥0 is a non-degenerate integrated semigroup and A is its generator
if and only if the following two conditions are satisfied:

(i) For all x ∈ D(A) and t > 0, S(t)x ∈ D(A) and AS(t)x = S(t)Ax;
(ii) For all x ∈ X and t > 0,

∫ t
0 S(s)xds ∈ D(A) and A

∫ t
0 S(s)xds = S(t)x− tx.

Proof. The “only if” part follows from Lemma 3.2.9 and Lemma 3.2.10. Assume
now that conditions (i) and (ii) are satisfied. Then {S(t)}t≥0 is a non-degenerate
family. Indeed, assume that

S(t)x = 0,∀t ≥ 0.

Then from (ii) we have
0 = A0 =−tx,∀t ≥ 0.

So
x = 0.

To prove that {S(t)}t≥0 is an integrated semigroup, we note that (ii) implies

S(0) = 0. (3.2.7)

Moreover, by combining (i) and (ii) and the closeness of A, we deduce that for all
x ∈ D(A) the map t→ S(t)x is continuously differentiable, and

S′(t)x = x+AS(t)x = x+S(t)Ax,∀t ≥ 0.
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By using this fact and the same argument as in the proof of Theorem 3.2.11, we
deduce that for each τ ∈ (0,+∞] , if u ∈C ([0,τ) ,X) and satisfies∫ t

0
u(l)dl ∈ D(A) and u(t) = A

∫ t

0
u(l)dl,∀t ∈ [0,τ) .

Then u = 0.
It remains to prove that

v1(t) := S(t)S(r)x and v2(t) :=
∫ t

0
[S(r+ l)−S(l)]xdl

are equal. To prove this we will show that

v j(t) = A
∫ t

0
v j(l)dl + tS(r)x for t ≥ 0 and j = 1,2. (3.2.8)

Then u(t) = v1(t)− v2(t) satisfies∫ t

0
u(l)dl ∈ D(A), and u(t) = A

∫ t

0
u(l)dl, ∀t ∈ [0,+∞)

which implies that u = 0.
To prove (3.2.8), we have∫ t

0
v1(l)dl =

∫ t

0
S(l)S(r)xdl ∈ D(A)

and

A
∫ t

0
v1(l)dl = A

∫ t

0
S(l)S(r)xdl

= S(t)S(r)x− tS(r)x = v1(t)− tS(r)x.

We also have

v2(t) =
∫ t+r

0
S(l)xdl−

∫ t

0
S(l)xdl−

∫ r

0
S(l)xdl ∈ D(A),

Av2(t) = S(t + r)x−S(t)x−S(r)x,

and, since A is closed,

A
∫ t

0
v2(l)dl =

∫ t

0
S(l + r)x−S(l)xdl− tS(r)x

= v2(t)− tS(r)x.

It follows that {S(t)}t≥0 is a non-degenerate integrated semigroup.
It remains to prove that A is the generator of {S(t)}t≥0 . Let B : D(B) ⊂ X → X

be the generator of {S(t)}t≥0 . We have
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Graph(B) =
{
(x,y) ∈ X×X : S(t)x = tx+

∫ t

0
S(s)yds,∀t ≥ 0

}
.

By using (i) and (ii), and the fact that A is closed, we have

S(t)x = tx+
∫ t

0
S(s)Axds,∀t ≥ 0,∀x ∈ D(A).

It follows that Graph(A)⊂ Graph(B).
Conversely, let x ∈ D(B). We have

A
∫ t

0
S(l)xdl = S(t)x− tx =

∫ t

0
S(s)Bxds,

so

A
1
h

∫ t+h

t
S(l)xdl =

1
h

∫ t+h

t
S(l)Bxdl.

Now since A is closed, we deduce when h↘ 0 that

S(t)x ∈ D(A) and AS(t)x = S(t)Bx. (3.2.9)

Hence
tx = S(t)x−

∫ t

0
S(s)Bxds ∈ D(A)

and

tAx = AS(t)x−A
∫ t

0
S(s)Bxds

= AS(t)x−S(t)Bx+ tBx.

By using (3.2.9) we obtain
Ax = Bx.

So Graph(B)⊂ Graph(A) and the proof is complete. ut

3.3 Exponentially Bounded Integrated Semigroups

Definition 3.3.1. An integrated semigroup {S(t)}t≥0 is exponentially bounded if
and only if there exist two constants, M > 0 and ω > 0, such that

‖S(t)‖L (X) ≤Meωt , ∀t ≥ 0.

Proposition 3.3.2. Let A be the generator of an exponentially bounded non-degenerate
integrated semigroup {S(t)}t≥0. Then for λ > ω, λ I−A is invertible and
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(λ I−A)−1 x = λ

∫ +∞

0
e−λ tS(t)xdt,∀x ∈ X .

Proof. Set

Rλ x = λ

∫ +∞

0
e−λ tS(t)xdt,∀x ∈ X .

We first show that Rλ X ⊂ D(A) and (λ I−A)Rλ = I. By integrating by parts we
have

Rλ x = λ
2
∫ +∞

0
e−λ t

∫ t

0
S(l)xdldt,∀x ∈ X .

Observe that
A
∫ t

0
S(l)xdl = S(t)x− tx,∀x ∈ X ,

hence the map t →
∫ t

0 S(l)xdl belongs to C ([0,+∞) ,D(A)). Since A is closed, it
follows that

Rλ x ∈ D(A),∀x ∈ X ,

and

ARλ x = λ
2
∫ +∞

0
e−λ tA

∫ t

0
S(l)xdldt

= λ
2
∫ +∞

0
e−λ tS(t)xdt−λ

2
∫ +∞

0
te−λ txdt

= λRλ x− x,

so
(λ I−A)Rλ x = x,∀x ∈ X .

Now let x ∈ D(A). As S(t) commutes with A by Lemma 3.2.10, we have

Rλ Ax = λ

∫ +∞

0
e−λ tS(t)Axdt = λ

∫ +∞

0
e−λ tAS(t)xdt.

Since A is closed, we deduce that

Rλ Ax = ARλ x.

Hence
Rλ (λ I−A)x = x,∀x ∈ D(A),

and the result follows. ut

Recall that the dual space X∗ of X consists of the bounded linear forms x∗ : X →
K (with K= R or K= C)

x∗(x) = 〈x∗,x〉 at x ∈ X ,

where 〈., .〉 is the scalar product for the duality X∗,X . We introduce the following
definition.
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Definition 3.3.3. Let A : D(A)⊂ X → Y. Define

G∗ (A) := {(y∗,x∗) ∈ Y ∗×X∗ : 〈y∗,Ax〉= 〈x∗,x〉 ,∀x ∈ D(A)} .

Lemma 3.3.4. Let A : D(A)⊂ X → Y be a closed linear operator. Then

(x,y) ∈ Graph(A)⇔ 〈y∗,y〉= 〈x∗,x〉 ,∀(y∗,x∗) ∈ G∗ (A) .

Proof. The implication (⇒) is an immediate consequence of the definition of
G∗ (A) . To prove (⇐), assume that

(x̂, ŷ) /∈ Graph(A).

Since Graph(A) is a closed subspace by the Hahn-Banach theorem, we can find a
bounded linear functional f on X×Y such that

f (x̂, ŷ) 6= 0 and f (x,y) = 0,∀(x,y) ∈ Graph(A).

Setting x∗(x) = f (x,0) and y∗(y) =− f (0,y), then we have

〈y∗, ŷ〉 6= 〈x∗, x̂〉 , and 〈y∗,y〉= 〈x∗,x〉 ,∀(x,y) ∈ Graph(A).

So we obtain
〈y∗, ŷ〉 6= 〈x∗, x̂〉 and (y∗,x∗) ∈ G∗ (A) .

This completes the proof. ut

When we restrict ourselves to the class of non-degenerate exponentially bounded
integrated semigroups, Thieme’s notion of generator [329] is equivalent to the one
introduced by Arendt [21]. More precisely, combining Theorem 3.1 in Arendt [21]
and Proposition 3.10 in Thieme [329], one has the following result.

Theorem 3.3.5 (Arendt-Thieme). Let {S(t)}t≥0 be an exponentially bounded and
strongly continuous family of bounded linear operators on a Banach space (X ,‖.‖).
Let A : D(A)⊂X→X be a linear operator on X . Then {S(t)}t≥0 is a non-degenerate
integrated semigroup and A is its generator if and only if there exist two constants
ω > 0 and M > 0 such that

(ω,+∞)⊂ ρ (A) ,

‖S(t)‖L (X) ≤Meωt , ∀t ≥ 0,

and
(λ I−A)−1x = λ

∫
∞

0
e−λ sS(s)xds, ∀λ > ω.

Proof. We apply Theorem 3.2.14. To verify assertion (i) of Theorem 3.2.14 it is
sufficient to show that 〈y∗,S(t)Ax〉 = 〈x∗,S(t)x〉 ,∀(y∗,x∗) ∈ G∗ (A) . Let x ∈ D(A).
We have for each λ > ω and each (y∗,x∗) ∈ G∗ (A) that∫ +∞

0
e−λ t 〈x∗,S(t)x〉dt =

〈
x∗,
∫ +∞

0
e−λ tS(t)xdt

〉
=

〈
x∗,

1
λ
(λ I−A)−1 x

〉
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=

〈
y∗,A

1
λ
(λ I−A)−1 x

〉
=

〈
y∗,

1
λ
(λ I−A)−1 Ax

〉
=
∫ +∞

0
e−λ t 〈y∗,S(t)Ax〉dt.

By the uniqueness properties of the Laplace transform, we deduce that

〈x∗,S(t)x〉= 〈y∗,S(t)Ax〉 ,∀t ≥ 0,∀(y∗,x∗) ∈ G∗ (A) .

So by Lemma 3.3.4 we have that

S(t)x ∈ D(A)and AS(t)x = S(t)Ax,∀t ≥ 0.

We now prove assertion (ii) of Theorem 3.2.14. By using Lemma 3.3.4 it is sufficient
to prove that〈

x∗,
∫ t

0
S(l)xdl

〉
= 〈y∗,S(t)x− tx〉 ,∀t ≥ 0,∀(y∗,x∗) ∈ G∗ (A) .

In fact,∫ +∞

0
e−λ t

〈
x∗,
∫ t

0
S(l)xdl

〉
dt =

1
λ

∫ +∞

0
e−λ t 〈x∗,S(t)x〉dt

=
1

λ 2

〈
x∗,(λ I−A)−1 x

〉
=

1
λ 2

〈
y∗,A(λ I−A)−1 x

〉
= − 1

λ 2 〈y
∗,x〉+ 1

λ

〈
y∗,(λ I−A)−1 x

〉
=
∫ +∞

0
e−λ t 〈y∗,−tx〉dt +

∫ +∞

0
e−λ t 〈y∗,S(t)x〉dt.

Thus, ∫ +∞

0
e−λ t

〈
x∗,
∫ t

0
S(l)xdl

〉
dt =

∫ +∞

0
e−λ t 〈y∗,S(t)x− tx〉dt.

Once again by the uniqueness of the Laplace transform, we obtain〈
x∗,
∫ t

0
S(l)xdl

〉
= 〈y∗,S(t)x− tx〉 ,∀t ≥ 0,∀(y∗,x∗) ∈ G∗ (A) .

By Lemma 3.3.4 it follows that∫ t

0
S(l)xdl ∈ D(A) and A

∫ t

0
S(l)xdl = S(t)x− tx,∀t ≥ 0.

This completes the proof. ut

Corollary 3.3.6. Let {SA(t)}t≥0 be an exponentially bounded non-degenerate inte-
grated semigroup on a Banach space X with generator A : D(A)⊂ X→ X. Then for
each µ ∈ R, A+µI generates an exponentially bounded non-degenerate integrated
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semigroup
{

SA+µI(t)
}

t≥0 and

SA+µI(t) = eµtSA(t)−µ

∫ t

0
eµlSA(l)dl.

Proof. We have

(λ I−A)−1 = λ

∫ +∞

0
e−λ tSA(t)dt, ∀λ > ω̂.

So for each λ > ω̂ +µ,

(λ I− (A+µI))−1 = ((λ −µ) I−A)−1 = (λ −µ)
∫ +∞

0
e−(λ−µ)tSA(t)dt,

(λ I− (A+µI))−1 = λ

∫ +∞

0
e−λ teµtSA(t)dt−µ

∫ +∞

0
e−λ teµtSA(t)dt.

By integrating by parts the last integral, we obtain

(λ I− (A+µI))−1 = λ

∫ +∞

0
e−λ t

[
eµtSA(t)−µ

∫ t

0
eµlSA(l)dl

]
dt.

The result follows from Theorem 3.3.5. ut

3.4 Existence of Mild Solutions

Let (X ,‖.‖X ) be a Banach space. Let A : D(A)⊂ X → X be a linear operator. In
this section we study the Cauchy problem (3.1.1) with f ∈ L1 ((0,τ) ,X) . From here
on, set

X0 = D(A).

We denote by A0 the part of A in X0. Recall that A0 : D(A0)⊂ X0→ X0 is the linear
operator on X0 defined by

A0x = Ax, ∀x ∈ D(A0) = {y ∈ D(A) : Ay ∈ X0} .

Assume that (ωA,+∞) ⊂ ρ(A). Then from Lemma 2.2.9 we know that for each
λ > ω,

D(A0) = (λ I−A)−1 X0 and (λ I−A0)
−1 = (λ I−A)−1 |X0 .

Moreover, from Lemma 2.2.10, we know that

ρ(A) 6= /0⇒ ρ(A) = ρ(A0).
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Motivated by some examples (see the example considered in Section 3.1 when p >
1) we do not assume that A is a Hille-Yosida operator. Instead, we first make the
following assumption.

Assumption 3.4.1. Let A : D(A) ⊂ X → X be a linear operator on a Banach space
X satisfying the following properties:

(a) There exist two constants, ωA ∈ R and MA ≥ 1, such that (ωA,+∞) ⊂ ρ(A)
and ∀λ > ωA, ∀n≥ 1,∥∥(λ I−A0)

−n∥∥
L (D(A)) =

∥∥(λ I−A)−n∥∥
L (D(A)) ≤

MA

(λ −ωA)
n ;

(b) limλ→+∞ (λ I−A)−1 x = 0,∀x ∈ X .

Note that Assumption 3.4.1-(b) is equivalent to

D(A0) = D(A).

So by using the Hille-Yosida theorem we obtain the following lemma.

Lemma 3.4.2. Assumption 3.4.1 is satisfied if and only if ρ(A) 6= /0, and A0 is the
infinitesimal generator of a strongly continuous semigroup

{
TA0(t)

}
t≥0 of bounded

linear operators on X0 with∥∥TA0(t)
∥∥

L (X0)
≤MAeωAt , ∀t ≥ 0.

Proposition 3.4.3. Let Assumption 3.4.1 be satisfied. Then A generates a uniquely
determined non-degenerate exponentially bounded integrated semigroup {SA(t)}t≥0 .
Moreover, for each x ∈ X , each t ≥ 0, and each µ > ωA, SA(t) is given by

SA(t) = (µI−A0)
∫ t

0
TA0(s)ds(µI−A)−1 , (3.4.1)

or equivalently

SA(t)x = µ

∫ t

0
TA0(s)(µI−A)−1 xds+

[
I−TA0(t)

]
(µI−A)−1 x. (3.4.2)

Furthermore, for each γ > max(0,ωA) , there exists Mγ > 0 such that

‖SA(t)‖ ≤Mγ eγt ,∀t ≥ 0. (3.4.3)

Finally, the map t→ SA(t)x is continuously differentiable if and only if x ∈ X0 and

dSA(t)x
dt

= TA0(t)x, ∀t ≥ 0, ∀x ∈ X0. (3.4.4)

Proof. Since
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A0

∫ t

0
TA0(s)ds = TA0(t)− I,

it is clear that (3.4.1) is equivalent to (3.4.2). Moreover, from (3.4.2) we deduce that
for each γ > max(0,ωA) , there exists Mγ > 0 such that

‖SA(t)‖ ≤Mγ eγt , ∀t ≥ 0.

Furthermore, the map

t→ SA(t)x = µ

∫ t

0
TA0(s)(µI−A)−1 xds+

[
I−TA0(t)

]
(µI−A)−1 x

is differentiable if and only if the map

t→ TA0(t)(µI−A)−1 x

is differentiable. This is equivalent to say that

(µI−A)−1 x ∈ D(A0)⇔ x ∈ D(A).

In order to prove that {SA(t)}t≥0 defined by (3.4.1) is the integrated semigroup
generated by A, we apply Theorem 3.3.5. Let λ > max(0,ωA) and let µ > ωA. Set

Sµ(t) := (µI−A0)
∫ t

0
TA0(s)ds(µI−A)−1 .

Since µI−A0 is closed, we have

λ

∫ +∞

0
e−λ tSµ(t)dt = (µI−A0)λ

∫ +∞

0
e−λ t

∫ t

0
TA0(s)ds(µI−A)−1 dt.

By integrating by parts

λ

∫ +∞

0
e−λ tSµ(t)dt = (µI−A0)

∫ +∞

0
e−λ tTA0(t)(µI−A)−1 dt

= (µI−A0)(λ I−A0)
−1 (µI−A)−1

= (µI−A0)(µI−A0)
−1 (λ I−A)−1 ,

we have

(λ I−A)−1 = λ

∫ +∞

0
e−λ tSµ(t)dt,∀λ > max(0,ωA) .

From Theorem 3.3.5 it follows that
{

Sµ(t)
}

t≥0 is a non-degenerate integrated semi-
group and A is its generator. Moreover, by Theorem 3.2.12, since an integrated semi-
group is uniquely determined by its generator, it follows that Sµ(t) is independent
of µ. ut

Now since
SA(t)x ∈ X0, ∀t ≥ 0,∀x ∈ X ,
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from (iii) in Definition 3.2.1 which is

SA(t)SA(s) =
∫ t

0
SA(r+ s)−SA(r)dr, ∀t,s ∈ [0,+∞) ,

we obtain that
TA0(t)SA(s) = SA(t + s)−SA(t), ∀t,s≥ 0. (3.4.5)

From (3.4.1) or (3.4.2), we know that SA(t) commutes with (λ I−A)−1 ; that is,

SA(t)(λ I−A)−1 = (λ I−A)−1 SA(t),∀t ≥ 0,∀λ > ωA, (3.4.6)

and
SA(t)x =

∫ t

0
TA0(l)xdl, ∀t ≥ 0, ∀x ∈ X0.

Hence, ∀x ∈ X , ∀t ≥ 0, ∀µ ∈ (ωA,+∞),

(µI−A)−1 SA(t)x = SA(t)(µI−A)−1 x =
∫ t

0
TA0(s)(µI−A)−1 xds.

We have the following result.

Lemma 3.4.4. Let Assumption 3.4.1 be satisfied and let τ0 > 0 be fixed. For each
f ∈C1([0,τ0] ,X), set

(SA ∗ f )(t) =
∫ t

0
SA(s) f (t− s)ds, ∀t ∈ [0,τ0] .

Then we have the following:

(i) The map t→ (SA ∗ f )(t) is continuously differentiable on [0,τ0], and

d
dt

(SA ∗ f )(t) = SA(t) f (0)+
∫ t

0
SA(s) f ′(t− s)ds;

(ii) (SA ∗ f )(t) ∈ D(A), ∀t ∈ [0,τ0] ;
(iii) If we set u(t) = d

dt (SA ∗ f )(t), then

u(t) = A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ0] ; (3.4.7)

(iv) For each λ ∈ (ω,+∞) and each t ∈ [0,τ0] , we have

(λ I−A)−1 d
dt

(SA ∗ f )(t) =
∫ t

0
TA0(t− s)(λ I−A)−1 f (s)ds. (3.4.8)

Proof. Let f ∈C1([0,τ0] ,X). Then

d
dt

(SA ∗ f )(t) =
d
dt

∫ t

0
SA(s) f (t− s)ds = SA(t) f (0)+

∫ t

0
SA(s) f ′(t− s)ds.
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Indeed, by using Fubini’s theorem we have∫ t

0

∫ s

0
SA(r) f ′(s− r)drds =

∫ t

0

∫ t

r
SA(r) f ′(s− r)dsdr

=
∫ t

0

∫ t−r

0
SA(r) f ′(l)dldr

=
∫ t

0
SA(r)

∫ t−r

0
f ′(l)drdl

=
∫ t

0
SA(r)( f (t− r)− f (0))drdl.

So

(SA ∗ f )(t) =
∫ t

0
SA(s) f (0)ds+

∫ t

0

∫ t−l

0
SA(r) f ′(l)drdl.

By using the above formula and Lemma 3.2.9, we have that∫ t

0
SA(s)xds ∈ D(A) and SA(t)x = A

∫ t

0
SA(s)xds+ tx.

By using the fact that A is closed, we deduce that∫ t

0
SA(t− s) f (s)ds ∈ D(A), ∀t ∈ [0,τ0] , ∀x ∈ X

and

A
∫ t

0
SA(t− s) f (s)ds = A

∫ t

0
SA(s) f (0)ds+A

∫ t

0

∫ t−l

0
SA(r) f ′(l)drdl

= A
∫ t

0
SA(s) f (0)ds+

∫ t

0
A
∫ t−l

0
SA(r) f ′(l)drdl

= SA(t) f (0)− t f (0)+
∫ t

0
[SA(t− l) f ′(l)− (t− l) f ′(l)]dl

=
d
dt

∫ t

0
SA(t− l) f (l)dl− t f (0)−

∫ t

0
(t− l) f ′(l)dl

=
d
dt

∫ t

0
SA(t− l) f (l)dl−

∫ t

0
f (l)dl.

Therefore,

d
dt

∫ t

0
SA(t− l) f (l)dl = A

∫ t

0
SA(t− l) f (l)dl +

∫ t

0
f (l)dl, ∀t ∈ [0,T ] .

Moreover, we have for λ ∈ (ω,+∞) that

(λ I−A)−1 (SA ∗ f )(t) =
∫ t

0
SA(t− s)(λ I−A)−1 f (s)ds
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=
∫ t

0

∫ t−s

0
TA0(l)(λ I−A)−1 f (s)dlds,

which implies that

d
dt

(λ I−A)−1 (SA ∗ f )(t) =
∫ t

0
TA0(t− s)(λ I−A)−1 f (s)ds.

This completes the proof. ut

The following lemma can be used to obtain explicit solutions.

Lemma 3.4.5. Let Assumption 3.4.1 be satisfied. Let v∈C ([0,τ0] ,X0) , f ∈L1 ([0,τ0] ,X) ,
and λ ∈ (ωA,+∞). Assume that

(i) (λ I−A)−1 v ∈W 1,1 ([0,τ0] ,X) and for almost every t ∈ [0,τ0] ,

d
dt

(λ I−A)−1 v(t) = λ (λ I−A)−1 v(t)− v(t)+(λ I−A)−1 f (t);

(ii) t→ (SA ∗ f )(t) is continuously differentiable on [0,τ0].

Then v is an integrated solution of (3.1.1) and

v(t) = TA0(t)v(0)+
d
dt

(SA ∗ f )(t), ∀t ∈ [0,τ0] .

Proof. We have for almost every t ∈ [0,τ0] that

d
dt

(λ I−A)−1 v(t)

= λ (λ I−A)−1 v(t)− (λ I−A)(λ I−A)−1 v(t)+(λ I−A)−1 f (t)

= A0 (λ I−A)−1 v(t)+(λ I−A)−1 f (t).

So

(λ I−A)−1 v(t) = TA0(t)(λ I−A)−1 v(0)+
∫ t

0
TA0(t− s)(λ I−A)−1 f (s)ds.

By (ii), we have

(λ I−A)−1 d
dt

(SA ∗ f )(t) =
d
dt

(λ I−A)−1 (SA ∗ f )(t)

=
∫ t

0
TA0(t− s)(λ I−A)−1 f (s)ds,

so we have for all t ∈ [0,τ0] that

(λ I−A)−1 v(t) = (λ I−A)−1
[

TA0(t)v(0)+
d
dt

(SA ∗ f )(t)
]
.
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Since (λ I−A)−1 is injective, the result follows. ut

In order to obtain the existence of mild (or integrated) solutions, we make the
following assumption.

Assumption 3.4.6. Let τ0 > 0 be fixed. Let Z ⊂ L1 ((0,τ0) ,X) be a Banach space
endowed with some norm ‖.‖Z . Assume that C1 ([0,τ0] ,X)∩Z is dense in (Z,‖.‖Z)
and the embedding from (Z,‖.‖Z) into

(
L1 ((0,τ0) ,X) ,‖.‖L1

)
is continuous. Also

assume that there exists a continuous map Γ : [0,τ0]×Z→ [0,+∞) such that

(a) Γ (t,0) = 0, ∀t ∈ [0,τ0] , and the map f →Γ (t, f ) is continuous at 0 uniformly
in t ∈ [0,τ0] ;

(b) ∀t ∈ [0,τ0] , ∀ f ∈C1 ([0,τ0] ,X)∩Z, we have that∥∥∥∥ d
dt
(SA ∗ f )(t)

∥∥∥∥≤ Γ (t, f ).

We now state and prove the main result in this section.

Theorem 3.4.7. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Then for each f ∈
Z the map t → (SA ∗ f )(t) is continuously differentiable, (SA ∗ f )(t) ∈ D(A),∀t ∈
[0,τ0] , and if we denote u(t) = d

dt (SA ∗ f )(t), then

u(t) = A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ0]

and
‖u(t)‖ ≤ Γ (t, f ), ∀t ∈ [0,τ0] . (3.4.9)

Moreover, for each λ ∈ (ω,+∞) , we have

(λ I−A)−1 d
dt

(SA ∗ f )(t) =
∫ t

0
TA0(t− s)(λ I−A)−1 f (s)ds. (3.4.10)

Proof. Consider the linear operator

Lτ0 :
(
C1 ([0,τ0] ,X)∩Z,‖.‖Z

)
→
(

C ([0,τ0] ,X) ,‖.‖
∞,[0,τ0]

)
defined by

Lτ0( f )(t) =
d
dt
(SA ∗ f )(t), ∀t ∈ [0,τ0] , ∀ f ∈C1 ([0,τ0] ,X)∩Z.

Then
sup

t∈[0,τ0]

∥∥Lτ0( f )(t)
∥∥≤ sup

t∈[0,τ0]

Γ (t, f ).

Since C1 ([0,τ0] ,X)∩Z is dense in Z, using assumptions (a) and (b), we know that
Lτ0 has a unique extension L̂τ0 on Z and
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∥∥∥≤ Γ (t, f ), ∀t ∈ [0,τ0] , ∀ f ∈ Z.

By construction, L̂τ0 : (Z,‖.‖Z)→
(

C ([0,τ0] ,X) ,‖.‖
∞,[0,τ0]

)
is continuous.

Let f ∈ Z and let { fn}n≥0 be a sequence in C1 ([0,τ0] ,X)∩Z, such that fn→ f
in Z. We have for each n≥ 0 and each t ∈ [0,τ0] that∫ t

0
L̂τ0( fn)(s)ds =

∫ t

0
Lτ0( fn)(s)ds =

∫ t

0
SA(t− s) fn(s)ds.

Since the embedding from (Z,‖.‖Z) into
(
L1 ((0,τ0) ,X) ,‖.‖L1

)
is continuous, we

have that fn→ f in L1 ((0,τ0) ,X) and when n→+∞,∫ t

0
L̂τ0( f )(s)ds =

∫ t

0
SA(t− s) f (s)ds, ∀t ∈ [0,τ0] .

Thus, the map t→ (SA ∗ f )(t) is continuously differentiable and

L̂τ0( f )(t) =
d
dt

∫ t

0
SA(t− s) f (s)ds, ∀t ∈ [0,τ0] .

Finally, by Lemma 3.4.4, we have for each n≥ 0 and each t ∈ [0,τ0] that

L̂τ0( fn)(t) = A
∫ t

0
L̂τ0( fn)(s)ds+

∫ t

0
fn(s)ds,

the result follows from the fact that A is closed. ut

In the proof of Theorem 3.4.7, we basically followed the same method as Keller-
mann and Hieber [207] used to prove the result of Da Prato and Sinestrari [85] (see
also Arendt et al. [22, Theorem 4.5.2, p.145]) for Hille-Yosida operators and with
Z = L1 ((0,τ0) ,X).

As a consequence of (3.4.10) we obtain the following approximation formula.

Proposition 3.4.8 (Approximation formula). Let Assumptions 3.4.1 and 3.4.6 be
satisfied. Let f ∈ Z. For each t ∈ [0,τ] we have that

d
dt

(SA ∗ f )(t) = lim
λ→+∞

∫ t

0
TA0(t− l)λ (λ I−A)−1 f (l)dl. (3.4.11)

Proof. Let f ∈ Z and t ∈ [0,τ] be fixed. Since

d
dt

(SA ∗ f )(t) ∈ X0,

we have
lim

λ→+∞

λ (λ I−A)−1 d
dt

(SA ∗ f )(t) =
d
dt

(SA ∗ f )(t).

But by using formula (3.4.10), we have for each λ > 0 large enough that
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λ (λ I−A)−1 d
dt

(SA ∗ f )(t) =
∫ t

0
TA0(t− s)λ (λ I−A)−1 f (s)ds

and the result follows. ut

From this approximation formulation, we deduce the following result.

Corollary 3.4.9. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Let f ∈ Z. For each
t,s ∈ [0,τ] with s≤ t we have

d
dt

(SA ∗ f )(t) = TA0 (t− s)
d
dt

(SA ∗ f )(s)+
d
dt

(SA ∗ f (.+ s))(t− s). (3.4.12)

Proof. Indeed by using the approximation formula we have

d
dt (SA ∗ f )(t) = limλ→+∞

∫ t
0 TA0(t− l)λ (λ I−A)−1 f (l)dl

= limλ→+∞

[∫ s
0 TA0(t− l)λ (λ I−A)−1 f (l)dl

+
∫ t

s TA0(t− l)λ (λ I−A)−1 f (l)dl
]

= limλ→+∞

[
TA0(t− s)

∫ s
0 TA0(s− l)λ (λ I−A)−1 f (l)dl

+
∫ t−s

0 TA0(t− s− l)λ (λ I−A)−1 f (l + s)dl
]

the result follows. ut

By Lemma 3.4.2 and Theorem 3.4.7, we obtain the following result.

Corollary 3.4.10. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Then for each x ∈
X0 and each f ∈ Z, the Cauchy problem (3.1.1) has a unique mild solution u ∈
C ([0,τ0] ,X0) given by

u(t) = TA0(t)x+
d
dt

(SA ∗ f )(t), ∀t ∈ [0,τ0] . (3.4.13)

Moreover, we have

‖u(t)‖ ≤MAeωAt ‖x‖+Γ (t, f ), ∀t ∈ [0,τ0] . (3.4.14)

3.5 Bounded Perturbation

In this section we investigate the properties of A+L : D(A)⊂ X→ X , where L is
a bounded linear operator from X0 into X . If A is a Hille-Yosida operator, it is well
known that A+ L is also a Hille-Yosida operator (see Arendt et al. [22, Theorem
3.5.5]).

The following theorem is closely related to Desch and Schappacher’s theorem
(see [95] or Engel and Nagel [126, Theorem 4.1, p. 183]). This is in fact an inte-
grated semigroup formulation of this result.
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Theorem 3.5.1. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Assume in addition
that C ([0,τ0] ,X)⊂ Z and there exists a constant δ > 0 such that

Γ (t, f )≤ δ sup
s∈[0,t]

‖ f (s)‖ , ∀ f ∈C ([0,τ0] ,X) , ∀t ∈ [0,τ0] .

Let L ∈L (X0,X) and assume that

‖L‖L (X0,X) δ < 1.

Then A+L : D(A) ⊂ X → X satisfies Assumptions 3.4.1 and 3.4.6. More precisely,
if we denote by {SA+L(t)}t≥0 the integrated semigroup generated by A+ L, then
∀ f ∈C1 ([0,τ0] ,X) , we have∥∥∥∥ d

dt
(SA+L ∗ f )(t)

∥∥∥∥≤ 1
1−‖L‖L (X0,X) δ

sup
s∈[0,t]

Γ (s, f ), ∀t ∈ [0,τ0] . (3.5.1)

Proof. We first prove that there exists ω̂ ∈ R such that (ω̂,+∞) ⊂ ρ (A+L) . We
have for x ∈ D(A) and y ∈ X that

(λ I− (A+L))x = y⇔ (λ I−A)x = y+Lx

⇔ x = (λ I−A)−1 y+(λ I−A)−1 Lx.

So λ I− (A+L) is invertible if
∥∥∥(λ I−A)−1 L

∥∥∥
L (X0,X)

< 1. Since {SA(t)}t≥0 is ex-

ponentially bounded, by Proposition 3.3.2, we have for all λ > ω̃ that

(λ I−A)−1 = λ

∫ +∞

0
e−λ tSA(t)xdt, ∀x ∈ X .

We obtain that

(λ I−A)−1 Lx = λ

∫ +∞

τ0

e−λ tSA(t)Lxdt +λ

∫
τ0

0
e−λ tSA(t)Lxdt.

Since SA(t)y = d
dt
∫ t

0 SA(t− s)yds,∀y ∈ X , from the assumption we have

‖SA(t)y‖ ≤ δ ‖y‖ , ∀t ∈ [0,τ0] , ∀y ∈ X .

Thus, ∥∥∥∥λ

∫
τ0

0
e−λ tSA(t)Lxdt

∥∥∥∥≤ λ

∫
τ0

0
e−λ tdt ‖L‖L (X0,X) δ ‖x‖

and
λ

∫
τ0

0
e−λ tdt = 1− e−λτ0 → 1 as λ →+∞.

Moreover
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∫ +∞

τ0

e−λ tSA(t)Lxdt
∥∥∥∥→ 0 as λ →+∞.

So we obtain

limsup
λ→+∞

∥∥∥(λ I−A)−1 L
∥∥∥

L (X0,X)
≤ ‖L‖L (X0,X) δ < 1.

We know that there exists ω̂ ∈ R such that∥∥∥(λ I−A)−1 L
∥∥∥

L (X0,X)
<
‖L‖L (X0,X) δ +1

2
, ∀λ ∈ (ω̂,+∞) .

Hence, for all λ ∈ (ω̂,+∞) , λ I− (A+L) is invertible,

(λ I− (A+L))−1 y =
+∞

∑
k=0

[
(λ I−A)−1 L

]k
(λ I−A)−1 y

and for each y ∈ X ,∥∥∥(λ I− (A+L))−1 y
∥∥∥≤ 1

1−
‖L‖L (X0 ,X)

δ+1

2

∥∥∥(λ I−A)−1 y
∥∥∥→ 0 as λ →+∞.

To prove Assumption 3.4.1 it remains to show that (A+L)0 , the part of A+L in X0,
is a Hille-Yosida operator. Let x ∈ X0. Define Π ,Ψx : C ([0,τ0] ,X0)→C ([0,τ0] ,X0)
for each v ∈C ([0,τ0] ,X0) by

Π(v)(t) =
d
dt

(SA ∗Lv)(t) and Ψx(v)(t) = TA0(t)x+Π(v)(t), ∀t ∈ [0,τ0] .

Then from the assumptions it is clear that Ψx is an ‖L‖L (X0,X) δ−contraction. It
implies that Ψx has a unique fixed point given by

U(t)x =
∞

∑
k=0

Π
k (TA0(.)x

)
(t), ∀t ∈ [0,τ0] .

In particular,

‖U(t)x‖ ≤ 1
1−‖L‖L (X0,X) δ

MAeωAt ‖x‖ , ∀t ∈ [0,τ0] .

Thus, we obtain {U(t)}0≤t≤τ0
, a family of bounded linear operators on X0, such

that for each x ∈ X0, t→U(t)x is the unique solution of

U(t)x = x+A
∫ t

0
U(s)xds+

∫ t

0
LU(s)xds, ∀t ∈ [0,τ0] .

Therefore,
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U(0) = I and U(t + s) =U(t)U(s), ∀t,s ∈ [0,τ0] with t + s≤ τ0.

We can define for each integer k ≥ 0 and each t ∈ [kτ0,(k+1)τ0] that

U(t) =U(t− kτ0)U(τ0)
k,

which yields a C0-semigroup of X0 and

U(t)x = x+A
∫ t

0
U(s)xds+

∫ t

0
LU(s)xds, ∀t ≥ 0.

It remains to show that (A+L)0 is the generator of {U(t)}t≥0 . Let B : D(B)⊂ X0→
X0 be the generator of {U(t)}t≥0 . Since U(t)x is the unique solution of

U(t)x = x+(A+L)
∫ t

0
U(s)xds, ∀t ≥ 0,∀x ∈ X0,

we know that (λ I− (A+L))−1 and U(t) commute, in particular (λ I− (A+L))−1

and (λ I−B)−1 commute. On the other hand, we also have

B
∫ t

0
U(s)x = (A+L)

∫ t

0
U(s)xds, ∀t ≥ 0,∀x ∈ X0.

Now since (λ I− (A+L))−1 and (λ I−B)−1 are commuting we deduce that

(λ I− (A+L))−1
∫ t

0
U(s)x = (λ I−B)−1

∫ t

0
U(s)xds, ∀t ≥ 0,∀x ∈ X0.

By computing the derivative of the last expression at t = 0, we obtain for sufficiently
large λ ∈ R that

(λ I− (A+L))−1 x = (λ I−B)−1 x, ∀x ∈ X0.

Therefore, B = (A+L)0 and A+L satisfies Assumption 3.4.1.
Now by using Proposition 3.4.3 we know that A+L generates an integrated semi-

group {SA+L(t)}t≥0 and

SA+L(t)x = (A+L)
∫ t

0
SA+L(t)x+

∫ t

0
xds, ∀t ≥ 0, ∀x ∈ X .

So
SA+L(t)x = SA(t)x+

d
dt

(SA ∗LSA+L(.)x)(t), ∀t ∈ [0,τ0] , ∀x ∈ X

and for each f ∈ L1 ([0,τ0] ,X) ,∀t ∈ [0,τ0] , ∀x ∈ X ,∫ t

0
SA+L(t− s) f (s)ds =

∫ t

0
SA(t− s) f (s)ds+

∫ t

0
W (t− s) f (s)ds,



3.5 Bounded Perturbation 125

where W (t)x := d
dt (SA ∗LSA+L(.)x)(t).

Also notice that∫ t

0

∫ l

0
W (l− s) f (s)dsdl =

∫ t

0

∫ t

s
W (l− s) f (s)dlds

=
∫ t

0

∫ t−s

0
W (l) f (s)dlds

=
∫ t

0
(SA ∗LSA+L(.) f (s))(t− s)ds

=
∫ t

0

∫ t−s

0
SA(t− s− l)LSA+L(l) f (s)dlds

=
∫ t

0

∫ t

s
SA(t− l)LSA+L(l− s) f (s)dlds

=
∫ t

0

∫ l

0
SA(t− l)LSA+L(l− s) f (s)dsdl

=
∫ t

0
SA(t− l)

∫ l

0
LSA+L(l− s) f (s)dsdl,

we then have ∫ t

0
W (t− s) f (s)ds =

d
dt

(SA ∗L(SA+L ∗ f )(.))(t).

Thus,

(SA+L ∗ f )(t) = (SA ∗ f )(t)+
d
dt

(SA ∗L(SA+L ∗ f )(.))(t), ∀t ∈ [0,τ0] .

Let f ∈ C1 ([0,τ0] ,X) . The map t → L(SA+L ∗ f )(.) is continuously differentiable
and

d
dt

(SA ∗L(SA+L ∗ f )(.))(t) = SA(t)L(SA+L ∗ f )(0)+
(

SA ∗
d
dt

L(SA+L ∗ f )(.)
)
(t),

so
d
dt

(SA+L ∗ f )(t) =
d
dt
(SA ∗ f )(t)+

d
dt

(
SA ∗L

d
dt

(SA+L ∗ f )(.)
)
(t).

Therefore, for each t ∈ [0,τ0] , we have∥∥∥∥ d
dt

(SA+L ∗ f )(t)
∥∥∥∥≤ Γ (t, f )+‖L‖L (X0,X) δ sup

s∈[0,t]

∥∥∥∥ d
dt

(SA+L ∗ f )(s)
∥∥∥∥

and

sup
s∈[0,t]

∥∥∥∥ d
dt

(SA+L ∗ f )(s)
∥∥∥∥≤ 1

1−‖L‖L (X0,X) δ
sup

s∈[0,t]
Γ (s, f ).

This completes the proof. ut
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By Theorem 3.5.1, we can make an alternative for Assumption 3.4.6.

Assumption 3.5.2. Assume that there exist a real number τ∗ > 0 and a non-
decreasing map δ : [0,τ]→ [0,+∞) such that for each f ∈C1([0,τ∗] ,X),∥∥∥∥ d

dt
(SA ∗ f )(t)

∥∥∥∥≤ δ (t) sup
s∈[0,t]

‖ f (s)‖ , ∀t ∈ [0,τ∗] ,

and
lim

t→0+
δ (t) = 0.

One may observe that the inequality in Assumption 3.5.2 plays a crutial role in
obtaining some estimations for the solutions (see Magal and Ruan [247, Proposi-
tion 2.14]). Moreover, by using the results of Thieme [335], Assumption 3.5.2 is
equivalent to the fact that there exists τ > 0 such that

V ∞(SA,0,τ)<+∞,∀τ > 0, and lim
t(>0)→0

V ∞(SA,0, t) = 0,

where V ∞(SA,0,τ) is the semi-variation of {SA(t)}t≥0 on [0,τ] defined by

V ∞(SA,0,τ) := sup
{∥∥∥ n

∑
i=1

(
SA(ti)−SA(ti−1)

)
xi

∥∥∥}<+∞,

in which the supremum is taken over all partitions 0 = t0 < .. < tn = τ of the interval
[a,b] and over any (x1, ..,xn) ∈ Xn with ‖xi‖X ≤ 1, ∀i = 1, ..,n.

Thus, under the Assumptions 3.4.1 and 3.5.2, the conclusions of Theorem 3.4.7
hold with (3.4.9) replaced by

‖u(t)‖ ≤ δ (t) sup
s∈[0,t]

‖ f (s)‖ , ∀t ∈ [0,τ] (3.5.2)

and that of Theorem 3.5.1 hold with (3.5.1) replaced by∥∥∥ d
dt

(SA+L ∗ f )
∥∥∥≤ δ (t)

1−δ (τL)‖L‖L (X0,X)

sup
s∈[0,t]

‖ f (s)‖ , (3.5.3)

for all t ∈ [0,τL] , where τL > 0 is fixed such that

δ (τL)‖L‖L (X0,X) < 1.

In the following it will be convenient to use the following notation. For each τ̂ > 0
and each f ∈C ([0, τ̂] ,X) , set

(SA � f )(t) :=
d
dt

(SA ∗ f )(t), ∀t ∈ [0, τ̂] .

The following proposition is one of the main tools in studying semilinear problems.
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Proposition 3.5.3. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Let ε > 0 be fixed.
Then for each γ > ωA, there exists C(ε,γ)> 0, such that for each f ∈C (R+,X) and
t ≥ 0,

e−γt ‖(SA � f )(t)‖ ≤C(ε,γ) sup
s∈[0,t]

e−γs ‖ f (s)‖ . (3.5.4)

More precisely, for each ε > 0, if τε > 0 is such that MAδ (τε)≤ ε, then the inequal-
ity (3.5.4) holds with

C(ε,γ) =
2ε max(1,e−γτε )

1− e(ωA−γ)τε

, ∀γ > ω.

Proof. Let ε > 0, f ∈C (R+,X) , and γ > ωA be fixed. Let τε = τε (ε) ∈ (0,τ] be
such that MAδ (τε)≤ ε. By Assumption 3.5.2, we have

‖(SA � f )(t)‖ ≤ ε sup
s∈[0,t]

‖ f (s)‖ , ∀t ∈ [0,τε ] . (3.5.5)

Let γ > ωA be fixed. Set
ε1 = ε max

(
1,e−γτε

)
.

Let k ∈ N and t ∈ [kτε ,(k+1)τε ] be fixed. First, notice that if γ ≥ 0, we have

ε sup
s∈[kτε ,t]

‖ f (s)‖ = ε sup
s∈[kτε ,t]

eγse−γs ‖ f (s)‖

≤ εeγt sup
s∈[kτε ,t]

e−γs ‖ f (s)‖

= ε1eγt sup
s∈[kτε ,t]

e−γs ‖ f (s)‖ .

Moreover, if γ < 0, we have

ε sup
s∈[kτε ,t]

‖ f (s)‖ = ε sup
s∈[kτε ,t]

eγse−γs ‖ f (s)‖

≤ εeγkτε sup
s∈[kτε ,t]

e−γs ‖ f (s)‖

= εeγte−γteγkτε sup
s∈[kτε ,t]

e−γs ‖ f (s)‖

= eγt
εe−γ(t−kτε ) sup

s∈[kτε ,t]
e−γs ‖ f (s)‖

≤ eγt
εe−γτε sup

s∈[kτε ,t]
e−γs ‖ f (s)‖

= eγt
ε1 sup

s∈[kτε ,t]
e−γs ‖ f (s)‖ .

Therefore, for each k ∈ N, each t ∈ [kτε ,(k+1)τε ] , and each γ ∈ R, we obtain

ε sup
s∈[kτε ,t]

‖ f (s)‖ ≤ eγt
ε1 sup

s∈[kτε ,t]
e−γs ‖ f (s)‖ . (3.5.6)
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It follows from (3.5.5) and (3.5.6) that for all t ∈ [0,τε ] ,

‖(SA � f )(t)‖ ≤ ε sup
s∈[0,t]

‖ f (s)‖= eγt
ε1 sup

s∈[0,t]
e−γs ‖ f (s)‖ . (3.5.7)

Using (3.4.12) with s = τε , we have for all t ∈ [τε ,2τε ] that

(SA � f )(t) = T0 (t− τε)(SA � f )(τε)+(SA � f (τε + .))(t− τε).

Using (3.5.5)-(3.5.7), we have

‖(SA � f )(t)‖ ≤ eωA(t−τε ) |(SA � f )(τε)|+ |(SA � f (τε + .))(t− τε)|
≤ eωA(t−τε )eγτε ε1 sup

s∈[0,τε ]

e−γs ‖ f (s)‖+ ε sup
s∈[τε ,t]

‖ f (s)‖

≤ eωA(t−τε )eγτε ε1 sup
s∈[0,τε ]

e−γs ‖ f (s)‖

+eγt
ε1 sup

s∈[τε ,t]
e−γs ‖ f (s)‖

≤ ε1eγt
(

e(ωA−γ)(t−τε )+1
)

sup
s∈[0,t]

e−γs ‖ f (s)‖ .

Similarly, for all t ∈ [2τε ,3τε ] ,

(SA � f )(t) = TA0 (t−2τε)(SA � f )(2τε)+(SA � f (2τε + .))(t−2τε)

and

‖(SA � f )(t)‖ ≤ eωA(t−2τε )ε1eγ2τε

(
e(ωA−γ)τε +1

)
sup

s∈[0,2τε ]

e−γs ‖ f (s)‖

+ε sup
s∈[2τε ,t]

‖ f (s)‖

≤ eωA(t−2τε )ε1eγ2τε

(
e(ωA−γ)τε +1

)
sup

s∈[0,2τε ]

e−γs ‖ f (s)‖

+ε1eγt sup
s∈[2τε ,t]

e−γs ‖ f (s)‖

≤ ε1eγt
[
e(ωA−γ)(t−2τε )

(
e(ωA−γ)τε +1

)
+1
]

sup
s∈[0,t]

e−γs ‖ f (s)‖ .

By induction, we obtain ∀k ∈ N with k ≥ 1,∀t ∈ [kτε ,(k+1)τε ] , and for each γ >
ωA that

‖(SA � f )(t)‖ ≤ ε1eγt sup
s∈[0,t]

e−γs ‖ f (s)‖
[

e(ωA−γ)(t−kτε )
k−1

∑
n=0

(e(ωA−γ)τε )n +1

]

≤ ε1eγt sup
s∈[0,t]

e−γs ‖ f (s)‖
[

∞

∑
n=0

(
e(ωA−γ)τε

)n
+1

]
.
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Since γ > ωA, we have for each t ≥ 0 that

e−γt ‖(SA � f )(t)‖ ≤ e−γt |(SA � f )(t)| ≤ 2ε1

1− e(ωA−γ)τε

sup
s∈[0,t]

e−γs ‖ f (s)‖ .

This completes the proof. ut

We have the following lemma.

Lemma 3.5.4. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Then t → SA(t) is op-
erator norm continuous from [0,+∞) into L (X) and

lim
λ→+∞

∥∥∥(λ I−A)−1
∥∥∥

L (X)
= 0.

Proof. By Theorem 3.3.5 , we have for each λ > max(0,ωA) that

(λ I−A)−1 x = λ

∫ +∞

0
e−λ tSA(t)xdt.

Note that
SA(t)x =

d
dt

∫ t

0
SA(t− s)xds,

so by Assumption 3.5.2, we have

‖SA(t)x‖ ≤V ∞(SA,0, t)‖x‖ , ∀t ≥ 0.

But
SA(t +h)−SA(t) = TA0(t)SA(h),

it follows that t → SA(t) is operator norm continuous. Let ε > 0 be fixed and let
τε > 0 be such that V ∞(SA,0,τε)≤ ε. Choose γ > max(0,ωA) and Mγ > 0 such that

‖SA(t)x‖ ≤Mγ eγt ,∀t ≥ 0.

Then we have for each λ > γ that∥∥∥(λ I−A)−1 x
∥∥∥≤ λ

[
Mγ

∫ +∞

τε

e(γ−λ )tdt + ε

∫
τε

0
e−λ tdt

]
‖x‖ .

Thus,
limsup
λ→+∞

∥∥∥(λ I−A)−1
∥∥∥

L (X)
≤ ε.

This proves the lemma. ut

Let J ⊂ [0,+∞) be an interval. Set s := infJ ≥ 0. For each γ ≥ 0, define

BCγ (J,Y ) :=
{

ϕ ∈C (J,Y ) : sup
l∈J

e−γ(l−s) ‖ϕ(l)‖Y <+∞

}
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and
‖ϕ‖BCγ (J,Y ) := sup

l∈J
e−γ(l−s) ‖ϕ(l)‖Y .

It is well known that BCγ (J,Y ) endowed with the norm ‖.‖BCγ (J,Y ) is a Banach
space.

By using Proposition 3.5.3 we obtain the following result.

Lemma 3.5.5. Let Assumptions 3.4.1 and 3.5.2 be satisfied. For each s ≥ 0 and
each σ ∈ (s,+∞] , define a linear operator Ls : C ([s,σ) ,X)→C ([s,σ) ,X0) by

Ls (ϕ)(t) = (SA �ϕ(.+ s))(t− s), ∀t ∈ [s,σ) , ∀ϕ ∈C ([s,σ) ,X) .

Then for each γ > ωA, Ls is a bounded linear operator from BCγ ([s,σ) ,X) into
BCγ ([s,σ) ,X0) . Moreover, for each ε > 0 and each τε > 0 such that MAδ (τε)≤ ε,

‖Ls (ϕ)‖L (BCγ ([s,σ),X),BCγ ([s,σ),X0))
≤C (ε,γ) .

Proof. Let ϕ ∈ BCγ ([s,σ) ,X) be fixed. By using Proposition 3.5.3, we have for
t ∈ [s,σ) that

e−γ(t−s) ‖(SA �ϕ(.+ s))(t− s)‖ ≤ C (ε,γ) sup
l∈[0,t−s]

e−γl ‖ϕ(l + s)‖

= C (ε,γ) sup
r∈[s,t]

e−γ(r−s) ‖ϕ(r)‖

≤ C (ε,γ) sup
r∈[s,σ)

e−γ(r−s) ‖ϕ(r)‖

and the result follows. ut

3.6 The Hille-Yosida Case

In this section we assume that A is a Hille-Yosida operator. This assumption
corresponds to the case where Assumption 3.4.1 is verified in the L1-space. Hence,
we fix

Z = L1 ((0,τ0) ,X) and Γ (t, f ) = MA

∥∥∥eωA(t−.) f (.)
∥∥∥

L1((0,t),X)

in Assumption 3.4.6.
Recall that A is a Hille-Yosida operator if the following hold.

Assumption 3.6.1. Let A : D(A) ⊂ X → X be a linear operator on a Banach space
X , so that there exist two constants, ωA ∈ R and MA ≥ 1, such that

(ωA,+∞)⊂ ρ(A)

and
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∥∥∥

L (X)
≤ MA

(λ −ωA)
k , ∀λ > ωA, ∀k ≥ 1;

The following result is due to Kellermann and Hieber [207].

Theorem 3.6.2 (Kellermann-Hieber). Let Assumption 3.6.1 be satisfied. Let τ0 >
0. Then for each f ∈ L1 ((0,τ0) ,X) the map t → (SA ∗ f )(t) is continuously dif-
ferentiable, (SA ∗ f )(t) ∈ D(A),∀t ∈ [0,τ0] , and if we denote u(t) = d

dt (SA ∗ f )(t),
then

u(t) = A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ0]

and
‖u(t)‖ ≤MA

∫ t

0
eωA(t−s) ‖ f (s)‖ds, ∀t ∈ [0,τ0] .

Moreover, for each λ ∈ (ωA,+∞) , we have

(λ I−A)−1 d
dt

(SA ∗ f )(t) =
∫ t

0
TA0(t− s)(λ I−A)−1 f (s)ds.

Proof. First it is clear that Assumption 3.4.1 is satisfied whenever A is a Hille-
Yosida operator. So it remains to prove that Assumption 3.4.6 is satisfied with

Γ (t, f ) = MA

∥∥∥eωA(t−.) f (.)
∥∥∥

L1((0,t),X)
.

Now note that by Lemma 2.4.3, we can find a norm |.| on X , such that∣∣∣(λ I−A)−1
∣∣∣≤ 1

λ −ωA
, ∀λ > ωA,

and
‖x‖ ≤ |x| ≤MA ‖x‖ , ∀x ∈ X . (3.6.1)

It follows that for each t ≥ 0 and each h≥ 0,

|[SA(t +h)−SA(t)]x|= lim
λ→+∞

∣∣∣∣∫ t+h

t
TA0(l)λ (λ I−A)−1 xdl

∣∣∣∣≤ ∫ t+h

t
eωAldl |x| .

So

|SA(t +h)−SA(t)| ≤
∫ t+h

t
eωAldl, ∀t,h≥ 0.

Let τ0 > 0 and let f ∈C1 ([0,τ0] ,X) be fixed. We have

d
dt

(SA ∗ f )(t)

= lim
h↘0

h−1
[∫ t+h

0
SA(t +h− s) f (s)ds−

∫ t

0
SA(t− s) f (s)ds

]
= lim

h↘0
h−1

[∫ t+h

t
SA(t +h− s) f (s)ds+

∫ t

0
[SA(t +h− s)−SA(t− s)] f (s)ds

]
.
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Thus,∣∣∣∣ d
dt

(SA ∗ f )(t)
∣∣∣∣

≤ lim
h↘0

h−1
[∫ t+h

t

∫ t+h−s

0
eωAldl | f (s)|ds+

∫ t

0

∫ t+h−s

t−s
eωAldl | f (s)|ds

]
≤
∫ t

0
eωA(t−s) | f (s)|ds.

Now by using (3.6.1) we obtain∥∥∥∥ d
dt

(SA ∗ f )(t)
∥∥∥∥≤MA

∫ t

0
eωA(t−s) ‖ f (s)‖ds,

and the results follows from Theorem 3.4.7. ut

Consider the nonhomogeneous Cauchy problem (3.1.1). As an immediate conse-
quence of Corollary 3.4.10, we have the following result.

Corollary 3.6.3. Let Assumption 3.6.1 be satisfied. Let τ0 > 0. Then for each x ∈ X0
and each f ∈ L1 ((0,τ0) ,X), the Cauchy problem (3.1.1) has a unique integrated
solution u ∈C ([0,τ0] ,X0) given by

u(t) = TA0(t)x+
d
dt

(SA ∗ f )(t), ∀t ∈ [0,τ0] .

Moreover, we have

‖u(t)‖ ≤MAeωAt ‖x‖+MA

∫ t

0
eωA(t−s) ‖ f (s)‖ds, ∀t ∈ [0,τ0] .

3.7 The Non-Hille-Yosida Case

In this section we investigate the case when

Z = Lp ((0,τ0) ,X) and Γ (t, f ) = M̂
∥∥∥eω̂(t−.) f (.)

∥∥∥
Lp((0,t),X)

,

where p ∈ [1,+∞) , M̂ > 0, ω̂ ∈ R, and (X ,‖.‖) is a Banach space. From now on,
for any Banach space (Y,‖.‖Y ) we denote by Y ∗ the space of continuous linear
functionals on Y. We recall a result which will be used in the following (see Diestel
and Uhl [107, p.97-98]).

Proposition 3.7.1. Let Z be a Banach space and J ⊂ R be a non-empty open inter-
val. Assume p,q ∈ [1,+∞] with 1/p+1/q = 1.

(i) For each q ∈ [1,+∞] and each ψ ∈ Lq (J,Z∗)∩C (J,Z∗) ,
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‖ψ‖Lq(J,Z∗) = sup
ϕ∈C∞

c (J,Z)
‖ϕ‖Lp(J,Z)≤1

∫
J

ψ(s)(ϕ(s))ds;

(ii) For each p ∈ [1,+∞) and for each ϕ ∈ Lp (J,Z) ,

‖ϕ‖Lp(J,Z) = sup
ψ∈C∞

c (J,Z∗)
‖ψ‖Lq(J,Z)∗≤1

∫
J

ψ(s)(ϕ(s))ds.

Before proving Proposition 3.7.1, we make some comments about the main point
in Proposition 3.7.1. We will use C∞

c (I,Y ∗) instead of Lp ((0,c) ,Y )∗ because if
Lp ((0,c) ,Y )∗ is used, we would need a representation theorem for Lp ((0,c) ,Y )∗

with 1≤ p < ∞. But we know (see Diestel and Uhl [107], Theorem 1 on p.98) that
Lp ((0,c) ,Y )∗ = Lq ((0,c) ,Y ∗) (with p ∈ [1,+∞) and 1/p+1/q = 1) if and only if
Y ∗ has the Radon-Nikodym property. Recall that a Banach space Z has the Radon-
Nikodym property if and only if every absolutely continuous function F : R+→ Y
is differentiable almost everywhere (see Arendt et al. [22, p.19]). When Y is re-
flexive, Y ∗ has the Radon-Nikodym property. In practice if we take for example
Y = L1 ((0,1) ,R) , then Y ∗ = L∞ ((0,1) ,R) , but L∞ ((0,1) ,R) does not have the
Radon-Nikodym property (see Arendt et al. [22, Example 1.2.8 b) p.20]).

Proof. (i) Let ψ ∈C0
c (J,Z

∗) be fixed. By Holder inequality, we have

‖ψ‖Lp(J,Z)∗ = sup
‖φ‖Lp(J,Z)=1

∫
J

ψ(θ)(φ(θ))dθ ≤ ‖ψ‖Lq(J,Z∗) .

If q=+∞, then there exists t0 ∈ J such that ‖ψ‖L∞(J,Z∗) = ‖ψ (t0)‖Z∗ . Let {en}n≥0⊂
Z be a sequence such that ‖en‖ = 1,∀n ≥ 0, and ψ (t0)(en)→ ‖ψ (t0)‖Z∗ as n→
+∞. Let {ρn}n≥0 ⊂ C∞

c (R,R) be a mollifiers (i.e., support(ρn) ⊂ [−1/n,+1/n] ,∫
Rρn(s)ds = 1, and ρn ≥ 0). If we set

ϕn(s) = ρn(t0− s)en, ∀s ∈ J, ∀n≥ 0,

then ‖ϕn‖L1(J,Z) = 1 for all n≥ 0 large enough, and∫
J

ψ(s)ϕn(s)ds =
∫

J
ρn(t0− s)ψ(s)ends→‖ψ (t0)‖Z∗ as n→+∞.

If q ∈ [1,+∞) , let a,b ∈ J be fixed such that a < b and support(ψ)⊂ [a,b] . Set

tn
k = a+ k

b−a
n+1

, ∀n≥ 0,∀k = 0, ...,n+1

and

ψ
n (s) =

n

∑
k=0

ψ(tn
k )1[tn

k ,t
n
k+1)

(s).
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We have
‖ψn‖Lq(J,Z∗)→‖ψ‖Lq(J,Z∗) as n→+∞

and
‖ψn‖Lp(J,Z)∗ →‖ψ‖Lp(J,Z)∗ as n→+∞.

So it is sufficient to show that

‖ψn‖Lq(J,Z∗) = ‖ψ
n‖Lp(J,Z)∗ , ∀n≥ 0.

Let n≥ 0 be fixed. For all ϕ ∈ Lp (J,Z) : ‖ϕ‖Lp(J,Z) ≤ 1, we have

∫
J

ψ
n(s)(ϕ(s))ds =

n

∑
k=0

ψ(tn
k )
∫ tn

k+1

tn
k

ϕ(s)ds.

For each k = 0, ...,n, let
{

el
k

}
l≥0 ⊂ Z such that

ψ(tn
k )e

l
k→‖ψ(tn

k )‖Z∗ as l→+∞.

We can assume that ψn 6= 0 and set

ϕ
l(s) =

n
∑

k=0
ψ(tn

k )6=0

el
k 1[tn

k ,t
n
k+1)

(s)

n
∑

k=0
ψ(tn

k )6=0

(
tn
k+1− tn

k

) if q = 1

and

ϕ
l(s) =

n
∑

k=0
ψ(tn

k )6=0

el
k

∥∥ψ(tn
k )
∥∥q−1

Z∗ 1[tn
k ,t

n
k+1)

(s)

 n
∑

k=0
ψ(tn

k )6=0

(
tn
k+1− tn

k

)(∥∥ψ(tn
k )
∥∥(q−1)

Z∗

)p


1/p if q ∈ (1,+∞) .

Then ∥∥∥ϕ
l
∥∥∥

Lp(J,Z)
= 1, ∀l ≥ 0

and ∫
J

ψ
n(s)

(
ϕ

l(s)
)

ds→‖ψ‖Lq(J,Z∗) as l→+∞.

(ii) Let ϕ ∈ Lp (J,Z) be fixed. By using (i), it is sufficient to prove that
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‖ϕ‖Lp(J,Z) = sup
ψ∈C∞

c (J,Z∗)
‖ψ‖Lq(J,Z∗)≤1

∫
J

ψ(s)(ϕ(s))ds =: |ϕ|p .

Using Holder inequality, it is clear that

|ϕ|p ≤ ‖ϕ‖Lp(J,Z) , ∀ϕ ∈ Lp (J,Z)

and ∣∣∣|ϕ|p−|ϕ̂|p∣∣∣≤ |ϕ− ϕ̂|p ≤ ‖ϕ− ϕ̂‖Lp(J,Z) , ∀ϕ, ϕ̂ ∈ Lp (J,Z)

because |ϕ + ϕ̂|p ≤ |ϕ|p+ |ϕ̂|p ,∀ϕ, ϕ̂ ∈ Lp (J,Z) . Since p∈ [1,+∞) , we know that
C0

c (J,Z) is dense in Lp (J,Z) , and it is sufficient to prove that for each ϕ ∈C0
c (J,Z) ,

‖ϕ‖Lp(J,Z) = |ϕ|p .

Let ϕ ∈C0
c (J,Z) be fixed. Let a,b∈ J with a < b, such that support(ϕ)⊂ [a,b] . Set

tn
k = a+ k (b−a)

n+1 , ∀k = 0, ...,n+1, and

ϕ
n(s) =

n

∑
k=0

ϕ(tn
k )1[tn

k ,t
n
k+1)

(s).

Then ‖ϕ−ϕn‖Lp(J,Z) → 0 as n → +∞. So it is sufficient to prove for ϕ(s) =
∑

n
k=0 yk1[tn

k ,t
n
k+1)

(s) with yk ∈ Z,∀k = 0, ...,n, that

‖ϕ‖Lp(J,Z) = |ϕ|p .

But

‖ϕ‖Lp(J,Z) =

(
n

∑
k=0

(
tn
k+1− tn

k
)
‖yk‖p

)1/p

=

(
n

∑
k=0

((
tn
k+1− tn

k
)1/p ‖yk‖

)p
)1/p

and for each ψ ∈C∞
c (J,Z∗) ,∫

J
ψ(s)ϕ(s)ds =

n

∑
k=0

∫ tn
k+1

tn
k

ψ(s)ykds.

Let χ(s) = ∑
n
k=0 zk1[tn

k ,t
n
k+1)

(s) with zk ∈ Z,∀k = 0, ...,n. We have

‖χ‖Lq(J,Z∗) =

(
n

∑
k=0

((
tn
k+1− tn

k
)1/q ‖zk‖Z∗

)q
)1/q

and
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J

χ(s)ϕ(s)ds =
n

∑
k=0

(
tn
k+1− tn

k
)

zk (yk) =
n

∑
k=0

(
tn
k+1− tn

k
)1/q zk

((
tn
k+1− tn

k
)1/p yk

)
.

Applying the Hahn-Banach theorem in E = Y n+1 endowed with the norm ‖y‖p =

(∑n
k=0 (‖yk‖Z)

p)
1/p

, and E∗=(Y ∗)n+1 endowed with the norm ‖z‖q =(∑n
k=0 (‖zk‖Z∗)

q)
1/q

,
we can find χ(s) = ∑

n
k=0 zk1[tn

k ,t
n
k+1)

(s) with ‖χ‖Lq(J,Z∗) = 1, such that

‖ϕ‖Lp(J,Z) =
∫

J
χ(s)ϕ(s)ds.

On the other hand, if we set

χ
n(s) =

n

∑
k=0

zk

∫ +∞

−∞

ρn(s− t)1[tn
k ,t

n
k+1)

(t)dt, ∀s ∈ J

where {ρn}n≥0 is a mollifiers, then for all n > 0 large enough, χn ∈C∞
c (J,Z∗) ,

‖χn−χ‖Lp(J,Z∗)→ 0 as n→+∞

and ∫
J

χ
n(s)ϕ(s)ds→

∫
J

χ(s)ϕ(s)ds = ‖ϕ‖Lp(J,Z) as n→+∞.

Hence, we have ϕn = 1
‖χn‖Lp(J,Z∗)

χn for all n≥ 0 large enough and

∫
J

ϕ
n(s)ϕ(s)ds→‖ϕ‖Lp(J,Z) as n→+∞.

The result follows. ut

From now on, denote

abs( f ) := inf
{

δ > 0 : e−δ . f (.) ∈ L1 ((0,+∞) ,X)
}
<+∞

and define the Laplace transform of f by

L ( f )(λ ) =
∫ +∞

0
e−λ s f (s)ds

when λ > abs( f ) . We first give a necessary condition for the Lp case when p ∈
[1,+∞].

Lemma 3.7.2. Let Assumption 3.4.1 be satisfied and let p,q ∈ [1,+∞] with 1
p +

1
q =

1. Assume that there exist M̂ > 0 and ω̂ ∈ R, so that ∀t ≥ 0, ∀ f ∈C1 ([0, t] ,X) ,

‖(SA � f )(t)‖ ≤ M̂
∥∥∥eω̂(t−.) f (.)

∥∥∥
Lp((0,t),X)

. (3.7.1)
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Then there exists a subspace E ⊂X∗0 , for each x∗ ∈E there exists Vx∗ ∈Lq ([0,+∞) ,X∗)∩
C ([0,+∞) ,X∗) such that

x∗
(
(λ I− (A− ω̂I))−1 x

)
=
∫ +∞

0
e−λ sVx∗(s)xds, (3.7.2)

when λ > 0 is sufficiently large,

x∗
(

S(A−ω̂I)(t)x
)
=
∫ t

0
Vx∗(s)xds, ∀t ≥ 0, (3.7.3)

sup
x∗∈E:‖x∗‖X∗0

≤1
‖Vx∗‖Lq([0,+∞),X∗) ≤ M̂, ∀t ≥ 0,

and
‖x‖ ≤ sup

x∗∈E:‖x∗‖X∗0
≤MA

x∗(x),∀x ∈ X0, (3.7.4)

where MA > 0 is the constant introduced in Assumption 3.4.1.

Proof. Set

B =
{
(λ −ω)2 y∗ ◦ (λ I−A0)

−2 : y∗ ∈ X∗0 , ‖y∗‖X∗0
≤ 1, and λ > ω

}
.

From Assumption 3.6.1, we obtain sup
{
‖x∗‖X∗0

: x∗ ∈ B
}
≤M and

lim
λ→+∞

(λ −ω)2 (λ I−A0)
−2 x = x,∀x ∈ X0.

Using the Hahn-Banach Theorem, we have

‖x‖ ≤ sup
x∗∈B

x∗(x).

Let E be the subspace of X∗0 generated by B. Then

‖x‖ ≤ sup
x∗∈B

x∗(x)≤ sup
x∗∈E:‖x∗‖X∗0

≤M
x∗(x)

and (3.7.4) is satisfied.
Let y∗ ∈ X∗0 be fixed such that ‖y∗‖X∗0

≤ 1 and let µ > ω . Set

x∗ := (µ−ω)2 y∗ ◦ (µI−A0)
−2 .

Then for λ > ω̂ +max(0,ω), we have for each x ∈ X that

x∗((λ I− (A− ω̂I))−1 x)

= (µ−ω)2 y∗
(
(µI−A0)

−1 (λ − (A0− ω̂I))−1 (µI−A)−1 x
)



138 3 Integrated Semigroups and Cauchy Problems with Non-dense Domain

= (µ−ω)2 y∗
(
(µI−A0)

−1
∫ +∞

0
e−(λ+ω̂)tTA0(t)(µI−A)−1 xdt

)
.

So
x∗((λ I− (A− ω̂I))−1 x) =

∫
∞

0
e−λ tVx∗(t)xdt

with

Vx∗(t) = e−ω̂t (µ−ω)2 y∗ ◦ (µI−A0)
−1 ◦TA0(t)◦ (µI−A)−1 ,∀t ≥ 0.

Since
TA0(t)x = x+A0

∫ t

0
TA0(l)xdl

and A0 (µI−A0)
−1 is bounded, it follows that t→ (µI−A0)

−1 TA0(t) is continuous
from [0,+∞) into L (X0) and is exponentially bounded. Thus t→Vx∗(t) is Bochner
measurable from [0,+∞) into X∗ and belongs to L1

Loc ([0,+∞) ,X∗) . Moreover, for
each f ∈C1 ([0, t] ,X) , we have

x∗ ((SA � f )(t))

= (µ−ω)2
∫ t

0
x∗ ◦ (µI−A0)

−1 ◦TA0(t− s)◦ (µI−A)−1 ( f (s))ds

=
∫ t

0
Vx∗(t− s)eω̂(t−s) f (s)ds. (3.7.5)

Since E is the set of all finite linear combinations of elements of B, it follows that
(3.7.2), (3.7.3) and (3.7.5) are satisfied for each x∗ ∈ E. Let x∗ ∈ E with ‖x∗‖X∗0

≤ 1.
We have from (3.7.1) that∫ t

0
Vx∗(t− s)eω̂(t−s) f (s)ds = x∗ ((SA � f )(t))≤ M̂

∥∥∥eω̂(t−.) f (.)
∥∥∥

Lp((0,t),X)
.

Using Proposition 3.7.1-(i), we have

‖Vx∗‖Lq((0,t),X∗) ≤ M̂,∀t ≥ 0.

This completes the proof. ut

Theorem 3.7.3. Let Assumption 3.4.1 be satisfied. Let B : D(A)→ Y be a bounded
linear operator from D(A) into a Banach space (Y,‖.‖Y ) and χ : (0,+∞)→ R a
non-negative measurable function with abs(χ)<+∞. Then the following assertions
are equivalent:

(i) ‖B(SA � f )(t)‖ ≤
∫ t

0 χ(t− s)‖ f (s)‖ds,∀t ≥ 0,∀ f ∈C1 ([0,+∞) ,X) ;
(ii)

∥∥B(λ I−A)−n∥∥
L (X ,Y ) ≤

1
(n−1)!

∫ +∞

0 sn−2e−λ sχ (s)ds, ∀λ > δ , ∀n≥ 1;

(iii) ‖B [SA(t +h)−SA(t)]‖L (X ,Y ) ≤
∫ t+h

t χ (s)ds, ∀t,h≥ 0.

Moreover, if one of the above three conditions is satisfied, χ ∈ Lq
Loc ([0,+∞) ,R) for

some q ∈ [1,+∞] and p ∈ [1,+∞) satisfies 1
p +

1
q = 1, then for each τ > 0 and each
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f ∈ Lp ((0,τ) ,X) , the map t→ B(SA ∗ f )(t) is continuously differentiable and∥∥∥∥ d
dt

B(SA ∗ f )(t)
∥∥∥∥≤ ∫ t

0
χ(t− s)‖ f (s)‖ds, ∀t ∈ [0,τ] .

Proof. (i)⇒(ii). Let x ∈ X be fixed. From the formula

(λ I−A)−1 x = λ

∫ +∞

0
e−λ lSA(l)xdl, ∀λ > δ

one deduces that

n!(λ I−A)−(n+1) x = (−1)n dn (λ I−A)−1

dλ n =
∫ +∞

0

[
λ ln−nln−1]e−λ lSA(l)xdl.

We also remark that

−
∫ t

0
lne−λ lSA(l)xdl =

∫ t

0
SA(l) f (t, t− l)dl = (SA ∗ f (t, .))(t),

where
f (t,s) = h(t− s)x with h(l) =−lne−λ l .

It follows that

−tne−λ tSA(t) =
d
dt

[(SA ∗ f (t, .))(t)] = (SA � f (t, .))(t)+
(

SA ∗
∂ f (t, .)

∂ t

)
(t),

so for all λ > 0 large enough

lim
t→+∞

(SA � f (t, .))(t) =− lim
t→+∞

(
SA ∗

∂ f (t, .)
∂ t

)
(t).

But(
SA ∗

∂ f (t, .)
∂ t

)
(t) =

∫ t

0
SA (l)h′ (t− (t− l))dl =

∫ t

0

[
λ ln−nln−1]e−λ lSA (l)xdl,

so we have

n!(λ I−A)−(n+1) = lim
t→+∞

(
SA ∗

∂ f (t, .)
∂ t

)
(t) =− lim

t→+∞
(SA � f (t, .))(t).

Now by using (i), it follows that∥∥∥n!B(λ I−A)−(n+1) x
∥∥∥ = lim

t→+∞
‖B(SA � f (t, .))(t)‖

≤ lim
t→+∞

∫ t

0
χ(l)‖ f (t, t− l)‖dl
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=
∫ +∞

0
ln−1e−λ l

χ (l)dl ‖x‖

and (ii) follows.
(ii)⇒(i). Let f ∈C1 ([0,+∞) ,X) be fixed. Without loss of generality we assume

that f is exponentially bounded. Note that

(λ I−A)−1 L ( f )(λ ) = λ

∫ +∞

0
e−λ lSA(l)dl

∫ +∞

0
e−λ l f (l)dl

= λ

∫ +∞

0
e−λ l (SA ∗ f )(l)dl.

Integrating by parts we obtain that∫ +∞

0
e−λ l (SA � f )(l)dl = (λ I−A)−1 L ( f )(λ ) .

Then

dn

dλ n

∫ +∞

0
e−λ l (SA � f )(l)dl =

n

∑
k=0

Ck
n

dn−k (λ I−A)−1

dλ n−k
dk

dλ k L ( f )(λ )

and ∥∥∥∥ dn

dλ n

∫ +∞

0
e−λ lB(SA � f )(l)dl

∥∥∥∥
≤

n

∑
k=0

Ck
n

∥∥∥∥∥dn−kB(λ I−A)−1

dλ n−k
dkL ( f )(λ )

dλ k

∥∥∥∥∥
=

n

∑
k=0

Ck
n (n− k)!

∥∥∥B(λ I−A)−(n−k+1)
∥∥∥(−1)k dkL (‖ f‖)(λ )

dλ k .

Now using (ii) it follows that∥∥∥∥ dn

dλ n

∫ +∞

0
e−λ lB(SA � f )(l)dl

∥∥∥∥
≤ (−1)n

n

∑
k=0

Ck
n

dn−kL (χ)(λ )

dλ n−k
dkL (‖ f‖)(λ )

dλ k

= (−1)n dn

dλ n

∫ +∞

0
e−λ l (χ ∗‖ f‖)(l)dl

and by the Post-Widder Theorem (see Arendt et al. [22]) we obtain

‖B(SA � f )(t)‖ ≤ (χ ∗‖ f‖)(t),∀t ≥ 0.

So we obtain (i) for all the maps f in C1 ([0,+∞) ,X) .
(iii)⇒(ii). First assume that n = 1. We have
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B(λ I−A)−1 x = λ

∫ +∞

0
e−λ sBS(s)xds.

Using (iii), we obtain∥∥∥B(λ I−A)−1
∥∥∥≤ λ

∫ +∞

0
e−λ s

∫ s

0
χ (l)dlds

and by integrating by parts (ii) follows. Next assume that n≥ 2. We have

B(λ I−A)−n = B(λ I−A0)
−(n−1) (λ I−A)−1

=
(−1)n−2

(n−2)!
λB

(
dn−2 (λ I−A0)

−1

dλ n−2

)∫ +∞

0
e−λ sSA(s)ds

=
λ

(n−2)!
B
∫ +∞

0
sn−2e−λ sTA0(s)ds

∫ +∞

0
e−λ sSA(s)ds

=
λ

(n−2)!
B
∫ +∞

0
e−λ s

∫ s

0
(s− l)n−2 TA0(s− l)SA(l)dlds.

But TA0(s− l)SA(l) = SA(s)−SA(s− l), so

B(λ I−A)−n =
λ

(n−2)!

∫ +∞

0
e−λ s

∫ s

0
(s− l)n−2 [BSA(s)−BSA(s− l)]dlds.

From (iii), we obtain∥∥B(λ I−A)−n∥∥
L (X)

≤ λ

(n−2)!

∫ +∞

0
e−λ s

∫ s

0
(s− l)n−2

∫ s

s−l
χ (r)drdlds.

Notice that ∫ +∞

0
e−λ s

∫ s

0
(s− l)n−2

∫ s

s−l
χ (r)drdlds

=
∫ +∞

0
e−λ s

∫ s

0
ln−2

∫ s

l
χ (r)drdlds

=
∫ +∞

0
e−λ s

∫ s

0

∫ r

0
ln−2dlχ (r)drds

=
1

n−1

∫ +∞

0
e−λ s

∫ s

0
rn−1

χ (r)drds,

integrating by parts, we have∫ +∞

0
e−λ s

∫ s

0
(s− l)n−1

∫ s

s−l
χ (r)drdlds =

1
(n−1)λ

∫ +∞

0
sn−1

χ (s)e−λ sds.

It follows that
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L (X)

≤ 1
(n−1)!

∫ +∞

0
sn−1

χ (s)e−λ sds.

(i)⇒(iii). Let h > 0 and t > h be fixed. We have

d
dt

(
SA ∗1[0,h](.)x

)
(t) =

d
dt

∫ t

0
SA(t− s)1[0,h](s)xds

=
d
dt

∫ h

0
SA(t− s)xds =

d
dt

∫ t

t−h
SA(s)xds

= SA(t)x−SA(t−h)x.

Let {φn}n≥0 ⊂C1 (R+,R) be a sequence of non-increasing functions such that

φn(t)


= 1 if t ∈ [0,h] ,
∈ [0,h] if t ∈

[
h,h+ 1

n+1

]
,

= 0 if t ≥ h+ 1
n+1 .

We can always assume that φn+1 ≤ φn,∀n≥ 0. Then we have

d
dt

(SA ∗φn(.)x)(t) =
d
dt

∫ t

0
SA(s)φn(t− s)xds

= SA(t)φn(0)x+
∫ t

0
SA(s)φ

′
n(t− s)xds

= SA(t)x+
∫ t

0
SA(t− s)φ

′
n(s)xds

= SA(t)x+
∫ h+ 1

n+1

0
SA(t− s)φ

′
n(s)xds.

By the continuity of t→ SA(t)x, it follows that

lim
n→+∞

d
dt

(SA ∗φn(.)x)(t) = SA(t)x−SA(t−h)x.

On the other hand, we have χ |[0,t]∈ L1 ((0, t) ,R) , and s→ χ(t− s)φn(s) is a non-
increasing sequence in L1 ((0, t) ,R) . So by the Beppo-Levi (Monotone Conver-
gence) Theorem, we obtain

lim
n→+∞

∫ t

0
χ(t− s)φn(s)ds =

∫ t

0
χ(t− s)1[0,h](s)ds =

∫ h

0
χ(t− s)ds

=
∫ t

t−h
χ(l)dl,

and (iii) follows from (i). The proof of the last part of the theorem is similar to the
proof of Theorem 3.4.7. ut

Remark 3.7.4. When B= I and X1 =X , the previous theorem provides an extension
of the Hille-Yosida case. Unfortunately, this kind property is not satisfied in the con-
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text of age-structured models. Because if the property (iii) were satisfied for some
function χ ∈ Lq

Loc ([0,+∞) ,R) , this implies that t → SA(t) is locally of bounded
Lq-variation from [0,+∞) into L (X).

Following Bochner and Taylor [44], we now consider functions of bounded Lp-

variation. Let J be an interval in R with interior
◦
J. Let H :

◦
J → X be a map. If

p ∈ [1,+∞) , set

V Lp(J,H) = sup
t0<t1<...<tn

ti∈
◦
J,∀i=1,...,n


(

n

∑
i=1

‖H (ti)−H (ti−1)‖p

|ti− ti−1|p−1

)1/p
 ,

where the supremum is taken over all finite strictly increasing sequences in
◦
J. If

p =+∞, set

V L∞(J,H) = sup
t,s∈

◦
J

{
‖H (t)−H (s)‖
|t− s|

}
.

We say that H is of bounded Lp-variation on J if V Lp(J,H)<+∞.
Let (Y,‖.‖Y ) be a Banach space. Let H : J→L (X ,Y ) and f : J→ X . If π is a

finite sequence t0 < t1 < ... < tn in
◦
J and si ∈ [ti−1, ti] (i = 1, ...,n), we denote by

S(dH, f ,π) =
n

∑
i=1

(H (ti)−H (ti−1)) f (si) ,

S(H,d f ,π) =
n

∑
i=1

H (si) [ f (ti)− f (ti−1)] ,

|π| = max
i=0,...,n

|ti− ti−1| .

We say that f is Riemann-Stieltjes integrable with respect to H if∫ b

a
dH(t) f (t) := lim

|π|→0,t0→a,tn→b
S(dH, f ,π) exists

and H is Riemann-Stieltjes integrable with respect to f if∫ b

a
H(t)d f (t) := lim

|π|→0,t0→a,tn→b
S(H,d f ,π) exists.

We say that f is Riemann integrable on [a,b] if f is Riemann-Stieltjes integrable
with respect to H(t) = tIdX , and we write∫ b

a
f (t)dt :=

∫ b

a
dH(t) f (t) = lim

|π|→0,t0→a,tn→b
S(dH, f ,π).

Note that
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S(dH, f ,π) =
n

∑
i=1

(H (ti)−H (ti−1)) f (si)

= (H (tn)−H (tn−1)) f (sn)+ ...+(H (t1)−H (t0)) f (s1)

= H(tn) f (tn)−H(t0) f (t0)

−
[

H (tn)( f (tn)− f (sn))+H (tn−1)( f (sn)− f (sn−1))+ ...
...+H(t0) [ f (s1)− f (t0)]

]
so

S(dH, f ,π) = H(tn) f (tn)−H(t0) f (t0)−S(H,d f , π̂) (3.7.6)

with π̂ = {t0,s1,s2, ...,sn, tn} .
By using (3.7.6) we immediately deduce the following result.

Lemma 3.7.5. Let f : [a,b]→ X and H : [a,b]→L (X ,Y ) be two maps. Then the
following assertions are equivalent:

(a) f is Riemann-Stieltjes integrable with respect to H;
(b) H is Riemann-Stieltjes integrable with respect to f .

Moreover, if (a) or (b) is satisfied, we have∫ b

a
dH(t) f (t) = H(b) f (b)−H(a) f (a)−

∫ b

a
H(t)d f (t).

We have the following result (see Section 1.9 in Arendt et al. [22] and Section
III.4.3 in Hille and Phillips [187] for more details).

Lemma 3.7.6. Assume p,q ∈ [1,+∞] such that 1
p +

1
q = 1. Let f ∈ C1 ([a,b] ,X) .

Let H : [a,b]→ L (X ,Y ) be a bounded and strongly continuous map. Then f is
Riemann-Stieltjes integrable with respect to H and∫ b

a
dH(t) f (t) = H(b) f (b)−H(a) f (a)−

∫ b

a
H(t) f ′(t)dt,

where the last integral is a Riemann integral.

Proof. Since H is bounded and strongly continuous, the map t → H(t)( f ′(t)) is
continuous, so the integral ∫ b

a
H(t) f ′(t)dt

is well defined as a Riemann integral. It remains to prove that

lim
|π|→0,t0→a,tn→b

[
S(d (tIdY ) ,H(.) f ′(.),π)−S(H(.),d f (.),π)

]
= 0.

We have

S(d (tIdY ) ,H(.) f ′(.),π)−S(H(.),d f (.),π)
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=
n

∑
i=1

(ti− ti−1)H (si) f ′ (si)−
n

∑
i=1

H (si) [ f (ti)− f (ti−1)]

=
n

∑
i=1

H (si)

[
(ti− ti−1) f ′ (si)−

∫ ti

ti−1

f ′ (l)dl
]
.

Let ε > 0 be fixed. Set C := sup
t∈[a,b]

‖H(t)‖L (X ,Y ) . Since f ′ is continuous, f ′ is uni-

formly continuous on [a,b] , there exists η > 0 such that |t− s| ≤η⇒‖ f ′ (t)− f ′(s)‖≤
ε

(C+1)(b−a) , and we obtain that

|π| ≤ η ⇒
∥∥S(d (tIdY ) ,H(.) f ′(.),π)−S(H(.),d f (.),π)

∥∥≤ ε.

This completes the proof. ut

Lemma 3.7.7. Let p,q ∈ [1,+∞] with 1
p + 1

q = 1. Let f ∈ C1 ([a,b] ,X) . Let H :
[a,b]→L (X ,Y ) be a bounded and strongly continuous map. Assume in addition
that H is of bounded Lq-variation on [a,b] . Then∥∥∥∥∫ b

a
dH(t) f (t)

∥∥∥∥≤V Lq([a,b] ,H)‖ f‖Lp((a,b),X) .

Proof. Assume for simplicity that q∈ (1,+∞) , the case q = 1 or q =+∞ is similar.
We have

‖S(dH, f ,π)‖ ≤
n

∑
i=1
‖H (ti)−H (ti−1)‖L (X ,Y ) ‖ f (si)‖

=
n

∑
i=1

‖H (ti)−H (ti−1)‖L (X ,Y )

|ti− ti−1|1−
1
q

|ti− ti−1|
1
p ‖ f (si)‖

≤

(
n

∑
i=1

‖H (ti)−H (ti−1)‖q
L (X ,Y )

|ti− ti−1|q−1

)1/q( n

∑
i=1
|ti− ti−1|‖ f (si)‖p

)1/p

.

So we obtain

‖S(dH, f ,π)‖ ≤V Lq([a,b] ,H)

(
n

∑
i=1
|ti− ti−1|‖ f (si)‖p

)1/p

and the result follows when |π| → 0. ut

Motivated by Lemma 3.7.2, we introduce the following definition.

Definition 3.7.8. Let (Y,‖.‖Y ) be a Banach space. Let E be a subspace of Y ∗. E is
called a norming space of Y if the map |.|E : Y → R+ defined by

|y|E = sup
y∗∈E
‖y∗‖Y∗≤1

y∗(y), ∀y ∈ Y
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is a norm equivalent to ‖.‖Y .

The main result of this section is the following theorem.

Theorem 3.7.9. Let Assumption 3.6.1 be satisfied. Let p,q∈ [1,+∞] with 1
p +

1
q = 1

and ω̂ ∈ R. Then the following properties are equivalent:

(i) There exists M̂ > 0, such that for each τ0 ≥ 0, ∀ f ∈C1 ([0,τ0] ,X) ,

‖(SA � f )(t)‖ ≤ M̂
∥∥∥eω̂(t−.) f (.)

∥∥∥
Lp((0,t),X)

, ∀t ∈ [0,τ0] ;

(ii) There exists a norming space E of X0, such that for each x∗ ∈ E the map t →
x∗ ◦SA+ωI(t) is of bounded Lq-variation from [0,+∞) into X∗ and

sup
x∗∈E:‖x∗‖X∗0

≤1
lim

t→+∞
V Lq([0, t] ,x∗ ◦SA−ω̂I(.))<+∞; (3.7.7)

(iii) There exists a norming space E of X0, such that for each x∗ ∈ E there exists
χx∗ ∈ Lq

+ ((0,+∞) ,R) ,

‖x∗ ◦SA−ω̂I(t +h)− x∗ ◦SA−ω̂I(t)‖X∗ ≤
∫ t+h

t
χx∗ (s)ds, ∀t,h≥ 0 (3.7.8)

and
sup

x∗∈E:‖x∗‖X∗0
≤1
‖χx∗‖Lq((0,+∞),R) <+∞. (3.7.9)

Proof. (i)⇒(iii) is an immediate consequence of Lemma 3.7.2. (iii)⇒(ii) is an im-
mediate consequence of the fact that (iii) implies

V Lq([0, t] ,x∗ ◦SA−ω̂I(.))≤ ‖χx∗‖Lq((0,t),R) ,∀t ≥ 0.

So it remains to prove (ii)⇒(i). Let x∗ ∈ E and f ∈ C1 ((0,τ0) ,X) be fixed. By
Lemma 3.4.4, we have for each t ∈ [0,τ0] that

d
dt

(SA ∗ f )(t) = SA(t) f (0)+
∫ t

0
SA(s) f ′(t− s)ds =

∫ t

0
dSA(s) f (t− s)ds.

Thus,

d
dt

(SA ∗ f )(t) = lim
λ→+∞

λ (λ I−A0)
−1 d

dt
(SA ∗ f )(t)

= lim
λ→+∞

λ

∫ t

0
TA0(t− s)(λ I−A)−1 f (s)ds

= lim
λ→+∞

λ

∫ t

0
TA0−ω̂I(t− s)(λ I−A)−1 eω̂(t−s) f (s)ds

=
d
dt

(
SA−ω̂I ∗ eω̂(t−.) f (.)

)
(t)
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=
∫ t

0
dSA−ω̂I(s)e

ω̂(t−s) f (t− s)ds.

By using the last part of Lemma 3.7.7, we have

x∗
(

d
dt

(SA ∗ f )(t)
)

=
∫ t

0
d (x∗ ◦SA−ω̂I)(s)e

ω̂(t−s) f (t− s)

≤ V Lq( [0, t] ,(x∗ ◦SA−ω̂I)(.)
)∥∥∥eω̂(t−.) f (.)

∥∥∥
Lp((0,t),X1)

.

Hence, ∀t ∈ [0,τ0] we have

x∗
(

d
dt

(SA ∗ f )(t)
)
≤V Lq( [0,+∞) , (x∗ ◦SA−ω̂I)(.)

)∥∥∥eω̂(t−.) f
∥∥∥

Lp((0,t),X)

and the result follows from the fact that E is a norming space. ut

Remark 3.7.10. (a) We can use Theorem 3.7.3 to replace (iii) by the equivalent
condition∥∥∥x∗ ◦ (λ − (A− ω̂I))−n

∥∥∥
X∗
≤ 1

(n−1)!

∫ +∞

0
sn−1e−λ s

χx∗ (s)ds,∀λ > δ ,∀n≥ 1.

(3.7.10)
(b) We know that

(λ I−A)−1x = λ

∫ +∞

0
e−λ sSA(s)xds

for λ > 0 sufficiently large. So we can also apply the results of Weis [370] to verify
assertion (iii) of Theorem 3.7.9.

(c) In the Hille-Yosida case, assertions (ii) and (iii) of Theorem 3.7.9 are satisfied
for q =+∞, E = X∗0 , and χx∗ (s) = M,∀s≥ 0.

(d) In the context of age-structured models in Lp spaces the property (iii) holds.
But in some cases we have

‖SA−ωI(t +h)−SA−ωI(t)‖L (X) ≥
(∫ t+h

t
epωldl

)1/p

, ∀t,h≥ 0.

So t→ SA−ωI (t) is not of bounded Lq-variation. Nevertheless, we will see that asser-
tion (iii) in Theorem 3.7.9 is satisfied. This shows that a dual approach is necessary
in general.

3.8 Applications to a Vector Valued Age-Structured Model in Lp

Let p ∈ [1,+∞) and a0 ∈ (0,+∞] be fixed. We are now interested in solutions
v ∈C ([0,τ0] ,Lp ((0,a0) ,Y )) of the following problem:
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∂v
∂ t

+
∂v
∂a

= A(a)v(t,a)+g(t,a), a ∈ (0,a0) ,

v(t,0) = h(t),

v(0, ·) = ψ ∈ Lp ((0,a0) ,Y ) ,

(3.8.1)

where
h ∈ Lp ((0,τ0),Y ) and g ∈ L1 ((0,τ0),Lp ((0,a0) ,Y )) .

In order to apply the results obtained in Sections 3.2-3.7 to study the age struc-
tured problem (3.8.1) in Lp, as in Thieme [330, 331], we assume that the family of
linear operators {A(a)}0≤a≤a0

generates an exponentially bounded evolution family
{U(a,s)}0≤s≤a<a0

. We refer to Kato and Tanabe [206], Acquistapace and Terreni
[2], Acquistapace [1], and the monograph of Chicone and Latushkin [60] for further
information on evolution families. Then we introduce a closed bounded operator
B based on {U(a,s)}0≤s≤a<a0

. Next we rewrite system (3.8.1) as a Cauchy prob-
lem with the linear operator B and show that B generates an integrated semigroup
{SB(t)}t≥0. Now the results in the previous sections can be applied to the problem.

Definition 3.8.1. A family of bounded linear operators {U(a,s)}0≤s≤a<a0
on Y is

called an exponentially bounded evolution family if the following conditions are
satisfied:

(a) U(a,a) = IdY if 0≤ a < a0;
(b) U(a,r)U(r,s) =U(a,s) if 0≤ s≤ r ≤ a < a0;
(c) For each y∈Y, the map (a,s)→U(a,s)y is continuous from {(a,s) : 0≤ s≤ a < a0}

into Y ;
(d) There exist two constants, M ≥ 1 and ω ∈ R, such that ‖U(a,s)‖ ≤Meω(a−s)

if 0≤ s≤ a < a0.

Remark 3.8.2. In the Example 3.1.1 we have Y = R and A(a) := µ(a). So we can
just use

U(a,s) = exp(
∫ a

s
µ(r)dr),∀a≥ s≥ 0.

For an n-dimension system we can assume that

A(a) :=−M(a)+N(a),

where

a→M(a) := diag(µ1(a),µ2(a), ...,µn(a)) ∈ L1
loc,+ ((0,a0) ,Mn (R))

and
a→ N(a) ∈ L∞

+ ((0,a0) ,Mn (R)) .

Let s ∈ [0,a0) be fixed. Then we define a→U(a,s) as the fixed point solution of

U(a,s) :=V (a,s)+
∫ a

s
V (a,r)N(r)U(r,s)dr,∀a ∈ [s,a0),
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where
V (a,s) := diag(exp(−

∫ a

s
µ1(r)dr), ...,exp(−

∫ a

s
µn(r)dr))

whenever a≥ s≥ 0.

From now on, set

X = Y ×Lp ((0,a0) ,Y ) and X0 = {0Y}×Lp ((0,a0) ,Y )

endowed with the product norm∥∥∥∥( y
ψ

)∥∥∥∥= ‖y‖Y +‖ψ‖Lp((0,a0),Y ) .

Define for each λ > ω a linear operator Jλ : X → X0 by

Jλ

(
y
ψ

)
=

(
0Y
ϕ

)
⇔

ϕ(a) = e−λaU(a,0)y+
∫ a

0
e−λ (a−s)U(a,s)ψ(s)ds, a ∈ (0,a0) .

Lemma 3.8.3. Assume that {A(a)}0≤a≤a0
generates an exponentially bounded evo-

lution family {U(a,s)}0≤s≤a<a0
. Then there exists a unique closed linear opera-

tor B : D(B) ⊂ X → X such that (ω,+∞) ⊂ ρ(B), Jλ = (λ I−B)−1 ,∀λ > ω, and
D(B) = X0.

Proof. It is readily to check that Jλ is a pseudo resolvent on (ω,+∞) (i.e. Jλ −Jµ =
(µ−λ )Jλ Jµ , ∀λ ,µ ∈ (ω,+∞)). By construction we have R (Jλ )⊂ X0. Moreover,

let x =
(

y
ψ

)
∈ X and assume that Jλ x = 0. Then, for a ∈ (0,a0)

Ia :=
1
a

∫ a

0

∥∥∥∥e−λξU(ξ ,0)y+
∫

ξ

0
e−λ (ξ−s)U(ξ ,s)ψ(s)ds

∥∥∥∥dξ = 0

and
lim

a→0+
Ia = ‖y‖ .

So y = 0 and N (Jλ ) ⊂ X0. Moreover, using Young’s inequality, we have for all
λ > ω that ∥∥∥∥Jλ

(
0
ψ

)∥∥∥∥ ≤ M
∥∥∥(e(−λ+ω). ∗‖ψ(.)‖

)
(.)
∥∥∥

Lp((0,a0),R)

≤ M
∥∥∥e(−λ+ω).

∥∥∥
L1((0,a0),R)

‖ψ‖Lp((0,a0),Y ) ,

so ∥∥∥∥Jλ

(
0
ψ

)∥∥∥∥≤ M
λ −ω

‖ψ‖Lp((0,a0),Y ) .
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Moreover, we can prove that ∀ψ ∈C0
c ((0,a0) ,Y ) ,

lim
λ→+∞

λJλ

(
0
ψ

)
=

(
0
ψ

)
.

By the density of C0
c ((0,a0) ,Y ) in Lp ((0,a0) ,Y ) , we obtain that

lim
λ→+∞

λJλ x = x,∀x ∈ X0.

By using Corollary 2.2.13, the result follows. ut

Consider equation (3.8.1) as the following Cauchy problem

du
dt

= Bu(t)+ f (t), t ≥ 0, u(0) = x ∈ X0 (3.8.2)

with
f ∈ Lp ((0,τ0) ,X) .

Lemma 3.8.4. Assume that {A(a)}0≤a≤a0
generates an exponentially bounded evo-

lution family {U(a,s)}0≤s≤a<a0
. Then B satisfies Assumption 3.4.1

Proof. One can check that∥∥∥∥(λ I−B)−1
(

y
0

)∥∥∥∥≤ M

p1/p (λ −ω)1/p
‖y‖ , ∀λ > ω.

Using the Young inequality we have∥∥∥∥(λ I−B)−k
(

0
ϕ

)∥∥∥∥≤ M

(λ −ω)k ‖ϕ‖Lp((0,a0),Y ) , ∀λ > ω, ∀k ≥ 1.

This completes the proof. ut

Now we can claim that B0 (the part of B in X0) generates a C0-semigroup{
TB0(t)

}
t≥0 and B generates an integrated semigroup {SB(t)}t≥0.

Lemma 3.8.5. Assume that {A(a)}0≤a≤a0
generates an exponentially bounded evo-

lution family {U(a,s)}0≤s≤a<a0
. Then

{
TB0(t)

}
t≥0 , the C0-semigroup generated by

B0 (the part of B in X0), is defined by

TB0(t)
(

0
ϕ

)
=

(
0

T̂B0(t)ϕ

)
with

T̂B0(t)(ϕ)(a) =
{

0 if a ∈ [0, t] ,
U(a,a− t)ϕ(a− t) if a≥ t.

Moreover, {SB(t)}t≥0 , the integrated semigroup generated by B, is defined by
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SB(t)
(

y
ϕ

)
=

(
0

W (t)y+
∫ t

0 T̂B0(s)ϕds

)
with

W (t)(y)(a) =
{

U(a,0)y if a≤ t,
0 if a≥ t.

Proof. If TB0(t) and SB(t) are defined by the above formulas, then it is readily to
check that

d
dt

(λ I−B)−1 TB0(t)x = λ (λ I−B)−1 TB0(t)x−TB0(t)x

and

d
dt

(λ I−B)−1 SB(t)x = λ (λ I−B)−1 SB(t)x−SB(t)x+(λ I−B)−1 x,

and the result follows. ut

Define P : X → X by

P
(

y
ϕ

)
=

(
y

0Lp

)
,

and set
X1 = Y ×

{
0Lp((0,a0),Y )

}
.

We obtain the following theorem.

Theorem 3.8.6. Assume that {A(a)}0≤a≤a0
generates an exponentially bounded

evolution family {U(a,s)}0≤s≤a<a0
. Then for each f ∈Lp ((0,τ0) ,X1)⊕L1 ((0,τ0) ,X0)

and each x ∈D(B), there exists u ∈C([0,τ0] ,D(B)), a unique integrated solution of
the Cauchy problem

du(t)
dt

= Bu(t)+ f (t), t ∈ [0,τ0] , u(0) = x, (3.8.3)

given by

u(t) = TB0(t)x+
d
dt

(SB ∗ f )(t), ∀t ∈ [0,τ0] , (3.8.4)

which satisfies for a certain M̂ > 0 independent of τ0 that

‖u(t)‖ ≤ Meωt ‖x‖+ M̂
(∫ t

0

(
eω(t−s) ‖P f (s)‖

)p
ds
)1/p

+M
∫ t

0
eω(t−s) ‖(I−P) f (s)‖ds, ∀t ∈ [0,τ0]

Moreover,

u(t) = TB0(t)x+
(

0
w(t)

)
, ∀t ∈ [0,τ0] (3.8.5)
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with

w(t)(a) =

U(a,0)P f (t−a)+
(∫ t

0 T̂0(t− s)(I−P) f (s)ds
)
(a) if a≤ t,(∫ t

0 T̂0(t− s)(I−P) f (s)ds
)
(a) if a≥ t.

Proof. Let ψ ∈C∞
c ((0,a0) ,Y ∗) be fixed. Define x∗ ∈ X∗0 by

x∗
(

0
ϕ

)
=
∫ a0

0
ψ(s)(ϕ(s))ds.

Let x =
(

y
ϕ

)
∈ X be given. We have

x∗
(
(λ I−B)−1 x

)
= x∗

(
(λ I−B)−1 Px

)
+ x∗

(
(λ I−B)−1 (I−P)x

)
and

x∗ (λ I−B)−1 (I−P)x =
∫ +∞

0
e(−λ+ω)tx∗

(
e−ωtTB0(t)(I−P)x

)
dt,

and for each λ > ω that

x∗
(
(λ I−B)−1 P

(
y
ϕ

))
=
∫ a0

0
e−λa

ψ(a)(U(a,0)y)da

=
∫ +∞

0
e(−λ+ω)tWx∗(t)(y)dt

with

Wx∗(t)(y) =
{

e−ωtψ(t)U(t,0)y if 0≤ t < a0,
0 if t ≥ a0.

x∗
(
(λ I−B)−n P

(
y
ϕ

))
=

(−1)n−1

(n−1)!
dn−1

dλ n−1 x∗
(
(λ I−B)−1 P

(
y
ϕ

))
=

1
(n−1)!

∫ +∞

0
tn−1e(−λ+ω)tWx∗(t)(y)dt.

So ∣∣∣∣x∗((λ I−B)−n P
(

y
ϕ

))∣∣∣∣≤ 1
(n−1)!

∫ +∞

0
tn−1e−λ t

χx∗ (t)dt ‖y‖Y ,

where

χx∗ (t) =
{

M ‖ψ(t)‖Y ∗ if t ∈ (0,a0)
0 otherwise.

The result follows by applying Theorem 3.7.9. ut
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3.9 Remarks and Notes

In Section 3.2 we recalled some results on integrated semigroup theory which
were taken from Thieme [329]. The representation Theorem 3.3.5 was taken from
combines Theorem 3.1 in Arendt [21] and Proposition 3.10 in Thieme [329]. More
results can be found in Weis [370]. In Section 3.4 we discussed the existence of
mild when A is not necessarily a Hille-Yosida operator. In Section 3.5 we proved a
bounded linear perturbation result. The results of Sections 3.4 and 3.5 were taken
from Magal and Ruan [245]. The Section 3.6 was devoted to the existence of mild
solutions in the Hille-Yosida case which was proved by Kellermann and Hieber
[207]. For the Hille-Yosida case we also refer to the book of Arendt et al. [22]
for more results. Section 3.7 focused to the existence of mild solutions in the non-
Hille-Yosida case which was taken from Magal and Ruan [245]. This problem was
reconsidered by Thieme [335].

(a) Commutative Sum of Operators. For the commutative sum of operators (Da
Prato and Gisvard [82], Favini and Yagi [138]), an integrated semigroup approach
has been developed by Thieme [331, 335]. This problem has been reconsidered
more recently in Ducrot and Magal [114].

Assumption 3.9.1. Let A : D(A) ⊂ X → X be a linear operator satisfying Assump-
tions 3.4.1 and 3.5.2 and let B : D(B) ⊂ X → X be the infinitesimal generator of
a strongly continuous semigroup {TB(t)}t≥0 on X . We assume in addition that the
linear operators A and B commute in the sense that one has

(λ I−A)−1 (µI−B)−1 = (µI−B)−1 (λ I−A)−1 ,∀λ ,µ ∈ ρ (A)∩ρ (B) .

Theorem 3.9.2. Let Assumptions 3.9.1 be satisfied. Then the linear operator A+B :
D(A)∩D(B)→ X is closable, and its closure A+B : D(A+B) ⊂ X → X satisfies
Assumptions 3.4.1 and 3.5.2. More precisely the following properties hold:

(i) The linear operator
(
A+B

)
0 : D(

(
A+B

)
0) ⊂ D(A)→ D(A) defined as the

part of A+B in X0 := D(A) is the infinitesimal generator of a C0−semigroup{
T(A+B)0

(t)
}

t≥0
on X0 and

T(A+B)0
(t)x = TB(t)TA0(t)x,∀x ∈ X0,∀t ≥ 0.

In addition one has

ω0
((

A+B
)

0

)
≤ ω0 (A0)+ω0 (B) .

(ii) The linear operator A+B generates an exponentially bounded (non-degenerate)
integrated semigroup

{
SA+B(t)

}
t≥0 of bounded linear operators on X , given by

SA+B(t)x = (SA �TB(t− .)x)(t),∀x ∈ X ,∀t ≥ 0,

and
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V ∞(SA+B,0, t)≤ sup
s∈[0,t]

‖TB(s)‖V ∞(SA,0, t),∀t ≥ 0.

(iii) The following inclusions hold

D(A0)∩D(B)⊂ D
((

A+B
)

0

)
⊂ D(A),

D(A)∩D(B)⊂ D
(
A+B

)
⊂ D(A),

D
((

A+B
)

0

)
= D

(
A+B

)
= D(A).

(iv) The equality
−
(
A+B

)
x = y and x ∈ D(A+B)

holds if and only if[
(µ−B)−1 +(λ −A)−1

]
x = (µ−B)−1 (λ −A)−1 [y+(λ +µ)x]

for some λ ∈ ρ (A) and µ ∈ ρ (B) .

Remark 3.9.3. In the above theorem the fact that B is densely defined is necessary
(see for example the following item).

(b) Abstract Cauchy Problems as a Commutative Sum of Operators. Let
A : D(A)⊂ X → X be a linear operator satisfying Assumption 3.4.1. Reconsider the
abstract Cauchy problem

du
dt

= Au(t)+ f (t) for t ≥ 0 and u(0) = x ∈ D(A), (3.9.1)

where f ∈ L1((0,τ),X). Let

X := X×L1((0,τ),X)

be the Banach space endowed with the usual product norm. Let A : D(A )⊂X →
X be the linear operator defined by

A

(
x

f (.)

)
=

(
Ax

A f (.)

)
with

D(A ) = D(A)×L1(0,τ;D(A)).

Let B : D(B)⊂X →X be the linear operator defined by

B

(
0
ϕ

)
=

(
−ϕ(0)
−ϕ ′

)
and

D(B) = {0X}×W 1,1(0,τ;X).
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Da Prato and Sinestrari [85] reformulated the Cauchy problem (3.9.1) as the com-
mutative sum of operators

B

(
0X
u

)
+A

(
0X
u

)
+

(
x
f

)
= 0X .

In order to verify that A and B are commutative, we observe that the resolvent of
A is defined for each λ > ωA by

(λ I−A )−1)

(
y
ϕ

)
=

(
(λ I−A)−1y

(λ I−A)−1ϕ(.)

)
,

so A satisfies the same assumption as A. The resolvent of B is defined for each
λ > 0 by

(λ I−B)−1
(

y
ϕ

)
=

(
0X
ψ

)
⇔ ψ(s) = e−λ sy+

∫ s

0
e−λ (s−r)

ϕ(r)dr.

It is clear that the two resolvents commute. But since both A and B are not densely
defined we cannot apply Theorem 3.9.2. We refer to Da Prato and Sinestrarie [85]
for more results about this subject. In their work they investigated several notions of
solutions for such problems.

(c) Nonautonomous Cauchy Problems. Let t0, tmax ∈ R with t0 < tmax. Let
{A(t)}t∈[t0,tmax] be a time parameterized family of linear operators on X . Consider
the nonhomogeneous Cauchy problem

du
dt

= A(t)u(t)+ f (t) for t ∈ [t0, tmax], and u(t0) = x ∈ D(A), (3.9.2)

where f belongs to a subspace of L1 ((t0, tmax) ,X).

Assumption 3.9.4. Let X be a Banach space with a norm ‖.‖. Let D⊂ X be a sub-
space of X which is a Banach space endowed with the norm ‖.‖D. Let {A(t)}t∈[t0,tmax]

be a time parameterized family of linear operators on X with domain D. Assume that

i) There exists a constant c0 > 0

c−1
0 ‖x‖D ≤ ‖x‖+‖A(t)x‖ ≤ c0‖x‖D,∀[t0, tmax],∀x ∈ X ;

ii) A(.) ∈C([0,τ],L (D,E));
iii) There exist two constants MA ≥ 1 and ωA ∈ R such that

‖(λ I−A(tn))−1(λ I−A(tn−1))
−1 . . .(λ I−A(t1))−1‖ ≤ MA

(λ −ωA)n

whenever 0≤ t1 ≤ t2 . . .≤ tn ≤ tmax and λ > ωA.

Assuming that f is continuous, one may consider the implicit approximation
scheme
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∆ t

= A(ti+1)u(ti+1)+ f (ti+1),∀i = 0, . . . ,N,

u(0) = x,

where ∆ t =
1
N

and ti = i∆ t,∀i = 0, . . . ,N. The above assumption means that when-
ever ∆ t is small enough we can solve the implicit approximation scheme which
becomes equivalent to{

u(ti+1) = (I−∆ tA(ti+1))
−1[u(ti)+∆ t f (ti+1)],∀i = 0, . . . ,N−1,

u(0) = x.

We refer to DaPrato and Sinestrari [86], Pazy [281], Kobayashi et al. [214, 215]
and references therein for more results about this topic. The above approximation
scheme has also been successfully used in the context of nonlinear semigroups (see
Barbu [38], Goldstein [150], Pavel [282]).

(d) Approximation Formula for a Nonautonomous Bounded Linear Pertur-
bation. Let A : D(A)⊂ X→ X be a linear operator satisfying Assumptions 3.4.1 and
3.5.2 and let {B(t)}t∈R ⊂L (D(A),X) is a locally bounded and strongly continuous
family of bounded linear operators. Consider

du
dt

= Au(t)+B(t)u(t)+ f (t) for t ≥ t0, and u(t0) = x ∈ D(A), (3.9.3)

where f ∈C(R,X).

Assumption 3.9.5. Let {B(t)}t∈R ⊂L (D(A),X). Assume that t→ B(t) is strongly
continuous from R into L (X0,X); that is, for each x ∈ X0 the map t → B(t)x is
continuous from R into X . Assume that for each integer n≥ 1

sup
t∈[−n,n]

‖B(t)‖L (X0,X) <+∞.

Define
∆ :=

{
(t,s) ∈ R2 : t ≥ s

}
,

and recall the notion of an evolution family.

Definition 3.9.6. Let (Z,‖·‖) be a Banach space. A two-parameter family of bounded
linear operators on Z, {U(t,s)}(t,s)∈∆ is an evolution family if

(i) For each t,r,s ∈ R with t ≥ r ≥ s

U(t, t) = IL (Z) and U(t,r)U(r,s) =U(t,s);

(ii) For each x ∈ Z, the map (t,s)→U(t,s)x is continuous from ∆ into Z.

If in addition there exist two constants M̂ ≥ 1 and ω̂ ∈ R such that

‖U(t,s)‖L (Z) ≤ M̂eω̂(t−s), ∀(t,s) ∈ ∆ ,
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we say that {U(t,s)}(t,s)∈∆ is an exponentially bounded evolution family.

Consider the following homogeneous equation for each t0 ∈ R

du(t)
dt

= (A+B(t))u(t) for t ≥ t0 and u(t0) = x ∈ D(A). (3.9.4)

By using Theorem 5.2.7 and Proposition 5.4.1 we obtain the following Proposition.

Proposition 3.9.7. Let Assumptions 3.4.1, 3.5.2 and 3.9.5 be satisfied. Then the ho-
mogeneous Cauchy problem (3.9.4) generates a unique evolution family {UB(t,s)}(t,s)∈∆ ⊂
L (D(A)). Moreover, UB(·, t0)x0 ∈ C([t0,+∞),D(A)) is the unique solution of the
fixed point problem

UB(t, t0)x0 = TA0(t− t0)x0 +
d
dt

∫ t

t0
SA(t− s)B(s)UB(s, t0)x0ds, ∀t ≥ t0.

If we assume in addition that

sup
t∈R
‖B(t)‖L (X0,X) <+∞,

then the evolution family {UB(t,s)}(t,s)∈∆ is exponentially bounded.

The following theorem provides an approximation formula of the solutions of
equation (3.9.3). This is the first main result.

Theorem 3.9.8 (Approximation Formula). Let Assumptions 3.4.1, 3.5.2 and 3.9.5
be satisfied. Then for each t0 ∈ R, each x0 ∈ X0, and each f ∈ C([t0,+∞],X), the
unique integrated solution u f ∈C([t0,+∞],D(A)) of (3.9.3) is given by

u f (t) =UB(t, t0)x0 + lim
λ→+∞

∫ t

t0
UB(t,s)λ (λ I−A)−1 f (s)ds, ∀t ≥ t0, (3.9.5)

where the limit exists in D(A). Moreover, the convergence in (3.9.5) is uniform with
respect to t, t0 ∈ I for each compact interval I ⊂ R.

Remark 3.9.9. Under Assumptions 3.4.1 and 3.5.2 we may have

limsup
λ→+∞

‖λ (λ I−A)−1‖=+∞.

Theorem 3.9.8 was proved first by Guhring and Rabiger [156] when A is a Hille-
Yosida operator by using the extrapolation method to define the mild solutions. The-
orem 3.9.8 was proved in Magal and Seydi [250].

(e) Extrapolation Method. Let A : D(A)⊂ X→ X be a linear operator satisfying
Assumption 3.4.1. The extrapolation theory has been developped for Hille-Yosida
operators only. We now adapt some ideas from the Hille-Yosida case in Da Prato
and Grisvard [82], Amann [12], Thieme [329] and Nagel and Sinestrari [275] to the
non-Hille-Yosida case. Consider the norm on X
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‖x‖λ := ‖(λ I−A)−1x‖

for λ > ωA.

Lemma 3.9.10. Let Assumption 3.4.1 be satisfied. Then the following properties are
satisfied:

(i) For each λ ,µ > ωA, the norms ‖.‖λ and ‖.‖µ are equivalent;
(ii) For each λ > ωA there exists a constant c > 0 such that

‖x‖λ ≤ c‖x‖,∀x ∈ X ;

(iii) For each µ > ωA and each x ∈ X

lim
λ→+∞

‖λ (λ I−A)−1x− x‖µ = 0.

Proof. We have

‖x‖λ = ‖(λ I−A)−1x‖
≤ ‖(λ I−A)−1x− (µI−A)−1x‖+‖x‖µ

= ‖(µ−λ )(λ I−A0)
−1(µI−A)−1x‖+‖x‖µ

≤ [
|µ−λ |
λ −ωA

+1]‖x‖µ

and (i) follows. Moreover, from the above inequality we have

‖x‖λ ≤ [
|µ−λ |
λ −ωA

+1]‖(µI−A)−1‖L (X)‖x‖

and (ii) follows. Next we observe that

‖λ (λ I−A)−1x− x‖µ = ‖(µI−A)−1[λ (λ I−A)−1x− x]‖
= ‖λ (λ I−A0)

−1(µI−A)−1x− (µI−A)−1x‖

and since (µI−A)−1x ∈ D(A) the property (iii) follows. ut

In the following we introduce the completion space. For completeness we now
recall how the space is constructed.

Completion space of (X ,‖.‖λ ). Let λ > ωA be fixed. Recall some results from
Lang [224, Section 4 p. 71]. Consider the collection C(X) of all Cauchy sequences
of X endowed with the norm ‖.‖λ . Define the relation ∼ on C(X) by

{xn}n∈N ∼ {yn}n∈N⇔ lim
n→+∞

‖xn− yn‖λ = 0.

Then ∼ is an equivalence relation on C(X). Define X−1 the completion space of
(X ,‖.‖λ ) as the space of equivalent classes for∼. That is, X−1 is the space composed
by elements
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{̂xn}n∈N := {{yn}n∈N ∈C(X) : {xn}n∈N ∼ {yn}n∈N}.

Define the norm on X−1 by

‖{̂xn}n∈N‖−1 := lim
n→+∞

‖xn‖λ (3.9.6)

for each element {̂xn}n∈N ∈ X−1.
Observe that the limit exists in (3.9.6) since ln := ‖xn‖λ is a Cauchy sequence.

Indeed, we have for each n, p ∈ N that

|ln− ln+p|= |‖xn‖λ −‖xm‖λ | ≤ ‖xn− xm‖λ

and by construction {xn}n∈N is a Cauchy sequence, so is {ln}n∈N. Hence, the limit
exists in (3.9.6).

To show that this norm is well defined, we consider two sequences {xn}n∈N and
{yn}n∈N in the class {̂xn}n∈N. We have by definition of the class that

lim
n→+∞

‖xn− yn‖λ = 0

and
|‖xn‖λ −‖yn‖λ | ≤ ‖xn− x̂n‖λ .

Therefore,
lim

n→+∞
‖xn‖λ = lim

n→+∞
‖yn‖λ

and the norm is well defined.
Next define the map J : X → X−1 for each x ∈ X by

J(x) = {̂x}n∈N,

where the second member of this equality is the class of the constant sequence with
all elements being equal to x.

Lemma 3.9.11. The map J is isometric from (X ,‖.‖λ ) into (X−1,‖.‖−1). Moreover,
J(X) is dense in X−1.

Proof. The fact that J is isometric is clear. So let us prove that J(X) is dense in
X−1. Let {̂xn}n∈N ∈ X−1 and ε > 0 be fixed. Since {xn}n∈N is a Cauchy sequence,
we can find n0 ∈ N such that

‖xn− xn0‖λ ≤ ε,∀n≥ n0.

Hence
‖J(xn0)−{̂xn}n∈N‖−1 ≤ ε.

This completes the proof. ut

Lemma 3.9.12. (X−1,‖.‖−1) is a Banach space.
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Proof. It is sufficient to prove that every Cauchy sequence in J(X) converges in
(X−1,‖.‖−1). Let {xn}n∈N ∈ X be a sequence such that {J(xn)}n∈N is a Cauchy
sequence in X−1. Since J is isometric, we deduce that {xn}n∈N is a Cauchy sequence
in (X ,‖.‖λ ). Consider

x̂ := {̂xn}n∈N.

Since {xn}n∈N is a Cauchy sequence in (X ,‖.‖λ ), it follows that

lim
n→+∞

‖J(xn)− x̂‖−1 = 0.

This proves the claim. ut

As a consequence of the properties (ii) and (iii) of Lemma 3.9.10, we deduce the
following lemma.

Lemma 3.9.13. The map J is a continuous embedding from (X ,‖.‖) into (X−1,‖.‖−1).
Moreover, J(D(A)) is dense into (X−1,‖.‖−1).

Next we can define a family of linear operators {T (t)}t≥0 on J(X) as follows

T (t)J(x) = J(TA0(t)x), ∀x ∈ D(A),

or in other words, T (t)J(x) is the equivalent class of the constant sequence

{TA0(t)x,TA0(t)x, . . .}.

Since J is isometric from (X ,‖.‖λ ) into (X−1,‖.‖−1), we deduce that for each x ∈
D(A)

‖T (t)J(x)‖−1 = ‖TA0(t)x‖λ = ‖(λ I−A)−1TA0(t)x‖
= ‖TA0(t)(λ I−A)−1x‖ ≤MAeωAt‖(λ I−A)−1x‖.

Thus, by using the fact that J is isometric we have

‖T (t)J(x)‖−1 ≤MAeωAt‖J(x)‖−1.

By using the fact that J(D(A)) is dense in X−1, it follows that T (t) admits a unique
extension T−1(t) to the whole space X−1. Moreover, we have the following theorem.

Theorem 3.9.14. {T−1(t)}t≥0 is a strongly continuous semigroup on (X−1,‖.‖−1)
and

‖T−1(t)‖L (X−1) = ‖TA0(t)‖L (X0).

Proof. Since J(D(A)) is dense in X−1 it follows that

‖T−1(t)‖L (X−1) = sup{‖T−1(t)x̂‖−1 : x̂ ∈ X−1 and ‖x̂‖−1 ≤ 1}
= sup

{
‖T−1(t)J(x)‖−1 : x ∈ D(A) and ‖J(x)‖−1 ≤ 1

}
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Now by using the definitions of the norm ‖.‖−1, the embedding J(x) and T−1(t), we
obtain

‖T−1(t)‖L (X−1) = sup
{
‖TA0(t)x‖λ : x ∈ D(A) and ‖x‖λ ≤ 1

}
= sup

{
‖TA0(t)y‖ : y ∈ D(A0) and ‖y‖ ≤ 1

}
= ‖TA0(t)‖L (X0).

The strong continuity of {T−1(t)}t≥0 is straightforward. ut

The following theorem is an analogue of the theorem proved for Hille-Yosida
operators by Kellermann and Hiber [207]. This theorem has been proved by Nagel
and Sinestrari [275, Proposition 2.1].

Theorem 3.9.15 (Nagel-Sinestrari). Assume that A : D(A) ⊂ X → X is a Hille-
Yosida linear operator. For f ∈ L1((0,+∞),X) and t ≥ 0

(T−1 ∗ J( f ))(t) :=
∫ t

0
T−1(t− s)J( f (s))ds.

Then the following properties are satisfied:

(i) For each t ≥ 0
(T−1 ∗ J( f ))(t) ∈ J(X0);

(ii) For each r > 0, there exists a constant M1 = M1(r) > 0 (independent of f )
such that for each t ∈ [0,r],

‖(T−1 ∗ J( f ))(t)‖ ≤M1

∫ t

0
‖ f (s)‖ds.

One may find more information about this topic in Da Prato and Grisvard [82],
Amann [11, 12, 14], Thieme [329], Nagel and Sinestrari [275], Sinestrari [321],
Nagel [274], Engel and Nagel [126, 127, 128], Arendt et al. [23], DiBlasio [97],
Maniar and Rhandi [253], Amir and Maniar [15] and references therein. As far as
we know no extrapolation method has been developed for the non-Hille-Yosida case.

(f) Parabolic Problems with Nonhomogeneous Boundary Conditions. Parabolic
equations with nonhomogeneous boundary conditions have been studied by using
other approaches in the literature. One of the first references on the subject is the
book of Lions and Magenes [231]. More recently, another powerful approach has
been developed in Denk et al. [92, 93], Meyries and Schnaubelt [269]. See also Both
and Prüss [45] for an application to Navier-Stokes equations.





Chapter 4
Spectral Theory for Linear Operators

This chapter covers fundamental results on the spectral theory, including Fred-
holm alternative theorem and Nussbaum’s theorem on the radius of essential spec-
trum for bounded linear operators; growth bound and essential growth bound of
linear operators; the relationship between the spectrum of semigroups and the spec-
trum of their infinitesimal generators; spectral decomposition of the state space;
and asynchronous exponential growth of linear operators. The estimates of growth
bound and essential growth bound of linear operators will be used in proving the
center manifold theorem in Chapter 6.

4.1 Basic Properties of Analytic Maps

Let (X ,‖.‖) be a complex Banach space; that is, X is a C-vector space and ‖.‖ is
a norm on X satisfying‖x‖= 0⇔ x = 0,

‖λx‖= |λ |‖x‖ , ∀x ∈ X , ∀λ ∈ C,
‖x+ y‖ ≤ ‖x‖+‖y‖ , ∀x,y ∈ X ,

and (X ,‖.‖) is complete.
When X is aC-Banach space, the dual space X∗ is the space of all bounded linear

maps x∗ from X into C. Of course, if X is a C-Banach space, then X is also a R-
Banach space. When X is a R-Banach space, we denote by X∗R the space of bounded
linear functionals from X into R.

Let x∗ ∈ X∗ be given. Then

x∗(x) = Re(x∗(x))+ iIm(x∗ (x)) , ∀x ∈ X .

It can be seen that
Re(x∗(.)) ∈ X∗R, Im(x∗(.)) ∈ X∗R,

163
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and by using the fact that x∗ is C-linear (i.e. x∗ (ix) = ix∗(x),∀x ∈ X), we have

Re(x∗(x)) = Im(x∗(ix)) , ∀x ∈ X ,

or equivalently
Re(x∗(ix)) =−Im(x∗(x)) , ∀x ∈ X .

Conversely, if
x∗(x) = y∗(ix)+ iy∗(x), ∀x ∈ X∗,

where y∗ ∈ X∗R, then x∗ ∈ X∗. It follows that

X∗ = {y∗(i.)+ iy∗(.) : y∗ ∈ X∗R}= {z∗(.)− iz∗(i.) : z∗ ∈ X∗R} .

In particular, from this representation of the dual space X∗, it becomes clear that
most consequences of the Hahn-Banach theorem for real Banach spaces hold for
complex Banach spaces. Based on this fact, one may extend the results on holomor-
phic maps from C into C to maps from C into a Banach space X .

Now we recall some basic facts about analytic vector valued functions (see Taylor
and Lay [326, p.264-272] for more details).

Definition 4.1.1. Let f : Ω ⊂ C→ X be a map from an open subset Ω ⊂ C into a
complex Banach space X . We say that f is holomorphic on Ω if for each λ0 ∈ Ω

the limit

lim
λ→λ0

f (λ )− f (λ0)

λ −λ0

exists. We say that f is analytic on Ω if for each λ0 ∈ Ω , there exists a sequence
{an}n≥0 = {a

λ0
n }n≥0 ⊂ X , such that

δ := limsup
n→+∞

n
√
‖an‖> 0

and

f (λ ) =
+∞

∑
n=0

(λ −λ0)
n an

whenever |λ −λ0|< R := 1/δ .

The proofs of the following results are based on the Hahn-Banach theorem ap-
plied in complex Banach spaces, by observing that if f : Ω ⊂ C→ X is analytic,
then for each x∗ ∈ X∗ the map λ → x∗ ( f (λ )) is analytic from C into itself.

Theorem 4.1.2. Let f : Ω ⊂ C→ X be a map from an open subset Ω ⊂ C into a
complex Banach space X . Then f is holomorphic if and only if f is analytic on Ω .
Moreover, for each λ0 ∈Ω ,

f (λ ) =
+∞

∑
n=0

(λ −λ0)
n

n!
f (n) (λ0)
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whenever |λ −λ0| is small enough and

f (n) (λ0)

n!
=

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−(n+1) f (λ )dλ

for each ε > 0 small enough, SC (λ0,ε) = {λ ∈ C : |λ −λ0|= ε} , and SC (λ0,ε)
+

is the counterclockwise oriented circumference |λ −λ0|= ε .

Theorem 4.1.3 (Laurent Expansion). Let f : Ω ⊂ C→ X be a map from an open
subset Ω ⊂ C into a complex Banach space X . Assume that f is analytic on an
annulus 0≤ r1 < |λ −λ0|< r2, then f has a unique Laurent expansion

f (λ ) =
+∞

∑
n=−∞

(λ −λ0)
n an,

where
an =

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−(n+1) f (λ )dλ

for each ε ∈ (r1,r2) , where SC (λ0,ε) = {λ ∈ C : |λ −λ0|= ε} , and SC (λ0,ε)
+ is

the counterclockwise oriented circumference |λ −λ0|= ε.

Note that the above integral is a Steiltjes integral of the form

an =
1

2πi

∫ 2π

0
z(θ)−(n+1) f (z(θ)+λ0)dz(θ)

=
1

2πi

∫ 2π

0
z(θ)−(n+1) f (z(θ)+λ0)z′(θ)dθ ,

where
z(θ) = εeiθ .

The following lemma is well known (see Dolbeault [108, Theorem 2.1.2, p. 43]).

Proposition 4.1.4. Let f : Ω → X be an analytic map from an open connected sub-
set Ω ⊂ C into a Banach space X . Let z0 ∈ Ω . Then the following assertions are
equivalent

(i) f = 0 on Ω ;
(ii) f is null in a neighborhood of z0;
(iii) For each k ∈ N, f (k) (z0) = 0.

Proof. (i)⇒(ii)⇒(iii) is trivial. We prove (iii)⇒(i). Since Ω is connected, it is suf-
ficient to show that the subset

A =
{

z ∈Ω : f (k) (z) = 0, ∀k ∈ N
}

is non-empty, and both open and closed. Clearly A is non-empty since it contains z0.
Moreover, A is closed since it is the intersection of the closed subsets
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Ak =
{

z ∈Ω : f (k) (z) = 0
}

for k ≥ 0. Furthermore, if z1 ∈ A =
{

z ∈Ω : f (k) (z) = 0,∀k ∈ N
}
, since

f (z) =
+∞

∑
n=0

(z− z1) f (n) (z1)

whenever |z− z1| is small enough, it follows that

f (z) = 0

whenever |z− z1| is small enough. So A contains some neighborhood of z1. Hence,
A non-empty, open, and closed in Ω , so A = Ω . ut

4.2 Spectra and Resolvents of Linear Operators

Let A : D(A)⊂ X → X be a linear operator on complex Banach space X . Recall
that the resolvent set ρ (A) of A is the set of all points λ ∈ C, such that λ I−A is a
bijection from D(A) into X and the inverse (λ I−A)−1 is a bounded linear operator
from X into itself.

Definition 4.2.1. Let A : D(A) ⊂ X → X be a linear operator on a complex Banach
space X . The spectrum of the operator A is defined as the complement of the resol-
vent set

σ (A) = C\ρ (A) .

Consider the following three conditions:

(1) (λ I−A)−1 exists;
(2) (λ I−A)−1 is bounded;
(3) the domain of (λ I−A)−1 is dense in X .

The spectrum σ(A) can be further decomposed into three disjoint subsets.

(a) The point spectrum is the set

σp (A) := {λ ∈ σ (A) : N (λ I−A) 6= {0}} .

Elements of the point spectrum σp (A) are called eigenvalues. If λ ∈ σp (A) , ele-
ments x ∈N (λ I−A) are called eigenvectors or eigenfunctions. The dimension
of N (λ I−A) is the multiplicity of λ .

(b) The continuous spectrum is the set

σc (A) := {λ ∈ σ (A) : (1) and (3) hold but (2) does not}.

(c) The residual spectrum is the set
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σr (A) := {λ ∈ σ (A) : (1) holds but (3) does not}

=
{

λ ∈ σ (A) : (λ I−A)−1 exists but R(λ I−A) 6= X}
}
.

We have the following spectrum decomposition

σ(A) = σp (A)∪σc (A)∪σr (A) .

Example 4.2.2 (Point spectrum). Let X be a Banach space with finite dimension
and A : X → X be a linear operator. Since

dim(R(λ I−A))+dim(N (λ I−A)) = dimX ,

it follows that λ I−A is one-to-one if and only if R(λ I−A) = X , so the residual
spectrum is an empty set, σr(A) = /0. If λ I−A is one-to-one and (λ I−A)−1 exists,
since linear operators in a finite dimensional space are countinuous, it follows that
the continuous spectrum is also an empty set, σc(A) = /0. Therefore, a finite dimen-
sional space only has point spectrum, σ(A) = σp(A). If we identify A to its matrix
A = (ai j) into a given basis, then we have

σ(A) = σp(A) = {λ ∈ C : det(λ I−A) = 0}.

Example 4.2.3 (Continuous spectrum). Let X = L2(R). Define A : X → X as fol-
lows:

Ax(t) = tx(t), ∀t ∈ R

with
D(A) = {x(t) ∈ L2(R) : tx(t) ∈ L2(R)}.

Consider (λ I−A)x = 0, that is, (λ − t)x(t) = 0. We have x(t) = 0 for almost every
t 6= λ , so λ I−A is one-to-one and the point spectrum is an empty set, σp(A) = /0.
Moreover, the range

R(λ I−A) = {y(t) ∈ L2(R) :
y(t)

λ − t
∈ L2(R)}

is dense in L2(R). So the residual spectrum is an empty set, σr(A) = /0. Finally,
from (λ − t)x(t) = y(t) we can see that if λ ∈C and Im(λ ) 6= 0, then (λ I−A)−1 is
bounded. Thus,

ρ(A) = {λ ∈ C : Im(λ ) 6= 0}.

If λ ∈ R, then (λ I−A)−1 is unbounded,

σ(A) = σc(A) = {λ : Imλ = 0}= (−∞,+∞).

Example 4.2.4 (An operator with a spectral value that is not an eigenvalue).
Let X = `2(N,R) the space of real value sequences x = {xn}n∈N with



168 4 Spectral Theory for Linear Operators

‖x‖2
`2(N,R) := ∑

n≥0
|xn|2 <+∞.

Consider the right-shift operator A : `2(N,R)→ `2(N,R) defined by

A : (x1,x2, · · ·)→ (0,x1,x2, · · ·), ∀x = (x1,x2, · · ·) ∈ `2(N,R).

Notice that

‖Ax‖2 =
∞

∑
i=1
|xi|2 = ‖x‖2,

we have
‖A‖= 1.

Since Ax = 0 implies x = 0, it follows that 0 is not an eigenvalue. But the range

R(A) = {y = {yi} ∈ `2 : y1 = 0}

is not dense in `2(N,R), which means that

0 ∈ σr(A).

That is, 0 belongs to the residual spectrum of A but is not an eigenvalue of A.

The following definition was introduced by Browder [49].

Definition 4.2.5. The essential spectrum σess (A) of A is the set of λ ∈ σ (A) such
that at least one of the following holds:

(i) R(λ I−A) is not closed;
(ii) λ is a limit point of σ (A);

(iii)
+∞⋃
k=1

N ((λ I−A)k) is infinite dimensional.

The discrete spectrum is the set σd (A) = σ(A)\σess (A).

So we have another spectrum decomposition

σ(A) = σd (A)∪σess (A) .

Definition 4.2.6. Let A : D(A) ⊂ X → X be a linear operator on a complex Banach
space X . If λ ∈ σ (A) , then the generalized eigenspace of A with respect to λ is
defined by

Nλ (A) :=
+∞⋃
k=1

N
(
(λ I−A)k

)
.

Lemma 4.2.7. The resolvent set ρ (A) is an open subset of C. Moreover, if λ0 ∈
ρ (A) , then

(λ I−A)−1 = (λ0I−A)−1
+∞

∑
n=0

(λ0−λ )n (λ0I−A)−n (4.2.1)
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whenever |λ0−λ |‖(λ0I−A)−1 ‖L (X) < 1.

Proof. Set

Lλ := (λ0I−A)−1
+∞

∑
n=0

(λ0−λ )n (λ0I−A)−n ,

which is well defined whenever |λ0−λ |‖(λ0I−A)−1 ‖L (X) < 1. Then one may
easily prove that

(λ I−A)Lλ x = x, ∀x ∈ X

and
Lλ (λ I−A)x = x, ∀x ∈ D(A),

and the result follows. ut

Corollary 4.2.8. The spectrum σ(A)⊂ C of a bounded linear operator A is a com-
pact set.

The power series representation (4.2.1) of the resolvent (λ I−A)−1 enables us
to employ the techniques and results on analytic functions of complex variables to
analytic functions with values in a Banach space. From the formula (4.2.1) one may
observe that for each λ0 ∈ ρ (A) ,

lim
λ→λ0

(λ I−A)−1− (λ0I−A)−1

λ −λ0
=−(λ0I−A)−2 ,

where the limit is taken in the norm of operators. It follows that λ → (λ I−A)−1

from ρ (A) into L (X) is analytic. So if λ0 ∈ σ (A) is isolated in σ (A) , the resolvent
has a Laurent’s expansion:

(λ I−A)−1 =
+∞

∑
k=−∞

(λ −λ0)
k Bk, (4.2.2)

where Bk ∈L (X) is given by

Bk =
1

2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−(k+1) (λ I−A)−1 dλ (4.2.3)

for each ε > 0, where SC (λ0,ε) = {λ ∈ C : |λ −λ0|= ε} and SC (λ0,ε)
+ is the

counterclockwise oriented circumference |λ −λ0| = ε for sufficiently small ε > 0
so that |λ −λ0| ≤ ε does not contain any other point of the spectrum than λ0.

Definition 4.2.9. A point of the spectrum λ0 ∈ σ (A) is a pole of the resolvent
(λ I−A)−1 if λ0 is an isolated point of the spectrum (i.e. there exists ε > 0 such
that {λ ∈ C : |λ −λ0|< ε}∩σ (A) = /0) and there exists an integer m≥ 1 such that

B−m 6= 0, B−k = 0, ∀k ≥ m+1.

The integer m is then called the order of the pole λ0.
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The following theorem is proved in Yosida [381, Theorems 1 and 2, p.228-229].

Theorem 4.2.10. Assume that λ0 is a pole of order m of the resolvent (λ I−A)−1 .
Then we have the following properties

BkBm = 0 (k ≥ 0,m≤−1),
Bn = (−1)n Bn+1

0 (n≥ 1),
B−p−q+1 = B−pB−q (p,q≥ 1),
Bn = (A−λ0I)Bn+1 (n≥ 0),
(A−λ0I)B−n = B−(n+1) = (A−λ0I)n B−1 (n≥ 1),
(A−λ0I)B0 = B−1− I.

(4.2.4)

Moreover,
(A−λ0I)m+k B−1 = 0,∀k ≥ 0. (4.2.5)

Note that from the third equation of (4.2.4), we have for each p≥ 1 that

B−pB−1 = B−p−1+1 = B−p,

so B−1 is a projector on X . Since

(A−λ0I)B−1 = B−2,

it follows that
AB−1 = λ0B−1 +B−2.

So A restricted to R(B−1) is a bounded linear operator. We also have for each p≥ 1
that

AB−p = AB−1B−p = λ0B−1B−p +B−2B−p = λ0B−p +B−p−1. (4.2.6)

Moreover, from (4.2.3) it is clear that B−1 commutes with (λ I−A)−1 for each λ ∈
ρ (A) . Thus, (

λ0I−A |B−1(X)

)−1
= (λ0I−A)−1 |B−1(X) .

Recall that B−1(X) contains the generalized eigenspace associated to λ0. Therefore
the operator λ0I−A is invertible from D(A)∩(I−B−1)(X) into (I−B−1)(X). More-
over, by using the last equation of (4.2.4), we deduce that λ0 /∈ σ

(
A |(I−B−1)(X)

)
and(

λ0I−A |(I−B−1)(X)

)−1
= B0 |(I−B−1)(X) .

The following result is proved in Yosida [381, Theorem 3, p.229].

Theorem 4.2.11 (Yosida). Let A : D(A)⊂ X→ X be a closed linear operator in the
complex Banach space X and let λ0 be a pole of (λ I−A)−1 of order m ≥ 1. Then
λ0 is an eigenvalue of A, and

R (B−1) = N ((λ0I−A)n) , R (I−B−1) = R ((λ0I−A)n) , ∀n≥ m,
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X = N ((λ0I−A)n)⊕R ((λ0I−A)n) , ∀n≥ m.

We already knew that A |B−1(X) is bounded. Moreover, if λ0 is a pole of (λ I−A)−1

of order m≥ 1, we have from the above theorem that(
λ0I−A |B−1(X)

)m
= 0.

From (4.2.6) for p = m, we obtain

AB−p = λ0B−p.

Since B−p 6= 0, we have {λ0} ⊂ σ
(
A |B−1(X)

)
. To prove the converse inclusion

we use the same argument as in the proof of Kato [205, Theorem 6.17, p.178]. For
λ ∈ C and ε < |λ −λ0|, set

Lλ =
1

2πi

∫
SC(λ0,ε)

+

(λ ′I−A)−1

λ −λ ′
dλ
′.

Then we have

(λ I−A)Lλ =
1

2πi

∫
SC(λ0,ε)

+
(λ I−A)

(λ ′I−A)−1

λ −λ ′
dλ
′

=
1

2πi

[∫
SC(λ0,ε)

+

(
λ
′I−A

)−1 dλ
′+
∫

SC(λ0,ε)
+

1
λ −λ ′

dλ
′
]

=
1

2πi

[∫
SC(λ0,ε)

+

(
λ
′I−A

)−1 dλ
′
]
= B−1.

Similarly, we have
Lλ (λ I−A)x = B−1x,∀x ∈ D(A).

It follows that for each λ ∈ C\{λ0} , λ I−A |B−1(X) is invertible and(
λ I−A |B−1(X)

)−1
= Lλ |B−1(X) .

It implies that
σ
(
A |B−1(X)

)
= {λ0} .

Furthermore, since λ0 /∈ σ
(
A |(I−B−1)(X)

)
, we have

σ
(
A |(I−B−1)(X)

)
= σ (A)\{λ0} .

Assume that λ1 and λ2 are two distinct poles of (λ I−A)−1 . Set for each i = 1,2
that

Pi =
1

2πi

∫
SC(λi,ε)

+
(λ I−A)−1 dλ ,

where ε > 0 is small enough. It is clear that P1 commutes with P2 and
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P1P2 = P2P1 = 0.

Indeed, let x ∈R (P1) be fixed. Since P1 commutes with (λ I−A)−1 for each λ ∈
ρ (A) , we have

P2x =
1

2πi

∫
SC(λ2,ε)

+
(λ I−A)−1 xdλ =

1
2πi

∫
SC(λ2,ε)

+

(
λ I−A |P1(X)

)−1 xdλ .

Furthermore, since σ
(
A |P1(X)

)
= {λ1} , it follows from Lemma 2.2.6 that

P2x =
1

2πi

∫
SC(λ2,ε)

+

∞

∑
n=0

(λ −λ2)
n
[(

λ2I−A |P1(X)

)−1
]n+1

xdλ

=
1

2πi

∞

∑
n=0

∫
SC(λ2,ε)

+
(λ −λ2)

n dλ

[(
λ2I−A |P1(X)

)−1
]n+1

x

= 0.

Hence,
P2x = 0, ∀x ∈ R(P1) .

Assumption 4.2.12. Let (X ,‖.‖) be a complex Banach space and let A : D(A) ⊂
X → X be a linear operator satisfying Assumption 3.4.1. Assume that there exists
η ∈ R such that

Ση := σ (A0)∩{λ ∈ C : Re(λ )> η}

is non-empty, finite, and contains only poles of (λ I−A0)
−1 .

By using Lemma 2.2.10 we know that

σ(A0) = σ(A),

so
Ση := σ (A)∩{λ ∈ C : Re(λ )> η} ,

and for each λ0 ∈ Ση , we set

B0
λ0,k

=
1

2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ I−A0)
−1 xdλ , ∀k ∈ Z, x ∈ X0

and

Bλ0,k =
1

2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ I−A)−1 xdλ , ∀k ∈ Z, x ∈ X0.

The previous Yosida Theorem holds only for densely defined linear operators. Now
we extend the projectors B0

λ0,1
∈L (X0) to the all space X .

Lemma 4.2.13. Let Assumption 4.2.12 be satisfied. If λ0 ∈Ση is a pole of (λ I−A0)
−1

of order m, then λ0 is a pole of order m of (λ I−A)−1 and
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Bλ0,1x = lim
µ→+∞

B0
λ0,1

µ (µI−A)−1 x, ∀x ∈ X .

Proof. Let x ∈ X and k ∈ Z be fixed. We have Bλ0,kx ∈ X0, so

Bλ0,kx = lim
µ→+∞

µ (µI−A)−1 Bλ0,kx.

Thus,

µ (µI−A)−1 Bλ0,kx =
1

2πi
µ (µI−A)−1

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ I−A)−1 xdλ

=
1

2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ I−A0)
−1

µ (µI−A)−1 xdλ

= lim
µ→+∞

B0
λ0,k

µ (µI−A)−1 x,

and the result follows. ut

From now on, for any isolated pole of the resolvent λ0 ∈ σ (A) , we denote

Πλ0 := B−1 =
∫

SC(λ0,ε)
+
(λ I−A)−1 dλ

whenever ε > 0 is small enougth. From the above result, we see that Πλ0 is a pro-
jector. In fact, Πλ0 is the projector on the generalized eigenspace of A. Moreover, A
is a bounded linear operator on Πλ0(X) because A is closed (since its spectrum is
non-empty) and

AΠλ0 =
∫

SC(λ0,ε)
+

A(λ I−A)−1 dλ =
∫

SC(λ0,ε)
+
[−I +λ (λ I−A)−1]dλ .

Furthermore, we have the following result which extends Yosida Theorem for
densely defined linear operators to non-densely defined linear operators.

Proposition 4.2.14 (Generalized Yosida). Let A : D(A)⊂ X → X be a linear oper-
ator on a Banach space X. Assume that λ0 is a pole of the resolvent of A. Then

Πλ0 (λ I−A)−1 = (λ I−A)−1
Πλ0 ,∀λ ∈ ρ (A) .

Moreover, AΠλ0
(X) and A(I−Πλ0

)(X) are the parts of A in Πλ0(X) and
(
I−Πλ0

)
(X),

respectively, and satisfy

σ

(
AΠλ0

(X)

)
= {λ0} and σ

(
A(

I−Πλ0

)
(X)

)
= σ (A)\{λ0} .

Proof. By Theorem 4.2.10, Πλ0 is a projector, and by construction we have

(λ I−A)−1
Πλ0 = Πλ0 (λ I−A)−1 , ∀λ ∈ ρ (A) . (4.2.7)
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By assumption λ0 is a pole of order m ≥ 1 of the resolvent. Thus, by using (4.2.5)
we deduce that

(A−λ0I)m+k
Πλ0 = 0, ∀k ≥ 0. (4.2.8)

In particular it follows that

R
(
Πλ0

)
⊂N ((λ0I−A)m) .

Consider the splitting
X = Πλ0 (X)⊕

(
I−Πλ0

)
(X) .

Since Πλ0 commutes with the resolvent of A, we have(
λ I−AΠλ0

(X)

)−1
= (λ I−A)−1 |Πλ0

(X),(
λ I−A(

I−Πλ0

)
(X)

)−1

= (λ I−A)−1 |(
I−Πλ0

)
(X)

.

By using the first equality in equation (4.2.4), we observe that for each x ∈Πλ0 (X)
and each λ ∈ C\{λ0} close enough

(
λ I−AΠλ0

(X)

)−1
x = (λ I−A)−1 B−1x =

−1

∑
k=−m

(λ −λ0)
k Bkx.

Let f : ρ(AΠλ0
(X))→L (X) be the map defined by

f (λ ) := (λ −λ0)
m
(

λ I−AΠλ0
(X)

)−1

and let g : C→L (X) be the map defined by

g(λ ) :=
−1

∑
k=−m

(λ −λ0)
m+k Bkx.

For each r > 0, denote

BC (λ0,r) = {λ ∈ C : |λ −λ0|< r} .

Set
r0 := sup

{
r > 0 : BC (λ0,r)\{0} ⊂ ρ

(
AΠλ0

(X)

)}
.

Assume that r0 < +∞. Since σ(AΠλ0
(X)) is closed, we can find λ1 ∈ σ(AΠλ0

(X)),

such that
|λ1−λ0|= r0.

Then f and g are defined on BC (λ0,r0)\{0} and coincide in some neighborhood of
λ0. Since BC (λ0,r0)\{0} is open and connected, by applying Proposition 4.1.4 to
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f −g, we deduce that

f (λ ) = g(λ ), ∀λ ∈ BC (λ0,r0)\{0}.

But since g is analytic and defined on C, it follows for each sequence {λn} ⊂
BC (λ0,r0)\{0}→ λ1 that

f (λn) = g(λn)→ g(λ1).

Now since A is closed (because its resolvent set is not empty), we have(
λ1I−AΠλ0

(X)

)
g(λn) = (λn−λ0)

m
(

λ1I−AΠλ0
(X)

)(
λnI−AΠλ0

(X)

)−1

= (λn−λ0)
m
[
(λ1−λn)

(
λnI−AΠλ0

(X)

)−1
+ I
]

= (λ1−λn)g(λn)+(λn−λ0)
mI

or equivalently

(λ1I−AΠλ0
(X))g(λn) = (λ1−λn)g(λn)+(λn−λ0)

mI.

Since A is closed and g is analytic on C, we obtain (when λn→ λ1) that(
λ1I−AΠλ0

(X)

)
g(λ1) = (λ1−λ0)

mI.

Similarly we have

g(λ1)
(

λ1I−AΠλ0
(X)

)
= (λ1−λ0)

mIΠλ0
(X).

It follows that λ1 ∈ ρ(AΠλ0
(X)) and

g(λ1) = (λ1−λ0)
m
(

λ1I−AΠλ0
(X)

)−1
,

a contradiction, which implies that r0 =+∞. So σ(AΠλ0
(X)) = {λ0} and

(
λ I−AΠλ0

(X)

)−1
x =

−1

∑
k=−m

(λ −λ0)
k Bkx,∀λ ∈ C\{λ0} .

Now we compute the Laurent’s expansion of (λ I−A(I−Πλ0
)(X))

−1 around λ0. For

k > 0 and x ∈
(
I−Πλ0

)
(X) , we have

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−(−k+1)
(

λ I−A(
I−Πλ0

)
(X)

)−1

xdλ

=
(
I−Πλ0

)
B−kx = (I−B−1)B−kx
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= (A−λ0I)B0B−kx = 0.

It follows that (
λ I−A(

I−Πλ0

)
(X)

)−1

=
+∞

∑
n=0

(λ −λ0)
n Bn |(

I−Π
λ0

)
(X)
,

so λ0 /∈ σ(A(I−Πλ0
)(X)) and the result follows. ut

4.3 Spectral Theory of Bounded Linear Operators

Let T ∈L (X) be a bounded linear operator. From now on denote

T n+1 = T ◦T n, ∀n≥ 0, and T 0 = I.

Definition 4.3.1. Let T ∈L (X) . Then the essential semi-norm ‖T‖ess of T is de-
fined by

‖T‖ess = κ (T (BX (0,1))) ,

where BX (0,1) = {x ∈ X : ‖x‖X ≤ 1} , and for each bounded set B⊂ X ,

κ (B) = inf{ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}

is the Kuratovsky measure of non-compactness.

In the rest of this section, we use some properties of the measure of non-
compactness on Banach spaces. For various properties of the Kuratowskis measure
of non-compactness, we refer to Deimling [89], Martin [258], and Sell and You
[314, Lemma 22.2].

Lemma 4.3.2. Let (X ,‖.‖) be a Banach space and κ (.) the measure of non-
compactness defined as above. Then for any bounded subsets B and B̂ of X , we
have the following properties:

(a) κ (B) = 0 if and only if B is compact;
(b) κ (B) = κ

(
B
)

;

(c) If B⊂ B̂ then κ (B)≤ κ

(
B̂
)

;

(d) κ

(
B+ B̂

)
≤ κ (B)+κ

(
B̂
)
, where B+ B̂ =

{
x+ y : x ∈ B,y ∈ B̂

}
.

Proposition 4.3.3. For each pair of bounded linear operators T, T̂ ∈ L (X) , we
have the following properties:

(a) ‖T‖ess = 0 if and only if T is compact;
(b) ‖λT‖ess ≤ |λ |‖T‖ess ,∀λ ∈ C;

(c)
∥∥∥T + T̂

∥∥∥
ess
≤ ‖T‖ess +

∥∥∥T̂
∥∥∥

ess
;
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(d)
∥∥∥T T̂

∥∥∥
ess
≤ ‖T‖ess

∥∥∥T̂
∥∥∥

ess
;

(e) ‖T‖ess ≤ ‖T‖L (X) .

Lemma 4.3.4. Let T ∈L (X) . Then the limits lim
n→+∞

‖T n‖1/n
L (X)

and lim
n→+∞

‖T n‖1/n
ess

exist.

Proof. We use standard arguments (see Yosida [381, p.212]). Assume that {an}n≥0
is a sequence of non-negative real numbers such that

(am+p)
m+p ≤ (am)

m (ap)
p , ∀m, p≥ 1.

Then

amp ≤ (am)
m

mp
(
am(p−1)

)m(p−1)
mp

≤ (am)
m

mp

((
am(p−2)

)m(p−2)
m(p−1) (am)

m
m(p−1)

)m(p−1)
mp

≤ (am)
2m
mp
((

am(p−2)
))m(p−2)

mp

≤ am.

Set r = liminf
n≥1

an. Let ε > 0 be fixed. Let m≥ 0 be an integer satisfying

am ≤ r+ ε.

Then for any integer n ≥ 0 by using the Euclidian division, we can find an integer
p≥ 0 and a remainder 0≤ q≤ m−1 such that n = pm+q. We have

amp+q ≤ (amp)
mp
n (aq)

q
n ≤ (am)

mp
n (aq)

q
n

and
lim

n→+∞
pm/n = 1 and lim

n→+∞
q/n = 0.

Therefore, it follows that
limsup
n→+∞

an ≤ r+ ε.

This completes the proof. ut

Definition 4.3.5. Let T ∈L (X) . The spectral radius r (T ) of T is defined by

r (T ) := lim
n→+∞

‖T n‖1/n
L (X)

and the essential spectral radius ress (T ) of T is defined by

ress (T ) := lim
n→+∞

‖T n‖1/n
ess .
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Observe that for any integer n ≥ 0 we have ‖T n‖1/n
L (X)

≤ ‖T‖L (X). By using
Definition 4.3.5 it follows that

r (T )≤ ‖T‖L (X).

In fact, the spectral radius describes the range of the spectrum and we have the
following result.

Lemma 4.3.6. For each T ∈L (X) , we have

r (T )≥ sup{|λ | : λ ∈ σ (T )} .

Proof. Let γ > r (T ) be given. Set

|x|= sup
n≥0

‖T nx‖
γn .

Then by the definition of the spectral radius, there exists M ≥ 1 such that

‖x‖ ≤ |x| ≤M ‖x‖

and
|T x| ≤ γ |x| .

It follows that for any λ ∈ C such that |λ | > γ, the map λ I−T is invertible (since∣∣λ−1T
∣∣ < 1) and (λ I−T )−1 = λ−1

(
I−λ−1T

)−1
= λ−1

+∞

∑
k=0

(
λ−1T

)k
. It follows

that
sup{|λ | : λ ∈ σ (T )} ≤ r (T ) .

This completes the proof. ut

Theorem 4.3.7. For each T ∈L (X) , we have

r (T ) = sup{|λ | : λ ∈ σ (T )} .

Proof. Denote

p := sup{|λ | : λ ∈ σ (T )} , q := r (T ) = inf
n
{‖T n‖1/n

L (X)
}= lim

n→+∞
‖T n‖1/n

L (X)
.

By Lemma 4.3.6 we have p ≤ q. Let us prove the converse inequality. Let ε > 0
and let λ ∈ ρ(T ) with |λ |= p+ε . Since the resolvent (λ I−T )−1 is analytic in the
resolvent set ρ(T ) and since the resolvent set contains the annulus

0 < r1 ≤ |λ | ≤ r2

for any p < r1 < p+ ε ≤ max(p+ ε,q) < r2, by Lemma 4.3.6, when |λ | > q we
have
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(λ I−T )−1 =
1
λ

(
I− T

λ

)−1

=
1
λ

∞

∑
n=0

(
T
λ

)n

=
∞

∑
k=1

λ
−kT (k+1). (4.3.1)

By Theorem 4.1.3 the resolvent operator has a unique Laurent expansion

(λ I−T )−1 =
+∞

∑
n=−∞

λ
nAn, (4.3.2)

where
An :=

1
2πi

∫
SC(0,ε)

+
λ
−(n+1)(λ I−T )−1dλ . (4.3.3)

By comparing (4.3.1) and (4.3.2) we deduce that

An =

{
0 if n≥ 0
T (−n+1) if n < 0.

By using (4.3.3) and the fact that the resolvent is bounded on the circle λ = r1eiθ ,
we obtain for each n≥ 1 that

A−n =
1

2πi

∫
SC(0,r1)

+
λ
−(n+1)(λ I−T )−1dλ

=
1

2πi

∫ 2π

0
r(n−1)

1 e(n−1)iθ (r1eiθ I−T )−1× ir1eiθ dθ

=
1

2π

∫ 2π

0
rn

1eniθ (r1eiθ I−T )−1dθ .

Therefore, we can find a constant C > 0 such that

‖T n‖= ‖A−n+1‖ ≤Crn−1
1 .

It follows that
lim

n→+∞
‖λ−nT n‖= 0

whenever |λ |= p+ ε > r1, and for all n sufficiently large that

‖T n‖ ≤ |λ |n = (p+ ε)n,

which implies that
q = lim

n→+∞
‖T n‖1/n

L (X)
≤ p+ ε.

Since ε > 0 has been chosen arbitrarily, we have q≤ p. ut

Lemma 4.3.8. For each T ∈L (X) , we have

(a) ress (T )≤ r (T ) ;
(b) ress (T )≤ ‖T‖ess ;
(c) r (T )≤ ‖T‖.
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Proof. From Proposition 4.3.3(e), we have

‖T n‖ess ≤ ‖T
n‖L (X) , ∀n≥ 1,

and (a) follows. From Proposition 4.3.3(d), we have

‖T n‖ess ≤ ‖T‖
n
ess , ∀n≥ 1,

and (b) follows. The assertion (c) follows from the fact that

‖T n‖L (X) ≤ ‖T‖
n
L (X) , ∀n≥ 1.

This completes the proof. ut
Example 4.3.9. In the case ress (T )= r (T ) , the spectrum can take various forms and
the situation does not seem to be very clear in general. To illustrate this situation,
consider the shift operator T : BC ([0,+∞) ,C)→ BC ([0,+∞) ,C) defined by

T ( f )(t) = f (t +1), ∀t ≥ 0.

Then the spectrum of T is equal to

σ (T ) = {λ ∈ C : |λ | ≤ 1}

and
ress (T ) = r(T ) = 1.

Lemma 4.3.10 (Riesz’s Lemma). Let E be a normed vector space and let F be a
closed subspace of E such that

E 6= F.

Then for each ε ∈ (0,1) , there exists x̂ ∈ E, such that ‖x̂‖= 1 and d (x̂,F)≥ 1− ε.

Proof. Let x ∈ E \ F and ε ∈ (0,1) be fixed. Since F is closed, we have d :=
d (x,F)> 0. Fix y0 ∈ F such that

d ≤ ‖x− y0‖ ≤
d

1− ε
.

Then
x̂ =

x− y0

‖x− y0‖
satisfies the requirement. Indeed, if y ∈ F, we have

‖x̂− y‖=
∥∥∥∥ x− y0

‖x− y0‖
− y
∥∥∥∥

since y0 +‖x− y0‖y ∈ F. ut
As an immediate consequence of the Riesz’s lemma we have the following theo-

rem.
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Theorem 4.3.11 (Riesz’s Theorem). Let E be a normed vector space. If BE (0,1)
is compact, then dim(E)<+∞.

Definition 4.3.12. Let L : D(L)⊂ E → F be a densely defined linear operator from
a Banach space E into a Banach space F. Then the adjoint linear operator L∗ :
D(L∗)⊂ F∗→ E∗ of L is defined by

L∗x∗(x) = x∗ (Lx) , ∀x ∈ D(L),

where

D(L∗) =
{

x∗ ∈ F∗ : x∗ ◦L |D(L) has a bounded extension to the whole space E
}

or equivalently

D(L∗) =

{
x∗ ∈ F∗ : sup

x∈D(L):‖x‖≤1
|x∗ (Lx) |<+∞

}
.

Note that in order for L∗ to define a map we need L∗x∗ to be uniquely determined.
So we need to assure that x∗ ◦L |D(L) has a unique extension to the whole space E.
Thus in the above definition we need D(L) to be dense in E. We also remark that

G∗ (L) := {(y∗,x∗) ∈ Y ∗×X∗ : y∗ (Lx) = x∗ (x) ,∀x ∈ D(L)}

is Graph(L∗), the graph of L∗. Thus, from Lemma 3.3.4 we have

(x0,y0) ∈ Graph(L)⇔ 〈y∗,y0〉= 〈x∗,x0〉 , ∀(y∗,x∗) ∈ Graph(L∗) .

By using a similar argument we have

(x∗0,y
∗
0) ∈ Graph(L∗)⇔ 〈y∗0,y〉= 〈x∗0,x〉 , ∀(x,y) ∈ Graph(L) .

Let L : E → F be a bounded linear operator from a Banach space E into a Banach
space F. Then L∗ : F∗→ E∗ is simply defined by

L∗x∗ = x∗ ◦L.

Lemma 4.3.13. Let T ∈L (X) be a bounded linear operator on a Banach space X .
Then we have the following

(a) ‖T ∗‖ess ≤ 2‖T‖ess ;
(b) ‖T‖ess ≤ 2‖T ∗‖ess ;
(c) ress (T ∗) = ress (T ) .

Proof. (a) Let ε > ‖T‖ess . Then by the definition of ‖T‖ess we can find an integer
N ≥ 1 and y0, ..,yN ∈ X , such that

T (BX (0,1))⊂
N⋃

i=1

BX (yi,ε) .
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Let η > 0 be given. Assume that

‖T ∗‖ess > 2ε +η .

Let x∗0 ∈ BX∗ (0,1) be fixed. Since ‖T ∗‖ess > 2ε +η , we have

T ∗ (BX∗ (0,1))* BX∗ (T ∗x∗0,2ε +η) .

So we can find x∗1 ∈ BX∗ (0,1) such that

T ∗x∗1 /∈ BX∗ (T ∗x∗0,2ε +η) ,

and since ‖T ∗‖ess > 2ε +η , we have

T ∗ (BX∗ (0,1))*
1⋃

i=0

BX∗ (T ∗x∗i ,2ε +η) .

By induction, we can find a sequence {x∗n}n≥0 in BX∗ (0,1) such that

‖T ∗x∗n−T ∗x∗m‖X∗ ≥ 2ε +η , ∀n 6= m.

Let x ∈ BX (0,1) be fixed. We have

(T ∗x∗n−T ∗x∗m)(x) = (x∗n− x∗m)(T (x))

and T (x) ∈
N⋃

i=1
BX (yi,ε) that

|(T ∗x∗n−T ∗x∗m)(x)| ≤ sup
z∈BX (0,ε)
i=1,...,N

|(x∗n− x∗m)(yi + z)|

≤ sup
i=1,...,N

|(x∗n− x∗m)(yi)|+2ε.

So we obtain
2ε +η ≤ sup

i=1,...,N
|(x∗n− x∗m)(yi)|+2ε,∀n 6= m,

hence
η ≤ sup

i=1,...,N
|(x∗n− x∗m)(yi)| ,∀n 6= m.

But since x∗n ∈ BX∗ (0,1) , ∀n≥ 0, the sequence


 x∗n (y1)

...
x∗n (yN)




n≥0

is bounded. So

we can extract a converging subsequence


 x∗np (y1)

...
x∗np (yN)




n≥0

such that
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sup
z∈BX (yi,ε)
i=1,...,N

∣∣∣(x∗np − x∗np−1

)
(yi)
∣∣∣→ 0 as p→+∞,

and we obtain a contradiction. Therefore,

‖T ∗‖ess ≤ 2ε, ∀ε > ‖T‖ess .

(b) Let ε > ‖T ∗‖ess be given. By the definition of ‖T ∗‖ess , we can find an integer
N ≥ 1 and y∗0, ..,y

∗
N ∈ X∗, such that

T ∗ (BX∗(0,1))⊂
N⋃

i=1

BX∗ (y∗i ,ε) .

Let η > 0 be a given constant. Assume that

‖T‖ess > 2ε +η .

By induction, we can find a sequence {xn}n≥0 in BX (0,1) such that

‖T xn−T xm‖X ≥ 2ε +η , ∀n 6= m.

By the Hahn-Banach theorem we can find x∗m,n ∈ X∗ with
∥∥x∗m,n

∥∥
X∗ = 1 such that

x∗m,n (T xn−T xm) = ‖T xn−T xm‖X ≥ 2ε +η .

Notice that

x∗m,n (T xn−T xm) = x∗m,n (T xn−T xm) = T ∗x∗m,n(xn)−T ∗x∗m,n(xm)

and
T ∗x∗m,n ∈ BX∗

(
y∗i0 ,ε

)
for some i0 ∈ {1, ...,N} . So

T ∗x∗m,n = y∗i0 + z∗

for some z∗ ∈ BX∗ (0,ε) . It follows that

x∗m,n (T xn−T xm) = y∗i0 (xn− xm)+ z∗ (xn− xm) ,

so we obtain

2ε +η ≤ ‖T xn−T xm‖X ≤ sup
i=1,...,N

|y∗i (xn− xm)|+2ε.

The result follows by using the same argument as in part (a) of the proof.
(c) We have

1
2
‖T ∗n‖ess ≤ ‖T

n‖ess ≤ 2‖T ∗n‖ess , ∀n≥ 1,
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so (
1
2

)1/n

‖T ∗n‖1/n
ess ≤ ‖T

n‖1/n
ess ≤ 21/n ‖T ∗n‖1/n

ess , ∀n≥ 1,

and (c) follows when n→+∞. ut

The following theorem is a direct consequence of the open mapping theorem (see
Brezis [48, Corollary 2.7 p. 35] for a proof).

Theorem 4.3.14. Let E and F be two Banach spaces and let T be a bounded linear
operator from E into F that is bijective; i.e. injective (one-to-one) and surjective
(onto). Then T−1 is bounded from F into E.

Let Y be a Banach space and Y ∗ be the space of continuous linear forms on Y. Let
E be a subspace Y and F be a subspace of Y ∗. Denote the orthogonal complements
of E and F by

E⊥ = {x∗ ∈ Y ∗ : x∗(x) = 0, ∀x ∈ E} ,
F⊥ = {x ∈ Y : x∗(x) = 0, ∀x∗ ∈ F} .

We refer to Brezis [47, Corollary II.17 and Theorem II.18] for a proof of the follow-
ing lemma.

Lemma 4.3.15. Let L : D(L) ⊂ E → F be a closed and densely defined linear op-
erator from a Banach space E into a Banach space F. Then we have the following
properties

(a) N (L) = R (L∗)⊥ ;
(b) N (L∗) = R (L)⊥ ;
(c) N (L∗)⊥ = R (L)⇔R(L) is closed;
(d) N (L)⊥ = R (L∗)⇔R (L∗) is closed.

The first main result of this section is the following theorem.

Theorem 4.3.16. Let T ∈L (X) be a bounded linear operator on a Banach space
X and assume that

ress (T )< 1.

Then there exists an integer k0 ≥ 0 such that

(a) N ((I−T )k0) = N ((I−T )k0+n), ∀n≥ 1;
(b) dim(N ((I−T )k0))<+∞;
(c) For each k ≥ 1, R((I−T )k) is closed, and

R
(
(I−T )k

)
= N

(
(I−T ∗)k

)⊥
.

(d) For each k ≥ 1, R((I−T ∗)k) is closed, and

R
(
(I−T ∗)k

)
= N

(
(I−T )k

)⊥
.
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Proof. (a) Set
En := N ((I−T )n) , ∀n≥ 0.

Then we have
En ⊂ En+1, ∀n≥ 0,

and
(I−T )(En+1)⊂ En, ∀n≥ 1.

It follows that
(I−T )(En)⊂ (I−T )(En+1)⊂ En, ∀n≥ 0,

hence
T (En)⊂ En, ∀n≥ 1.

Assume that En 6= En+1,∀n ≥ 1. By applying the Riesz’s lemma, we can find a
sequence {un}n≥1 , such that

un ∈ En, ‖un‖= 1, and d (un,En−1)≥ 1/2, ∀n≥ 1.

Setting
vn := (I−T )un ∈ En−1,

we have
Tun = un− vn.

Thus,
T 2un = T (un)−T (vn) = un− vn−T (vn)

and we obtain by induction that

T k (un) = un−
k−1

∑
l=0

T l (vn) , ∀k ≥ 1.

Since T (En−1)⊂ En−1, ∀n≥ 1, it follows that

zk
n =

k−1

∑
l=0

T l (vn) ∈ En−1,∀n≥ 1,∀k ≥ 1.

Since ‖un‖= 1, we have

un− zk
n = T k (un) ∈ T k (BX (0,1)) .

Since ress (T )< 1, it follows that

κ

(
T k (BX (0,1))

)
→ 0 as k→+∞.

Let k0 ≥ 1 be given such that
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κ

(
T k0 (BX (0,1))

)
<

(
1
2

)3

.

Since ⋃
n≥0

{
un− zk0

n

}
⊂ T k0 (BX (0,1)) ,

we can find a subsequence {unp − zk0
np}p≥0 and x̂ ∈ X , such that

unp − zk0
np ∈ BX

(
x̂,
(

1
2

)3
)
, ∀p≥ 1.

Then∥∥∥unp − zk0
np − (unp−1 − zk0

np−1
)
∥∥∥ ≤ ∥∥∥unp − zk0

np − x̂
∥∥∥+∥∥∥x̂− (unp−1 − zk0

np−1
)
∥∥∥≤ (1

2

)2

.

Without loss of generality we can assume that np−1 < np,∀p≥ 0. We have

np−1 ≤ np−1,∀p≥ 0,

and
unp−1 − zk0

np−1
∈ Enp−1 ⊂ Enp−1,

so
zk0

np +(unp−1 − zk0
np−1

) ∈ Enp−1.

It follows that

d
(
unp ,Enp−1

)
≤
(

1
2

)2

,

which gives a contradiction to the fact that d
(
unp ,Enp−1

)
≥ 1/2. From this contra-

diction it follows that there exists an integer k0 ≥ 1 such that

N
(
(I−T )k0

)
= N

(
(I−T )k0+m

)
, ∀m≥ 1.

(b) We prove dim
(
Ek0

)
<+∞ by induction. Clearly E0 = {0}. Thus,

dim(E0) = 0.

Assume that dim(Ek)<+∞. Let u ∈ BEk+1 (0,1), then from part (a) of the proof we
know that there exists v ∈ Ek such that

Tu = u− v.

We have
‖v‖ ≤ (1+‖T‖) =: δ



4.3 Spectral Theory of Bounded Linear Operators 187

and

T k (u) = u−
k−1

∑
l=0

T l (v) .

Hence

κ
(
BEk+1 (0,1)

)
≤ κ

(
T k (BX (0,1))+BEk (0,δ )+T BEk (0,δ )+ ...+T k−1BEk (0,δ )

)
and, since dim(Ek)<+∞, we obtain

κ
(
BEk+1 (0,1)

)
≤ κ

(
T k (BX (0,1))

)
, ∀k ≥ 1.

When k goes to +∞, since ress (T )< 1, it follows that κ
(
T k (BX (0,1))

)
→ 0. Thus,

κ
(
BEk+1 (0,1)

)
= 0.

It implies that BEk+1 (0,1) is compact. But (I−T )k+1 is bounded, we deduce that
Ek+1 = N ((I−T )k+1) is closed, so is BEk+1 (0,1) . Hence, BEk+1 (0,1) is compact.
Now by applying the Riesz’s theorem we obtain that dim(Ek+1)<+∞.

(c) We prove the result by induction. Set

Xn = R ((I−T )n X) , ∀n≥ 0.

We have X0 = X . Assume that Xk is closed. Consider a sequence { fn} = {un −
Tun}→ f , where un ∈ Xk. We want to prove that f ∈R ((I−T )Xk). Since

dim
(
N
(
(I−T ) |Xk

))
<+∞,

we can find vn ∈N
((
(I−T ) |Xk

))
such that

‖un− vn‖= d
(
un,N

(
(I−T ) |Xk

))
.

Then we have
fn = (I−T )(un− vn), ∀n≥ 0.

Assume that {un− vn}n≥0 is unbounded. By extracting a subsequence that we de-

note with the same index, we have ‖un− vn‖→+∞. Set wn :=
un− vn

‖un− vn‖
. We have

d
(
wn,N

((
(I−T ) |Xk

)))
= inf

x∈N((I−T )|Xk)

∥∥∥∥ un− vn

‖un− vn‖
− x
∥∥∥∥

= inf
x∈N((I−T )|Xk)

∥∥∥∥un− (vn + x)
‖un− vn‖

∥∥∥∥
= inf

y∈N((I−T )|Xk)

∥∥∥∥ un− y
‖un− vn‖

∥∥∥∥ .
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So

d
(
wn,N

(
(I−T ) |Xk

))
=

d
(
un,N

(
(I−T ) |Xk

))
‖un− vn‖

= 1.

Set gn := fn
‖un−vn‖ → 0, we have

wn = gn +Twn =
m

∑
k=0

T kgn +T m+1(wn), ∀m≥ 0.

Denote
C =

⋃
n≥0

{gn}∪{0} .

Then C is compact and

κ

(⋃
n≥0

{wn}
)
≤ κ

(
C+TC+ ...+T mC+T m+1BX (0,1)

)
,

κ

(⋃
n≥0

{wn}
)
≤ κ

(
T m+1BX (0,1)

)
→ 0, m→+∞.

We deduce that
⋃

n≥0
{wn} is relatively compact, so we can extract a subsequence{

wnp

}
→ w. Since Xk is closed, we have

w ∈ Xk.

Note that
gnp = (I−T )wnp ,

we obtain
(I−T )w = 0,

so
w ∈N

((
(I−T ) |Xk

))
.

Since the map x→ d
(
x,N

((
(I−T ) |Xk

)))
is continuous, we obtain

d
(
w,N

((
(I−T ) |Xk

)))
= 1,

a contraction. So the sequence {un− vn}n≥0 is bounded.
Now by noting that

un− vn = fn +T (un− vn)

and by using the same arguments as above, we can extract a converging subsequence{
unp − vnp

}
p≥0→ ŵ ∈ Xk, and obtain

f = (I−T ) ŵ.
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Hence, Xk+1 is closed. Assertion (c) follows by induction because Xk+1 =R((I−T ) |Xk

). Since R((I−T )k X) is closed, it follows from Lemma 4.3.15 (c) that

R
(
(I−T )k X

)
= N

(
(I−T ∗)k

)⊥
,∀k ≥ 0.

Finally to prove (d) it is sufficient to observe that ress(T ∗) = ress(T )< 1. There-
fore, we can apply property (c) to T ∗ to claim that R((I−T ∗)k X) is closed. By
using Lemma 4.3.15 (d) the result follows. This completes the proof. ut

Lemma 4.3.17 (Fredholm Alternative). Let T ∈L (X) be a bounded linear oper-
ator on a Banach space X and assume that

ress (T )< 1.

Then
N ((I−T )) = {0}⇔R ((I−T )) = X .

Proof. ⇒ Assume that
N ((I−T )) = {0} .

Assume by contradiction that

E1 := R (I−T ) 6= X .

By Theorem 4.3.16, E1 is a closed subspace of X , therefore E1 is a Banach space
endowed with the norm of X and we have

T (E1) = T (I−T )(X) = (I−T )(T (X))⊂ (I−T )(X) = E1

and
(I−T )(E1) = (I−T )(I−T )(X)⊂ (I−T )(X) = E1.

Since by assumption I−T is one-to-one, by induction and by setting Ek =(I−T )k (E1)
for all k ≥ 1, we obtain a decreasing sequence of subspaces {En}n≥1, such that
En+1 6= En, ∀n≥ 0. Moreover, since T (E1)⊂ E1, we have

T En = T (I−T )n (E1) = (I−T )n (T E1)⊂ (I−T )n (E1) = En,

that is,
T En ⊂ En.

By applying the Riesz’s lemma we can find a sequence {xn}⊂En, such that ‖xn‖= 1
and d (xn,En+1)≥ 1

2 .

Moreover, since ress (T ) < 1, we have κ
(
T k (B(0,1))

)
→ 0 as k→ +∞, there

exists k0 ≥ 1 such that

κ

(
T k0 (B(0,1))

)
≤ 1

8
.

Hence, we can find a subsequence {xnp}p≥0 such that
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(
xnp

)
−T k0

(
xnp−1

)∥∥∥≤ 1
4
.

We have

T k0xnp = (I−T )xnp +T (I−T )xnp +T 2 (I−T )xnp + ...

+T k0−1 (I−T )xnp − xnp

=
k0−1

∑
l=0

T l (I−T )xnp − xnp .

It follows that

T k0xnp −T k0xnp+1 =
k0−1

∑
l=0

T l (I−T )xnp −
k0−1

∑
l=0

T l (I−T )xnp+1 + xnp+1 − xnp .

Notice that

k0−1

∑
l=0

T l (I−T )xnp −
k0−1

∑
l=0

T l (I−T )xnp+1 + xnp+1 ∈ Enp+1,

we have ∥∥∥T k0xnp −T k0xnp+1

∥∥∥≥ 1
2
,

a contradiction. So R (I−T ) = X .
⇐ Conversely, assume that R (I−T ) = X . Then by Lemma 4.3.15 (c), we have

N (I−T ∗) =R (I−T )⊥ = X⊥ = {0} . Since ress (T ∗) = ress (T ) , we can apply the
previous part of the proof and deduce that R (I−T ∗) = X∗. By using Lemma 4.3.15
(d), it follows that N (I−T ) = R((I−T ∗))⊥ = X∗⊥ = {0} . ut

Remark 4.3.18. The Fredholm Alternative Theorem is useful for the solvability of
the nonhomogeneous equation u− Tu = f : either the nonhomogeneous equation
has a unique solution for every f ∈ X or the nonhomogeneous equation is solvable
if and only if f satisfies the orthogonality condition f ∈N (I−T ∗)⊥ .

Lemma 4.3.19. Under the assumptions of Theorem 4.3.16, (I−T )
R((I−T )k0 )

, the

part of (I−T ) in R((I−T )k0), is invertible.

Proof. Set Xk0 := R((I−T )k0). Then

(I−T )Xk0 = (I−T )(I−T )k0 X = (I−T )k0 (I−T )X ⊂ (I−T )k0 X = Xk0 ,

so (I−T )Xk0 ⊂ Xk0 . Moreover, assume that there exists x ∈ Xk0 \{0} such that

(I−T )x = 0.

There exists y ∈ X , such that x = (I−T )k0 y, and
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(I−T )k0 y 6= 0 and (I−T )k0+1 y = 0,

which implies that N ((I−T )k0) 6= N ((I−T )k0+1), a contradiction. Since Xk0 is
closed, it is a Banach space endowed with the norm of X , and by applying Lemma
4.3.17 to (I−T )Xk0

, we obtain (I−T )
(
Xk0

)
= Xk0 . Since (I−T )Xk0

is bijective and

bounded, we know that (I−T )−1
Xk0

is bounded, the result follows. ut

Let E be a subspace of X . Recall that the quotient space X/E is defined by

X/E := {{x+ v : v ∈ E} : x ∈ X} .

Set
x̂ := {x+ v : v ∈ E} ,∀x ∈ X .

Then X/E is a vector space with the addition

x̂+ ŷ := x̂+ y

and the multiplication by a scalar number

λ x̂ := λ̂x.

If we endow the norm ‖.‖X/E defined by

‖x̂‖X/E = inf
v∈E
‖x+ v‖

and if E is a closed subspace of X , then (X/E,‖.‖X/E) is a Banach space. Moreover,
if T ∈ L (X) and E is a subspace of X such that T (E) ⊂ E, then we can define
TX/E : X/E→ X/E by

TX/E(x̂) = T̂ (x).

Since T (E)⊂ E, if x = y+w for some w ∈ E, then

TX/E(x̂) = {T (x)+ v : v ∈ E} = {T (y)+T (w)+ v : v ∈ E}
= {T (y)+ v : v ∈ E} = TX/E(ŷ).

So TX/E defines a map on X/E. Furthermore, it is readily checked that TX/E is lin-
ear. The following lemma also provides the boundedness of TX/E and an important
estimation for the essential norm of TX/E .

Lemma 4.3.20. Let T ∈L (X) be a bounded linear operator on a Banach space X
and let E be a subspace of X satisfying

T (E)⊂ E.

Then we have the following:

(a)
∥∥TX/E

∥∥≤ ‖T‖L (X) ;
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(b)
∥∥TX/E

∥∥
ess ≤ ‖T‖ess ;

(c) ress
(
TX/E

)
≤ ress (T ) .

Proof. (a) Let δ > 0 be a constant. Let x̂ = {x+ v : v ∈ E} ∈ BX/E (0,1) . Since

‖x̂‖X/E = inf
v∈E
‖x+ v‖ ≤ 1,

there exists v0 ∈ E such that
‖x+ v0‖ ≤ 1+δ

and
x̂ = {x+ v0 + v : v ∈ E} .

So we have
TX/E(x̂) = {T (x+ v0)+ v : v ∈ E}

and ∥∥TX/E(x̂)
∥∥

X/E = inf
v∈E
‖T (x+ v0)+ v‖ ≤ ‖T (x+ v0)‖ ≤ ‖T‖(1+δ ) .

Thus, ∥∥TX |E
∥∥

L (X/E) ≤ ‖T‖(1+δ ) , ∀δ > 0.

(b) Let ε > ‖T‖ess . Then we can find an integer N ≥ 1 and y1, ...,yN ∈ X such
that

T (BX (0,1))⊂
N⋃

i=1

B(yi,ε) .

Set
ŷi = {yi + v : v ∈ E} ∈ X/E, ∀i = 1, ...,N.

Let η > 0 and x̂ ∈ BX/E (0,1) be fixed. Since x̂ = {x+ v : v ∈ E} and

‖x̂‖X/E = inf
v∈E
‖x+ v‖ ≤ 1,

there exists v0 ∈ E, such that ‖x+ v0‖ ≤ 1+η and x̂ = {x+ v0 + v : v ∈ E} .
Since there exists i0 ∈ {1, ...,N} such that∥∥∥∥T

(
x+ v0

1+η

)
− yi0

∥∥∥∥≤ ε

and ∥∥TX/E (x̂)− (1+η) ŷi
∥∥ = inf

w,v∈E

∥∥T (x+ v0)− (1+η)yi0 − v
∥∥

≤
∥∥T (x+ v0)− (1+η)yi0

∥∥≤ (1+η)ε,

it follows that
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TX/E
(
BX/E (0,1)

)
⊂

N⋃
i=1

B((1+η) ŷi,(1+η)ε) .

Thus ∥∥TX/E
∥∥

ess ≤ (1+η)ε,∀η > 0, ∀ε > ‖T‖ess ,

and (b) follows.
By using the previous part of the proof, we have∥∥∥T n

X/E

∥∥∥
ess
≤ ‖T n‖ess ,∀n≥ 0,

and (c) follows. ut

The second main result of this section is the following theorem.

Theorem 4.3.21. With the same notations and assumptions as in Theorem 4.3.16,
we have

X = N
(
(I−T )k0

)
⊕R

(
(I−T )k0

)
.

Moreover, we have the following properties:

(a) (I−T )
R((I−T )k0 )

(the part of (I−T ) in R((I−T )k0)) is invertible;

(b) The spectrum of (I−T )
N ((I−T )k0 )

(the part of (I−T ) in N ((I−T )k0)) is {0} .

Proof. We first prove that N ((I−T )k0)∩R((I−T )k0) = {0} . Assume that there
exists x ∈R((I−T )k0)\{0} such that

(I−T )k0 x = 0.

Then there exists y ∈ X with (I−T )k0 y = x such that

(I−T )k0 y = x 6= 0 and (I−T )2k0 y = 0.

This implies that N ((I−T )k0) 6= N ((I−T )2k0), which contradicts the fact that
N ((I−T )k0) = N ((I−T )k0+1) and is impossible. It follows that the part of
(I−T ) in R((I−T )k0) is invertible.

Similarly, assume that N ((I−T ∗)k0)∩R((I−T ∗)k0) 6= {0} . Then we can find
x ∈R((I−T ∗)k0)\{0} such that

(I−T ∗)k0 x = 0.

It implies that N ((I−T ∗)k0) 6= N ((I−T ∗)2k0) which is impossible.
We now prove that

X = N
(
(I−T )k0

)
⊕R

(
(I−T )k0

)
.
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Since T (N ((I−T )k0))⊂N ((I−T )k0), we can consider the quotient space X/N ((I−T )k0)
endowed the norm ‖.‖X/N ((I−T )k0 )

defined as above, and consider

TX/N ((I−T )k0) : X/N
(
(I−T )k0

)
→ X/N

(
(I−T )k0

)
.

Assume that N (I−TX/N ((I−T )k0 )
) 6= {0} . Then there exists

x̂ =
{

x+ v : v ∈N
(
(I−T )k0

)}
∈ X/N

(
(I−T )k0

)
with x̂ 6= 0X/N ((I−T )k0)

such that (
I−TX/N ((I−T )k0)

)
(x̂) = 0.

So there exist x /∈N ((I−T )k0) and v,w ∈N ((I−T )k0) such that

(I−T )(x− v) = w⇔ (I−T )x = w+(I−T )v.

But (I−T )N ((I−T )k0)⊂N ((I−T )k0), we have

w+(I−T )v ∈N
(
(I−T )k0

)
and (I−T )k0+1 x = 0.

Hence, x ∈N ((I−T )k0+1), which contradicts N ((I−T )k0) = N ((I−T )k0+1).
Thus,

N
(

I−TX/N ((I−T )k0)

)
= {0} .

Now from Lemma 4.3.20 we know that ress(TX/N ((I−T )k0 )
)≤ ress (T )< 1. Applying

Lemma 4.3.17 to TX/N ((I−T )k0 )
and noting that N (I−TX/N ((I−T )k0)) = {0} , we

deduce that
R
(

I−TX/N ((I−T )k0)

)
= X/N

(
(I−T )k0

)
.

It follows that

R

((
I−TX/N ((I−T )k0)

)k0
)
= X/N

(
(I−T )k0

)
.

This is equivalent to say that for each ŷ = {y+ v : v ∈N ((I−T )k0)} with y ∈ X ,

there exists x̂ = {x+ v : v ∈N ((I−T )k0)} with x ∈ X , such that

ŷ =
(

I−TX/N ((I−T )k0)

)k0
(x̂) =

{
(I−T )k0 (x)+ v : v ∈N

(
(I−T )k0

)}
.

So for each y ∈ X , there exist x ∈ X and v ∈N ((I−T )k0), such that

y = (I−T )k0 x+ v.

We deduce that
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X = R
(
(I−T )k0

)
⊕N

(
(I−T )k0

)
.

To conclude, assertion (a) follows from Lemma 4.3.19 and (b) is immediate since
(I−T )k0

N ((I−T )k0 )
= 0. ut

By noting that
N ((λ I−T )) = N

((
I−λ

−1T
))

we can apply the previous results to study the spectrum of T contained in {λ ∈
σ (T ) : |λ |> ress(T )}.

As a first consequence we have the following results.

Lemma 4.3.22. Let T ∈L (X) be a bounded linear operator on a Banach space X .
Then

{σ (T ) : |λ |> ress(T )} ⊂ σP (T ) .

Proof. Assume that λ ∈ σ (T ) and N (λ I−T ) = {0} . Applying Lemma 4.3.17 to(
I−λ−1T

)
, we deduce that R (λ I−T ) = X , so (λ I−T ) is invertible, which is

impossible since λ ∈ σ (T ) . ut

Lemma 4.3.23. Let T ∈ L (X) be a bounded linear operator on X. Assume that
r(T ) > ress (T ) . Then each λ0 ∈ σ (T ) ∩ {λ ∈ C : |λ |> ress (T )} is isolated in
σ (T ) .

Proof. Let λ0 ∈ σ (T )∩ {λ ∈ C : |λ |> ress (T )}. Replacing T by λ
−1
0 T we can

assume (without loss of generality) that λ0 = 1. Let k0 ≥ 1 be given such that

X = N
(
(I−T )k0

)
⊕R

(
(I−T )k0

)
and

N
(
(I−T )k0

)
= N

(
(I−T )k0+1

)
.

Let Π ∈L (X) be the bounded linear operator of projection such that

R (Π) = N
(
(I−T )k0

)
and N (Π) = R

(
(I−T )k0

)
.

We have
ΠT = T Π .

Let TR(Π) be the part of T in R (Π) and TN (Π) be the part T in N (Π) . Then
from the previous results we known that σ(TR(Π)) = {1} and 1 ∈ ρ

(
TN (Π)

)
(i.e.

IN (Π)−TN (Π) is invertible), and since ρ
(
TN (Π)

)
is open, we can find ε > 0, such

that for λ ∈ BC (1,ε) , λ IN (Π)−TN (Π) is invertible. So for each λ ∈ BC (1,ε)\{1}
we have that λ I−T is invertible, and

(λ I−T )−1 =
(
λ IN (Π)−TN (Π)

)−1
(I−Π)+

(
λ IR(Π)−TR(Π)

)−1
Π .

This completes the proof. ut
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Remark 4.3.24. In Lemma 4.3.23, we assumed r(T ) > ress (T ) only to make sure
that σ (T )∩{λ ∈ C : |λ |> ress (T )} is nonempty.

Lemma 4.3.25. Let T ∈ L (X) be a bounded linear operator on X. Assume that
r(T )> ress (T ) . Then for each γ ∈ (ress (T ) ,r(T )] , the subset

σ (T )∩{λ ∈ C : |λ | ≥ γ}

is finite.

Proof. Replacing T by r(T )−1T, we can assume that r(T ) = 1. Set

γ0 := inf{γ ∈ (ress (T ) ,1] : the subset {λ ∈ σ (T ) : |λ | ≥ γ} is finite} .

Assume that γ0 > ress (T ) . Then for each ε ∈ (0,γ0− ress (T )) , the subset

{λ ∈ σ (T ) : γ0 + ε ≥ |λ | ≥ γ0− ε}

is infinite.
Hence, we can construct a sequence {λn}n≥0 ⊂ σ (T ) such that

|λn| → γ0, |λn|>
ress (T )+ γ0

2
, and λn 6= λm whenever n 6= m.

By taking a subsequence we can assume that λn→ λ̂ . Moreover, by Lemma 4.3.22
for each n≥ 1, there exists fn ∈ X with ‖ fn‖= 1, such that

T fn = λn fn.

Then κ
({

λ−1
n T fn : n≥ 0

})
= κ

({
λ−1

n T fn : n≥ p
})

and λn→ λ̂ . We have

κ
({

λ
−1
n T fn : n≥ 0

})
=
∣∣∣λ̂ ∣∣∣−1

κ ({T fn : n≥ 0}) ,

which implies that

κ ({ fn : n≥ 0})≤ γ
−1
0 ress (T )κ ({ fn : n≥ 0}) .

It follows that
κ ({ fn : n≥ 0}) = 0.

So we can extract a converging subsequence
{

fnp

}
p≥0→ f , and since T is bounded

we obtain that
T f = λ̂ f .

Thus, we have λ̂ ∈σ (T ) and there exists {λn}n≥0⊂σ (T )→ λ̂ with λn 6= λ̂ ,∀n≥ 0.

It follows that λ̂ is not an isolated point of the spectrum, but
∣∣∣λ̂ ∣∣∣ > ress (T ) , this is

impossible by Lemma 4.3.23. ut



4.4 Essential Growth Bound of Linear Operators. 197

Using the definition of the essential spectrum and summarizing the above results,
we can state the Nussbaum theorem (Nussbaum [280]) as follows.

Theorem 4.3.26 (Nussbaum). Let T ∈L (X) be a bounded linear operator on a
Banach space X. Then

ress (T ) = sup{|λ | : λ ∈ σess (T )} .

The above results can be summarized in the following theorem.

Theorem 4.3.27. Let T ∈L (X) be a bounded linear operator on a Banach space
X. Then

r (T ) = max

(
ress (T ) , sup

λ∈σ(T )\σess(T )
|λ |
)
.

Moreover, if ress (T )< r(T ), then for each γ ∈ (ress (T ) ,r(T )] the subset

σ (T )∩{λ ∈ C : |λ | ≥ γ}

is finite. Furthermore, for each λ0 ∈ σ (T )∩{λ ∈ C : |λ |> ress (T )} , there exists
k0 ≥ 1 so that

X = R
(
(λ0I−T )k0

)
⊕N

(
(λ0I−T )k0

)
,

such that

T
(
R
(
(λ0I−T )k0

))
⊂R

(
(λ0I−T )k0

)
, T
(
N
(
(λ0I−T )k0

))
⊂N

(
(λ0I−T )k0

)
with the following properties:

(a) (λ0I−T )
R((λ0I−T )k0 )

(the part of (λ0I−T ) in R((λ0I−T )k0)) is invertible;

(b) The dimension of N ((λ0I−T )k0) is finite;
(c) The spectrum of T

N ((λ0I−T )k0 )
(the part of T in N ((λ0I−T )k0)) is {λ0} .

4.4 Essential Growth Bound of Linear Operators.

Let (X ,‖.‖) be a complex Banach space and A : D(A)⊂ X → X be the infinites-
imal generator of a strongly continuous semigroup {TA(t)}t≥0 of bounded linear
operators on X . In the following lemma we use the convention that

e−∞ = 0 and ln(0) =−∞.

Definition 4.4.1. Let {TA(t)}t≥0 be a strongly continuous semigroup of bounded
linear operators on a Banach space X with infinitesimal generator A. Then the
growth bound of {TA(t)}t≥0 is defined by
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ω0(A) := lim
t→+∞

ln(‖TA(t)‖)
t

∈ [−∞,+∞)

and the essential growth bound of {TA(t)}t≥0 is defined by

ω0,ess(A) := lim
t→+∞

ln(‖TA(t)‖ess)

t
∈ [−∞,+∞) .

Lemma 4.4.2. Let {TA(t)}t≥0 be a strongly continuous semigroup of bounded linear
operators on a Banach space X with infinitesimal generator A. Then we have the
following properties

(a) ω0(A) = limt→+∞
ln(‖TA(t)‖)

t ∈ [−∞,+∞) exists;

(b) ω0,ess(A) = limt→+∞

ln(‖TA(t)‖ess)
t ∈ [−∞,+∞) exists;

(c) ω0,ess(A)≤ ω0(A);
(d) r (TA(t)) = eω0(A)t , ∀t ≥ 0;
(e) ress (TA(t)) = eω0,ess(A)t , ∀t ≥ 0.

Proof. (a) We have for t ∈ [n,n+1] that

ln(‖TA(t)‖)
t

=
ln(‖TA(t−n)TA(n)‖)

t

≤ n
t

ln(‖TA(t)‖)+ ln(‖TA(n)‖)
n

.

Thus, for t ∈ [n,n+1] we have

ln(‖TA(n+1)‖)
n+1

=
ln(‖TA(n+1− t)‖)+ ln(‖TA(t)‖)

n+1

≤ t
n+1

ln(‖TA(n+1− t)‖)+ ln(‖TA(t)‖)
t

.

Hence

lim
n→+∞

ln
(
‖TA(n)‖1/n

)
≤ limsup

t→+∞

ln(‖TA(t)‖)
t

≤ lim
n→+∞

ln
(
‖TA(n)‖1/n

)
.

So when t→+∞, we obtain

lim
n→+∞

ln
(
‖TA(n)‖1/n

)
≤ liminf

t→+∞

ln(‖TA(t)‖)
t

,

and (a) follows. The proof of (b) is similar.
(c) It is sufficient to note that ‖TA(t)‖ess ≤ ‖TA(t)‖ , ∀t ≥ 0. We also remark that

‖TA(tn)‖1/n = e
t
ln(‖TA(nt)‖)

nt .

So when n goes to +∞, we obtain (c). The proof of (d) is similar. ut
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The following theorem, which was proved by Webb [362][363], gives relation-
ship between the spectrum of a semigroup and the spectrum of its infinitesimal
generator.

Theorem 4.4.3 (Webb). Let {TA(t)}t≥0 be a strongly continuous semigroup of
bounded linear operators on a Banach space X with infinitesimal generator A. Then
we have the following statements:

(i) If λ ∈ σp(A), then eλ t ∈ σp(TA(t)) for t ≥ 0; if µ ∈ σp(TA(t)) for some t >
0,µ 6= 0, then there exists λ ∈ σp(A) such that eλ t = µ and N (eλ t I− TA(t))
is the closed linear extension of the linear independent subspaces N (λkI−A),
where λk ∈ σp(A) and eλkt = µ;

(ii) If λ ∈ σ(A), then eλ t ∈ σ(TA(t)) for t ≥ 0, and N (λ I−A)⊂N (eλ t I−TA(t))
for t ≥ 0;

(iii) If λ ∈ σess(A), then eλ t ∈ σess(TA(t)), t > 0;
(iv) sup

λ∈σ(A)
Reλ ≤ ω0(A) and sup

λ∈σess(A)
Reλ ≤ ω0,ess(A);

(iv) ω0(A) = max

{
ω0,ess(A), sup

λ∈σ(A)\σess(A)
Re(λ )

}
.

Proof. (i) The results were proved in Hille and Phillips [187, Theorem 16.7.2, p.
467].

(ii) The first part was Theorem 16.7.1 of Hille and Phillips [187]. To prove the
second part, let x ∈N (λ I−A). Note that eλ tx satisfies the initial value problem
du
dt = Au(t), t ≥ 0, u(0) = x, and TA(t)x is the unique solution of the initial value
problem, we have TA(t)x= eλ tx for all t ≥ 0. Hence, N (λ I−A)⊂N (eλ t I−TA(t))
for t ≥ 0. Let k be a positive integer and assume for induction that N ((λ I−A)k)⊂
N ((eλ t I−TA(t))k) for t ≥ 0. Let x∈N ((λ I−A)k+1). Then (λ I−A)kx∈N (λ I−
A), which implies that (λ I−A)kx ∈N (eλ t I−TA(t)). Thus,

0 = (eλ t I−TA(t))(λ I−A)kx = (λ I−A)k(eλ t I−TA(t))x,

which by induction implies that (eλ t I−TA(t))x ∈N ((eλ t I−TA(t))k). Therefore,
N ((λ I−A)k+1)⊂N ((eλ t I−TA(t)k+1)) for all t ≥ 0, k = 1,2, . . . .

(iii) Let λ ∈ σess(A) and let τ > 0. By (ii) we have eλτ ∈ σ(TA(t)). Assume that
eλτ ∈ σ(TA(t))\σess(TA(t)). Then eλτ is isolated in σ(TA(r)), N (eλτ I−TA(τ)) is
finite dimensional and R(eλτ I−TA(τ)) is closed. By (ii), N (λ I−A)⊂N (eλτ I−
TA(τ)), so N (λ I−A) is finite dimensional. To show that λ is isolated in σ(A),
suppose that there exists a sequence {zk}⊂σ(A), zk 6= λ for any k, such that zk→ λ .
Once again by (ii) one has ezkτ ∈ σ(TA(t)) for all k. Moreover, ezkτ 6= eλτ for all k
sufficiently large since ezkτ = eλτ if and only if Rezk =Reλ and Imzk =Imλ +2 jπ
for some integer j. Since ezkτ → eλτ , eλτ is not isolated in σ(TA(τ)). Thus, λ is
isolated in σ(A).

Next we show that R(λ I−A) is closed. Since N (eλτ I−TA(τ)) is finite dimen-
sional, there exists a positive integer m such that
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N (eλτ I−TA(τ)) = N ((eλτ I−TA(τ))
m).

So eλτ is a pole of (µI−TA(τ))
−1, eλτ ∈ σp(TA(τ)), and X = M1⊕M2, where

M1 = N ((eλτ I−TA(τ))
m), M2 = R((eλτ I−TA(τ))

m)

are closed subspaces. Let Π1,Π2 be the projections induced by this direct sum; that
is,

Πix = xi, x = x1 + x2, xi ∈Mi, i = 1,2.

For t ≥ 0,TA(t) commutes with (eλτ I−TA(τ))
m, so TA(t) also commutes with Πi

for each t ≥ 0. In fact, for each t ≥ 0,TA(t) is completely reduced by Mi, thus A
is completely reduced by Mi. Let {TAi(t)}t≥0 and Ai(i = 1,2) be the restriction of
{TA(t)}t≥0 and A to Mi(i = 1,2). Observe that Ai is the infinitesimal generator of
{TAi(t)}t≥0 on Mi(i = 1,2).

We first claim that eλτ I−TA2(τ) is one-to-one on M2. Suppose that N (eλτ I−
TA2(τ)) 6= {0}. By (i) it follows that there exists λk ∈ σp(A2) such that eλτ = eλkτ .
Thus, there exists x ∈M2,x 6= 0, such that λkx = A2x. However, (i) implies that

x ∈N (λkI−A2)⊂N (eλτ I−TA2(τ))⊂N (eλτ I−TA(τ))⊂M1.

Hence, x ∈M1∩M2 = {0}, a contradictoion.
We then claim that R(eλτ I − TA2(τ)) is closed in M2. Let {yk} ⊂ R(eλτ I −

TA2(τ)) such that yk→ y0 in M2. Since R(eλτ I−TA2(τ)) is closed in X , there exists
x0 ∈ X such that

y0 = (eλτ I−TA(τ))x0 = (eλτ I−TA(τ))(Π1x0 +Π2x0).

By the uniqueness of the direct sum representation, (eλτ I−TA(τ))Π1x0 = 0. Thus,
(eλτ I−TA(τ))Π2x0 = y0.

We next claim that there is a constant c1 such that ‖(eλτ I−TA(τ))x‖ ≤ c1‖(λ I−
A)x‖ for all x ∈ D(A). Let x ∈ D(A) and define

u(t) = (eλτ I−TA(τ))x, t ≥ 0,

v(t) =
∫ t

0
eλ (t−s)TA(s)(λ I−A)xds, t ≥ 0.

Note that u(t) and v(t) are both solutions of the initial value problem

dw
dt

= λw(t)+(λ I−A)TA(t)x, t ≥ 0; w(0) = 0.

The uniqueness of solutions to the problem implies that u(t) = v(t) for t ≥ 0. By the
uniform boundedness of TA(t) : [0,τ]→L (X), there exists a constant c1 such that
for all x ∈ D(A),

‖(eλτ I−TA(τ))x‖= ‖
∫

τ

0
eλ (τ−s)TA(s)(λ I−A)xds‖ ≤ c1‖(λ I−A)x‖. (4.4.1)
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Now using the fact that the necessary and sufficient condition for the range R(T )
of a one-to-one closed linear operator T in the Banach space X to be closed is
‖x‖ ≤ c‖T x‖ for all x ∈ X for some constant c (Schechter [311]), we obtain c2 such
that for all x∈M2, ‖x‖≤ c2(eλτ I−TA(τ))x‖. Thus, from (4.4.1) we have for x∈M2
that

‖x‖ ≤ c1c2‖(λ I−A2)x‖.

So R(λ I−A2) is closed in M2.
We finally argue that R(λ I−A2) is closed in X . Let {yk} ⊂R(λ I−A) such that

yk→ y0. For k = 1,2, . . . , there exists xk ∈ D(A) such that yk = (λ I−A)xk. Then

Πiyk = (λ I−A)Πixk = (λ I−Ai)Πixk→Πiy0, i = 1,2.

Since R(λ I−A2) is closed in M2, there exists x0,2 ∈M2 such that (λ I−A2)x0,2 =
Π2y0. Since M1 is finite dimensional, R(λ I−A1) is closed in M1 and there exists
x0,1 ∈M1 such that (λ I−A1)x0,1 = Π1y0. Thus,

(λ I−A)(x0,1 + x0,2) = Π1y0 +Π2y0 = y0.

Hence, R(λ I−A) is closed, which means that λ 6∈ σess(A), a contradiction.
(iv) Follow from (i), (ii), Lemma 4.4.2 (d) and (e).
(v) Define

ω2(A) = max{ω0,ess(A), sup
λ∈σ(A)\σess(A)

Re(λ )}.

Lemma 4.4.2(c) and (iv) imply that ω2(A) ≤ ω0(A). To prove ω0(A) ≤ ω2(A), by
Lemma 4.4.2(d) it suffices to show that for some t ≥ 0, r(TA(t))≤ eω2(A)t . Let t > 0
and let µ ∈ σ(TA(t))\σess (TA(t)) , then Lemma 4.3.22 implies that µ ∈ σp(TA(t))
and by (i), there exists λ ∈ σp(A) such that eλ t = µ. By (iii), λ ∈ σ (A) \σess (A) .
Therefore, |µ| ≤ eReλ t ≤ eω2(A)t , which implies that

r(TA(t))≤ eω2(A)t .

This completes the proof. ut

4.5 Spectral Decomposition of the State Space

The goal of this section is to investigate the spectral properties of the linear op-
erator A. Indeed, since A0 is the infinitesimal generator of a linear C0-semigroup of
X0, we can apply the standard theory to the linear operator A0. We first investigate
the properties of projectors which commute with the resolvents of A0 and A. Then
we will turn to the spectral decomposition of the state spaces X0 and X . Assume
that A : D(A) ⊂ X → X is a linear operator on a complex Banach X . We start with
some basic facts.
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Lemma 4.5.1. We have the following:

(i) If Y is invariant by A, then A |Y= AY (i.e. D(AY ) = D(A)∩Y );
(ii) If (λ I−A)−1 Y ⊂ Y for some λ ∈ ρ (A) , then

D(AY ) = (λ I−A)−1 Y, λ ∈ ρ (AY ) , and (λ IY −AY )
−1 = (λ I−A)−1 |Y .

Proof. (i) Assume that Y is invariant by A, we have

D(AY ) = {x ∈ D(A)∩Y : Ax ∈ Y}= D(A)∩Y = D(A |Y ),

so A |Y= AY .

(ii) Assume that (λ I−A)−1 Y ⊂ Y for some λ ∈ ρ (A). Then we have

D(AY ) = {x ∈ D(A)∩Y : Ax ∈ Y}= {x ∈ D(A)∩Y : (λ I−A)x ∈ Y}
= (λ I−A)−1 Y,

and the result follows. ut

Let Π : X → X be a bounded linear projector on a Banach space X and let Y be
a subspace (closed or not) of X . Then we have the following equivalence

Π (Y )⊂ Y ⇔Π (Y ) = Y ∩Π (X) . (4.5.1)

Lemma 4.5.2. Let (X ,‖.‖) be a Banach space. Let A : D(A) ⊂ X → X be a linear
operator and let Π : X → X be a bounded linear projector. Assume that

Π (λ I−A)−1 = (λ I−A)−1
Π

for some λ ∈ ρ(A). Then we have the following

(i) Π (D(A)) = D(A)∩Π (X) and Π

(
D(A)

)
= D(A)∩Π (X) ;

(ii) AΠx = ΠAx,∀x ∈ D(A);
(iii) AΠ(X) = A |Π(X);

(iv) For λ ∈ ρ
(
AΠ(X)

)
, one has D(AΠ(X))= (λ I−A)−1

Π (X) and
(
λ I−AΠ(X)

)−1
=

(λ I−A)−1 |Π(X);

(v)
(
A |Π(X)

)
D(A|Π(X))

=
(

AD(A)

)
|
Π(D(A)) .

Proof. We have

Π (D(A)) = Π (λ I−A)−1 (X) = (λ I−A)−1
Π (X)⊂ D(A).

Thus, Π (D(A)) ⊂ D(A). Since Π is bounded, we have Π

(
D(A)

)
⊂ D(A). So by

using (4.5.1), we obtain Π (D(A)) = D(A)∩Π (X) and Π

(
D(A)

)
= D(A)∩Π (X) .

This proves (i).
Let x ∈ D(A) be fixed. Set y = (λ I−A)x. Then
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ΠAx = ΠA(λ I−A)−1 y = A(λ I−A)−1
Πy = AΠx,

which gives (ii). Hence, Π (X) is invariant by A, and by using Lemma 4.5.1, we
obtain (iii). Moreover, we have

(λ I−A)−1
Π (X) = Π (λ I−A)−1 X ⊂Π (X) .

So Lemma 4.5.1 implies (iv). Finally, we have

D
((

A |Π(X)

)
D(A|Π(X))

)
=
{

x ∈ D(A |Π(X)) : Ax ∈ D(A |Π(X))
}

=
{

x ∈Π (X)∩D(A) : Ax ∈ D(A)∩Π (X)
}

=
{

x ∈Π

(
D(A)

)
∩D(A) : Ax ∈Π

(
D(A)

)}
= D

((
AD(A)

)
|
Π(D(A))

)
.

This shows that (v) holds. ut

Lemma 4.5.3. Let the assumptions of Lemma 4.5.2 be satisfied. Assume in addition
that Π has a finite rank. Then Π (D(A)) is closed, Π

(
D(A)

)
= Π (D(A))⊂ D(A),

and A |Π(X) is a bounded linear operator from Π (D(A)) into Π (X).

Proof. By using Lemma 4.5.2, we have Π (D(A)) = D(A)∩Π (X) , so Π (D(A)) is
a finite dimensional subspace of X . It follows that Π (D(A)) is closed and A |Π(X) is

bounded. Now since Π is bounded, we have Π

(
D(A)

)
⊂ Π (D(A)) = Π (D(A)) ,

and the result follows. ut

Lemma 4.5.4. Let Assumption 3.4.1 be satisfied. Let Π0 : X0 → X0 be a bounded
linear projector. Then

Π0TA0(t) = TA0(t)Π0, ∀t ≥ 0 (4.5.2)

if and only if
Π0 (λ I−A0)

−1 = (λ I−A0)
−1

Π0,∀λ > ω. (4.5.3)

If we assume in addition that (4.5.2) is satisfied, then we have the following:

(i) Π0 (D(A0)) = D(A0)∩Π0 (X0) and A0Π0x = Π0A0x,∀x ∈ D(A0);
(ii) A0 |Π0(X0)= (A0)Π0(X0)

;
(iii) TA0|Π0(X0)

(t) = TA0(t) |Π0(X0),∀t ≥ 0;

(iv) If Π0 has a finite rank, then Π0 (X0) = Π0 (D(A0)) ⊂ D(A0), A0 |Π0(X0) is a
bounded linear operator from Π0 (X0) into itself, and

TA0|Π0(X0)
(t) = eA0|Π0(X0)

t
, ∀t ≥ 0.

Proof. (4.5.2)⇒(4.5.3) follows from the following formula
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(λ I−A0)
−1 x =

∫ +∞

0
e−λ sTA0(s)xds, ∀λ > ω, ∀x ∈ Y.

(4.5.3)⇒(4.5.2) follows from the exponential formula (see Pazy [281, Theorem 8.3,
p.33])

TA0(t)x = lim
n→+∞

(
I− t

n
A0

)−n
x, ∀x ∈ X0.

By applying Lemmas 4.5.2 and 4.5.3 to A0, we obtain (i)-(iv). ut

The following result will be crutial to construct a center mainfold in Chapter 6.

Proposition 4.5.5. Let Assumption 3.4.1 be satisfied. Let Π0 : X0→X0 be a bounded
linear projector satisfying the following properties

Π0 (λ I−A0)
−1 = (λ I−A0)

−1
Π0, ∀λ > ω

and
Π0 (X0)⊂ D(A0) and A0 |Π0(X0) is bounded.

Then there exists a unique bounded linear projector Π on X satisfying the following
properties:

(i) Π |X0= Π0;
(ii) Π (X)⊂ X0;

(iii) Π (λ I−A)−1 = (λ I−A)−1
Π , ∀λ > ω.

Moreover, for each x ∈ X we have the following approximation formula

Πx = lim
λ→+∞

Π0λ (λ I−A)−1 x = lim
h→0+

1
h

Π0SA (h)x.

Proof. Assume first that there exists a bounded linear projector Π on X satisfying
(i)-(iii). Let x ∈ X be fixed. Then from (ii) we have Πx ∈ X0, so

Πx = lim
λ→+∞

λ (λ I−A)−1
Πx.

Using (i) and (iii), we deduce that

Πx = lim
λ→+∞

Π0λ (λ I−A)−1 x.

Thus, there exists at most one bounded linear projector Π satisfying (i)-(iii).
It remains to prove the existence of such an operator Π . To simplify the notation,

set B=A0 |Π0(X0) . Then by assumption, B is a bounded linear operator from Π0 (X0)
into itself, and

TA0(t)Π0x = eBt
Π0x, ∀t ≥ 0,∀x ∈ X0.

Let x ∈ X be fixed. Since SA(t)x ∈ X0 for each t ≥ 0, we have for each h > 0 and
each λ > ω that
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(λ I−A0)
−1 SA(h)x = SA(h)(λ I−A)−1 x =

∫ h

0
TA0(h− s)(λ I−A)−1 xds

and

Π0 (λ I−A0)
−1 SA(h)x = (λ I−A0)

−1
Π0SA(h)x

=
∫ h

0
Π0TA0(h− s)(λ I−A)−1 xds

=
∫ h

0
eB(h−s)

Π0 (λ I−A)−1 xds.

Since B is a bounded linear operator, t→ eBt is operator norm continuous and

1
h

∫ h

0
eB(h−s)ds = IΠ0(X0)+

1
h

∫ h

0

[
eB(h−s)− IΠ0(X0)

]
ds.

Thus, there exists h0 > 0, such that for each h ∈ [0,h0] ,∥∥∥∥1
h

∫ h

0

[
eB(h−s)− IΠ0(X0)

]
ds
∥∥∥∥

L (Π0(X0))

< 1.

It follows that for each h ∈ [0,h0] , the linear operator 1
h
∫ h

0 eB(h−s)ds is invertible
from Π0 (X0) into itself and(

1
h

∫ h

0
eB(h−s)ds

)−1

=

(
IΠ0(X0)−

(
IΠ0(X0)−

1
h

∫ h

0
eB(h−s)ds

))−1

=
∞

∑
k=0

(
IΠ0(X0)−

1
h

∫ h

0
eB(h−s)ds

)k

.

We have for each λ > ω and each h ∈ (0,h0] that(
1
h

∫ h

0
eB(h−s)ds

)−1

(λ I−A0)
−1

Π0
1
h

SA(h)x = Π0 (λ I−A)−1 x.

Since for each t ≥ 0, eBtΠ0 = TA0(t)Π0 commutes with (λ I−A0)
−1 , it follows that

for each h∈ [0,h0] ,
(

1
h
∫ h

0 eB(h−s)ds
)−1

Π0 commutes with (λ I−A0)
−1 . Therefore,

we obtain for each λ > ω and each h ∈ (0,h0] that

λ (λ I−A0)
−1
(

1
h

∫ h

0
eB(h−s)ds

)−1

Π0
1
h

SA(h)x = Π0λ (λ I−A)−1 x. (4.5.4)

Now it is clear that the left hand side of (4.5.4) converges as λ → +∞. So we can
define Π : X → X for each x ∈ X by
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Πx = lim
λ→+∞

Π0λ (λ I−A)−1 x. (4.5.5)

Moreover, for each h ∈ (0,h0] and each x ∈ X ,

Πx =
(

1
h

∫ h

0
eB(h−s)ds

)−1

Π0
1
h

SA(h)x. (4.5.6)

It follows from (4.5.6) that Π : X→ X is a bounded linear operator and Π (X)⊂ X0.
Furthermore, by using (4.5.5), we know that Π |X0= Π0 and Π commutes with the
resolvent of A. Also notice that for each h ∈ (0,h0] ,

1
h

Π0SA(h)x =
1
h

∫ h

0
eB(h−s)

Πxds.

So
Πx = lim

h↘0

1
h

Π0SA(h)x.

Finally, for each x ∈ X ,

ΠΠx = lim
λ→+∞

ΠΠ0λ (λ I−A)−1 x = lim
λ→+∞

Π
2
0 λ (λ I−A)−1 x

= lim
λ→+∞

Π0λ (λ I−A)−1 x = Πx.

This implies that Π is a projector. ut

Note that if the linear operator Π0 has a finite rank, then A0 |Π0(X0) is bounded. So
we can apply the above proposition. By Proposition 3.4.3, Lemmas 4.5.2 and 4.5.4,
we obtain the following results.

Lemma 4.5.6. Let Assumption 3.4.1 be satisfied. Let Π : X→X be a bounded linear
projector. Assume that

Π (λ I−A)−1 = (λ I−A)−1
Π , ∀λ ∈ (ω,+∞) .

Then A |Π(X)= AΠ(X) satisfies Assumption 3.4.1 on Π (X) . Moreover,

(i)
(
A |Π(X)

)
D(A|Π(X))

=
(

AD(A)

)
|
Π(D(A))= A0 |Π(X0);

(ii) SA(t)Π = ΠSA(t),∀t ≥ 0;
(iii) SA|Π(X)

(t) = SA(t) |Π(X),∀t ≥ 0.

From the above results, we obtain the second main result of this section.

Proposition 4.5.7. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Let Π : X → X be
a bounded linear projector. Assume that

Π (λ I−A)−1 = (λ I−A)−1
Π , ∀λ ∈ (ω,+∞) .
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Then the linear operator A |Π(X)= AΠ(X) satisfies Assumptions 3.4.1 and 3.5.2 in
Π (X). Moreover, for each τ > 0, each f ∈C([0,τ] ,X), and each x ∈ X0, if we set
for each t ∈ [0,τ] that

u(t) = TA0(t)x+
d
dt

(SA ∗ f )(t),

then
Πu(t) = TA0|Π(X0)

(t)Πx+
d
dt

(
SA|Π(X)

∗Π f
)
(t),

Πu(t) = Πx+A |Π(X)

∫ t

0
Πu(s)ds+

∫ t

0
Π f (s)ds,

and
‖Πu(t)‖ ≤Meωt ‖Πx‖+δ (t) sup

s∈[0,t]
‖Π f (s)‖ , ∀t ∈ [0,τ] .

Furthermore, if Π has a finite rank and Π (X) ⊂ X0, then Π (X) = Π (X0) ⊂
Π (D(A0)) ⊂ D(A0) , A |Π(X) is a bounded linear operator from Π (X0) into it-
self. In particular, A |Π(X)= A0 |Π(X0) and the map t → Πu(t) is a solution of the
following ordinary differential equation in Π (X0) :

dΠu(t)
dt

= A0 |Π(X0) Πu(t)+Π f (t), ∀t ∈ [0,τ] ; Πu(0) = Πx.

By combining Lemma 4.4.2 and Theorem 4.4.3 and by applying Theorem 4.3.27
to TA(t) for some t > 0, we obtain the following theorem, which is one of the main
results in this chapter. This theorem can also be obtain by combining Theorem 4.4.3,
Webb [362, Proposition 4.11, p. 166], and Engel and Nagel [126, Corollary 2.11, p.
258].

Theorem 4.5.8. Let (X ,‖.‖) be a complex Banach space and let A : D(A)⊂ X → X
be a linear operator satisfying Assumption 3.4.1. Assume that ω0 (A0)> ω0,ess (A0).
Then for each η > ω0,ess (A0) such that

Ση := σ (A0)∩{λ ∈ C : Re(λ )≥ η}

is nonempty and finite, each λ0 ∈ Ση is a pole of (λ I−A0)
−1 and B0

λ0,−1 has a finite
rank. Moreover, if we set

Π = ∑
λ0∈Ση

B0
λ0,−1,

then
Πλ0 (λ I−A0)

−1 = (λ I−A0)
−1

Πλ0 , ∀λ ∈ ρ (A) ,

ω0 (A0) = ω0

(
A0 |Πλ0

(X)

)
= sup

λ∈Ση

Re(λ ) ,

and
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ω0

(
A0 |(I−Πλ0

)
(X)

)
≤ η .

Remark 4.5.9. In order to apply the above theorem, we need to check that ω0 (A0)>
ω0,ess (A0) . This property can be verified by using perturbation techniques and by
applying the results of Thieme [331] in the Hille-Yosida case, or the results in
Ducrot et al. [110] in the present context.

4.6 Asynchronous Exponential Growth of Linear Operators.

Definition 4.6.1. Let {T (t)}t≥0 be a strongly continuous semigroup of bounded lin-
ear operators on a Banach space X with infinitesimal generator A. We say that
{T (t)}t≥0 has asynchronous exponential growth with intrinsic growth constant
λ0 ∈ R if there exists a nonzero finite rank operator P0 ∈ X such that

lim
t→+∞

e−λ0tT (t) = P0.

Webb [363] gave necessary and sufficient conditions for {T (t)}t≥0 to have asyn-
chronous exponential growth.

Theorem 4.6.2 (Webb). Let {T (t)}t≥0 be a strongly continuous semigroup of
bounded linear operators on a Banach space X with infinitesimal generator A.
Then {T (t)}t≥0 has asynchronous exponential growth with intrinsic growth con-
stant λ0 ∈ R if and only if

(i) ω0,ess(A)< λ0;
(ii) λ0 = sup{Reλ : λ ∈ σ(A)};

(iii) λ0 is a simple pole of (λ I−A)−1.

Proof. (Necessity) Suppose {T (t)}t≥0 has asynchronous exponential growth with
intrinsic growth constant λ0.

(i) We can see that P0 is a projection and

T (t)P0 = P0T (t) = eλ0tP0, t ≥ 0.

Thus,

AP0x = lim
t→0

T (t)P0x−P0x
t

= λ0P0x, x ∈ X ,

so that λ0 ∈ σp(A). Since P0 is a projection, there exists a direct sum decomposition
X = P0X⊕(I−P0)X . Let X̂ = (I−P0)X , T̂ (t) = e−λ0tT (t)(I−P0), and observe that
X̂ is invariant under T̂ (t). Consider the semigroup {T̂ (t)}t≥0 in the Banach space X̂
and let Â be its infinitesimal generator. Notice that

lim
t→+∞

‖T̂ (t)‖= lim
t→+∞

[‖e−λ0tT (t)−P0‖+‖(e−λ0tT (t)− I)P0‖] = 0.
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It follows from Lemma 4.4.2 (d) that eω0(Â)t = r(T̂ (t))≤ ‖T̂ (t)‖, which means that
ω0(Â) < 0. Hence, there exists γ < 0 and Mγ ≥ 1 such that ‖T̂ (t)‖ ≤Mγ eγt , t ≥ 0.
Since P0 has finite rank, T (t)P0 is compact and so

κ(T (t))≤ κ(T (t)P0)+κ(T (t)(I−P0))≤Mγ e(λ0+γ)t .

Thus, ω0,ess(A)≤ λ0 + γ < λ0.
(ii) Suppose that there exists λ1 ∈ σ(A) such that Reλ1 ≥ λ0. By Theorem 4.4.3

(iv), λ1 /∈ σess(A), it follows from Theorem 4.4.3 (v) that λ1 ∈ σp(A). There exists
z 6= 0 such that T (t)z = eλ1tz. Thus,

ReT (t)z = eReλ1t [(cosImλ1t)Rez− (sinImλ1t)Imz],

ImT (t)z = eReλ1t [(cosImλ1t)Imz+(sinImλ1t)Rez].

Since e−λ0tReT (t)z and e−λ0t ImT (t)z converge, Reλ1 = λ0 and Imλ1 = 0. Thus,
λ0 = sup{Reλ : λ ∈ σ(A)}.

(iii) Assume that λ0 is not a simple pole of (λ I−A)−1. From (i) we know that
λ0 ∈ σp(A) and λ0 is isolated, therefore by Theorem 4.1.3 there exists the Laurent
expansion (4.2.2) with Bk given by (4.2.3) and satisfying (4.2.4). Choose x such
that B−kx 6= 0 and let y = (A−λ0I)k−2B−1x. We have AB−kx = λ0B−kx and Ay =
B−kx+λ0y. Since

d
dt

(
eλ0t(tB−kx+ y)

)
= λ0eλ0t(tB−kx+ y)+ eλ0tB−kx

= A
(

eλ0t(tB−kx+ y)
)

and the solution of the initial value problem

d
dt

T (t)y = AT (t)y, t ≥ 0; T (0)y = y

is unique, T (t)y = eλ0t(tB−kx+y). But e−λ0tT (t)y does not converge. Therefore, λ0
is a simple pole.

(Sufficiency) Suppose that ω0,ess(A)< λ0, λ0 = sup{Reλ : λ ∈ σ(A)}, and λ0 is
a simple pole of (λ I−A)−1. By Theorem 4.4.3 (iv) and Proposition 4.11 in Webb
[362], λ0 ∈ σp(A) and Nλ0(A) is finite dimensional. Let ω0,ess(A) < γ < λ0 and
assume that there exists an infinite sequence {λk}⊆ σ(A) such that Reλk ≥ γ. Then,
λk ∈ σp(A) and it follows from Theorem 4.4.3 (i) that eλkt ∈ σp(T (t)). Fix t > 0. If
{eλkt} is infinite, then σ(T (t)) has an accumulation point. Thus,

ress(T (t))≥ eγt ≥ eω0,ess(A)t ,

which contradicts Lemma 4.4.2 (e). If {eλkt} is finite, then eλkt = µ for infinitely
many k. By Theorem 4.4.3 (i), Nµ(T (t)) is infinite dimensional, since it must con-
tain all linearly independent subspaces N (λkI−A) whenever eλkt = µ. Thus,
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ress(T (t))≥ Reµ ≥ eγt ≥ eω0,ess(A)t ,

which again contradicts Lemma 4.4.2 (e). There must exist γ > ω0,ess(A) such that

sup
λ∈σ(A)\σess(A),λ 6=λ0

Reλ < γ < λ0.

Since λ0 is a simple pole, Nλ0(A) = N (λ0I−A) and T (t)P0 = eλ0tP0, t ≥ 0. Thus,
P0 6= 0,P0 has finite rank, and

lim
t→+∞

‖e−λ0tT (t)−P0‖= lim
t→+∞

‖e−λ0tT (t)(I−P0)‖≤ lim
t→+∞

M1e(γ−λ0)t‖(I−P0)‖= 0.

This completes the proof. ut

Theorem 4.6.2 (i) requires ω0,ess(A) < λ0. Now we give a means to estimate
ω0,ess(A).

Proposition 4.6.3. Let {T (t)}t≥0 be a strongly continuous semigroup of bounded
linear operators on a Banach space X . Suppose that T (t) = U(t)+V (t) for suf-
ficiently large t, where ‖U(t)} ≤ Ceγt (C and γ are independent of t) and V (t) is
compact. Then

ω0,ess(A)≤ γ.

Proof. By the properties of κ(.) (Lemma 4.3.2) we have

κ(T (t))≤ κ(U(t))+κ(V (t)) = κ(U(t))≤Ceγt

for t sufficiently large. The conclusion follows from Lemma 4.4.2 (b). ut

In applications, it is more convenient to consider the semigroups in Banach lat-
tices (Schaefer [310]).

Definition 4.6.4. Let (X ,‖.‖) be a Banach space. We say that X+ is a positive cone
if it is a closed convex subset of X satisfying the following properties

(i) λx ∈ X+,∀λ ≥ 0,x ∈ X+;
(ii) X+∩ (−X+) = {0}.

We say that (X ,≤) is an ordered Banach space if we can find a positive cone X+

such that
x≥ 0⇔ x ∈ X+.

An ordered Banach space (X ,≤) is called a Banach lattice if it satisfies the following
additional properties

(i) Any two elements x,y ∈ X have a supremum x∨y = sup{x,y} and an infimum
x∧ y = inf{x,y} in X ;

(ii) |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for x,y ∈ X , where the modulus of x defined by
|x|= x∨ (−x).
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Recall that a bounded linear operator L is positive if and only if

LX+ ⊂ X+.

The following theorem addresses the asymptotic behavior of strongly contin-
uous semigroups in a Banach lattice which combines the results and ideas from
Greiner [152], Greiner and Nagel [153], Greiner et al. [154], and Webb [363]. De-
tailed proofs can be found in Webb [363] and are omitted here.

Proposition 4.6.5. Let {T (t)}t≥0 be a strongly continuous semigroup of positive
bounded linear operators on a Banach lattice X with infinitesimal generator A. Let
λ0 = sup{Reλ : λ ∈ σ(A)} and assume that ω0,ess(A)< λ0. Then

(i) λ0 > Reλ for all λ ∈ σ(A)\{λ0};
(ii) There exists x0 ∈ X+,x0 6= 0, such that Ax0 = λ0x0;
(iii) If there exists a strictly positive functional f ∈ X∗ and λ1 ∈ R such that for

all x ∈ X+∩N (λ0I−A), 〈 f ,e−λ1tT (t)x〉 is bounded in t, then λ0 ≤ λ1;
(iv) If there exists a strictly positive functional f ∈ X∗ and λ1 ∈ R such that for

all x ∈ X+ ∩N (λ0I − A), limt→+∞〈 f ,e−λ1tT (t)x〉 exists and is positive, then
λ1 = λ0;

(v) If there exists a strictly positive functional f ∈ X∗ such that for all x∈Nλ0(A),
〈 f ,e−λ0tT (t)x〉 is bounded in t, then λ0 is a simple pole of (λ I−A)−1 ( f is strictly
positive means 〈 f ,x〉> 0 for all x ∈ X+,x 6= 0).

By Theorem 4.6.2 and Proposition 4.6.5, we have the following result on asyn-
chronous exponential growth which is more applicable in practice.

Corollary 4.6.6. Let {T (t)}t≥0 be a strongly continuous semigroup of positive
bounded linear operators on a Banach lattice X with infinitesimal generator A.
Assume that

(i) ω0,ess(A)< λ0 := sup{Reλ : λ ∈ σ(A)};
(ii) There exists a strictly positive functional f ∈ X∗ such that for all x ∈Nλ0(A),
〈 f ,e−λ0tT (t)x〉 is bounded in t.

Then {T (t)}t≥0 has asynchronous exponential growth with intrinsic growth constant
λ0 in a Banach lattice.

Definition 4.6.7. Denote the dual of the positive cone X+ by X∗+ := { f ∈ X∗ :
〈 f ,x〉 ≥ 0, ∀x ≥ 0}. A strongly continuous semigroup of bounded linear operators
{T (t)}t≥0 is irreducible if for x ∈ X+ \ {0}, f ∈ X∗+ \ {0}, there exists t > 0 such
that 〈 f ,T (t)x〉> 0.

By Theorem 4.6.2, Proposition 4.6.5, and Theorem 1.3 of Greiner [152], we have
the following result which gives another sufficient condition for asynchronous ex-
ponential growth.

Corollary 4.6.8. Let {T (t)}t≥0 be a strongly continuous semigroup of positive
bounded linear operators on a Banach lattice X with infinitesimal generator A.
Assume that
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(i) ω0,ess(A)< λ0 := sup{Reλ : λ ∈ σ(A)};
(ii) {T (t)}t≥0 is irreducible.

Then {T (t)}t≥0 has asynchronous exponential growth with intrinsic growth constant
λ0 in a Banach lattice.

4.7 Remarks and Notes

The spectral theory of linear operators has been well-developed, we refer to the
classical references on this topic: Brezis [48], Dunford and Schwartz [123], Hille
and Phillips [187], Kato [205], Schechter [311], Schaefer [310], van Neerven [346],
Webb [362], Yagi [376], and Yosida [381]. See also a survey by Arino [24]. The
part on the non-essential spectrum of bounded linear operators is based on the paper
of Nussbaum [280] where the essential spectral radius was first introduced and the
essential spectrum was first investigated. In fact, the work of Nussbaum was based
on the early work of Gohberg and Kreı̌n [149] concerning Fredholm’s index for
linear operators. Here we gave a direct proof of Nussbaum’s results about the non-
essential spectrum of linear operators. The results on the relationship between the
spectrum of a semigroup and the spectrum of its infinitesimal generator were given
in Webb [362, 363]. The estimates of growth bound and essential growth bound
were taken from Webb [362] and Engel and Nagel [126]. The presentation of this
chapter was mainly from Magal and Ruan [248].

(a) Essential Growth and Bounded Linear Perturbation. It is important to
find a method to evaluate the essential growth bound of linear operators. The first
result on this aspect is due to Webb [358, Proposition 3.3]. The following version is
a consequence of Theorem 3.2 in Magal and Thieme [251].

Theorem 4.7.1. Let {TA(t)}t≥0 be a strongly continuous semigroup of bounded lin-
ear operators on a Banach space X and with infinitesimal generator A : D(A)⊂X→
X. Let L ∈L (X) be a bounded linear operator. Assume that LTA(t) is compact for
each t > 0. Then

ω0,ess(A+L)≤ ω0,ess(A).

Such a result has been extended first by Thieme [331, Theorem 3] when A is a
non-densely defined Hille-Yosida operator and L : D(A)→ X is a bounded linear
operator. When A is not a Hille-Yosida operator we make the following assumption.

Assumption 4.7.2. Let A : D(A) ⊂ X → X be a linear operator satisfying Assump-
tion 3.4.1. Let p ∈ [1,+∞) be fixed. Assume that there exist two constants, M̂ > 0
and ω̂ ∈ R, such that for each τ > 0 and each f ∈ Lp ((0,τ) ,X), there exists an
integrated solution u f ∈C ([0,τ] ,X) of the Cauchy problem

du
dt

= Au(t)+ f (t), t ∈ [0,τ0]; u(0) = 0

satisfying
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∥∥≤ M̂

∥∥∥eω̂(t−.) f (.)
∥∥∥

Lp((0,t),X)
, ∀t ∈ [0,τ] .

The following theorem was proved by Ducrot et al. [110, Theorem 1.2].

Theorem 4.7.3. Let Assumption 4.7.2 be satisfied. Let L : D(A)→ X be a bounded
linear operator. Assume that

LTA0(t) is compact for each t > 0.

Then we have the following inequality

ω0,ess ((A+L)0)≤ ω0,ess (A0) .

Theorem 4.7.3 will be frequently used in the rest of the monograph to estimate
the essential growth bounds of linear operators.

(b) Asynchronous Exponential Growth. The property of asynchronous (or bal-
anced) exponential growth is one of the most important phenomena in population
dynamics since it is observed in many reproducing populations before the effects
of crowding and resource limitation take hold. The property means that the popula-
tion density u(x, t) with respect to a structure variable x is asymptotic to eλ0tu0(x)
as time t approaches infinity. The constant λ0 is intrinsic to the population in its
environment. The characteristic distribution u0(x) depends only on the initial state.
An important outcome of this property is that the proportion of the population with
structure variable x between two given values tends to a constant as time becomes
large.

Sharpe and Lotka [315] were the first to study asynchronous exponential growth
in age-structured populations. Feller [139] was the first to give a rigorous proof
of asynchronous exponential growth in age-structured population dynamics. In the
1980s, it was recognized that the idea of asynchronous exponential growth can be
described in the framework of strongly continuous semigroups of bounded linear
operators in Banach spaces, see for example, Diekmann et al. [102], Greiner [152],
Greiner and Nagel [153], Greiner et al. [154], Webb [363], and the references cited
therein. Webb [361] indeed provided a new proof of Sharpe and Lotka Theorem
using the theory of semigroups of operators in Banach spaces. Since then, many
researchers have studied asynchronous exponential growth in various structured bi-
ological models, see for example, Arino et al. [26, 31], Bai and Cui [35], Banasiak
et al. [37], Dyson et al. [124], Farkas [132], Piazzera and Tonetto [288], Webb and
Grabosch [366], Yan et al. [377], and so on. Thieme [333] characterized strong
and uniform approach to asynchronous exponential growth and derived applicable
sufficient conditions. Thieme [334] derived conditions for the positively perturbed
semigroups to have asynchronous exponential growth and applied the results to age-
structured population models.

The presentation in Section 4.6 was mainly taken from Webb [363] which deals
with asynchronous exponential growth of semigroups of linear operators. Gyllen-
berg and Webb [165] considered the following abstract nonlinear differential equa-
tion
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dz
dt

= Az(t)+F(z(t)), t ≥ 0; z(0) = x ∈ X , (4.7.1)

where A is the infinitesimal generator of a semigroup of linear operators in the Ba-
nach space X and F is a nonlinear operator in X . They showed that if the linear
semigroup generated by A has asynchronous exponential growth and F satisfies
‖F‖ ≤ f (‖x‖)‖x‖, where f : R+ → R+ and

∫
∞ f (r)/rdr < ∞, then the nonlin-

ear semigroup associated with the abstract Cauchy problem (4.7.1) also has asyn-
chronous exponential growth.



Chapter 5
Semilinear Cauchy Problems with Non-dense
Domain

The main purpose of this chapter is to present a comprehensive semilinear the-
ory that will allow us to study the properties of solutions of the non-densely defined
Cauchy problems, such as existence and uniqueness of a maximal semiflow, posi-
tivity, Lipschitz perturbation, differentiability with respect to the state variable, time
differentiability, classical solutions, stability of equilibria, etc.

5.1 Introduction

Consider the Cauchy problem

du(t)
dt

= Au(t)+F(t,u(t)), t ≥ 0; u(0) = x ∈ D(A), (5.1.1)

where A : D(A)⊂ X→ X is a linear operator in a Banach space X and F : [0,+∞)×
D(A)→ X is a continuous map.

When A is a Hille-Yosida operator and is densely defined, the problem has been
extensively studied (see Segal [313], Weissler [372], Martin [258], Pazy [281],
Cazenave and Haraux [58], Hirsch and Smith [189]). When A is a Hille-Yosida oper-
ator but its domain is non-densely defined, Da Prato and Sinestrari [85] investigated
the existence of several types of solutions for (5.1.1). Thieme [328] investigated the
semilinear Cauchy problem with a Lipschitz perturbation of the closed linear oper-
ator A which is non-densely defined but is a Hille-Yosida operator. See also Thieme
[329, 335]. We are interested in studying the problem when D(A) is not dense in X
and A is not a Hille-Yosida operator.

Since the domain is not dense the integrated solution of (5.1.1) will belong to the
smaller subspace

X0 := D(A).

Since the linear operator A is not a Hille-Yosida operator, we first assume that the
resolvent set ρ(A) of A is non-empty and that A0, the part of A in D(A), is the

215
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infinitesimal generator of a strongly continuous semigroup
{

TA0(t)
}

t≥0 of bounded

linear operators on D(A). This is equivalent to make the following assumption.

Assumption 5.1.1. Assume that A : D(A)⊂ X→ X is a linear operator on a Banach
space (X ,‖.‖) satisfying the following properties:

(a) There exist two constants, ωA ∈ R and MA ≥ 1, such that (ωA,+∞)
⊂ ρ(A) and ∥∥∥(λ I−A)−k

∥∥∥
L (X0)

≤ MA

(λ −ωA)
k , ∀λ > ωA, ∀k ≥ 1;

(b) limλ→+∞ (λ I−A)−1 x = 0, ∀x ∈ X .

Then A generates an integrated semigroup {SA(t)}t≥0 on X defined for all t ≥ 0
by

SA(t) = (λ I−A0)
∫ t

0
TA0(l)dl (λ I−A)−1

for each λ ∈ ρ(A).
As we already explained in Chapter 3, we need to impose some extra conditions

to assure the existence of integrated (or mild) solutions of the nonhomogeneous
Cauchy problem

du(t)
dt

= Au(t)+ f (t) for t ≥ 0 and u(0) = 0. (5.1.2)

We will only require that for each f ∈C ([0,τ] ,X) the Cauchy problem (5.1.2) has an
integrated solution u f (t), and there exists a map δ : [0,+∞)→ [0,+∞) (independent
of f ) such that for each t ∈ [0,τ] ,∥∥u f (t)

∥∥≤ δ (t) sup
s∈[0,t]

‖ f (s)‖ , (5.1.3)

where
δ (t)→ 0 as t→ 0.

This is also equivalent to the following assumption.

Assumption 5.1.2. Let τ0 > 0 be fixed. Assume that {SA(t)}t≥0 has a bounded semi-
variation on [0,τ0] (that is,

V ∞(SA,0,τ0) := sup
{∥∥∥∥∥ n

∑
i=1

(
SA(ti)−SA(ti−1)

)
xi

∥∥∥∥∥}<+∞,

where the supremum is taken over all partitions 0 = t0 < .. < tn = τ0 and over any
(x1, ...,xn) ∈ Xn with ‖xi‖X ≤ 1, ∀i = 1, ..,n) and for any t ∈ [0,τ0],

lim
t(>0)→0

V ∞(SA,0, t) = 0.
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Remark 5.1.3. We always have by the definition of semi-variation that

V ∞(SA,0, t)≤ δ (t),∀t ∈ [0,τ] . (5.1.4)

Then for each f ∈C ([0,τ] ,X) the map t→ (SA ∗ f )(t) is continuously differentiable
and (5.1.2) has a unique integrated solution u f (t) which is given by

u f (t) =
d
dt
(SA ∗ f )(t), ∀t ∈ [0,τ] .

Remark 5.1.4. When the domain of A is dense in X or when f ∈C
(
[0,τ] ,D(A)

)
,

we have
d
dt
(SA ∗ f )(t) =

∫ t

0
TA0(t− s) f (s)ds.

The first main ingredient to derive a semilinear theory is the approximation formula
proved in Proposition 3.4.8; that is,

d
dt
(SA ∗ f )(t) = lim

µ→+∞

∫ t

0
TA0(t− l)µ (µI−A)−1 f (l)dl (5.1.5)

whenever t ∈ [0,τ] and f ∈C ([0, τ̂] ,X). From this approximation formula, we de-
duced the following formula in Corollary 3.4.9

d
dt
(SA ∗ f )(t) = TA0(t− s)

d
dt
(SA ∗ f )(s)+

d
dt
(SA ∗ f (.+ s))(t− s) (5.1.6)

whenever t,s ∈ [0,τ] with s ≤ t and f ∈ C ([0,τ] ,X). The second ingredient is the
estimation (5.1.3) which is equivalent to∥∥∥∥ d

dt
(SA ∗ f )(t)

∥∥∥∥≤ δ (t) sup
s∈[0,t]

‖ f (s)‖

whenever t ∈ [0,τ].
As a consequence we are in a position to use Proposition 3.5.3. Let s ≥ 0 be

fixed. The nonautonomous Cauchy problem (5.1.1) will generate a nonautonomous
semiflow which will be an integrated solution of (5.1.1); that is, the map t→U(t,s)x
satisfies

U(t,s)x = x+A
∫ t

s
U(l,s)xdl +

∫ t

s
F(l,U(l,s)x)dl, ∀t ≥ s (5.1.7)

or equivalently U(t,s) satisfies the following variation of constants formula

U(t,s)x = TA0(t− s)x+
d
dt
(SA ∗F(.+ s,U(.+ s,s)x)(t− s), ∀t ≥ s. (5.1.8)

As mentioned above it is important to observe that the problem is similar to the
densely defined semilinear Cauchy problem. Indeed when the domain of A is dense
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in X or F(X) ⊂ D(A), the integrated solution satisfies the following variation of
constants formula

U(t,s)x = TA0(t− s)x+
∫ t−s

0
TA0(t− s− l)F(l + s,U(l + s,s)x)dl

or equivalently after a change of variable

U(t,s)x = TA0(t− s)x+
∫ t

s
TA0(t− r)F(r,U(r,s)x)dr

whenever t ≥ s.
The main difficulty in this chapter is to extend the known results on semilinear

Cauchy problem with dense domain for which one has L1 estimation, that is,

‖
∫ t

0
TA0(t− s) f (s)ds‖ ≤MA

∫ t

0
eωA(t−s)‖ f (s)‖ds,

to the L∞ estimation in (5.1.5).

5.2 Existence and Uniqueness of a Maximal Semiflow: the
Blowup Condition

We start by making the following assumption.

Assumption 5.2.1. Assume that F : [0,+∞)×D(A)→ X is a continuous map such
that for each τ0 > 0 and each ξ > 0, there exists K(τ0,ξ )> 0 such that

‖F(t,x)−F(t,y)‖ ≤ K(τ0,ξ )‖x− y‖

whenever t ∈ [0,τ0] , y,x ∈ X0, and ‖x‖ ≤ ξ ,‖y‖ ≤ ξ .

First note that without loss of generality we can assume that δ (t) is non-
decreasing. Moreover, by using the Bounded Perturbation Theorem 3.5.1, for each
α ∈ R replacing τ0 by some τα ∈ (0,τ0) such that δ (τα) |α| < 1, we know that
A+αI satisfies Assumptions 5.1.1 and 5.1.2. Replacing A by A−ωI and F(t, .)
by F(t, .)+ωI, we can assume that ω = 0. From now on we assume that δ (t) is
non-decreasing and ω = 0.

In the following, we will use the norm |.| on X0 defined by

|x|= sup
t≥0

∥∥TA0(t)x
∥∥ , ∀x ∈ X0.

Then we have

‖x‖ ≤ |x| ≤M ‖x‖ and
∣∣TA0(t)x

∣∣≤ |x| , ∀x ∈ X0, ∀t ≥ 0. (5.2.1)
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Notice that by the assumption, for each f ∈ C ([0,τ0] ,X) , d
dt (SA ∗ f )(t) is well-

defined ∀t ∈ [0,τ0] . Let f ∈C1 ([0,2τ0] ,X) . Then, for t ∈ [τ0,2τ0] ,

d
dt
(SA ∗ f )(t) = lim

µ→+∞

∫ t

0
TA0(t− s)µ (µI−A)−1 f (s)ds

=
d
dt
(SA ∗ f (.+ τ0))(t− τ0)+TA0(t− τ0)

d
dt
(SA ∗ f (.))(τ0),

so ∥∥∥∥ d
dt
(SA ∗ f )(t)

∥∥∥∥≤ δ (t− τ0) sup
l∈[τ0,t−τ0]

‖ f (l)‖+δ (t− τ0) sup
l∈[0,τ0]

‖ f (l)‖ .

Thus, Assumption 5.1.2 is satisfied with Z =C([0,2τ0] ,X), we deduce that d
dt (SA ∗

f )(t) is well-defined for all t ∈ [0,2τ0] and satisfies the conclusions of Theorem
3.4.7. By induction, we obtain that for each τ0 > 0 and each f ∈C([0,τ0] ,X), t→
(SA ∗ f )(t) is continuously differentiable on [0,τ0] , (SA ∗ f )(t) ∈D(A),∀t ∈ [0,τ0] ,
and if we denote u(t) = d

dt (SA ∗ f )(t), then

u(t) = A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ0] .

In the following definition τ is the blow-up time of the maximal solution of (5.1.1).

Definition 5.2.2. Consider two maps τ : [0,+∞)×X0→ (0,+∞] and U : Dτ → X0,
where

Dτ =
{
(t,s,x) ∈ [0,+∞)2×X0 : s≤ t < s+ τ (s,x)

}
.

We say that U is a maximal nonautonomous semiflow on X0 if U satisfies the fol-
lowing properties:

(i) τ (r,U(r,s)x)+ r = τ (s,x)+ s,∀s≥ 0,∀x ∈ X0,∀r ∈ [s,s+ τ (s,x)) ;
(ii) U(s,s)x = x,∀s≥ 0,∀x ∈ X0;
(iii) U(t,r)U(r,s)x =U(t,s)x,∀s≥ 0,∀x ∈ X0,∀t,r ∈ [s,s+ τ (s,x)) with t ≥ r;
(iv) If τ (s,x)<+∞, then

lim
t→(s+τ(s,x))−

|U(t,s)x|=+∞.

Set
D =

{
(t,s,x) ∈ [0,+∞)2×X0 : t ≥ s

}
.

In order to present the main result of this section, we introduce some lemmas.

Lemma 5.2.3 (Uniqueness). Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied.
Then for each x ∈ X0, each s≥ 0, and each τ > 0, equation (5.1.1) has at most one
integrated solution U(.,s)x ∈C ([s,τ + s] ,X0) .

Proof. Assume that there exist two solutions of equation (5.1.1), u,v∈C ([s,τ + s] ,X0)
with u(s) = v(s). Define
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t0 = sup{t ≥ s : u(l) = v(l),∀l ∈ [s, t]} .

Then, for each t ≥ t0, we have

u(t)− v(t) = A
∫ t

t0
[u(l)− v(l)]dl +

∫ t

t0
[F(l,u(l))−F(l,v(l))]dl.

It follows that

(u− v)(t− t0 + t0) = A
∫ t−t0

0
(u− v)(l + t0)dl

+
∫ t−t0

0
[F(l + t0,u(l + t0))−F(l + t0,v(l + t0))]dl.

Thus,

u(t)− v(t) =
d
dt
(SA ∗ (F(.+ t0,u(.+ t0))−F(.+ t0,v(.+ t0))))(t− t0).

Let ξ = max
(
‖u‖

∞,[s,τ+s] ,‖v‖∞,[s,τ+s]

)
. Thus, we have for each t ∈ [t0, t0 + τ0] that

‖u(t)− v(t)‖ ≤ δ (t)K (τ + s,ξ ) sup
l∈[t0,t0+t]

‖u(l)− v(l)‖ .

Let ε > 0 be fixed such that δ (ε)K (τ + s,ξ )< 1. We obtain that

sup
l∈[t0,t0+ε]

‖u(l)− v(l)‖ ≤ δ (ε)K (τ + s,ξ ) sup
l∈[t0,t0+ε]

‖u(l)− v(l)‖ .

So
u(t) = v(t), ∀t ∈ [t0, t0 + ε] ,

which gives a contradiction with the definition of t0. ut

Lemma 5.2.4 (Local Existence). Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satis-
fied. Then for each τ > 0, each β > 0, and each ξ > 0, there exists γ (τ,β ,ξ ) ∈
(0,τ0] such that for each s ∈ [0,τ] and each x ∈ X0 with |x| ≤ ξ , equation (5.1.1)
has a unique integrated solution U(.,s)x ∈C ([s,s+δ (γ (τ,β ,ξ ))] ,X0) which sat-
isfies

|U(t,s)x| ≤ (1+β )ξ , ∀t ∈ [s,s+δ (γ (τ,β ,ξ ))] .

Proof. Let s ∈ [0,τ] and x ∈ X0 with ‖x‖ ≤ ξ be fixed. Let γ (τ,β ,ξ ) ∈ (0,τ0] such
that

δ (γ (τ,β ,ξ ))M
[
ξ̂τ+τ0 +(1+β )ξ K(τ + τ0,(1+β )ξ )

]
≤ βξ

with ξ̂α = sups∈[0,α] ‖F(s,0)‖ ,∀α ≥ 0. Set

E = {u ∈C ([s,s+δ (γ (τ,β ,ξ ))] ,X0) : |u(t)| ≤ (1+β )ξ ,∀t ∈ [s,s+δ (γ (τ,β ,ξ ))]} .
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Consider the map Φx,s :C ([s,s+δ (γ (τ,β ,ξ ))] ,X0)→C ([s,s+δ (γ (τ,β ,ξ ))] ,X0)
defined for each t ∈ [s,s+δ (γ (τ, p,C))] by

Φx,s(u)(t) = TA0(t− s)x+
d
dt
(SA ∗F (.+ s,u(.+ s)))(t− s).

We have ∀u ∈ E that (using (5.2.1) repeatedly)

|Φx,s(u)(t)| ≤ ξ +M
∥∥∥∥ d

dt
(SA ∗F (.+ s,u(.+ s)))(t− s)

∥∥∥∥
≤ ξ +Mδ (γ (τ,β ,ξ )) sup

t∈[s,s+δ (γ(τ,β ,ξ ))]

‖F (t,u(t))‖

≤ ξ +Mδ (γ (τ,β ,ξ ))

[
ξ̂α +K(τ + τ0,(1+β )ξ ) sup

t∈[s,s+δ (γ(τ,β ,ξ ))]

|u(t)|
]

≤ (1+β )ξ .

Hence, Φx,s(E)⊂ E. Moreover, for all u,v ∈ E, we have (again using (5.2.1))

|Φx,s(u)(t)−Φx,s(v)(t)|
≤Mδ (γ (τ,β ,ξ ))K(τ + τ0,(1+β )ξ ) sup

t∈[s,s+δ (γ(τ,β ,ξ ))]

|u(t)− v(t)|

≤ K(τ + τ0,(1+β )ξ )βξ

1+ ξ̂α +K(τ + τ0,(1+β )ξ )(1+β )ξ

sup
t∈[s,s+δ (γ(τ,β ,ξ ))]

|u(t)− v(t)|

≤ β

1+β
sup

t∈[s,s+δ (γ(τ,β ,ξ ))]

|u(t)− v(t)| .

Therefore, Φx,s is a
(

β

1+β

)
-contraction on E and the result follows. ut

For each s≥ 0 and each x ∈ X0, define

τ (s,x) = sup{t ≥ 0 : ∃U(.,s)x ∈C ([s,s+ t] ,X0) an integrated solution of (5.1.1)} .

By Lemma 5.2.4 we already knew that

τ (s,x)> 0, ∀s≥ 0, ∀x ∈ X0.

Moreover, we have the following lemma.

Lemma 5.2.5. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then U : Dτ→X0
is a maximal nonautonomous semiflow on X0.

Proof. Let s≥ 0 and x ∈ X0 be fixed. We first prove assertions (i)-(iii) of Definition
5.2.2. Let r ∈ [s,s+ τ (s,x)) be fixed. Then, for all t ∈ [r,s+ τ (s,x)) ,

U(t,s)x = x+A
∫ t

s
U(l,s)xdl +

∫ t

s
F(l,U(l,s)x)dl
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= U(r,s)x+A
∫ t

s
U(l,s)xdl +

∫ t

s
F(l,U(l,s)x)dl.

By Lemma 5.2.3, we obtain that

U(t,s)x =U(t,r)U(r,s)x, ∀t ∈ [r,s+ τ (s,x)) .

So τ (r,U(r,s)x)+ r ≥ τ (s,x)+ s. Moreover, if we set

v(t) =
{

U(t,r)U(r,s)x ∀t ∈ [r,r+ τ (r,U(r,s)x)) ,
U(t,s)x ∀t ∈ [s,r] ,

then

v(t) = x+A
∫ t

s
v(l)dl +

∫ t

s
F(l,v(l))dl, ∀t ∈ [s,r+ τ (r,U(r,s)x)] .

Thus, by the definition of τ (s,x) we have s+ τ (s,x) ≥ r + τ (r,U(r,s)x) and the
result follows.

It remains to prove assertion (iv) of Definition 5.2.2. Assume that τ (s,x) < +∞

and that ‖U(t,s)x‖9+∞ as t↗ s+τ (s,x) . Then we can find a constant ξ > 0 and
a sequence {tn}n≥0 ⊂ [s,s+ τ (s,x)) , such that tn→ s+ τ (s,x) as n→+∞ and

|U (tn,s)x| ≤ ξ , ∀n≥ 0.

Using Lemma 5.2.4 with τ = s + τ (s,x) and β = 2, we know that there exists
γ (τ,β ,ξ ) ∈ (0,τ0] for each n ≥ 0, tn + τ (tn,x) ≥ tn + γ (τ,β ,ξ ) . From the first
part of the proof we have

s+ τ (s,x)≥ tn + γ (τ,β ,ξ )

and, when n→+∞, we obtain

s+ τ (s,x)≥ s+ τ (s,x)+ γ (τ,β ,ξ ) ,

which is impossible since γ (τ,β ,ξ )> 0. ut

Lemma 5.2.6. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then the follow-
ing properties are satisfied

(i) The map (s,x)→ τ (s,x) is lower semi-continuous on [0,+∞)×X0;
(ii) For each (s,x) ∈ [0,+∞)× X0, each τ ∈ (0,τ (s,x)) , and each sequence
{(sn,xn)}n≥0 ⊂ [0,+∞)×X0 such that (sn,xn)→ (s,x) as n→+∞, one has

sup
l∈[0,τ]

|U (l + sn,sn)xn−U (l + s,s)x| → 0 as n→+∞;

(iii) Dτ is open in D;
(iv) The map (t,s,x)→U(t,s)x is continuous from Dτ into X0.
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Proof. Let (s,x) ∈ [0,+∞)× X0 be fixed. Consider a sequence {(sn,xn)}n≥0 ⊂
[0,+∞)×X0 satisfying (sn,xn)→ (s,x) as n→ +∞. Let τ̂ ∈ (0,τ (s,x)) be fixed.
Define

ξ = 2 sup
t∈[s,s+τ̂]

|U(t,s)x|+1 > 0

and
τ̂n = sup{t ∈ (0,τ(sn,xn)) : |U(l + sn,sn)xn| ≤ 2ξ ,∀l ∈ [0, t]} .

Let ε ∈ (0,τ0] be given such that

ξ1 := δ (ε)MK (τ̂ + ŝ,2ξ )< 1, ŝ = sup
n≥0

sn.

Set

ξ
n
2 = δ (ε)M sup

l∈[0,τ̂]
‖F(l + sn,U(l + s,s)x)−F(l + s,U(l + s,s)x)‖→ 0 as n→+∞.

Then, we have for each l ∈ [0,min(τ̂n, τ̂)] and each r ∈ [0, l] with l− r ≤ ε that

U(l + s,s)x = U(l + s,r+ s)U(r+ s,s)x

= TA0(l− r)U(r+ s,s)x+
d
dt
(SA ∗F(.+ r+ s,U(.+ r+ s,s)x)(l− r).

Hence,

|U(l + sn,sn)xn−U(l + s,s)x|
= |U(l + sn,r+ sn)U(r+ sn,sn)xn−U(l + s,r+ s)U(r+ s,s)x|
≤
∣∣TA0(l− r) [U(r+ sn,sn)xn−U(r+ s,s)x]

∣∣
+Mδ (ε) sup

h∈[r,l]
‖F(h+ sn,U(h+ sn,sn)xn)−F(h+ s,U(h+ s,s)x)‖

≤ |U(r+ sn,sn)xn−U(r+ s,s)x|
+ξ1 sup

h∈[r,l]
|U(h+ sn,sn)xn−U(h+ s,s)x|+ξ

n
2 .

Therefore, for each l ∈ [0,min(τ̂n, τ̂)] and each r ∈ [0, l] with l− r ≤ ε,

sup
h∈[r,l]

|U(h+ sn,sn)xn−U(h+ s,s)x| ≤ 1
1−ξ1

[|U(r+ sn,sn)xn−U(r+ s,s)x|+ξ
n
2 ] .

From this we deduce for r = 0 that

sup
h∈[0,min(ε,τ̂n,τ̂)]

|U(h+ sn,sn)xn−U(h+ s,s)x| → 0 as n→+∞.

Thus, we have proved (ii) on a subinterval [0,min(ε, τ̂n, τ̂)]. By induction on the
number of subintervals, we have that
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sup
h∈[0,min(τ̂n,τ̂)]

|U(h+ sn,sn)xn−U(h+ s,s)x| → 0 as n→+∞. (5.2.2)

It follows that

sup
h∈[0,min(τ̂n,τ̂)]

|U(h+ sn,sn)xn| ≤ sup
h∈[0,min(τ̂n,τ̂)]

|U(h+ sn,sn)xn−U(h+ s,s)x|+ξ .

Since ξ > 0, there exists n0 ≥ 0 such that τ̂n > τ̂,∀n≥ n0, and the result follows by
using (5.2.2).

Now (iii) follows from (i). Moreover, if (tn,sn,xn)→ (t,s,x), then we have

|U(tn,sn)xn−U(t,s)x| ≤ |U((tn− sn)+ sn,sn)xn−U((tn− sn)+ s,s)x|
+ |U((tn− sn)+ s,s)x−U((t− s)+ s,s)x|

and by using (ii),

|U(tn,sn)xn−U(t,s)x| → 0 as n→+∞.

This proves (iv). ut

Summarizing the above lemmas, we now state the main result of this section
which is a generalization of Theorem 4.3.4 in Cazenave and Haraux [58].

Theorem 5.2.7. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then there exist
a map τ : [0,+∞)× X0 → (0,+∞] and a maximal nonautonomous semiflow U :
Dτ → X0, such that for each x ∈ X0 and each s≥ 0,U(.,s)x ∈C ([s,s+ τ (s,x)) ,X0)
is a unique maximal integrated solution of (5.1.1) (i.e. satisfies (5.1.7) or (5.1.8)).
Moreover, Dτ is open in D and the map (t,s,x)→U(t,s)x is continuous from Dτ

into X0.

5.3 Positivity

We are now interested in the positivity of the solutions of equation (5.1.1). Let
X+ ⊂ X be a positive cone of X . It is clear that

X0+ := X0∩X+

is also a positive cone of X0.
We need the following assumption to prove the positivity of solutions of equation

(5.1.1).

Assumption 5.3.1. Assume that there exists a linear operator B ∈L (X0,X) such
that

(a) For each γ ≥ 0, the linear operator A− γB is resolvent positive; that is,



5.3 Positivity 225

(λ I− (A− γB))−1X+ ⊂ X+

for all λ > ωA large enough;
(b) For each ξ > 0 and each σ > 0, there exists γ = γ(ξ ,σ)> 0, such that

F(t,x)+ γBx ∈ X+

whenever x ∈ X0+, ‖x‖ ≤ ξ and t ∈ [0,σ ] .

Proposition 5.3.2. Let Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 be satisfied. Then
for each x ∈ X0+ and each s≥ 0, we have

U(t,s)x ∈ X0+, ∀t ∈ [s,s+χ (s,x)) .

Proof. Without loss of generality we can assume that s = 0 and x ∈ X0+. Moreover,
using the semiflow property, it is sufficient to prove that there exists ε ∈ (0,χ (0,x))
such that U(t,0)x ∈ X0+, ∀t ∈ [0,ε] . Let x ∈ X0+ be fixed. Set ξ := 2(‖x‖+1) . Let
γ > 0 be given such that

F(t,x)+ γBx ∈ X+

when x∈X0+, ‖x‖≤ ξ and t ∈ [0,1]. Fix τγ > 0 such that γ‖B‖L (X0,X)V ∞(SA,0,τγ)<

1. For each σ ∈
(
0,τγ

)
, define

Eσ = {ϕ ∈C ([0,σ ] ,X0+) : ‖ϕ(t)‖ ≤ ξ , ∀t ∈ [0,σ ]} .

Then it is sufficient to consider the fixed point problem

u(t) = T(A−γB)0(t)x+(SA−γB � [F(.,u(.))+ γBu(.)])(t) =: Ψ(u)(t),∀t ∈ [0,σ ].

Since A−γB is resolvent positive, we have T(A−γB)0(t)X0+ ⊂ X0+,∀t ≥ 0. Using the
approximation formula (5.1.5), we have for each τ > 0 that(

SA−γB �ϕ
)
(t) ∈ X0+, ∀t ∈ [0,τ] , ∀ϕ ∈C ([0,τ] ,X+) .

Moreover, by using Theorem 3.5.1, for each ϕ ∈ Eσ and each t ∈ [0,σ ], we deduce
that

‖Ψ(ϕ)(t)‖ =
∥∥T(A−γB)0(t)x+

(
SA−γB � [F(.,ϕ(.))+ γBϕ(.)]

)
(t)
∥∥

≤
∥∥T(A−γB)0(t)x

∥∥
+

V ∞(SA,0, t)
1− γ‖B‖L (X0,X)V ∞(SA,0,τγ)

sup
s∈[0,t]

‖F(s,ϕ(s))+ γBϕ(s)‖

≤ sup
t∈[0,σ ]

∥∥T(A−γB)0(t)x
∥∥

+
V ∞(SA,0,σ)

1− γ‖B‖L (X0,X)V ∞(SA,0,τγ)

[
sup

s∈[0,σ ]

‖F(s,0)‖+
[
K(1,ξ )+ γ‖B‖L (X0,X)

]
ξ

]
.
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Hence, there exists σ1 ∈ (0,1) such that

Ψ(Eσ )⊂ Eσ , ∀σ ∈ (0,σ1] .

Therefore, for each σ ∈ (0,σ1] and each pair ϕ,ψ ∈ Eσ , we have for t ∈ [0,σ ] that

‖Ψ(ϕ)(t)−Ψ(ψ)(t)‖
=
∥∥(SA−γB � [F(.,ϕ(.))−F(.,ψ(.))+ γB(ϕ−ψ)(.)]

)
(t)
∥∥

≤ V ∞(SA,0,σ)

1− γ‖B‖L (X0,X)V ∞(SA,0,τγ)

[
K(1,ξ )+ γ‖B‖L (X0,X)

]
sup

s∈[0,σ ]

‖(ϕ−ψ)(s)‖ .

Thus, there exists σ2 ∈ (0,σ1] such that Ψ(Eσ2)⊂ Eσ2 and Ψ is a contraction strict
on Eσ2 . The result then follows. ut

Example 5.3.3. Usually Proposition 5.3.2 is applied with B = I. But the case B 6= I
can also be useful. Consider the following functional differential equation:{ dx(t)

dt
= f (xt) , ∀t ≥ 0,

x0 = ϕ ∈C ([−τ,0] ,Rn) ,
(5.3.1)

where f :C ([−τ,0] ,Rn)→Rn is Lipschitz continuous on bounded sets of C ([−τ,0] ,Rn) .
In order to obtain the positivity of solutions, it is sufficient to assume that for each
M ≥ 0 there exists γ = γ (M)> 0 such that

f (ϕ)+ γϕ (0)≥ 0

whenever ‖ϕ‖
∞
≤M and ϕ ∈C

(
[−τ,0] ,Rn

+

)
. It is well known that this condition

is sufficient to ensure the positivity of solutions (see Martin and Smith [259, 260]).
In order to prove this, one may also apply Proposition 5.3.2. By identifying xt with

v(t) =
(

0
xt

)
, system (5.3.1) can be rewritten as a non-densely defined Cauchy

problem (see Liu et al. [233] for more details)

dv(t)
dt

= Av(t)+F(v(t)), ∀t ≥ 0, and v(0) =
(

0
ϕ

)
with X =Rn×C ([−τ,0] ,Rn) ,D(A) = {0Rn}×C1 ([−τ,0] ,Rn) , where A : D(A)⊂
X → X is defined by

A
(

0
ϕ

)
=

(
−ϕ ′ (0)

ϕ ′

)
and F : D(A)→ X by

F
(

0
ϕ

)
=

(
f (ϕ)
0C

)
.

Then Proposition 5.3.2 applies with
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B
(

0
ϕ

)
=

(
ϕ (0)

0C

)
.

Recall that a cone X+ of a Banach space (X ,‖.‖) is normal if there exists a norm
‖.‖1 equivalent to ‖.‖, which is monotone; that is,

∀x,y ∈ X+, 0≤ x≤ y⇒‖x‖1 ≤ ‖y‖1 .

Corollary 5.3.4. Let Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 be satisfied. Assume
in addition that

(a) X+ is a normal cone of (X ,‖.‖);
(b) There exist a continuous map G : [0,+∞)×X0+ → X+ and two real numbers

k1 ≥ 0 and k2 ≥ 0 such that for each t ≥ 0 and each x ∈ X0+,

F(t,x)≤ G(t,x) and ‖G(t,x)‖ ≤ k1 ‖x‖+ k2.

Then
χ (s,x) = +∞, ∀s≥ 0, ∀x ∈ X0+.

Moreover, for each γ > 0 large enough, there exist C1 > 0 and C2 > 0 such that we
have the following estimate

‖U(t,s)x‖ ≤ eγ(t−s) [C1 ‖x‖+C2] .

Proof. Without loss of generality, we can assume that s = 0 and the norm ‖.‖ is
monotone. Let ε ∈ (0, 1

2k1
) and τε > 0 be given such that MAV ∞(SA,0,τε)≤ ε. Let

x ∈ X0+ be fixed. Then by Proposition 5.3.2, we have for each t ∈ [0,χ (0,x)) that

0 ≤ U(t,0)x = TA0(t)x+(SA �F(.,U(.,0)x))(t)
≤ TA0(t)x+(SA �G(.,U(.,0)x))(t).

Hence, for each γ > max(ωA,0), we have for each t ∈ [0,χ (0,x)) that

e−γt ‖U(t,0)x‖ ≤ e−γt ∥∥TA0(t)x
∥∥+ e−γt ‖(SA �G(.,U(.,0)x))(t)‖

≤ MAe(−γ+ωA)t ‖x‖+C (ε,γ) sup
s∈[0,t]

e−γs ‖G(s,U(s,0)x)‖

≤ MA ‖x‖+C (ε,γ) sup
s∈[0,t]

e−γs [k1 ‖U(s,0)x‖+ k2]

≤ MA ‖x‖+ k2C (ε,γ)+ k1C (ε,γ) sup
s∈[0,t]

e−γs ‖U(s,0)x‖ .

Since 2k1ε < 1, for γ > max(ωA,0) sufficiently large, we obtain k1C (ε,γ) =
2k1ε

1−e(ωA−γ)τε
< 1 and the result follows. ut
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5.4 Lipschitz Perturbation

Let E be a subset of Y and G : Y → Z be a map from a Banach space (Y,‖.‖Y )
into a Banach space (Z,‖.‖Z). Define

‖G‖Lip(E,Z) := sup
x,y∈E:x 6=y

‖G(x)−G(y)‖Z
‖x− y‖Y

.

Proposition 5.4.1. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : [0,+∞)×
D(A)→ X be a continuous map and σ ∈ (0,+∞] be a fixed constant. Assume that

ΓF (σ) := sup
t∈[0,σ)

‖F (t, .)‖Lip(X0,X) <+∞.

Then for each x ∈ X0 and each s ∈ [0,σ) , there exists a unique solution U(.,s)x ∈
C ([s,σ) ,X0) of

U(t,s)x = x+A
∫ t

s
U(l,s)xdl +

∫ t

s
F(l,U(l,s)x)dl, ∀t ∈ [s,σ) .

Moreover, there exists γ0 > max(0,ωA) such that for each γ ≥ γ0, each pair t,s ∈
[0,σ) with t ≥ s, and each pair x,y ∈ X0, we have

‖U(t,s)x‖ ≤ eγ(t−s)

[
2MA ‖x‖+ sup

l∈[s,σ)

e−γ(l−s) ‖F(l,0)‖
]

and
‖U(t,s)x−U (t,s)y‖ ≤ 2MAeγ(t−s) ‖x− y‖ .

Proof. Fix s, t ∈ [0,σ) with s < t. Let ε > 0 such that

ε max(ΓF (σ) ,1)< 1/8.

Let τε > 0 be given such that MAV ∞(SA,0,τε)≤ ε . Then by Lemma 3.5.5 we have
for each γ > ωA that

‖Ls (ϕ)‖L (BCγ ([s,+∞),X),BCγ ([s,+∞),X0))
≤C (γ,ε) =

2ε max(1,e−γτε )

1− e(ωA−γ)τε

.

Let γ0 ≥max(0,ωA) be fixed such that

1
1− e(ωA−γ)τε

< 2, ∀γ ≥ γ0.

To prove the proposition it is sufficient to prove that the following fixed point prob-
lem

U(.,s)x = TA0(.− s)x+Ls ◦Ψ (U(.,s)x) (5.4.1)
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admits a solution U(.,s)x∈BCγ ([s,σ) ,X0) , whereΨ : BCγ ([s,σ) ,X0)→BCγ ([s,σ) ,X)
is a nonlinear operator defined by

Ψ (ϕ)(l) = F(l,ϕ(l)), ∀l ∈ [s, t] , ∀ϕ ∈ BCγ ([s,σ) ,X0) .

We have ∥∥TA0(.− s)
∥∥

L (X0,BCγ ([s,σ),X0))
≤MA,

‖Ls‖L (BCγ ([s,σ),X),BCγ ([s,σ),X0))
≤ 4ε,

and
‖Ψ‖Lip(BCγ ([s,σ),X0),BCγ ([s,σ),X)) ≤ ΓF (σ) .

From this we deduce that

‖Ls ◦Ψ‖Lip(BCγ ([s,σ),X0),BCγ ([s,σ),X0))
≤ 4εΓF (σ)≤ 1/2.

Thus, the fixed point problem (5.4.1) has a unique solution. Moreover, for each
x ∈ X0, there exists a unique solution in BCγ ([s,σ) ,X0) .

‖U(.,s)x‖BCγ ([s,t],X0)

≤MA ‖x‖+‖Ls (Ψ (0))‖+‖Ls (Ψ (U(.,s)x)−Ψ (0))‖

≤MA ‖x‖+4ε ‖Ψ (0)‖BCγ ([s,σ),X)+
1
2
‖U(.,s)x‖BCγ ([s,σ),X0)

,

which implies that

‖U(.,s)x‖BCγ ([s,σ),X0)
≤ 2MA ‖x‖+8ε ‖Ψ (0)‖BCγ ([s,σ),X) .

Since by construction ε ≤ 1
8 , we have

sup
l∈[s,σ)

e−γ(l−s) ‖U(.,s)x‖ ≤ 2MA ‖x‖+ sup
l∈[s,σ)

e−γ(l−s) ‖F(l,0)‖ .

Similarly, we have for each pair x,y ∈ X0 that

U(.,s)x−U(.,s)y = TA0(.− s)(x− y)+Ls [Ψ (U(.,s)x)−Ψ (U(.,s)y)] .

Therefore,

‖U(.,s)x−U(.,s)y‖BCγ ([s,σ),X0)

≤MA ‖x− y‖+ 1
2
‖U(.,s)x−U(.,s)y‖BCγ ([s,σ),X0)

.

This completes the proof. ut
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5.5 Differentiability with Respect to the State Variable

In this section we investigate the differentiability of solutions with respect to the
state variable. Let Y be a Banach space. Define open and closed balls as follows

BY (x,r) := {y ∈ Y : ‖x− y‖Y < r} ,
BY (x,r) := {y ∈ Y : ‖x− y‖Y ≤ r}

whenever x ∈ Y and r > 0.

Proposition 5.5.1. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Assume in
addition that

(a) For each t ≥ 0 the map x→ F (t,x) is continuously differentiable from X0 into X;
(b) The map (t,x)→ DxF (t,x) is continuous from [0,+∞)×X0 into L (X0,X) .

Let x0 ∈X0, s≥ 0, τ ∈ [0,χ (s,x0)) , and γ ∈ (0,χ (s,x0)− τ) . Let η > 0 (there exists
such a constant since Dχ is open in D) such that

χ (s,y)> τ + γ, ∀y ∈ BX0 (x0,η) .

Then for each t ∈ [s,s+ τ + γ] , the map x→U(t,s)x is defined from BX0 (x,η) into
X0 and is differentiable at x0. Moreover, if we set

V (t,s)y = DxU(t,s)(x)(y), ∀y ∈ X0,

then t→V (t,s)y is an integrated solution of the Cauchy problem

dV (t,s)y
dt

= AV (t,s)y+DxF(t,U(t,s)x0)V (t,s)y, t ∈ [s,s+χ (s,x0)) ,

V (s,s)y = y

or equivalently, ∀t ∈ [s,s+χ(s,x0)), t→V (t,s)y is a solution of

V (t,s)y = TA0(t− s)y+(SA �DxF(.,U(.,s)x0)V (.,s)y)(t− s).

Proof. First by using the result in the Section 5.4 about the Lipschitz case, it is clear
that V (t,s) is well defined. Set

R(t)(y) =U(t,s)(x0 + y)−U(t,s)(x0)−V (t,s)y.

Then

R(t)(y) = (SA � [F(.,U(.,s)(x0 + y))−F (.,U(.,s)(x0))

−DxF(.,U(.,s)x0)V (.,s)y])(t− s).

But

F(t,U(t,s)(x0 + y))−F (t,U(t,s)(x0))
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=
∫ 1

0
DxF(t,rU(t,s)(x0 + y)+(1− r)U(t,s)(x0))(U(t,s)(x0 + y)

−U(t,s)(x0))dr

=
∫ 1

0
Ψ1(t,r,y)(U(t,s)(x0 + y)−U(t,s)(x0))dr

+DxF(t,U(t,s)(x0))(U(t,s)(x0 + y)−U(t,s)(x0)) ,

where

Ψ1(t,r,y) = DxF(t,rU(t,s)(x0 + y)+(1− r)U(t,s)(x0))−DxF(t,U(t,s)(x0)).

Thus,
R(t)y = (SA � [K(.)+DxF(.,U(.,s)x0)R(.)y]) (t− s),

where

K(t) =
∫ 1

0
Ψ2(t,r,y)(U(t,s)(x0 + y)−U(t,s)(x0))dr

and

Ψ2(t,r,y) = DxF(t,rU(t,s)(x0 + y)+(1− r)U(t,s)(x0))−DxF(t,U(t,s)(x0)).

The result follows from Proposition 3.5.3 and the continuity of (t,x)→U(t,s)x.
ut

5.6 Time Differentiability and Classical Solutions

In this section, we study the time differentiability of the solutions. Consider a
solution u ∈C([0,τ],D(A)) of

u(t) = x+A
∫ t

0
u(s)ds+

∫ t

0
F(s,u(s))ds, t ∈ [0,τ].

Assume that x ∈ D(A) and F : [0,τ]×D(A)→ X is a C1 map. When the domain
of A is dense, it is well known (see Pazy [281], Theorem 6.1.5, p. 187) that for
each x ∈ D(A), the map t → u(t) is a classical solution; that is, the map t → u(t) is
continuously differentiable, u(t) ∈ D(A) for all t ∈ [0,τ], and satisfies

u′(t) = Au(t)+ f (t,u(t)), ∀t ∈ [0,τ], u(0) = x.

Now we consider the same problem but in the context of non-densely defined
Cauchy problems. When A satisfies the Hille-Yosida condition, this problem has
been studied by Thieme [328] and Magal [242]. So the goal is to extend these re-
sults to the non-Hille-Yosida case. For each τ > 0, set
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C1,+([0,τ],X) =

{
f ∈C([0,τ],X) :

d+ f
dt
∈C([0,τ),X), lim

t↗τ

d+ f
dt

(t)< ∞

}
.

The following lemma is a variant of a result due to Da Prato and Sinestrari [85].

Lemma 5.6.1 (Da Prato-Sinestrari). Let A : D(A)⊂ X → X be a closed linear op-
erator. Let τ > 0, f ∈C([0,τ],X), and x ∈ X0 be fixed. Assume that u ∈C ([0,τ] ,X)
is a solution of

u(t) = x+A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ] .

Assume in addition that u belongs to C1,+([0,τ],X) or C([0,τ] ,D(A)). Then

u ∈C1([0,τ] ,X)∩C([0,τ] ,D(A))

and
u′(t) = Au(t)+ f (t), ∀t ∈ [0,τ] .

Proof. If u ∈C([0,T ],D(A)), since A is closed, we have

u(t) = x+
∫ t

0
Au(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ] .

So u ∈C1([0,τ] ,X) and u′(t) = Au(t)+ f (t),∀t ∈ [0,τ] .
If u ∈C1,+([0,τ],X), then we have for each t ∈ [0,τ) and h > 0 that

u(t +h)−u(t)
h

−
∫ t+h

t f (s)ds
h

= A
∫ t+h

t u(s)ds
h

.

Since A is closed, we deduce that u(t)∈D(A) and Au(t) = d+u
dt (t)− f (t),∀t ∈ [0,τ) .

Since u ∈ C1,+([0,τ],X), we then have that u ∈ C([0,τ],D(A)) and complete the
proof. ut

Lemma 5.6.2. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Assume that g∈C1 ([0,T ] ,X)
and g(0) ∈ D(A), then t→ (SA �g)(t) is continuously differentiable and

d
dt

(SA �g)(t) = TA0(t)g(0)+
(
SA �g′

)
(t), ∀t ∈ [0,T ] .

Proof. Since g is continuously differentiable, the map t → (SA ∗g)(t) is continu-
ously differentiable,

d
dt

(SA ∗g)(t) = SA(t)g(0)+
(
SA ∗g′

)
(t), ∀t ∈ [0,T ] ,

Since g(0) ∈D(A), we have SA(t)g(0) =
∫ t

0 TA0(l)g(0)dl, ∀t ∈ [0,T ] , and the result
follows. ut
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The following theorem is due to Vanderbauwhede [343, Theorem 3.5], a gener-
alized version is given and proved in Chapter 6 (see Lemma 6.1.13 and its proof)
when it is used to prove the smoothness of center manifolds.

Theorem 5.6.3 (Fibre Contraction Theorem). Let M1 and M2 be two complete
metric spaces and Ψ : M1×M2→M1×M2 a mapping of the form

Ψ (x,y) = (Ψ1 (x) ,Ψ2 (x,y)) ,∀(x,y) ∈M1×M2

satisfying the following properties:

(i) Ψ1 has a fixed point x ∈M1 such that for each x ∈M1,

Ψ
n

1 (x)→ x as n→+∞;

(ii) There exists k ∈ [0,1) such that for each x ∈ M1 the map y→Ψ2 (x,y) is k-
Lipschitz continuous;

(iii) The map x→Ψ2 (x,y) is continuous, where y ∈M2 is a fixed point of the map
y→Ψ2 (x,y) .

Then for each (x,y) ∈M1×M2,

Ψ
n (x,y)→ (x,y) as n→+∞.

The key result of this section is the following lemma.

Lemma 5.6.4. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let τ > 0 be fixed and
F : [0,τ]×D(A)→ X be continuously differentiable. Assume that there exists an
integrated solution u ∈C ([0,τ] ,X) of the Cauchy problem

du(t)
dt

= Au(t)+F(t,u(t)), t ∈ [0,τ] , u(0) = x ∈ X0.

Assume in addition that

x ∈ D(A0) and F(0,x) ∈ D(A).

Then there exists ε > 0 such that u ∈C1([0,ε],X)∩C([0,ε],D(A)) and

u′(t) = Au(t)+F(t,u(t)), ∀t ∈ [0,ε].

Proof. We apply the Fibre Contraction Theorem (Theorem 5.6.3) to prove the
lemma.

(i) Construction of the map Ψ . Since F is continuously differentiable, there exist
ε0 > 0, K1 > 0, and K2 > 0 such that

‖∂tF(t,y)‖ ≤ K1 and ‖∂xF(t,y)‖L (X0,X) ≤ K2

whenever ‖x− y‖ ≤ ε0 and 0≤ t ≤ ε0. For each ε ∈ (0,ε0] , set
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Mε
1 = {ϕ ∈C([0,ε],X0) : ϕ(0) = x, ‖ϕ(t)− x‖ ≤ ε0,∀t ∈ [0,ε]},

Mε
2 = {ϕ ∈C([0,ε],X0) : ϕ(0) = A0x+F(0,x),

‖ϕ(t)−A0x+F(0,x)‖ ≤ ε0, ∀t ∈ [0,ε]}.

From now on, we assume that for each i = 1,2, Mε
i is endowed with the metric

d(ϕ, ϕ̂) = ‖ϕ− ϕ̂‖
∞,[0,ε] and Mε

1 ×Mε
2 is endowed with the usual product distance

d((ϕ,ψ),(ϕ̂, ψ̂)) = d(ϕ, ϕ̂)+d(ψ, ψ̂).
For each ε ∈ (0,ε0] , set

Eε =

{
(ϕ1,ϕ2) ∈Mε

1 ×Mε
2 : ϕ1(t) = x+

∫ t

0
ϕ2(s)ds,∀t ∈ [0,ε]

}
.

Then it is clear that Eε is a closed subset of Mε
1 ×Mε

2 .
Consider a map Ψ : Mε

1 ×Mε
2 →C ([0,ε] ,X0)×C ([0,ε] ,X0) defined by

Ψ (ϕ1,ϕ2) = (Ψ1 (ϕ1) ,Ψ2 (ϕ1,ϕ2)) , ∀(ϕ1,ϕ2) ∈Mε
1 ×Mε

2 ,

where for each t ∈ [0,ε] ,

Ψ1 (ϕ1)(t) = TA0(t)x+(SA �F (.,ϕ1(.)))(t),

Ψ2 (ϕ1,ϕ2)(t) = TA0(t) [A0x+F(0,x)]
+(SA �∂tF(.,ϕ1(.))+∂xF(.,ϕ1(.))ϕ2(.))(t).

(ii) Ψ (Mε
1 ×Mε

2 )⊂Mε
1 ×Mε

2 . One can easily check that Ψ is a continuous map.
We now prove that for some ε > 0 small enough, Ψ (Mε

1 ×Mε
2 )⊂Mε

1 ×Mε
2 , and

Ψ1 (ϕ1)(0) = x, Ψ2 (ϕ1,ϕ2)(0) = [A0x+F(0,x)] .

For each ε ∈ (0,ε0] , each t ∈ [0,ε] , and each ϕ ∈Mε
1 , we have

‖Ψ1 (ϕ)(t)− x‖
≤
∥∥TA0(t)x− x

∥∥+‖(SA �F(.,ϕ(.))(t)‖
≤
∥∥TA0(t)x− x

∥∥+V ∞(SA,0, t) sup
s∈[0,t]

‖F(s,ϕ(s))‖

≤
∥∥TA0(t)x− x

∥∥
+V ∞(SA,0,ε)

(
sup

s∈[0,t]
‖F(s,x)‖+K2 sup

s∈[0,t]
‖ϕ(s)− x‖

)

≤ sup
t∈[0,ε]

∥∥TA0(t)x− x
∥∥+V ∞(SA,0,ε)

(
sup

s∈[0,ε]
‖F(s,x)‖+K2ε0

)
.

Thus, there exists ε1 ∈ (0,ε0] such that for each ε ∈ (0,ε1] ,Ψ1 (Mε
1 )⊂Mε

1 .
Moreover, for each ε ∈ (0,ε1] , each t ∈ [0,ε] , and each (ϕ1,ϕ2) ∈Mε

1 ×Mε
2 , we

have
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‖Ψ2 (ϕ1,ϕ2)(t)− [A0x+F(0,x)]‖
≤
∥∥TA0(t) [A0x+F(0,x)]− [A0x+F(0,x)]

∥∥
+‖(SA �∂tF(.,ϕ1(.))+∂xF(.,ϕ1(.))ϕ2(.))(t)‖
≤ supt∈[0,ε]

∥∥TA0(t) [A0x+F(0,x)]− [A0x+F(0,x)]
∥∥

+V ∞(SA,0,ε)sups∈[0,ε] ‖∂tF(s,ϕ1(s))‖
+V ∞(SA,0,ε)sups∈[0,ε] ‖∂xF(s,ϕ1(s))‖‖ϕ2(.)‖
≤ supt∈[0,ε]

∥∥TA0(t) [A0x+F(0,x)]− [A0x+F(0,x)]
∥∥

+V ∞(SA,0,ε){K1 +K2 [‖A0x+F(0,x)‖+ ε0]} .

(5.6.1)

Therefore, there exists ε2 ∈ (0,ε1] such that for each ε ∈ (0,ε2],

Ψ2(Mε
1 ×Mε

2 )⊂Mε
2 .

Similarly, for each ε ∈ (0,ε2] ,Ψ (Mε
1 ×Mε

2 )⊂Mε
1 ×Mε

2 .
(iii) Ψ (Eε) ⊂ Eε . Let (ϕ1,ϕ2) ∈ Eε . Then ϕ1 ⊂ C1 ([0,ε] ,X0) and ϕ ′1(t) =

ϕ2(t),∀t ∈ [0,ε] . Notice that

Ψ1 (ϕ1)(t) = TA0(t)x+(SA �F(.,ϕ1(.))(t),

using Lemma 5.6.2 and the fact that x ∈ D(A0) and F(0,x) ∈ D(A), we have

dΨ1 (ϕ1)(t)
dt

= A0TA0(t)x+TA0(t)F(0,x)+
(

SA �
d
dt

F(.,ϕ1(.)

)
(t)

= TA0(t) [A0x+F(0,x)]
+(SA �∂tF(.,ϕ1(.))+∂xF(.,ϕ1(.))ϕ2(.))(t).

Thus,
dΨ1 (ϕ1)(t)

dt
=Ψ2 (ϕ1,ϕ2)(t)

and
Ψ (Eε)⊂ Eε .

(iv) Convergence of Ψ n. To apply Lemma 5.6.3, it remains to verify conditions
(i) and (ii) for some ε ∈ (0,ε2] small enough. Let (ϕ1,ϕ2) ,(ϕ̂1, ϕ̂2) ∈Mε

1 ×Mε
2 be

fixed. We have for each ε ∈ (0,ε2] that

‖Ψ1 (ϕ1)(t)−Ψ1 (ϕ̂1)(t)‖ = ‖(SA �F (.,ϕ1(.))−F (., ϕ̂1(.)))(t)‖
≤ V ∞(SA,0,ε)‖F (s,ϕ1(s))−F (s, ϕ̂1(s))‖
≤ V ∞(SA,0,ε)K2 sup

s∈[0,ε]
‖ϕ1(s)− ϕ̂1(s)‖ .

So there exists ε3 ∈ (0,ε2] such that δ1 :=V ∞(SA,0,ε3)K2 ∈ (0,1) , we have for each
ε ∈ (0,ε3] that

‖Ψ1 (ϕ1)−Ψ1 (ϕ̂1)‖∞,[0,ε] ≤ δ1 ‖ϕ1− ϕ̂1‖∞,[0,ε] .
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Moreover,

‖Ψ2 (ϕ1,ϕ2)(t)−Ψ2 (ϕ1, ϕ̂2)(t)‖ = ‖(SA �∂xF(.,ϕ1(.))(ϕ2(.)− ϕ̂2))(t)‖
≤ V ∞(SA,0,ε)K2 sup

s∈[0,ε]
‖ϕ2(s)− ϕ̂2(s)‖

≤ δ1 sup
s∈[0,ε]

‖ϕ2(s)− ϕ̂2(s)‖ ,

which implies that

‖Ψ2 (ϕ1,ϕ2)(t)−Ψ2 (ϕ1, ϕ̂2)‖∞,[0,ε] ≤ δ1 ‖ϕ2− ϕ̂2‖∞,[0,ε] .

Hence, for ε = ε3 we have Ψ (Mε
1 ×Mε

2 )⊂Mε
1 ×Mε

2 , Ψ (Eε)⊂ Eε and Ψ satisfies
the assumptions of Lemma 5.6.3. We deduce that there exists (u,v)∈Mε

1 ×Mε
2 such

that for each (ϕ1,ϕ2) ∈Mε
1 ×Mε

2 ,

Ψ
n (ϕ1,ϕ2)→ (u,v) as n→+∞.

Since Ψ (Eε) ⊂ Eε and Eε is closed, we deduce that (u,v) ∈ Eε . In particular, u ∈
C1([0,ε],X), and the result follows. ut

In next lemma, we show that the conclusions of Lemma 5.6.4 hold for t ∈ [0,τ].

Lemma 5.6.5. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let τ > 0 be fixed and
F : [0,τ]×D(A)→ X be continuously differentiable. Assume that there exists an
integrated solution u ∈C ([0,τ] ,X) of the Cauchy problem

du(t)
dt

= Au(t)+F(t,u(t)), t ∈ [0,τ] , u(0) = x ∈ X0.

Assume in addition that

x ∈ D(A0) and F(0,x) ∈ D(A).

Then u ∈C1([0,τ],X)∩C([0,τ],D(A)) and

u′(t) = Au(t)+F(t,u(t)), ∀t ∈ [0,τ].

Proof. Let w ∈C([0,τ],D(A)) be a solution of the equation

w(t) = Ax+F(0,x)+A
∫ t

0
w(s)ds

+
∫ t

0

∂

∂ t
F(s,u(s))+DxF(s,u(s))w(s)ds,∀t ∈ [0,τ].

From Section 5.4 concerning global Lipschitz perturbation, it is clear that the solu-
tion w(t) exists and is uniquely determined. Since u(t) exists on [0,τ], let t ∈ [0,τ)
be fixed. We have for each h ∈ (0,τ− t) that
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u(t +h)−u(t)
h

=
1
h

A
[∫ t+h

0
u(s)ds−

∫ t

0
u(s)ds

]
+

1
h

[∫ t+h

0
F(s,u(s))ds−

∫ t

0
F(s,u(s))ds

]
= A

[∫ t

0

u(s+h)−u(s)
h

ds
]
+

1
h

A
∫ h

0
u(s)ds

+
∫ t

0

F(s+h,u(s+h))−F(s,u(s))
h

ds+
1
h

∫ h

0
F(s,u(s))ds.

Therefore,

u(t +h)−u(t)
h

−w(t)

= A
∫ t

0

[
u(s+h)−u(s)

h
−w(s)

]
ds

+
1
h

A
∫ h

0
u(s)ds+

1
h

∫ h

0
F(s,u(s))ds−Ax−F(0,x)

+
∫ t

0

[
F(s+h,u(s+h))−F(s+h,u(s))

h
−DxF(s,u(s))w(s)

]
ds

+
∫ t

0

[
F(s+h,u(s))−F(s,u(s))

h
− ∂

∂ t
F(s,u(s))

]
ds.

Denote

vh(t) :=
u(t +h)−u(t)

h
−w(t)

and

xh :=
1
h

A
∫ h

0
u(s)ds+

1
h

∫ h

0
F(s,u(s))ds−Ax−F(0,x).

We have

vh(t) = xh +A
∫ t

0
vh(s)ds

+
∫ t

0

∫ 1

0
DxF (l (u(s+h)−u(s))+u(s))(

u(s+h)−u(s)
h

−w(s)
)

dlds

+
∫ t

0

∫ 1

0
[DxF (l (u(s+h)−u(s))+u(s))−DxF (u(s))]w(s)dlds

+
∫ t

0

[
F(s+h,u(s))−F(s,u(s))

h
− ∂

∂ t
F(s,u(s))

]
ds.
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Set

K = sup
l∈[0,1],s∈[0,τ],h∈[0,τ−s]

‖DxF (l (u(s+h)−u(s))+u(s))‖L (X0,X) <+∞.

Let τ̂ > 0 be given such that

MAV ∞(SA,0, t)≤
1

8(K +1)
, ∀t ∈ [0, τ̂] .

Choose γ > max(0,ωA) so that

1
4
(
1− e(ωA−γ)τ̂

) < 1
2
.

Then by Proposition 3.5.3, we have for all γ > max(0,ωA) that

e−γt ‖vh(t)‖

≤MA ‖xh‖+
1
2

sup
s∈[0,τ]

e−γs ‖vh(s)‖

+ sup
s∈[0,τ]

e−γs
∥∥∥∥∫ 1

0
[DxF(l(u(s+h)−u(s))+u(s))−DxF(u(s))]w(s)dl

∥∥∥∥
+ sup

s∈[0,τ]
e−γs

∥∥∥∥∫ 1

0

[
F(s+h,u(s))−F(s,u(s))

h
− ∂

∂ t
F(s,u(s))

]
dl
∥∥∥∥ ,

which implies that

e−γt ‖vh(t)‖
≤ 2MA ‖xh‖

+2 sup
s∈[0,τ]

e−γs
∥∥∥∥∫ 1

0
[DxF(l(u(s+h)−u(s))+u(s))−DxF(u(s))]w(s)dl

∥∥∥∥
+2 sup

s∈[0,τ]
e−γs

∥∥∥∥∫ 1

0

[
F(s+h,u(s))−F(s,u(s))

h
− ∂

∂ t
F(s,u(s))

]
dl
∥∥∥∥ .

We now claim that
lim
h↘0

xh = 0.

Indeed, we have

u(h)−u(0)
h

=
1
h

A
∫ h

0
u(s)ds+

1
h

∫ h

0
F(s,u(s))ds

and by Lemma 5.6.4, we have
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lim
h→0+

u(h)−u(0)
h

= Ax+F(0,x),

so
lim
h↘0

xh = 0.

We conclude that for each t ∈ [0,τ) , we will have

lim
h→0+

u(t +h)−u(t)
h

= w(t).

Since w ∈ C ([0,τ] ,X) , we deduce that u ∈ C1,+([0,τ],X). By using Da Prato-
Sinestrari Lemma 5.6.1, we obtain the result. ut

To extend the differentiability result to the case where F(0,x) /∈D(A), we notice
that since u(t) ∈ D(A) for all t ∈ [0,T ], a necessary condition for differentiability is

Ax+F(0,x) ∈ D(A).

In fact, this condition is also sufficient. Indeed, taking any bounded linear operator
B ∈L (X), if u satisfies

u(t) = x+A
∫ t

0
u(s)ds+

∫ t

0
F(s,u(s))ds, ∀t ∈ [0,τ],

then we have

u(t) = x+(A+B)
∫ t

0
u(s)ds+

∫ t

0
(F(s,u(s))−Bu(s))ds, t ∈ [0,τ].

So to prove the differentiability of u(t) it is sufficient to find B such that (A+B)x ∈
D(A). Take B(ϕ) = −x∗(ϕ)Ax, where x∗ ∈ X∗ is a continuous linear form with
x∗(x) = 1 if x 6= 0, which is possible by the Hahn-Banach theorem. We then have

x ∈ D(A) = D(A+B) and (A+B)x ∈ D(A) = D(A+B).

Moreover, assuming that Ax+F(0,x) ∈ D(A), we obtain F(0,x)−Bx ∈ D(A). By
using Theorem 3.5.1, we deduce that A+B satisfies Assumptions 5.1.1 and 5.1.2.
Therefore we obtain the following theorem.

Theorem 5.6.6. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let τ > 0 be fixed and
F : [0,τ]×D(A)→ X be continuously differentiable. Assume that there exists an
integrated solution u ∈C ([0,τ] ,X) of the Cauchy problem

du(t)
dt

= Au(t)+F(t,u(t)), t ∈ [0,τ] , u(0) = x ∈ X0.

Assume in addition that

x ∈ D(A) and Ax+F(0,x) ∈ D(A).
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Then u ∈C1([0,τ],X)∩C([0,τ],D(A)) and

u′(t) = Au(t)+F(t,u(t)), ∀t ∈ [0,τ].

We now consider the nonlinear generator

ANϕ = Aϕ +F(0,ϕ), ϕ ∈ D(AN) = D(A).

As in the linear case, one may define AN,0 (the part AN in D(A)) as follows

AN,0 = AN on D(AN,0) =
{

y ∈ D(A) : ANy ∈ D(A)
}
.

Of course, one may ask about the density of the domain D(AN,0) in D(A).

Lemma 5.6.7. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then the domain
D(AN,0) is dense in X0 = D(A). Assume in addition that X has a positive cone X+

and that Assumption 5.3.1 is satisfied. Then D(AN,0)∩X0+ is dense in X0+.

Proof. Let y ∈ D(A) be fixed. Consider the following fixed point problem: xλ ∈
D(A) satisfies

(λ I−A−F)xλ = λy⇔ xλ = λ (λ I−A)−1y+(λ I−A)−1F(0,xλ ).

Denote
Φλ (x) = λ (λ I−A)−1y+(λ I−A)−1F(0,x), ∀x ∈ X0.

Fix r > 0. Since y ∈ D(A), by Lemma 3.5.4, limλ→+∞

∥∥∥(λ I−A)−1
∥∥∥

L (X)
= 0, we

deduce that there exists λ0 > ωA such that

Φλ (BX0(y,r))⊂ BX0(y,r), ∀λ ≥ λ0,

where BX0(y,r) denotes the ball centered at y with radius r in X0. Moreover, there
exists λ1 ≥ λ0, such that for each λ ≥ λ1, Φλ is a strict contraction on BX0(y,r).
Hence, ∀λ ≥ λ1, there exists xλ ∈ BX0(y,r) such that Φλ (xλ ) = xλ . Finally, using
the fact that y ∈ D(A), we have lim

λ→+∞

λ (λ I−A)−1y = y, so

lim
λ→+∞

xλ = y.

The proof of the positive case is similar. ut

5.7 Stability of Equilibria

In this section we first investigate the local stability of an equilibrium.
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Proposition 5.7.1. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : D(A)→ X
be a continuous map. Assume that

(a) There exists x ∈ D(A) such that Ax+F(x) = 0;
(b) There exist M̂ ≥ 1, ω̂ < 0, and L ∈L (X0,X) such that∥∥∥T(A+L)0

(t)
∥∥∥

L (X0)
≤ M̂eω̂t , ∀t ≥ 0;

(c) ‖F−L‖Lip(BX0 (x,r),X)
→ 0 as r→ 0.

Then for each γ ∈ (ω̂,0) there exists ε > 0, such that for each x ∈ BX0 (x,ε) , there
exists a unique solution U(.)x ∈C ([0,+∞) ,X0) of

U(t)x = x+A
∫ t

0
U(s)xds+

∫ t

0
F (U(s)x)ds, ∀t ≥ 0

which satisfies

‖U(t)x− x‖ ≤ 2M̂eγt ‖x− x‖ , ∀t ≥ 0,∀x ∈ X0.

Proof. Without loss of generality we can assume that x = 0, L = 0, ωA < 0, and

‖F‖Lip(BX0 (x,η),X)→ 0 as η → 0.

Choose η0 > 0 such that

‖F‖Lip(BX0 (x,η0),X) <+∞.

Let φ : (−∞,+∞)→ [0,+∞) be a Lipschitz continuous map such that

φ(α)

= 0 if 2≤ |α|
∈ [0,1] if 1≤ |α| ≤ 2
= 1 if |α| ≤ 1.

Set
Fr (x) = φ(r‖x‖)F(x), ∀x ∈ X0, ∀r > 0.

Then

Fr (x) =
{

0 if 2
r ≤ ‖x‖ ,

F (x) if ‖x‖ ≤ 1
r .

Choose η ∈ (0,η0] and fix r =
2
η

. Let x,y ∈ X0. Define ϕ : [0,1]→ R by

ϕ(t) = ‖Fr (t (x− y)+ y)−Fr (y)‖ , ∀t ∈ [0,1] .

Since ‖F‖Lip(BX0 (x,η),X) <+∞, the map ϕ is Lipschitz continuous, we have for each

pair t,s ∈ [0,1] that
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|ϕ(t)−ϕ(s)| ≤ ‖F‖Lip(BX0 (x,η),X)

(
2‖φ‖Lip +1

)
‖x− y‖|t− s| .

In particular, for t = 1 and s = 0, we deduce that

‖Fr (x)−Fr (y)‖ ≤ ‖F‖Lip(BX0(x, 2
r ),X)

(
2‖φ‖Lip +1

)
‖(x− y)‖ .

So for all r ≥ 2
η0

, Fr ∈ Lip(X0,X) and

‖Fr‖Lip(X0,X) ≤ ‖F‖Lip(BX0(x, 2
r ),X)

(
2‖φ‖Lip +1

)
→ 0 as r→+∞. (5.7.1)

For each r ≥ 2
η0

, we consider the nonlinear semigroup {Ur(t)}t≥0 which is a solu-

tion of
Ur(t)x = x+A

∫ t

0
Ur(s)xds+

∫ t

0
Fr (Ur(s)x)ds, ∀t ≥ 0.

Let γ ∈ (ω̂,0) be fixed. By Proposition 5.4.1 and (5.7.1), there exists r0 = r0 (γ) ≥
2

η0
such that ∥∥Ur0(t)x

∥∥≤ 2Meγt ‖x‖ , ∀t ≥ 0, ∀x ∈ X0.

Let ε ∈
(

0, 1
2r0

1
2M

)
. Then for each x ∈ BX0(0,ε),

∥∥Ur0(t)x
∥∥≤ 2Meγt ‖x‖ ≤ 1

2r0
.

On the other hand, since F = Fr on BX0

(
0, 1

2r0

)
, we deduce that for each x ∈

BX0(0,ε), Ur0(.)x is a solution of

Ur(t)x = x+A
∫ t

0
Ur(s)xds+

∫ t

0
F (Ur(s)x)ds, ∀t ≥ 0.

The uniqueness of the solution with initial value x in BX0(0,ε) follows from the
fact that F is locally Lipschitz continuous around 0 and by using the argument of
Lemma 5.2.3. ut

Remark 5.7.2. (1) If F is continuously differentiable in BX0 (x,r0) , set L = DF(x).
Then by the formula

F(x)−F(y) =
∫ 1

0
DF(s(x− y)+ y)(x− y)ds, ∀x,y ∈ BX0 (x,ε) ,

it is clear that
‖F−DF(x)‖Lip(BX0 (x,r),X)

→ 0 as r→ 0.

So if x is an equilibrium (i.e., assertion (a) is satisfied) and
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(t)
∥∥∥

L (X0)
≤ M̂eω̂t , ∀t ≥ 0

for some M̂ ≥ 1 and ω̂ < 0, the conclusion of the proposition holds.
(2) In order to see an example where the condition (c) is more appropriate than

the usual differentiability condition, consider the following case. Assume that F is
quasi-linear; that is, F(x) = L(x)x, where L : X0→L (X0,X) is a Lipschitz contin-
uous map (but not necessarily differentiable in a neighborhood of 0). Then

‖(F−L(0))x− (F−L(0))y‖ = ‖(L(x)−L(0))x− (L(y)−L(0))y‖
≤ ‖(L(x)−L(0))x− (L(y)−L(0))x‖

+‖(L(y)−L(0))x− (L(y)−L(0))y‖
≤ [‖x‖+‖y‖]‖L‖Lip ‖x− y‖ .

So
‖(F−L(0))‖

Lip
(

BX0+ (0,ε),X
) ≤ 2ε ‖L‖Lip→ 0 as ε → 0.

Thus, in this case we can apply the condition (c), but F is not differentiable.

We now investigate the global asymptotic stability of an equilibrium.

Proposition 5.7.3. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : D(A)→ X
be a Lipschitz continuous map. Assume that:

(a) There exists x ∈ D(A) such that Ax+F(x) = 0;
(b) There exist M̂ > 0, ω̂ < 0, and L ∈L (X0,X), such that∥∥∥T(A+L)0

(t)
∥∥∥

L (X0)
≤ M̂eω̂t , ∀t ≥ 0.

Consider a C0-semigroup of nonlinear operators {U(t)}t≥0 on X0 which is a solu-
tion of

U(t)x = x+A
∫ t

0
U(s)xds+

∫ t

0
F (U(s)x)ds, ∀t ≥ 0.

Then for each γ ∈ (ω̂,0) , there exists δ0 = δ0 (γ)> 0, such that

‖F−L‖Lip(X0,X) ≤ δ0⇒‖U(t)x− x‖ ≤ 2M̂eγt ‖x− x‖ , ∀t ≥ 0, ∀x ∈ X0.

So x is a globally exponentially stable equilibrium of {U(t)}t≥0.

Proof. Replacing U(t)x by V (t)x =U(t)(x+ x)− x and F(.) by G(.) = F (.+ x)−
F(x), respectively. Without loss of generality we can assume that x = 0. Moreover,
using Theorem 3.5.1 and replacing M by M̂, ωA by ω̂ , A by A+L, and F by F−L,
respectively. We can further assume that L = 0 and ωA < 0.

Fix τ > 0 and set ε := Mδ (τ). Let γ ∈ (ωA,0) be fixed. Choose δ0 = δ0 (γ)> 0
such that

δ0
2εe−γτε

1− e(ωA−γ)τε

≤ 1
2
.
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Then by Lemma 3.5.5 we have

‖L0 (ϕ)‖L (BCγ ([0,+∞),X),BCγ ([0,+∞),X0))
≤ 2εe−γτε

1− e(ωA−γ)τε

≤ 1
2δ0

.

It is sufficient to consider the problem U(.)x ∈ BCγ ([0,+∞) ,X0) ,

U(t)x = TA0(t)x+L0 (Ψ (U(.)x))(t) , ∀t ∈ [0,+∞) ,

where Ψ : BCγ ([0,+∞) ,X0)→ BCγ ([0,+∞) ,X) is defined by

Ψ (ϕ)(t) = F (ϕ (t)) , ∀t ∈ [0,+∞) .

If ‖F‖Lip(X0,X) ≤ δ0, we have ‖L0 ◦Ψ‖Lip(BCγ ([0,+∞),X0),BCγ ([0,+∞),X0))
≤ 1/2, so for

each t ≥ 0

‖U(.)x‖BCγ ([0,+∞),X0)
≤M ‖x‖+ 1

2
‖U(.)x‖BCγ ([0,+∞),X0)

and the result follows. ut

As a consequence of Theorem 2.2 in Desch and Schappacher [94] and Proposi-
tion 5.5.1, we have the following result on the instability of an equilibrium.

Proposition 5.7.4. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : D(A)→ X
be a Lipschitz continuous map. Assume that there exists x ∈ D(A) such that Ax+
F(x) = 0. Assume in addition that

ω0,ess ((A+DF(x))0) := lim
t→+∞

ln
(∥∥∥T(A+L)0

(t)
∥∥∥

ess

)
t

< 0

and there exists λ ∈ σp ((A+DF(x))0) with Re(λ ) > 0. Then x is an unstable
equilibrium in the following sense: There exist a constant ε > 0 and a sequence
{xn}(⊂ X0)→ x as tn→+∞, such that

‖U (tn)xn− x‖ ≥ ε for all n≥ 0.

5.8 Remarks and Notes

For densely defined Cauchy problems we refer to Segal [313], Weissler [372],
Martin [258], Pazy [281], Cazenave and Haraux [58], Hirsch and Smith [189]. When
A is a Hille-Yosida operator but its domain is non-densely defined, Da Prato and
Sinestrari [85] investigated the existence of several types of solutions for the semi-
linear Cauchy problem. Thieme [328] investigated the semilinear Cauchy problem
with a Lipschitz perturbation of the closed linear operator A which is non-densely
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defined but is a Hille-Yosida operator. Integrated semigroup theory was used to ob-
tain a variation of constants formula which allows to transform the integrated so-
lutions of the evolution equation to solutions of an abstract semilinear Volterra in-
tegral equation, which in turn was used to find integrated solutions to the Cauchy
problem. Moreover, sufficient and necessary conditions for the invariance of closed
convex sets under the solution flow were found. Conditions for the regularity of the
solution flow in time and initial state were derived. The steady states of the solution
flow were characterized and sufficient conditions for local stability and instability
were given. See also Thieme [329, 335]. This chapter is taken from Magal and Ruan
[245, 247] which generalized the results of Thieme [328, 329, 335] to non-densely
defined semilinear Cauchy problems where the linear operator is not a Hille-Yosida
operator.

We also refer to Friedman [146], Pazy [281], Henry [183], and Lunardi [240] for
more results about Cauchy problems for abstract parabolic equations and to Barbu
[38], Goldstein [150], Webb [362], and Pavel [282] for a nonlinear semigroup ap-
proach.





Chapter 6
Center Manifolds, Hopf Bifurcation and Normal
Forms

The purpose of this chapter is to develop the center manifold theory, Hopf bifur-
cation theorem, and normal form theory for abstract semilinear Cauchy problems
with nondense domain.

6.1 Center Manifold Theory

In this section, we investigate the existence and smoothness of the center mani-
fold for a nonlinear semiflow {U(t)}t≥0 on X0, generated by integrated solutions of
the semilinear Cauchy problem

du(t)
dt

= Au(t)+F(u(t)), t ≥ 0; u(0) = x ∈ X0, (6.1.1)

where A : D(A)⊂X→X is a linear operator satisfying Assumptions 3.4.1 and 3.5.2,
and F : X0→ X is Lipschitz continuous. So t→U(t)x is a solution of

U(t)x = x+A
∫ t

0
U(s)xds+

∫ t

0
F(U(s)x)ds, ∀t ≥ 0, (6.1.2)

or equivalently

U(t)x = TA0(t)x+(SA �F(U(.)x))(t), ∀t ≥ 0. (6.1.3)

We know that for each x ∈ X0, (6.1.2) has a unique integrated solution t →U(t)x
from [0,+∞) into X0. Moreover, the family {U(t)}t≥0 defines a continuous semi-
flow; that is,

(i) U(0) = I and U(t)U(s) =U(t + s),∀t,s≥ 0;
(ii) The map (t,x)→U(t)x is continuous from [0,+∞)×X0 into X0.

Furthermore, there exists γ > 0 such that

247
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‖U(t)x−U(t)y‖ ≤Meγt ‖x− y‖ , ∀t ≥ 0,∀x,y ∈ X0.

Assume that x ∈ X0 is an equilibrium of {U(t)}t≥0 (i.e. U(t)x = x,∀t ≥ 0, or
equivalently x ∈ D(A) and Ax+F (x) = 0). Then by using (6.1.2) and by replacing
U(t)x by V (t)x=U(t)x−x, and F(x) by F(x+x)−F (x) , without loss of generality
we can assume that x = 0. Moreover, assume that F is differentiable at 0 and denote
by DF(0) its differential at 0. Then by using Theorem 3.5.1 and by replacing A by
A+DF(0), and F by F−DF(0), without loss of generality we can also assume that
DF(0) = 0. So in the following, we assume that the space X0 can be decomposed
into X0s, X0c, and X0u, the stable, center, and unstable linear manifold, respectively,
corresponding to the spectral decomposition of A0.

Assumption 6.1.1. Assume that Assumption 3.4.1 and 3.5.2 are satisfied and there
exist two bounded linear projectors with finite rank, Π0c ∈L (X0)\{0} and Π0u ∈
L (X0) , such that

Π0cΠ0u = Π0uΠ0c = 0

and
Π0kTA0(t) = TA0(t)Π0k, ∀t ≥ 0, ∀k = {c,u} .

Assume in addition that

(a) If Π0u 6= 0, then ω0
(
−A0 |Π0u(X0)

)
< 0;

(b) σ
(
A0 |Π0c(X0)

)
⊂ iR;

(c) If Π0s := I− (Π0c +Π0u) 6= 0, then ω0
(
A0 |Π0s(X0)

)
< 0.

Remark 6.1.2. By Theorem 4.5.8, Assumption 6.1.1 is satisfied if and only if

(a) ω0,ess (A0)< 0;
(b) σ (A0)∩ iR 6= /0.

For each k = {c,u} , denote by Πk : X→ X the unique extension of Π0k satisfying
(i)-(iii) in Proposition 4.5.5. Denote

Πs = I− (Πc +Πu) and Πh = I−Πc.

Then we have for each k ∈ {c,h,s,u} that

Πk (λ I−A)−1 = (λ I−A)−1
Πk,∀λ > ω,

Πk (X0)⊂ X0,

and for each k ∈ {c,u} that
Πk (X)⊂ X0.

For each k ∈ {c,h,s,u} , set

X0k = Πk (X0) , Xk = Πk (X) , Ak = A |Xk , and A0k = A0 |X0k .

So for each k ∈ {c,u} ,
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Xk = X0k.

Thus, by using Lemma 4.5.6(i) and (4.5.1) we have for each k ∈ {c,h,s,u} that

(Ak)D(Ak)
= A0 |X0k and X0k = Xk ∩X0.

In other words, A0k is the part of Ak in X0k = D(Ak). Moreover, we have

X = Xs⊕Xc⊕Xu and Xh = Xs⊕Xu.

Lemma 6.1.3. Fix β ∈ (0,min(−ω0 (A0s) ,−ω0 (−A0u))). Then we have∥∥TA0s(t)
∥∥

L (X0s)
≤Mse−β t , ∀t ≥ 0, (6.1.4)∥∥e−A0ut∥∥

L (X0u)
≤Mue−β t , ∀t ≥ 0 (6.1.5)

with

Ms = sup
t≥0

∥∥TA0s(t)
∥∥

L (X0s)
eβ t <+∞,

Mu = sup
t≥0

∥∥e−A0ut∥∥
L (X0u)

eβ t <+∞.

Moreover, for each η ∈ (0,β ) , we have∥∥eA0ct∥∥
L (X0c)

≤ eη |t|Mc,η , ∀t ∈ R, (6.1.6)

with
Mc,η = sup

t∈R

∥∥eA0ct∥∥
L (X0c)

e−η |t| <+∞.

Let (Y,‖.‖Y ) be a Banach space. Let η ∈R be a constant and I⊂R be an interval.
Define

BCη(I,Y ) =
{

f ∈C (I,Y ) : sup
t∈I

e−η |t| ‖ f (t)‖Y <+∞

}
.

It is well known that BCη(I,Y ) is a Banach space when it is endowed with the norm

‖ f‖BCη (I,Y ) = sup
t∈I

e−η |t| ‖ f (t)‖Y .

Moreover, the family {(BCη(I,Y ),‖.‖BCη (I,Y ))}η>0 forms a scale of Banach spaces;
that is, if 0 < ζ < η then BCζ (I,Y )⊂ BCη(I,Y ) and the embedding is continuous.
More precisely, we have

‖ f‖BCη (I,Y ) ≤ ‖ f‖BCζ (I,Y ) , ∀ f ∈ BCζ (I,Y ).

Let (Z,‖.‖Z) be a Banach spaces. From now on, we denote by Lip(Y,Z) (resp.
LipB(Y,Z)) the space of Lipschitz (resp. Lipschitz and bounded) maps from Y into
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Z. Set

‖F‖Lip(Y,Z) := sup
x,y∈Y :x 6=y

‖F(x)−F(y)‖Z
‖x− y‖Y

.

We shall study the existence and smoothness of center manifolds in the following
two sections.

6.1.1 Existence of Center Manifolds

In this subsection, we investigate the existence of center manifolds. From now on
we fix β ∈ (0,min(−ω0 (A0s) ,−ω0 (−A0u))). Recall that u∈C(R,X0) is a complete
orbit of {U(t)}t≥0 if

u(t) =U(t− s)u(s), ∀t,s ∈ R with t ≥ s, (6.1.7)

where {U(t)}t≥0 is a continuous semiflow generated by (6.1.2).
Note that equation (6.1.7) is also equivalent to

u(t) = u(s)+A
∫ t−s

0
u(s+ r)dr+

∫ t−s

0
F (u(s+ r))dr

for all t,s ∈ R with t ≥ s, or to

u(t) = TA0(t− s)u(s)+(SA �F (u(s+ .)))(t− s) (6.1.8)

for each t,s ∈ R with t ≥ s.

Definition 6.1.4. Let η ∈ (0,β ). The η-center manifold of (6.1.1), denoted by Vη ,
is the set of all points x ∈ X0, so that there exists u ∈ BCη (R,X0) , a complete orbit
of {U(t)}t≥0 , such that u(0) = x.

Let u ∈ BCη (R,X0) be given. For all τ ∈ R, we have

e−η |τ| ‖u‖BCη (R,X0)
≤ ‖u(.+ τ)‖BCη (R,X0)

≤ eη |τ| ‖u‖BCη (R,X0)
.

So for each η > 0, Vη is invariant under the semiflow {U(t)}t≥0 ; that is,

U(t)Vη =Vη , ∀t ≥ 0.

Moreover, we say that {U(t)}t≥0 is reduced on Vη if there exists a map Ψ η : X0c→
X0h such that

Vη = Graph(Ψ) = {xc +Ψ (xc) : xc ∈ X0c} .

Before proving the main results of this chapter, we need some preliminary lemmas.

Lemma 6.1.5. Let Assumption 6.1.1 be satisfied. Let τ > 0 be fixed. Then for each
f ∈C([0,τ] ,X) and each t ∈ [0,τ] , we have
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Π0s (SA � f )(t) = (SA �Πs f )(t) = (SAs �Πs f )(t), (6.1.9)

and for each k ∈ {c,u} ,

Π0k (SA � f )(t) = (SA �Πk f )(t) =
∫ t

0
eA0k(t−r)

Πk f (r)dr, ∀t ∈ [0,τ] . (6.1.10)

Furthermore, for each γ > −β , there exists Ĉs,γ > 0, such that for each f ∈
C([0,τ] ,X) and each t ∈ [0,τ] , we have

e−γt ‖Π0s (SA � f )(t)‖ ≤ Ĉs,γ sup
s∈[0,t]

e−γs ‖ f (s)‖ds. (6.1.11)

Proof. The first part (i.e. equations (6.1.9) and (6.1.10)) of the lemma is a conse-
quence of Proposition 4.5.7. Moreover, applying Proposition 3.5.3 to (SAs �Πs f )(t)
and using (6.1.4), we obtain (6.1.11). ut

Lemma 6.1.6. Let Assumption 6.1.1 be satisfied. Then we have the following:

(i) For each η ∈ [0,β ) , each f ∈ BCη (R,X) , and each t ∈ R,

Ks( f )(t) := lim
r→−∞

Π0s (SA � f (r+ .))(t− r) exists;

(ii) For each η ∈ [0,β ) , Ks is a bounded linear operator from BCη (R,X) into
BCη (R,X0s). More precisely, for each ν ∈ (−β ,0) , we have

‖Ks‖L (BCη (R,X),BCη (R,X0s))
≤ Ĉs,ν ,∀η ∈ [0,−ν ] ,

where Ĉs,ν > 0 is the constant introduced in (6.1.11);
(iii) For each η ∈ [0,β ) , each f ∈ BCη (R,X) , and each t,s ∈ R with t ≥ s,

Ks( f )(t)−TA0s(t− s)Ks( f )(s) = Π0s (SA � f (s+ .))(t− s).

Proof. (i) and (iii) Let η ∈ (0,β ) be fixed. By using (3.4.12), we have for each
t,s,r ∈ R with r ≤ s≤ t, and each f ∈ BCη (R,X) that

(SA � f (r+ .))(t− r) = TA0(t− s)(SA � f (r+ .))(s− r)+(SA � f (s+ .))(t− s).

By projecting this equation on X0s, we obtain for all t,s,r ∈ R with r ≤ s≤ t that

Π0s (SA � f (r+ .))(t− r) = TA0s(t− s)Π0s (SA � f (r+ .))(s− r)

+Π0s (SA � f (s+ .))(t− s). (6.1.12)

Let ν ∈ (−β ,−η) be fixed. Then by using (6.1.4) and (6.1.11), we have for all
t,s,r ∈ R with r ≤ s≤ t that

‖Π0s (SA � f (r+ .))(t− r)−Π0s (SA � f (s+ .))(t− s)‖
=
∥∥TA0s(t− s)Π0s (SA � f (r+ .))(s− r)

∥∥
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≤Mse−β (t−s)Ĉs,ν eν(s−r) sup
l∈[0,s−r]

e−ν l ‖ f (r+ l)‖

= MsĈs,ν e−β (t−s)eν(s−r) sup
σ∈[r,s]

e−ν(σ−r) ‖ f (σ)‖

= MsĈs,ν e−β (t−s)eνs sup
l∈[r,s]

e−νσ eη |σ |e−η |σ | ‖ f (σ)‖

≤ ‖ f‖BCη (R,X) MsĈs,ν e−β (t−s)eνs sup
σ∈[r,s]

e−νσ eη |σ |.

Hence, for all s,r ∈ R− with s≥ r, we obtain

‖Π0s (SA � f (r+ .))(t− r)−Π0s (SA � f (s+ .))(t− s)‖
≤ ‖ f‖BCη (R,X) MsĈs,ν e−β (t−s)eνs sup

σ∈[r,s]
e−(ν+η)σ .

Because −(ν +η)> 0, we have

‖Π0s (SA � f (r+ .))(t− r)−Π0s (SA � f (s+ .))(t− s)‖
≤ ‖ f‖BCη (R,X) MsĈs,ν e−β (t−s)eνse−(ν+η)s

= ‖ f‖BCη (R,X) MsĈs,ν e−β te(β−η)s.

Since β −η > 0, by using Cauchy sequences, we deduce that

Ks( f )(t) = lim
s→−∞

Π0s (SA � f (s+ .))(t− s) exists.

Taking the limit as r goes to −∞ in (6.1.12), we obtain (iii).
(ii) Let ν ∈ (−β ,0) and η ∈ [0,−ν ] be fixed. For each f ∈ BCη (R,X) and each

t ∈ R, we have

‖Ks( f )(t)‖ = lim
r→−∞

‖Π0s (SA � f (r+ .))(t− r)‖

≤ Ĉs,ν limsup
r→−∞

eν(t−r) sup
l∈[0,t−r]

e−ν l ‖ f (r+ l)‖

= Ĉs,ν limsup
r→−∞

eν(t−r) sup
σ∈[r,t]

e−ν(σ−r) ‖ f (σ)‖

= Ĉs,ν limsup
r→−∞

eνt sup
σ∈[r,t]

e−νσ eη |σ |e−η |σ | ‖ f (σ)‖

= Ĉs,ν eνt ‖ f‖
η

sup
σ∈(−∞,t]

e−νσ eη |σ |.

Since ν +η ≤ 0, we deduce that if t ≤ 0,

e−η |t| ‖Ks( f )(t)‖ ≤ Ĉs,ν e(ν+η)t ‖ f‖
η

sup
σ∈(−∞,t]

e−(ν+η)σ

= Ĉs,ν e(ν+η)t ‖ f‖
η

e−(ν+η)t
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= Ĉs,ν ‖ f‖
η

and since η−ν > 0, it follows that if t ≥ 0,

e−η |t| ‖Ks( f )(t)‖ ≤ Ĉs,ν e(ν−η)t ‖ f‖
η

sup
σ∈(−∞,t]

e−νσ eη |σ |

≤ Ĉs,ν ‖ f‖
η

e(ν−η)t max( sup
σ∈(−∞,0]

e−(ν+η)σ , sup
σ∈[0,t]

e(η−ν)σ )

= Ĉs,ν ‖ f‖
η

e(ν−η)te(η−ν)t = Ĉs,ν ‖ f‖
η
.

This completes the proof. ut

Lemma 6.1.7. Let Assumption 6.1.1 be satisfied. Let η ∈ [0,β ) be fixed. Then we
have the following:

(i) For each f ∈ BCη (R,X) and each t ∈ R,

Ku( f )(t) :=−
∫ +∞

t
e−A0u(l−t)

Πu f (l)dl :=− lim
r→+∞

∫ r

t
e−A0u(l−t)

Πu f (l)dl

exists;
(ii) Ku is a bounded linear operator from BCη (R,X) into BCη (R,X0u) and

‖Ku‖L (BCη (R,X)) ≤
Mu ‖Πu‖L (X)

β −η
;

(iii) For each f ∈ BCη (R,X) and each t,s ∈ R with t ≥ s,

Ku( f )(t)− eA0u(t−s)Ku( f )(s) = Π0u (SA � f (s+ .))(t− s).

Proof. By using (6.1.5) and the same argument as in the proof of Lemma 6.1.6, we
obtain (i) and (ii). Moreover, for each s, t,r ∈ R with s≤ t ≤ r, we have∫ r

s
eA0u(s−l)

Πu f (l)dl =
∫ t

s
eA0u(s−l)

Πu f (l)dl +
∫ r

t
eA0u(s−l)

Πu f (l)dl

=
∫ t

s
eA0u(s−l)

Πu f (l)dl + eA0u(s−t)
∫ r

t
eA0u(t−l)

Πu f (l)dl.

It follows that

eA0u(t−s)
∫ r

s
eA0u(s−l)

Πu f (l)dl =
∫ t

s
eA0u(t−l)

Πu f (l)dl +
∫ r

t
eA0u(t−l)

Πu f (l)dl.

When r→+∞, we obtain for all s, t ∈ R with s≤ t that

−eA0u(t−s)Ku,η( f )(s) =
∫ t−s

0
eA0u(t−s−r)

Πu f (s+ r)dr−Ku,η( f )(t)

= Πu (SA � f (s+ .))(t− s)−Ku,η( f )(t).
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This gives (iii). ut

Lemma 6.1.8. Let Assumption 6.1.1 be satisfied. Let η ∈ (0,β ) be fixed. For each
xc ∈ X0c, each f ∈ BCη (R,X) , and each t ∈ R, denote

K1(xc)(t) := eA0ctxc, Kc( f )(t) :=
∫ t

0
eA0c(t−s)

Πc f (s)ds.

Then K1 (respectively Kc) is a bounded linear operator from X0c into BCη (R,X0c)
(respectively from BCη (R,X) into BCη (R,X0c) , and

‖K1‖L (Xc,BCη (R,X)) ≤max
(

sup
t≥0

∥∥∥e(Ac−ηI)t
∥∥∥ , sup

t≥0

∥∥∥e−(Ac+ηI)t
∥∥∥) ,

‖Kc‖L (BCη (R,X)) ≤ ‖Πc‖L (X) max
(∫ +∞

0

∥∥∥e(Ac−ηI)l
∥∥∥dl,

∫ +∞

0

∥∥∥e−(Ac+ηI)l
∥∥∥dl
)
.

Proof. The proof is straightforward. ut

Lemma 6.1.9. Let Assumption 6.1.1 be satisfied. Let η ∈ (0,β ) and u∈BCη (R,X0)
be fixed. Then u is a complete orbit of {U(t)}t≥0 if and only if for each t ∈ R,

u(t) = K1(Π0cu(0))(t)+Kc(F(u(.)))(t)

+Ku(F(u(.)))(t)+Ks(F(u(.)))(t). (6.1.13)

Proof. Let u ∈ BCη (R,X0) be fixed. Assume first that u is a complete orbit of
{U(t)}t≥0. Then for k ∈ {c,u} we have for all l,r ∈ R with r ≤ l that

Π0ku(l) = eA0k(l−r)
Π0ku(r)+

∫ l

r
eA0k(l−s)

ΠkF(u(s))ds.

Thus,
dΠ0ku(t)

dt
= A0kΠ0ku(t)+ΠkF(u(t)), ∀t ∈ R.

From this ordinary differential equation, we first deduce that

Π0cu(t) = eA0ct
Π0cu(0)+

∫ t

0
eA0c(t−s)

ΠcF(u(s))ds, ∀t ∈ R. (6.1.14)

Hence, for each t, l ∈ R,

Π0uu(t) = eA0u(t−l)
Π0uu(l)+

∫ t

l
eA0u(t−s)

ΠuF(u(s))ds, ∀t, l ∈ R.

It follows that for each l ≥ 0,∥∥∥e−A0u(l−t)
Π0uu(l)

∥∥∥≤Mu ‖Πu‖L (X) e−β (l−t)eη l ‖u‖BCη (R,X0)
.

So when l goes to +∞, we obtain
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Π0uu(t) =−
∫ +∞

t
eA0u(t−s)

ΠuF(u(s))ds, ∀t ∈ R. (6.1.15)

Furthermore, we have for all t, l ∈ R with t ≥ l that

Π0su(t) = TA0s(t− l)Π0su(l)+Π0s (SA �F(u(l + .)))(t− l)

and for each l ≤ 0 that∥∥TA0s(t− l)Π0su(l)
∥∥≤ e−β tMs ‖u‖η

e(β−η)l .

Taking l→−∞, we obtain

Π0su(t) = Ks,η (F(u(.)))(t), ∀t ∈ R. (6.1.16)

Finally, summing up (6.1.14), (6.1.15), and (6.1.16), we obtain (6.1.13).
Conversely, assume that u is a solution of (6.1.13). Then

Π0cu(t) = eA0ct
Π0cu(0)+

∫ t

0
eA0c(t−s)

ΠcF(u(s))ds, ∀t ∈ R.

It follows that

dΠ0cu(t)
dt

= A0cΠ0cu(t)+ΠcF(u(t)), ∀t ∈ R.

Thus, for l,r ∈ R− with r ≤ l,

Π0cu(l) = TA0(t− s)Π0cu(r)+Π0c (SA �F(u(s+ .)))(t− s).

Moreover, using Lemma 6.1.6 (iii) and Lemma 6.1.7 (iii), we deduce that for all
t,s ∈ R with t ≥ s

Π0su(t)−TA0(t− s)Π0su(s) = Π0s (SA �F(u(s+ .)))(t− s),

Π0uu(t)−TA0(t− s)Π0uu(s) = Π0u (SA �F(u(s+ .)))(t− s).

Therefore, u satisfies (6.1.8) and is a complete orbit of {U(t)}t≥0 . ut

Let η ∈ (0,β ) be fixed. We rewrite equation (6.1.13) as the following fixed point
problem: To find u ∈ BCη (R,X) such that

u = K1(Π0cu(0))+K2ΦF(u), (6.1.17)

where the nonlinear operator ΦF ∈ Lip(BCη (R,X0) ,BCη (R,X)) is defined by

ΦF(u)(t) = F(u(t)), ∀t ∈ R

and K2 ∈L (BCη (R,X) ,BCη (R,X0)) is the linear operator defined by

K2 = Kc +Ks +Ku.
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Moreover, we have the following estimates

‖K1‖L (Xc,BCη (R,X)) ≤max(sup
t≥0

∥∥∥e(Ac−ηId)t
∥∥∥ ,sup

t≥0

∥∥∥e−(Ac+ηId)t
∥∥∥),

‖ΦF‖Lip ≤ ‖F‖Lip ,

and for each ν ∈ (−β ,0) , we have

‖K2‖L (BCη (R,X)) ≤ γ (ν ,η) , ∀η ∈ (0,−ν ] ,

where

γ (ν ,η) := Ĉs,ν +
Mu ‖Πu‖L (X)

(β −η)

+‖Πc‖L (X) max
(∫ +∞

0

∥∥∥e(Ac−ηId)l
∥∥∥dl,

∫ +∞

0

∥∥∥e−(Ac+η)l
∥∥∥dl
)
.

(6.1.18)

Furthermore, by Lemma 6.1.9, the η-center manifold is given by

Vη = {x ∈ X0 : ∃u ∈ BCη (R,X0) a solution of (6.1.17) and u(0) = x} . (6.1.19)

We are now in the position to prove the existence of center manifolds for semilin-
ear equations with non-dense domain, which is a generalization of Vanderbauwhede
and Iooss [345, Theorem 1, p.129].

Theorem 6.1.10. Let Assumption 6.1.1 be satisfied. Let η ∈ (0,β ) be fixed and let
δ0 = δ0 (η)> 0 be such that

δ0 ‖K2‖L (BCη (R,X)) < 1.

Then for each F ∈ Lip(X0,X) with ‖F‖Lip(X0,X) ≤ δ0, there exists a Lipschitz con-
tinuous map Ψ : X0c→ X0h such that

Vη = {xc +Ψ(xc) : xc ∈ X0c} .

Moreover, we have the following properties:

(i) supxc∈Xc
‖Ψ(xc)‖ ≤ ‖Ks +Ku‖L (BCη (R,X)) sup

x∈X0

‖ΠhF(x)‖ ;

(ii) We have

‖Ψ‖Lip(X0c,X0h)
≤
‖Ks+Ku‖L (BCη (R,X))‖F‖Lip(X0 ,X)

‖K1‖L (Xc,BCη (R,X0))
1−‖K2‖L (BCη (R,X))‖F‖Lip(X0,X)

; (6.1.20)

(iii) For each u ∈C (R,X0) , the following statements are equivalent:

(1) u ∈ BCη (R,X0) is a complete orbit of {U(t)}t≥0 ;
(2) Π0hu(t) =Ψ(Π0cu(t)),∀t ∈ R, and Π0cu(.) : R→ X0c is a solution of the

ordinary differential equation
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dxc(t)
dt

= A0cxc(t)+ΠcF [xc(t)+Ψ (xc(t))] . (6.1.21)

Proof. (i) Since ‖F‖Lip ‖K2‖L (BCη (R,X)) < 1, the map (Id−K2ΦF) is invertible,
(Id−K2ΦF)

−1 is Lipschitz continuous, and∥∥(Id−K2ΦF)
−1∥∥

Lip(BCη (R,X0))
≤ 1

1−‖K2‖L (BCη (R,X))‖F‖Lip(X0 ,X)
. (6.1.22)

Let x ∈ X0 be fixed. By Lemma 6.1.9, we know that x ∈Vη if and only if there exists
uΠ0cx ∈ BCη (R,X) , such that uΠ0cx (0) = x and

uΠ0cx = K1(Π0cx)+K2ΦF
(
uΠ0cx

)
.

So
Vη =

{
(Id−K2ΦF)

−1K1(xc)(0) : xc ∈ X0c
}
.

We define Ψ : X0c→ X0h by

Ψ(xc) = Π0h(Id−K2ΦF)
−1K1(xc)(0), ∀xc ∈ X0c. (6.1.23)

Then
Vη = {xc +Ψ(xc) : xc ∈ X0c} .

For each xc ∈ X0c, set
uxc = (Id−K2ΦF)

−1K1(xc).

We have
uxc = K1(xc)+K2ΦF (uxc) .

By projecting on X0h, we obtain

Π0huxc = [Ks +Ku]ΦF (uxc) ,

so
Ψ(xc) = [Ks +Ku]ΦF (uxc)(0) (6.1.24)

and (i) follows.
(ii) It follows from (6.1.22) and (6.1.24).
(iii) Assume first that u ∈ BCη (R,X0) is a complete orbit of {U(t)}t≥0. Then by

the definition of Vη , we have u(t) ∈Vη ,∀t ∈ R. Hence,

Π0hu(t) =Ψ(Π0cu(t)), ∀t ∈ R.

Moreover, by projecting (6.1.8) on X0c, we have for each t,s ∈ R with t ≥ s that

Π0cu(t) = eA0c(t−s)
Π0cu(s)+

∫ t−s

0
eA0c(t−s−l)

ΠcF (u(s+ l))dl.

Thus, t→Π0cu(t) is a solution of (6.1.21).
Conversely assume that u ∈C (R,X0) satisfies (iii)(2). Then
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Π0hu(t) =Ψ(Π0cu(t)), ∀t ∈ R,

and Π0cu(.) : R→ X0c is a solution of (6.1.21). Set x = u(0). We know that x ∈
Vη , and by the definition of Vη , there exists v ∈ BCη (R,X0) , a complete orbit of
{U(t)}t≥0 , such that v(0) = x. But since Vη is invariant under the semiflow, we
deduce that

Π0hv(t) =Ψ(Π0cv(t)), ∀t ∈ R,

and Π0cv(.) : R→ X0c is a solution of (6.1.21). Finally, since Π0cv(0) = Π0cu(0),
and since F and Ψ are Lipschitz continuous, we deduce that (6.1.21) has at most
one solution. It follows that

Π0cv(t) = Π0cu(t), ∀t ∈ R,

and by construction

Π0hv(t) =Ψ(Π0cv(t)) =Ψ(Π0cu(t)) = Π0hu(t), ∀t ∈ R.

Thus,
u(t) = v(t), ∀t ∈ R.

Therefore, u ∈ BCη (R,X0) is a complete orbit of {U(t)}t≥0. ut

Proposition 6.1.11. Let Assumption 6.1.1 be satisfied. Assume in addition that F ∈
LipB (X0,X) (i.e. F is Lipschitz and bounded). Then

Vη =Vξ , ∀η ,ξ ∈ (0,β ) .

Proof. Let η ,ξ ∈ (0,β ) be given such that ξ < η . Let x ∈Vξ . By the definition of
Vξ there exists u ∈ BCξ (R,X0) , a complete orbit of {U(t)}t≥0 , such that u(0) = x.
But BCξ (R,X0)⊂ BCη (R,X0) , so u ∈ BCη (R,X0) , and we deduce that x ∈Vη .

Conversely, let x∈Vη be fixed. By the definition of Vη there exists u∈BCη (R,X0) ,
a complete orbit of {U(t)}t≥0 , such that u(0) = x. By Lemma 6.1.9 we deduce that
u is a solution of

u = K1(Π0cu(0))+K2ΦF(u).

But K1(Π0cu(0))∈BCξ (R,X0) and F is bounded, so we have ΦF(u)∈BC0 (R,X0)⊂
BCξ (R,X0) and

K2ΦF(u) ∈ BCξ (R,X0) .

Hence, u ∈ BCξ (R,X0) and

u = K1(Π0cu(0))+K2ΦF(u).

Using Lemma 6.1.9 once more, we obtain that x ∈Vξ . ut
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6.1.2 Smoothness of Center Manifolds

We introduce the following notation. Let k ≥ 1 be an integer, let Y1,Y2, ..,Yk, Y
and Z be Banach spaces, and let V be an open subset of Y . Denote L (k) (Y1,Y2, ..,Yk,Z)
(resp. L (k) (Y,Z)) the space of bounded k-linear maps from Y1 × ...×Yk into Z
(resp. from Y k into Z). Let W ∈Ck (V,Z) be fixed. We choose the convention that if
l = 1, ...,k−1 and u, û ∈V with u 6= û, the quantity

sup
u1,...,ul∈BY (0,1)

∥∥[DlW (u)−DlW (û)
]
(u1, ...,ul)−Dl+1W (û)(u− û,u1, ...,ul)

∥∥
‖u− û‖

goes to 0 as ‖u− û‖→ 0. Set

Ck
b (V,Z) :=

{
W ∈Ck (V,Z) : |W | j,V := sup

x∈V

∥∥D jW (x)
∥∥<+∞, 0≤ j ≤ k

}
.

For each η ∈ [0,β ) , consider Kh : BCη (R,X)→ BCη (R,X0h) , the bounded linear
operator defined by

Kh = Ks +Ku,

where Ks and Ku are the bounded linear operators defined, respectively, in Lemma
6.1.6 and Lemma 6.1.7. For each ρ > 0 and each η ≥ 0, set

Vρ := {x ∈ X0 : ‖Πhx‖< ρ} , V ρ := {x ∈ X0 : ‖Πhx‖ ≤ ρ} ,

and
V η

ρ :=
{

u ∈ BCη (R,X0) : u(t) ∈V ρ ,∀t ∈ R
}
.

Note that since V ρ is a closed and convex subset of X0, so is V η

ρ for each η ≥ 0.

Definition 6.1.12. Let X be a metric space and H : X → X be a map. A fixed point
x ∈ X of H is said to be attracting if

lim
n→+∞

Hn(x) = x for each x ∈ X .

The following lemma is an extension of the Fibre Contraction Theorem (Theo-
rem 5.6.3 which corresponds to the case k = 1). This result is taken from Vander-
bauwhede [343, Corollary 3.6].

Lemma 6.1.13. Let k ≥ 1 be an integer and let (M0,d0) ,(M1,d1) , ...,(Mk,dk) be
complete metric spaces. Let H : M0 ×M1 × ...×Mk → M0 ×M1 × ...×Mk be a
mapping of the form

H (x0,x1, ...,xk) = (H0 (x0) ,H1 (x0,x1) , ...,Hk (x0,x1, ...,xk)) ,

where for each l = 0, ...,k, Hl : M0×M1× ...×Ml → Ml is a uniform contraction;
that is, H0 is a contraction, and for each l = 1, ..,k, there exists τl ∈ [0,1) such that
for each (x0,x1, ...,xl−1) ∈M0×M1× ...×Ml−1 and each xl , x̂l ∈Ml ,
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dl (Hl (x0,x1, ...,xl−1,xl) ,Hl (x0,x1, ...,xl−1, x̂l))≤ τld (xl , x̂l) .

Then H has a unique fixed point (x0,x1, ...,xk). If, moreover, for each l = 1, ...,k,

Hl (.,xl) : M0×M1× ...×Ml−1→Ml

is continuous, then (x0,x1, ...,xk) is an attracting fixed point of H.

Proof. We prove the lemma for k = 1. The proof for any integer k≥ 1 can be easily
derived from this case. It is clear that (x0,x1) is the unique fixed point of H, so we
only need to prove its attractivity.

Let (x0,x1) ∈M0×M1. Consider the sequence (x0(n),x1(n)) defined by

(x0(0),x1(0)) := (x0,x1)

and
(x0(n+1),x1(n+1)) := (H0(x0(n)),H1(x0(n),x1(n))) , ∀n≥ 0.

Since H0 is a contraction, it is clear that limn→+∞ x0(n) = x0. It remains to show that
limn→+∞ x1(n) = x1. We observe first that

d(x1(n+1),x1) = d(H1(x0(n),x1(n)),H1(x0,x1))
≤ d(H1(x0(n),x1(n)),H1(x0(n),x1))+d(H1(x0(n),x1),H1(x0(n),x1)
≤ τ1d(x1(n),x1)+αn,

where αn := d(H1(x0(n),x1),H1(x0(n),x1)→ 0 as n→+∞.
Setting δn := d(x1(n),x1), we obtain

δn+1 ≤ τ1δn +αn, ∀n≥ 0.

Since τ1 < 1, it is not difficult to prove that {δn} is bounded sequence and

limsup
n→+∞

δn ≤ τ1 limsup
n→+∞

δn.

Hence, limsupn→+∞ δn = 0. ut

We recall that the map Ψ : X0c→ X0h is defined by

Ψ (xc) = Πh (I−K2ΦF)
−1 (K1xc)(0), ∀xc ∈ X0c.

We define the map Γ0 : BCη (R,X0c)→ BCη (R,X0) by

Γ0 (u) = (I−K2ΦF)
−1 (u) , ∀u ∈ BCη (R,X0c) .

For each δ ≥ 0, the bounded linear operator L : BCδ (R,X0)→ X0h is defined by

L(u) = Πhu(0), ∀u ∈ BCδ (R,X0c) .

Then we have
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Ψ (xc) = LΓ0(K1xc), ∀xc ∈ X0c

and
Γ0(u) = u+K2ΦF (Γ0(u)) , ∀u ∈ BCη (R,X0c) .

So we obtain
Γ0 = J+K2 ◦ΦF ◦ (Γ0) , (6.1.25)

where J is the continuous imbedding from BCη (R,X0c) into BCη (R,X0) .

From (6.1.25), we deduce that for each u ∈ BCη (R,X0c) ,

‖Γ0(u)−u‖BCη (R,X0)
≤ ‖K2‖L (BCη (R,X),BCη (R,X0))

|F |0,X0
,

‖ΠhΓ0(u)(t)‖BC0(R,X) ≤ ‖Kh‖L (BC0(R,X)) ‖ΠhF‖0,X0
= ρ0, ∀t ∈ R.

For each subset E ⊂ BCη (R,X0c) , denote

M0,E =

{
Θ ∈C

(
E,V 0

ρ0

)
: sup

u∈E
‖Θ(u)−u‖BCη (R,X0)

<+∞

}
and set

M0 = M0,BCη (R,X0c).

From the above remarks, it follows that Γ0 (respectively Γ0 |E ) must be an element of
M0 (respectively M0,E ). Since V 0

ρ0
is a closed subset of BCη (R,X0) , we know that

for each subset E ⊂ BCη (R,X0c) , M0,E is a complete metric space endowed with
the metric

d0,E

(
Θ ,Θ̃

)
= sup

u∈E

∥∥∥Θ (u)−Θ̃ (u)
∥∥∥

BCη (R,X0)
.

Set
d0 = d0,BCη (R,X0c).

Lemma 6.1.14. Let E be a Banach space and W ∈ C1
b

(
Vρ ,E

)
. Let ξ ≥ δ ≥ 0

be fixed. Define ΦW : V η
ρ → BCξ (R,E) , ΦDW : V η

ρ → BCξ (R,L (X0,E)) , and

Φ
(1)
W : V η

ρ → L (BCδ (R,X0) ,BCξ (R,E)) for each t ∈ R, each u ∈ V η
ρ , and each

v ∈ BCδ (R,X0) by

ΦW (u)(t) :=W (u(t)) ,

ΦDW (u)(t) := DW (u(t)) ,(
Φ

(1)
W (u)(v)

)
(t) := DW (u(t))(v(t)) ,

respectively. Then we have the following:

(a) If ξ > 0, then ΦW and ΦDW are continuous;
(b) For each u,v ∈V η

ρ , Φ
(1)
W (u) ∈L (BCδ (R,X0) ,BCξ (R,E)),
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(1)
W (u)−Φ

(1)
W (v)

∥∥∥
L (BCδ (R,X0),BCξ (R,E))

≤ ‖ΦDW (u)−ΦDW (v)‖BCξ−δ (R,L (X0,E))

and∥∥∥Φ
(1)
W (u)

∥∥∥
L (BCδ (R,X0),BCξ (R,E))

≤ ‖ΦDW (u)‖BCξ−δ (R,L (X0,E))
≤ |W |1,Vρ

;

(c) If ξ > δ , then Φ
(1)
W is continuous;

(d) If ξ ≥ δ ≥ η , we have for each u, û ∈V η
ρ that∥∥∥ΦW (u)−ΦW (û)−Φ

(1)
W (û)(u− û)

∥∥∥
BCξ (R,E)

≤ ‖u− û‖BCδ (R,X0)
κξ−δ (u, û) ,

where

κξ−δ (u, û) = sup
s∈[0,1]

‖ΦDW (su+(1− s)û)−ΦDW (û)‖BCξ−δ (R,L (X0,E))
,

and if ξ > δ ≥ η , we have (by continuity of ΦDW )

κξ−δ (u, û)→ 0 as ‖u− û‖BCη (R,X0)
→ 0.

Proof. We first prove that ΦW ∈C0
b(V

η
ρ ,BCξ (R,E)). For each u, û ∈V η

ρ and each
R > 0, we have

‖ΦW (u)−ΦW (û)‖BCξ (R,E) = sup
t∈R

e−ξ |t| ‖W (u(t))−W (û(t))‖

= max

(
sup
|t|≤R

e−ξ |t| ‖W (u(t))−W (û(t))‖ ,2‖W‖0 e−ξ R

)
.

(6.1.26)

Fix some arbitrary ε > 0. Let R > 0 be given such that 2‖W‖0 e−ξ R < ε and denote
Ω = {û(t) : |t| ≤ R} . Since W is continuous and Ω is compact, we can find δ1 > 0
such that

‖W (x)−W (x̂)‖ ≤ ε if x̂ ∈Ω , and ‖x− x̂‖ ≤ δ1.

Let δ = e−ηRδ1. If ‖u− û‖BCη (R,X0)
≤ δ , then ‖u(t)− û(t)‖ ≤ δ1,∀t ∈ [−R,R] , and

(6.1.26) implies ‖ΦW (u)−ΦW (û)‖BCξ (R,E) ≤ ε.

We now prove that Φ
(1)
W ∈ C(V η

ρ ,L (BCδ (R,X0) ,BCξ (R,E))). From the first
part of the proof, since E is an arbitrary Banach space, we deduce that ΦDW is
continuous. Moreover, for each u, û ∈V η

ρ and each v ∈ BCδ (R,X0) ,∥∥∥(Φ
(1)
W (u)(v)

)∥∥∥
BCξ (R,E)

= sup
t∈R

e−ξ |t| ‖DW (u(t))(v(t))‖

≤ ‖ΦDW (u)‖BCξ−δ (R,L (X0,E))
‖v‖BCδ (R,X0)
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and ∥∥∥([Φ (1)
W (u)−Φ

(1)
W (û)

]
(v)
)∥∥∥

BCξ (R,E)

≤ ‖ΦDW (u)−ΦDW (û)‖BCξ−δ (R,L (X0,E))
‖v‖BCδ (R,X0)

.

Thus, if ξ ≥ δ , we have for each u ∈V η
ρ that

Φ
(1)
W (u) ∈L

(
BCδ (R,X0) ,BCξ (R,E)

)
, ∀u ∈V η

ρ

and if ξ > δ ,

Φ
(1)
W ∈C

(
V η

ρ ,L
(

BCδ (R,X0) ,BCξ (R,E)
))

, ∀µ > 0.

Since Vρ is an open and convex subset of X0, we have the following classical formula

W (x)−W (y) =
∫ 1

0
DW (sx+(1− s)y)(x− y)ds, ∀x,y ∈Vρ .

Therefore, for each u, û ∈V η
ρ ,∥∥∥ΦW (u)−ΦW (û)−Φ
(1)
W (û)(u− û)

∥∥∥
BCξ (R,E)

= sup
t∈R

e−ξ |t| ‖W (u(t))−W (û(t))−DW (û(t))(u(t)− û(t))‖

≤ sup
t∈R

sup
s∈[0,1]

e−ξ |t| ‖[DW (su(t)+(1− s)û(t))−DW (û(t))] (u(t)− û(t))‖

≤ ‖u− û‖BCδ (R,X0)
sup

s∈[0,1]
‖ΦDW (su+(1− s)û)−ΦDW (û)‖BCξ−δ (R,L (X0,E))

.

The proof is complete. ut

The following lemma is taken from Vanderbauwhede and Iooss [345, Lemma 3].

Lemma 6.1.15. Let E be a Banach space and W ∈C1
b

(
Vρ ,E

)
. Let ΦW and Φ

(1)
W be

defined as in Lemma 6.1.14. Let Θ ∈C
(
BCη (R,X0c) ,V

η
ρ

)
be such that

(a) Θ is of class C1 from BCη (R,X0c) into BCη+µ (R,X0) for each µ > 0;
(b) Its derivative takes the form

DΘ(u)(v) =Θ
(1)(u)(v) , ∀u,v ∈ BCη (R,X0c) ,

for some globally bounded Θ (1) : BCη (R,X0c)→L (BCη (R,X0c) ,BCη (R,X0)) .

Then ΦW ◦Θ ∈ C0
b (BCη (R,X0c) ,BCη (R,E)) ∩C1 (BCη (R,X0c) ,BCη+µ (R,E))

for each µ > 0 and

D(ΦW ◦Θ)(u)(v) = Φ
(1)
W (Θ (u))Θ

(1)(u)(v) , ∀u,v ∈ BCη (R,X0c) .
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Proof. By using Lemma 6.1.14, it follows that

ΦW ◦Θ ∈C0
b (BCη (R,X0c) ,BCη (R,E))

and

Φ
(1)
W (Θ (.))Θ

(1)(.) ∈C
(
BCη (R,X0c) ,L

(
BCη (R,X0c) ,BCη+µ (R,E)

))
.

Let u, û ∈ BCη (R,X0c) . By Lemma 6.1.14, we also have∥∥∥ΦW (Θ (u))−ΦW (Θ (û))−Φ
(1)
W (Θ (û))Θ (1)(û)(u− û)

∥∥∥
BCη+µ (R,E)

≤
∥∥∥ΦW (Θ (u))−ΦW (Θ (û))−Φ

(1)
W (Θ (û))(Θ (u)−Θ (û))

∥∥∥
BCη+µ (R,E)

+
∥∥∥Φ

(1)
W (Θ (û))

[
Θ (u)−Θ (û)−Θ (1)(û)(u− û)

]∥∥∥
BCη+µ (R,E)

≤ ‖Θ (u)−Θ (û)‖BCη+µ/2(R,X0)
κµ/2 (Θ (u) ,Θ (û))

+‖ΦDW (Θ (û))‖BCµ/2(R,L (X0,E))

∥∥∥Θ (u)−Θ (û)−Θ (1)(û)(u− û)
∥∥∥

BCη+µ/2(R,X0)

and the result follows. ut

One may extend the previous lemma to any order k > 1.

Lemma 6.1.16. Let E be a Banach space and let W ∈Ck
b

(
Vρ ,E

)
(for some integer

k ≥ 1). Let l ∈ {1, ...,k} be an integer. Suppose ξ ≥ 0,µ ≥ 0 are two real numbers
and δ1,δ2, ...,δl ≥ 0 such that ξ = µ +δ1 +δ2 + ...+δl . Define

ΦD(l)W (u)(t) := D(l)W (u(t)) , ∀t ∈ R,∀u ∈V η
ρ ,

Φ
(l)
W (u)(u1,u2, ...,ul)(t) := D(l)W (u(t))(u1 (t) ,u2 (t) , ...,ul (t)) ,

∀t ∈ R,∀u ∈V η
ρ ,∀ui ∈ BCδi (R,X0) , for i = 1, ..., l.

Then we have the following:

(a) If ξ > 0, then ΦD(l)W : V η
ρ → BCξ

(
R,L (l) (X0,E)

)
is continuous;

(b) For each u,v∈V η
ρ , Φ

(l)
W (u)∈L (l)

(
BCδ1 (R,X0) , ...,BCδl (R,X0) ;BCξ (R,E)

)
,∥∥∥Φ

(l)
W (u)−Φ

(l)
W (v)

∥∥∥
L (l)(BCδ1 (R,X0),...,BCδl (R,X0);BCξ (R,E))

≤
∥∥ΦD(l)W (u)−ΦD(l)W (v)

∥∥
BCµ(R,L (l)(X0,E))

and ∥∥∥Φ
(l)
W (u)

∥∥∥
L (l)(BCδ1 (R,X0),...,BCδl (R,X0);BCξ (R,E))

≤
∥∥ΦD(l)W (u)

∥∥
BCµ(R,L (l)(X0,E))

≤ |W |l,Vρ
;

(c) If µ > 0, then Φ
(l)
W is continuous;
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(d) If δ1 ≥ η , we have for each u, û ∈V η
ρ that∥∥∥Φ

(l−1)
W (u)−Φ

(l−1)
W (û)−Φ

(l)
W (û)(u− û)

∥∥∥
L (l−1)(BCδ2 (R,X0),...,BCδl (R,X0);BCξ (R,E))

≤ ‖u− û‖BCδ1 (R,X0)
κ(l)

µ (u, û) ,

where

κ(l)
µ (u, û) = sup

s∈[0,1]

∥∥ΦD(l)W (su+(1− s)û)−ΦD(l)W (û)
∥∥

BCµ(R,L (l)(X0,E))
,

and if µ > 0, we have by continuity of ΦD(l)W that

κ(l)
µ (u, û)→ 0 as ‖u− û‖BCη (R,X0)

→ 0.

Proof. The proof is similar to that of Lemma 6.1.14. ut

In the following lemma we use a formula for the kth-derivative of the composed
map. This formula is taken from Avez [34, p. 38] which also corrects the one used
in Vanderbauwhede [343, Proof of Lemma 3.11].

Lemma 6.1.17. Let E be a Banach space and let W ∈Ck
b

(
Vρ ,E

)
. Let ΦW and W (k)

be defined as above. Let Θ ∈C
(
BCη (R,X0c) ,V

η
ρ

)
be such that

(a) Θ is of class Ck from BCη (R,X0c) into BCkη+µ (R,X0) for each µ > 0;
(b) For each l = 1, ...,k, its derivative takes the form

Dl
Θ(u)(v1,v2, ...,vl) =Θ

(l)(u)(v1,v2, ...,vl) ,∀u,v1,v2, ...,vl ∈ BCη (R,X0c) ,

for some globally bounded Θ (l) : BCη (R,X0c)→L (l) (BCη (R,X0c) ;BCη (R,X0)) .

Then ΦW ◦Θ ∈ C0
b (BCη (R,X0c) ,BCη (R,E))∩Ck

(
BCη (R,X0c) ,BCkη+µ (R,E)

)
for each µ > 0. Moreover, for each l = 1, ...,k and each u,v1,v2, ...,vl ∈BCη (R,X0c) ,

Dl (ΦW ◦Θ)(u)(v) = (ΦW ◦Θ)(l) (u)(v1,v2, ...,vl)

for some globally bounded (ΦW ◦Θ)(l) : BCη (R,X0c)→L (l) (BCη (R,X0c) ;BCη (R,E)) .
More precisely, we have for j = 1, ...,k that

(i) (ΦW ◦Θ)( j) (u) = Φ
(1)
W (Θ(u))D( j)Θ (u)+ Φ̃W, j(u);

(ii) Φ̃W,1(u) = 0;
(iii) For j > 1, the map Φ̃W, j(u) is a finite sum ∑

λ∈Λ j

Φ̃W,λ , j(u), where for each

λ ∈Λ j the map Φ̃W,λ , j(u) : BCη (R,X0c)→L ( j) (BCη (R,X0c) ,BCη (R,E)) has
the following form

Φ̃W,λ , j(u)(u1,u2, ...,u j) = Φ
(l)
W (Θ(u))

D(r1)Θ (u)
(

ui
r1
1
,ui

r1
2
, ...,ui

r1
r1

)
, ...,

D(rl)Θ (u)
(

ui
rl
1
, ...,ui

rl
rl

) 
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with 2≤ l ≤ j, 1≤ ri ≤ j−1 for 1≤ i≤ l, r1 + r2 + ...+ rl = j,{
irm
1 , ..., irm

rm

}
⊂ {1, ..., j} , ∀m = 1, ..., l{

irm
1 , ..., irm

rm

}
∩
{

irn
1 , ..., irn

rn

}
= /0, if m 6= n,

irm
1 ≤ irm

2 ≤ ...≤ irm
rm , ∀m = 1, ..., l,

and each λ ∈Λ j corresponds to each such a particular choice.

Proof. The proof is similar to that of Lemma 6.1.15. ut

We make the following assumption.

Assumption 6.1.18. Let k ≥ 1 be an integer and let η , η̂ ∈ (0, β

k ) such that kη <
η̂ < β . Assume that

a) F ∈ Lip(X0,X)∩Ck
b

(
Vρ ,X

)
;

b) ρ0 := ‖Kh‖L (BC0(R,X)) ‖ΠhF‖0,X0
< ρ;

c) supθ∈[η ,η̂ ] ‖K2‖L (BCθ (R,X)) ‖F‖Lip(X0,X) < 1.

Note that by using (6.1.18) we deduce that

sup
θ∈[η ,η̂ ]

‖K2‖L (BCθ (R,X)) <+∞.

Thus, Assumption 6.1.18 makes sense.
Following the approach of Vanderbauwhede [343, Corollary 3.6] and Vander-

bauwhede and Iooss [345, Theorem 2], we obtain the following result on the
smoothness of center manifolds.

Theorem 6.1.19. Let Assumptions 6.1.1 and 6.1.18 be satisfied. Then the map Ψ

given by Theorem 6.1.10 belongs to the space Ck
b (Xc,Xh) .

Proof. Step 1. Existence of a fixed point. Let k,η , and η̂ be the numbers intro-
duced in Assumption 6.1.18. Let µ > 0 be given such that kη +(2k−1)µ = η̂ . We
first apply Lemma 6.1.13. For each j = 1, ...,k and each subset E ⊂ BCη (R,X0c) ,
define M j,E as the Banach space of all continuous maps

Θ j : E→L ( j)
(

BCη (R,X0c) ,BC jη+(2 j−1)µ (R,X0)
)

such that ∣∣Θ j
∣∣

j = sup
u∈E

∥∥Θ j (u)
∥∥

L ( j)(BCη (R,X0c),BC jη+(2 j−1)µ (R,X0))
<+∞.

For j = 0, ...,k, define the map H j,E : M0,E ×M1,E × ...×M j,E →M j,E as follows:
If j = 0, set for each u ∈ E that

H0,E (Θ0)(u) = u+K2 ◦ΦF ◦Θ0(u).
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If j = 1, set for each u ∈ E that

H1,E (Θ0,Θ1)(u)(.) = J1 +K2 ◦Φ
(1)
F (Θ0 (u))◦Θ1 (u) , (6.1.27)

where J1 is the continuous imbedding from BCη (R,X0c) into BCη+µ (R,X0) .
If k ≥ 2, set for each j = 2, ...,k and each u ∈ E that

H j,E (Θ0,Θ1, ...,Θ j)(u)
= K2 ◦Φ

(1)
F (Θ0 (u))◦Θ j (u)+ Ĥ j,E

(
Θ0,Θ1, ...,Θ j−1

)
(u) ,

(6.1.28)

where

Ĥ j,E
(
Θ0,Θ1, ...,Θ j−1

)
(u) = ∑

λ∈Λ j

Ĥλ , j,E
(
Θ0,Θ1, ...,Θ j−1

)
(u)

and

Ĥλ , j,E
(
Θ0,Θ1, ...,Θ j−1

)
(u)(u0,u1, ...,u j)

= K2 ◦Φ
(l)
F (Θ0(u))

(
Θr1 (u)

(
ui

r1
1
,ui

r1
2
, ...,ui

r1
r1

)
, ...,Θrl (u)

(
ui

rl
1
, ...,ui

rl
rl

))
with the same constraints as in Lemma 6.1.17 for λ , r j, l, and i

r j
k .

Define
H j = H j,BCη (R,X0c) for each j = 0, ...,k.

In the above definition one has to consider K2 as a linear operator from BC jη+(2 j−1)µ (R,X)

into BC jη+(2 j−1)µ (R,X0) , and Φ
(l)
F (Θ0(u)) as an element of

L ( j)
(

BCr1η+(2r1−1)µ (R,X0) , ...,BCrlη+(2rl−1)µ (R,X0) ;BC jη+(2 j−1)µ (R,X)
)
.

Notice that

jη +(2 j−1)µ >
l

∑
k=1

rkη +(2rk−1)µ

since 2 ≤ l ≤ j and r1 + r2 + ...+ rl = j. Finally, define H : M0×M1× ...×Mk →
M0×M1× ...×Mk by

H (Θ0,Θ1, ...,Θk) = (H0 (Θ0) ,H1 (Θ0,Θ1) , ...,Hk (Θ0,Θ1, ...,Θk)) .

We now check that the conditions of Lemma 6.1.13 are satisfied. We have already
shown that H0 is a contraction on X0. It follows from (6.1.27) and (6.1.28) that H j
(1 ≤ j ≤ k) is a contraction on X j. More precisely, from Assumption 6.1.18 c), we
have for each j = 1, ...,k that
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sup
u∈V η

ρ

∥∥∥K2 ◦Φ
(1)
F (u)

∥∥∥
L (BC jη+(2 j−1)µ (R,X0),BC jη+(2 j−1)µ (R,X0))

≤ ‖K2‖L (BC jη+(2 j−1)µ (R,X)) sup
u∈V η

ρ

∥∥∥Φ
(1)
F (u)

∥∥∥
L (BC jη+(2 j−1)µ (R,X0),BC jη+(2 j−1)µ (R,X))

≤ sup
θ∈[η ,η̂ ]

‖K2‖L (BCθ (R,X)) |F |1,Vρ

≤ sup
θ∈[η ,η̂ ]

‖K2‖L (BCθ (R,X)) ‖F‖Lip(X0,X) < 1.

Thus, each H j is a contraction. The fixed point of H0 is Γ0, and we denote by Γ =
(Γ0,Γ1, ...,Γk) the fixed point of H. Moreover, for µ = 0, each H j is still a contraction
so we have for each j = 1, ...,k that

sup
u∈BCη (R,X0c)

∥∥Γj(u)
∥∥

L ( j)(BCη (R,X0),BC jη (R,X0))
<+∞.

Step 2. Attractivity of the fixed point. In this part we apply Lemma 6.1.13 to
prove that for each compact subset C of BCη (R,X0c) and each Θ ∈M0×M1× ...×
Mk,

lim
m→+∞

Hm
C (Θ |C) = Γ |C . (6.1.29)

Let C be a compact subset of BCη (R,X0c) . From the definition of HC, it is clear
that

Γ |C= HC (Γ |C)

and from the Step 1, it is not difficult to see that for each j = 0, ...,k, H j,C is a
contraction. In order to apply Lemma 6.1.13, it remains to prove that for each
j = 1, ...,k, H j,C

(
Θ0,C,Θ1,C, ...,Θ j−1,C,Γj |C

)
∈ M j dependents continuously on(

Θ0,C,Θ1,C, ...,Θ j−1,C
)
∈M0,C×M1,C× ...×M j−1,C.

We have

H j

(
Θ0,C,Θ1,C, ...,Θ j−1,C,Γ

( j) |C
)
(u)

= K2 ◦Φ
(1)
F (Θ0,C(u))◦Γ ( j) (u)+ Ĥ j

(
Θ0,C,Θ1,C, ...,Θ j−1,C

)
(u).

Since Γ ( j)(u) ∈L ( j)
(
BCη (R,X0) ,BC jη (R,X0)

)
and Φ(u) ∈V η

ρ , we can consider

Φ
(1)
F as a map from V η

ρ into L (BC jη (R,X0) ,BC jη+(2 j−1)µ (R,X0)), and by Lemma
6.1.14 this map is continuous.

Indeed, let Θ0,Θ̂0 ∈M0 be two maps. Then we have

sup
u∈C

∥∥∥K2 ◦
[
Φ

(1)
F (Θ0(u))−Φ

(1)
F

(
Θ̂0(u)

)]
◦Γ

( j) (u)
∥∥∥

L ( j)(BCη (R,X0c),BC jη+(2 j−1)µ (R,X0))

≤ ‖K2‖L (BC jη+(2 j−1)µ (R,X))

·sup
u∈C

∥∥∥[Φ (1)
F (Θ0(u))−Φ

(1)
F

(
Θ̂0(u)

)]
◦Γ

( j) (u)
∥∥∥

L ( j)(BCη (R,X0c),BC jη+(2 j−1)µ (R,X))

≤ ‖K2‖L (BC jη+(2 j−1)µ (R,X0)) sup
u∈C

∥∥∥Γ
( j) (u)

∥∥∥
L ( j)(BCη (R,X0c),BC jη (R,X0))
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·sup
u∈C

∥∥∥Φ
(1)
F (Θ0(u))−Φ

(1)
F

(
Θ̂0(u)

)∥∥∥
L ( j)(BC jη (R,X0),BC jη+(2 j−1)µ (R,X))

and by Lemma 6.1.14 we have

sup
u∈C

∥∥∥Φ
(1)
F (Θ0(u))−Φ

(1)
F

(
Θ̂0(u)

)∥∥∥
L ( j)(BC jη (R,X0),BC jη+(2 j−1)µ (R,X))

≤ sup
u∈C

∥∥∥ΦDF (Θ0(u))−ΦDF

(
Θ̂0(u)

)∥∥∥
BC(2 j−1)µ (R,L (X0,X))

≤max

 sup
|t|≥R

e−(2 j−1)µ|t|
∥∥∥DF (Θ0(u)(t))−DF

(
Θ̂0(u)(t)

)∥∥∥
L (X0,X)

,

sup
|t|≤R

e−(2 j−1)µ|t|
∥∥∥DF (Θ0(u)(t))−DF

(
Θ̂0(u)(t)

)∥∥∥
L (X0,X)

 .

Since Θ̂0 is continuous, C is compact, it follows that Θ̂0(C) is compact, and by

Ascoli’s theorem (see for example Lang [224]), the set Ĉ =
⋃

|t|≤R,u∈C

{
Θ̂0(u)(t)

}
is

compact. But since DF (.) is continuous, we have that for each ε > 0, there exists
η > 0, such that for each x,y ∈ X0,

d
(

x,Ĉ
)
≤ η , d

(
y,Ĉ
)
≤ η , and ‖x− y‖ ≤ η ⇒‖DF (x)−DF(y)‖ ≤ ε.

Hence, the map Θ0,C→ K2 ◦Φ
(1)
F (Θ0,C(.))◦Γ ( j) (.) is continuous.

It remains to consider 1≤ ri ≤ j−1, r1 + r2 + ...+ rl = j. We have∥∥∥K2 ◦
[
Φ

(l)
F (Θ0(u))−Φ

(l)
F

(
Θ̂0(u)

)](
Θ̃r1 (u) , ...,Θ̃rl (u)

)∥∥∥
L ( j)(BCη (R,X0c),BC jη+(2 j−1)µ (R,X0))

≤ ‖K2‖L (BC jη+(2 j−1)µ (R,X),BC jη+(2 j−1)µ (R,X0))

·supu∈C

∥∥∥[Φ (l)
F (Θ0(u))−Φ

(l)
F

(
Θ̂0(u)

)]
·
(

Θ̃r1 (u) , ...,Θ̃rl (u)
)∥∥∥

L ( j)(BCη (R,X0c),BC jη+(2 j−1)µ (R,X))
≤ ‖K2‖L (BC jη+(2 j−1)µ (R,X),BC jη+(2 j−1)µ (R,X0))

·
∥∥∥Φ

(l)
F (Θ0(u))−Φ

(l)
F

(
Θ̂0(u)

)∥∥∥
L (l)

(
∏

p=1,...,l
BCrpη+(2rp−1)µ (R,X0);BC jη+(2 j−1)µ (R,X)

)
· ∏

p=1,...,l

∥∥∥Θ̃rp (u)
∥∥∥

L ( j)
(

BCη (R,X0c),BCrpη+(2rp−1)µ (R,X0)
)

and by Lemma 6.1.16 we have

supu∈C

∥∥∥Φ
(l)
F (Θ0(u))−Φ

(l)
F

(
Θ̂0(u)

)∥∥∥
L (l)

(
∏

p=1,...,l
BCrpη+(2rp−1)µ (R,X0);BC jη+(2 j−1)µ (R,X)

)
≤ supu∈C

∥∥∥ΦD(l)F (Θ0(u))−ΦD(l)F

(
Θ̂0(u)

)∥∥∥
BCδ (R,L (l)(X0,X))
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with δ = ( jη +(2 j−1)µ)−∑
l
k=1 rkη +(2rk− 1)µ > 0. By using the same com-

pactness argument as previously, we deduce that

sup
u∈C

∥∥∥ΦD(l)F (Θ0(u))−ΦD(l)F

(
Θ̂0(u)

)∥∥∥
BCδ (R,L (l)(X0,X))

→ 0

as d0,C(Θ0,Θ̂0)→ 0. We conclude that the continuity condition of Lemma 6.1.13 is
satisfied for each H j,C and (6.1.29) follows.

Step 3. It now remains to prove that for each u,v ∈ BCη (R,X0c) ,∀ j = 1, ...,k,

Γj−1(u)−Γj−1(v) =
∫ 1

0
Γj(s(u− v)+ v)(u− v)ds, (6.1.30)

where the last integral is a Riemann integral. As assumed that (6.1.30) is satisfied,
we deduce that Γ0 : BCη (R,X0c)→BCkη+(2k−1)µ (R,X0) is k-time continuously dif-
ferentiable, and since

Ψ(xc) = L◦Γ0 ◦K1 (xc)

and L is a bounded linear operator from BCkη+(2k−1)µ (R,X0) into X0h, we know
that Ψ : X0c→ X0h is k-time continuously differentiable.

We now prove (6.1.30). Set

Θ
0 =

(
Θ

0
0 ,Θ

0
1 , ...,Θ

0
k
)

with
Θ

0
0 (u) = u,Θ 0

1 (u) = J, and Θ
0
j = 0, ∀ j = 2, ...,k

and set
Θ

m = (Θ m
0 ,Θ m

1 , ...,Θ m
k ) = Hm (

Θ
0) , ∀m≥ 1.

Then from Lemma 6.1.17, we know that Θ m
0 : BCη (R,X0c)→ BCkη+(2k−1)µ (R,X0)

is a Ck-map and

D j
Θ

m
0 (u) =Θ

m
j (u), ∀ j = 1, ...,k, ∀u ∈ BCη (R,X0c) .

For each u,v ∈ BCη (R,X0c) and each ∀ j = 1, ...,k,∀m≥ 1,

Θ
m
j−1(u)−Θ

m
j−1(v) =

∫ 1

0
Θ

m
j (s(u− v)+ v)(u− v)ds.

Let u,v ∈ BCη (R,X0c) be fixed. Denote

C = {s(u− v)+ v : s ∈ [0,1]} .

Then clearly C is a compact set, and from Step 2, we have for each j = 0, ...,k that

sup
w∈C

∥∥Θ m
j (w)−Γj(w)

∥∥
BC jη+(2 j−1)µ (R,X0)

→ 0 as m→+∞.
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Thus, (6.1.30) follows. ut

It follows from the foregoing treatment that we can obtain the derivatives of Γ0(u)
at u = 0. Assume that F(0) = 0 and DF(0) = 0, we have

DΓ0(0) = J,
D(2)Γ0(0)(u1,u2) = K2 ◦Φ

(2)
F (0)(DΓ0(0)(u1),DΓ0(0)(u2)) ,

D(3)Γ0(0)(u1,u2,u3) = K2 ◦Φ
(2)
F (0)

(
D(2)Γ0(0)(u1,u3),DΓ0(0)(u2)

)
+K2 ◦Φ

(2)
F (0)

(
DΓ0(0)(u1),D(2)Γ0(0)(u2,u3)

)
+K2 ◦Φ

(3)
F (0)(DΓ0(0)(u1),DΓ0(0)(u2),DΓ0(0)(u3)) ,

...

D(l)Γ0(0) = ∑
λ∈Λ j

K2 ◦Φ
(l)
F (0)

(
D(r1)Γ (0) , ...,DΓ (rl) (0)

)
.

(6.1.31)

We have the following Lemma.

Lemma 6.1.20. Let Assumptions 6.1.1 and 6.1.18 be satisfied. Assume also that
F(0) = 0 and DF(0) = 0. Then

Ψ(0) = 0, DΨ(0) = 0,

and if k > 1,

D j
Ψ(0)(x1, ...,xn) = ΠhD(l)

Γ0(0)(K1x1, ...,K1xn)(0),

where D(l)Γ0(0) is given by (6.1.31). In particular, if k > 1 and

ΠhD jF(0) |X0c×....×X0c= 0 for 2≤ j ≤ k,

then
D j

Ψ(0) = 0 for 1≤ j ≤ k.

In the context of Hopf bifurcation, we need an explicit formula for D2Ψ(0). Since
DΓ0(0) = J, we obtain from the above formula that ∀x1,x2 ∈ X0c,

D2
Ψ(0)(x1,x2) = ΠhKh

[
D(2)F(0)(K1x1,K1x2)

]
(0),

where
Kh = Ks +Ku, K1(xc)(t) := eA0ctxc,

Ku( f )(t) :=−
∫ +∞

t
e−A0u(l−t)

Πu f (l)dl,

and
Ks( f )(t) := lim

r→−∞
Π0s (SA � f (r+ .))(t− r).

Hence,
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D2
Ψ(0)(x1,x2)

=−
∫ +∞

0
e−A0ul

ΠuD(2)F(0)
(

eA0clx1,eA0clx2

)
dl

+ lim
r→−∞

Π0s

(
SA �D(2)F(0)

(
eA0c(r+.)x1,eA0c(r+.)x2

))
(−r).

In order to express the terms in the above formula, we note that

(λ I−A)−1 lim
r→−∞

Π0s

(
SA �D(2)F(0)

(
eA0c(r+.)x1,eA0c(r+.)x2

))
(−r)

= lim
r→−∞

Π0s

∫ −r

0
TA0(−r− s)(λ I−A)−1 D(2)F(0)

(
eA0c(r+s)x1,eA0c(r+s)x2

)
ds

= lim
r→−∞

∫ −r

0
TA0(l)(λ I−A)−1 D(2)F(0)

(
e−A0clx1,e−A0clx2

)
dl

=
∫ +∞

0
TA0(l)Π0s (λ I−A)−1 D(2)F(0)

(
e−A0clx1,e−A0clx2

)
dl.

Therefore, we obtain the following formula

D2
Ψ(0)(x1,x2)

=−
∫ +∞

0
e−A0ul

ΠuD(2)F(0)
(

eA0clx1,eA0clx2

)
dl

+ lim
λ→+∞

∫ +∞

0
TA0(l)Π0sλ (λ I−A)−1 D(2)F(0)

(
e−A0clx1,e−A0clx2

)
dl.

Assume that X is a complex Banach space and F is twice continuously differen-
tiable in X considered as a C-Banach space. We assume in addition that A0c is di-
agonalizable, and denote by {v1, ...,vn} a basis of Xc such that for each i = 1, ...,n,
A0cvi = λivi. Then by Assumption 6.1.1, we must have λi ∈ iR, ∀i = 1, ...,n. More-
over, for each i, j = 1, ...,n, we have

D2
Ψ(0)(vi,v j)

=−
∫ +∞

0
e(λi+λ j)le−A0ul

ΠuD(2)F(0)(vi,v j)dl

+ lim
λ→+∞

∫ +∞

0
TA0(l)Π0sλ (λ I−A)−1 D(2)F(0)

(
e−λilvi,e−λ j lv j

)
dl

=−(−(λi +λ j) I− (−A0u))
−1

ΠuD(2)F(0)(vi,v j)

+ lim
λ→+∞

∫ +∞

0
e−(λi+λ j)lTA0,s(l)Π0sλ (λ I−A)−1 D(2)F(0)(vi,v j)dl

=−(−(λi +λ j) I− (−A0u))
−1

ΠuD(2)F(0)(vi,v j)

+ lim
λ→+∞

λ (λ I−A)−1 ((λi +λ j) I−As)
−1

ΠsD(2)F(0)(vi,v j) .

Thus,
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D2
Ψ(0)(vi,v j) = ((λi +λ j) I−A0u)

−1
ΠuD(2)F(0)(vi,v j)

+((λi +λ j) I−As)
−1

ΠsD(2)F(0)(vi,v j) .

Note that by Assumption 6.1.1 iR⊂ ρ (As) , so the above formula is well defined.
As in Vanderbauwhede and Iooss [345, Theorem 3], we have the following theo-

rem about the existence of the local center manifold.

Theorem 6.1.21 (Local Center Manifold). Let Assumption 6.1.1 be satisfied. Let
F : BX0(0,ε)→ X be a map. Assume that there exists an integer k ≥ 1 such that
F is k-time continuously differentiable in some neighborhood of 0 with F(0) = 0
and DF(0) = 0. Then there exist a neighborhood Ω of the origin in X0 and a map
Ψ ∈Ck

b (X0c,X0h) with Ψ (0) = 0 and DΨ (0) = 0, such that the following properties
hold:

(i) If I is an interval of R and xc : I→ X0c is a solution of

dxc(t)
dt

= A0cxc(t)+ΠcF [xc(t)+Ψ (xc(t))] (6.1.32)

such that
u(t) := xc(t)+Ψ (xc(t)) ∈Ω , ∀t ∈ I,

then for each t,s ∈ I with t ≥ s,

u(t) = u(s)+A
∫ t

s
u(l)dl +

∫ t

s
F (u(l))dl.

(ii) If u : R→X0 is a map such that for each t,s ∈ R with t ≥ s,

u(t) = u(s)+A
∫ t

s
u(l)dl +

∫ t

s
F (u(l))dl

and u(t) ∈Ω , ∀t ∈ R, then

Πhu(t) =Ψ (Πcu(t)) ,∀t ∈ R,

and Πcu : R→X0c is a solution of (6.1.32).
(iii) If k ≥ 2, then for each x1,x2 ∈ X0c,

D2
Ψ(0)(x1,x2)

=−
∫ +∞

0
e−A0ul

ΠuD(2)F(0)
(

eA0clx1,eA0clx2

)
dl

+ lim
r→−∞

Π0s

(
SA �D(2)F(0)

(
eA0c(r+.)x1,eA0c(r+.)x2

))
(−r).

Moreover, X is a C-Banach space, and if {v1, ...,vn} is a basis of Xc such that for
each i = 1, ...,n, A0cvi = λivi, with λi ∈ iR, then for each i, j = 1, ...,n,

D2
Ψ(0)(vi,v j) = ((λi +λ j) I−A0u)

−1
ΠuD(2)F(0)(vi,v j)
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+((λi +λ j) I−As)
−1

ΠsD(2)F(0)(vi,v j) .

Proof. Set for each r > 0 that

Fr (x) = F(x)χc
(
r−1

Π0c(x)
)

χh
(
r−1 ‖Π0h(x)‖

)
,∀x ∈ X0,

where χc : X0c → [0,+∞) is a C∞ map with χ0c (x) = 1 if ‖x‖ ≤ 1, χ0c (x) = 0
if ‖x‖ ≥ 2, and χh : [0,+∞)→ [0,+∞) is a C∞ map with χh (x) = 1 if |x| ≤ 1,
χh (x) = 0 if |x| ≥ 2. Then by using the same argument as in the proof of Theorem 3
in [345], we deduce that there exists r0 > 0, such that for each r ∈ (0,r0] , Fr satisfies
Assumption 6.1.18. By applying Theorem 6.1.19 to

du(t)
dt

= Au(t)+Fr (u(t)) , t ≥ 0, and u(0) = x ∈ D(A)

for r > 0 small enough, the result follows. ut

In order to investigate the existence of Hopf bifurcation we also need the follow-
ing result.

Proposition 6.1.22. Let the assumptions of Theorem 6.1.21 be satisfied. Assume that
x ∈ X0 is an equilibrium of {U(t)}t≥0 (i.e. x ∈ D(A) and Ax+F (x) = 0) such that

x ∈Ω .

Then
Π0hx =Ψ (Π0cx)

and Π0cx is an equilibrium of the reduced equation (6.1.32). Moreover, if we con-
sider the linearized equation of (6.1.32) at Π0cx :

dyc(t)
dt

= L(x)yc(t)

with
L(x) = [A0c +ΠcDF (x) [I +DΨ (Π0cx)]] ,

then we have the following spectral properties

σ (L(x)) = σ ((A+DF (x))0)∩{λ ∈ C : Re(λ ) ∈ [−η ,η ]} .

Proof. Let x ∈ X0 be an equilibrium of {U(t)}t≥0 such that x ∈Ω . We set

xc = Πcx and u(t) = x, ∀t ∈ R.

Then the linearized equation at x is given by

dw(t)
dt

= (A+DF (x))w(t) for t ≥ 0 and w(0) = w0 ∈ X0. (6.1.33)

So
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w(t) = T(A+DF(x))0
(t)w0, ∀t ≥ 0.

Moreover, we have
DΨ (xc)yc = Πh

[
Γ

1
0 (u)(K1yc)

]
and

Γ
1

0 (u)(v) = v+K2ΦDF(x)
(
Γ

1
0 (u)(v)

)
, ∀v ∈ BCη (R,X0c) .

It follows that
Γ

1
0 (u) =

(
I−K2ΦDF(x)

)−1 v.

Thus,
DΨ (xc)yc = Πh

[(
I−K2ΦDF(x)

)−1
(K1yc)

]
.

This is exactly the formula for the center manifold of equation (6.1.32) (see (6.1.23)
in the proof of Theorem 6.1.10). By applying Theorem 6.1.10 to equation (6.1.33),
we deduce that

Wη = {yc +DΨ (xc)yc : yc ∈ X0c}

is invariant by
{

T(A+DF(x))0
(t)
}

t≥0
. Moreover, for each w ∈C (R,X0) the following

statements are equivalent:
(1) w ∈ BCη (R,X0) is a complete orbit of

{
T(A+DF(x))0

(t)
}

t≥0
.

(2) Π0hw(t) = DΨ (xc)(Π0cw(t)),∀t ∈ R, and Π0cw(.) : R→ X0c is a solution of
the ordinary differential equation

dwc(t)
dt

= A0cwc(t)+ΠcDF (x) [wc(t)+DΨ (xc)(wc(t))] .

The result follows from the above equivalence. ut

6.2 Hopf Bifurcation

The main purpose of this section is to present a general Hopf bifurcation theory
for the non-densely defined abstract Cauchy problem:

du(t)
dt

= Au(t)+F (µ,u(t)) ,∀t ≥ 0, u(0) = x ∈ D(A), (6.2.1)

where A : D(A)⊂X→X is a linear operator on a Banach space X , F :R×D(A)→X
is a Ck-map with k ≥ 2, and µ ∈ R is the bifurcation parameter. Here, we study the
Cauchy problem (6.2.1) when D(A) is not dense in X and A is not a Hille-Yosida
operator. Also the solutions must be understood as integrated solutions of (6.2.1).
We apply the Center Manifold Theorem in Section 6.1 to prove a Hopf bifurcation
theorem for the abstract non-densely defined Cauchy problem (6.2.1).

Assume that 0 is an equilibrium of (6.2.1) for each µ ∈ R small enough; that is,
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F (µ,0) = 0,∀µ ∈ R.

Moreover, replacing A by A+∂xF (0,0) and F by G(µ,u(t))=F (µ,x)−∂xF (0,0)x,
the problem is unchanged (since Theorem 3.5.1 implies that A+∂xF (0,0) satisfies
Assumptions 3.4.1 and 3.5.2). So without loss of generality, we can assume that

∂xF (0,0) = 0.

We make the following assumption.

Assumption 6.2.1. Let ε > 0 and F ∈Ck
(
(−ε,ε)×BX0 (0,ε) ;X

)
for some k ≥ 4.

Assume that the following conditions are satisfied:

(a) F (µ,0) = 0,∀µ ∈ (−ε,ε) , and ∂xF (0,0) = 0;
(b) (Transversality condition) For each µ ∈ (−ε,ε) , there exists a pair of con-

jugated simple eigenvalues of (A + ∂xF(µ,0))0, denoted by λ (µ) and λ (µ),
such that

λ (µ) = α (µ)+ iω (µ) ,

the map µ → λ (µ) is continuously differentiable,

ω (0)> 0, α (0) = 0,
dα (0)

dµ
6= 0,

and
σ (A0)∩ iR=

{
λ (0) ,λ (0)

}
; (6.2.2)

(c) The essential growth rate of
{

TA0(t)
}

t≥0 is strictly negative; that is,

ω0,ess (A0)< 0.

The above conditions are closely related to the usual conditions for the finite
dimensional case. The only difference with respect to the finite dimensional case
is assumption (c) which is necessary to deal with spectral theory of the semigroup
generated by A0.

In order to apply the reduction technics and results in Theorem 6.1.21 and Propo-
sition 6.1.22, we first incorporate the parameter into the state variable by considering
the following system

dµ(t)
dt

= 0
du(t)

dt
= Au(t)+F (µ(t),u(t))

(µ(0),u(0)) = (µ0,u0) ∈ (−ε,ε)×D(A).

(6.2.3)

Note that F is only defined in a neighborhood of (0,0) ∈ R×X . In order to rewrite
(6.2.3) as an abstract Cauchy problem, consider the Banach space R×X endowed
with the usual product norm
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x

)∥∥∥∥= max(|µ| ,‖x‖) ,

and the linear operator A : D(A )⊂ R×X → R×X defined by

A

(
µ

x

)
=

(
0

Ax+∂µ F (0,0)µ

)
=

(
0 0

∂µ F (0,0) A

)(
µ

x

)
with

D(A ) = R×D(A).

Observe that by Assumption 6.2.1 (a) we have ∂xF (0,0) = 0, and the linear operator
A is the generator of the linearized equation of system (6.2.3) at (0,0) . Consider
the function F : (−ε,ε)×BX0 (0,ε)→ R×X defined by

F

(
µ

x

)
=

(
0

F(µ,x)−∂µ F (0,0)µ

)
.

Using the variable v(t) =
(

µ(t)
u(t)

)
, we can rewrite system (6.2.3) as the following

abstract Cauchy problem

dv(t)
dt

= A v(t)+F (v(t)) , t ≥ 0, v(0) = v0 ∈ D(A ). (6.2.4)

We first observe that F is defined on BR×X (0,ε) and is 4-time continuously differ-
entiable. Moreover, by using Assumption 6.2.1 (a), we have

F (0) = 0 and DF (0) = 0.

In order to apply Theorem 6.1.21 and Proposition 6.1.22 to system (6.3.7) we need
to verify Assumption 3.5.2.

6.2.1 State Space Decomposition

In order to apply the Center Manifold Theorem, we need to study the spectral
properties of the linear operator A . From Assumption 6.2.1 (b) and (c), we know
that

σ (A0)∩ iR=
{

λ (0) ,λ (0)
}

and ω0,ess (A0)< 0.

For each λ0 ∈ σ (A0) with Re(λ0)> ω0,ess (A0) , λ0 is a pole of the resolvent of A0.

That is, there exists an integer k̂ ≥ 1 such that

(λ I−A0)
−1 =

∞

∑
k=−k̂

(λ −λ0)
k BA0

k,λ0
,
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where
BA0

k,λ0
:=

1
2πi

∫
S(λ0,ε)+

(λ −λ0)
−(k+1) (λ I−A0)

−1 dλ

for ε > 0 small enough. The bounded linear operator BA0
−1,λ0

is the projector on the
generalized eigenspace of A0 associated to λ0.

Set
Π

A0
0c = BA0

−1,λ (0)+BA0
−1,λ (0)

and
Π

A0
0u = ∑

λ∈σ(A0):Re(λ )>0
BA0
−1,λ .

Since λ (0) and λ (0) are simple eigenvalues of A0, we have

BA0
−1,γ = lim

λ→γ

(λ − γ)(λ I−A0)
−1 for γ = λ (0) or γ = λ (0).

Lemma 6.2.2. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Then

σ (A ) = σ (A0) = σ (A0)∪{0}= σ (A)∪{0} ,

where A0 is the part of A in D(A ), and for each λ ∈ ρ (A ) ,

(λ I−A )−1
(

µ

x

)
=

(
λ−1µ

(λ I−A)−1 [x+∂µ F (0,0)λ−1µ
]) .

Proof. Let λ ∈ C�(σ (A)∪{0}) . Then

(λ I−A )

(
µ

x

)
=

(
µ̂

x̂

)
⇔
(

λ µ

λx−Ax−∂µ F (0,0)µ

)
=

(
µ̂

x̂

)
⇔
{

µ = λ−1µ̂,

x = (λ I−A)−1 [x̂+∂µ F (0,0)λ−1µ̂
]
.

It follows that

(λ I−A )−1
(

µ̂

x̂

)
=

(
λ−1µ̂

(λ I−A)−1 [x̂+∂µ F (0,0)λ−1µ̂
]) ,

so
ρ (A )⊃ C�σ (A)∪{0} .

It is clear that 0 ∈ σ (A ) because

A

(
µ

(−A)−1
∂µ F (0,0)µ

)
=

(
0
0

)
.
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Moreover, if λ ∈ σ (A) , we have

(λ I−A )

(
0
x

)
=

(
0
x̂

)
⇔ (λ I−A)x = x̂.

So λ ∈ σ (A ) . ut

Lemma 6.2.3. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Then the linear opera-
tor A : D(A )⊂R×X→R×X satisfies Assumptions 3.4.1 and 3.5.2. Moreover, we
have

TA0(t)
(

µ

x

)
:=
(

µ

TA0(t)x+SA(t)∂µ F (0,0)µ

)
(6.2.5)

and

SA (t)
(

µ

x

)
:=
(

tµ
SA(t)x+

∫ t
0 SA(l)∂µ F (0,0)µdl

)
. (6.2.6)

Furthermore
ω0,ess (A0) = ω0,ess (A0) .

Proof. To prove that A satisfies Assumptions 3.4.1 and 3.5.2, it is sufficient to apply
Theorem 3.5.1. Recall that

(λ I−A0)
−1 x =

∫ +∞

0
e−λ tTA0(t)xdt

and
(λ I−A)−1 x = λ

∫ +∞

0
e−λ tSA(t)xdt.

Thus, for each λ > 0 large enough,∫ +∞

0
e−λ t

(
µ

TA0(t)x+SA(t)∂µ F (0,0)µ

)
dt

=

(
λ−1µ

(λ I−A0)
−1 x+λ−1 (λ I−A)−1

∂µ F (0,0)µ

)
and

λ

∫ +∞

0
e−λ t

(
tµ

SA(t)x+
∫ t

0 SA(l)∂µ F (0,0)µdl

)
dt

=

(
λ−1µ

(λ I−A)−1 x+λ−1 (λ I−A)−1
∂µ F (0,0)µ

)
.

It follows that TA0(t) and SA (t) are defined respectively by (6.2.5) and (6.2.6).
By using formula (6.2.5) we deduce that∥∥TA0(t)

∥∥
ess =

∥∥TA0(t)
∥∥

ess , ∀t ≥ 0,

(since µ ∈ R) and it follows that
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ω0,ess (A0) = lim
t→+∞

ln
(∥∥TA0(t)

∥∥
ess

)
t

= lim
t→+∞

ln
(∥∥TA0(t)

∥∥
ess

)
t

= ω0,ess (A0) .

This completes the proof. ut

Next we compute the projectors on the generalized eigenspace associated to some
eigenvalue of A . Consider λ0 ∈ {λ ∈ σ (A ) : Re(λ )> ω0,ess (A0)}\{0}. Since

ω0,ess (A0) = ω0,ess (A0) and σ (A ) = σ (A0) = σ (A0)∪{0}= σ (A)∪{0} ,

it follows that λ0 is a pole of order k0 of the resolvent of A0. Since Re(λ0) >
ω0,ess (A0) , by Lemma 4.2.13, we deduce that λ0 is a pole of order k0 of the resol-
vent of A . Moreover, λ0 is a pole of order k1 of the resolvent of A. We have

(λ I−A )−1 =
∞

∑
k=−k0

(λ −λ0)
k BA

k,λ0

and

(λ I−A)−1 =
∞

∑
k=−k1

(λ −λ0)
k BA

k,λ0

for |λ −λ0| small enough. The projector on the generalized eigenspace of A (re-
spectively A ) associated to λ0 is BA

−1,λ0
(respectively BA

−1,λ0
).

We have k1 = k0. Indeed, we have

(λ I−A )−1
(

µ

x

)
=

(
λ−1µ

(λ I−A)−1 [x+∂µ F (0,0)λ−1µ
]) ,

so

lim
λ (6=λ0)→λ0

(λ −λ0)
k1 (λ I−A )−1

(
µ

x

)
= lim

λ (6=λ0)→λ0

(
(λ −λ0)

k1 λ−1µ

(λ −λ0)
k1 (λ I−A)−1 [x+∂µ F (0,0)λ−1µ

])

=

(
0

BA
−k1,λ0

[
x+∂µ F (0,0)λ

−1
0 µ

]) .

Since the above limit exists it follows that k0 ≤ k1, and since BA
−k1,λ0

6= 0 it follows
that k0 = k1. So we obtain the following lemma.

Lemma 6.2.4. Let λ0 ∈ {λ ∈ σ (A ) : Re(λ )> ω0,ess (A0)}\{0}. Then λ0 is a pole
of order k0 of the resolvent of A if and only if λ0 is a pole of order k0 of the resolvent
of A .

Now we compute

BA
k,λ0

:=
1

2πi

∫
S(λ0,ε)+

(λ −λ0)
−(k+1) (λ I−A )−1 dλ .
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Set (
µ̂

x̂

)
:= BA

k,λ0

(
µ

x

)
.

Since

(λ I−A )−1
(

µ

x

)
=

(
λ−1µ

(λ I−A)−1 [x+∂µ F (0,0)λ−1µ
])

=

(
0

∑
k=−k0

(λ −λ0)
k BA

k,λ0
x

)

+

(
λ−1µ

∑
k=−k0

(λ −λ0)
k BA

k,λ0
∂µ F (0,0)λ−1µ

)
,

it follows that
µ̂ =

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1
λ
−1

µdλ ,

x̂ = ∑
j=−k0

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ −λ0)
j BA

j,λ0
x dλ

+ ∑
j=−k0

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ −λ0)
j
λ
−1BA

j,λ0
∂µ F (0,0)µdλ

and

λ
−1 =

+∞

∑
l=0

(λ −λ0)
l (−1)l

λ
l+1
0

.

Since

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ −λ0)
j
λ
−1dλ

=
1

2πi

+∞

∑
l=0

(−1)l

λ
l+1
0

∫
SC(λ0,ε)

+
(λ −λ0)

[ j+l−(k+1)] dλ

and ∫
SC(λ0,ε)

+
(λ −λ0)

[ j+l−(k+1)] dλ =
∫ 2π

0

(
ρeiθ

)[ j+l−(k+1)]
iρeiθ dθ

= iρ [ j+l−k]
∫ 2π

0

(
eiθ
)[ j+l−k]

dθ

=

{
2πi if l = k− j
0 otherwise,

it implies that
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1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ −λ0)
j
λ
−1dλ =

(−1)k− j

λ
k− j+1
0

.

For l = 0, it yields∫
SC(λ0,ε)

+
(λ −λ0)

[ j−(k+1)] dλ =

{
2πi if j = k
0 otherwise

and

∑
j=−k0

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1 (λ −λ0)
j BA

j,λ0
x dλ = BA

k,λ0
x.

Therefore, we obtain

µ̂ =

{
(−1)k

µ

λ
k+1
0

k ≥ 0

0 k < 0

and

x̂ = BA
k,λ0

x+
k

∑
j=−k0

(−1)k− j

λ
k− j+1
0

BA
j,λ0

∂µ F (0,0)µ.

From the above computation we obtain the following lemma.

Lemma 6.2.5. We have the following:

(i) The projector on the generalized eigenspace of A associated to

λ0 ∈ {λ ∈ σ (A ) : Re(λ )> 0} ,

a pole of order k0 of the resolvent of A is given by

BA
−1,λ0

(
µ

x

)
=

 0

BA
−1,λ0

x+
−1
∑

j=−k0

(−1)−1− j

λ
− j
0

BA
j,λ0

∂µ F (0,0)µ

 .

(ii) λ (0) and λ (0) are simple eigenvalues of A and the projectors on the gener-
alized eigenspace of A associated to λ (0) and λ (0) are given by

BA
−1,γ

(
µ

x

)
=

(
0

BA
−1,γ

[
x+ γ−1∂µ F (0,0)µ

]) for γ = λ (0) or γ = λ (0).

The projector on the generalized eigenspace of A associated to 0 is given in the
following lemma.

Lemma 6.2.6. 0 is a simple eigenvalue of A and the projector on the generalized
eigenspace of A associated to 0 is given by

BA
−1,0

(
µ

x

)
=

(
µ

(−A)−1
∂µ F (0,0)µ

)
.
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Proof. Since 0 ∈ ρ (A) it follows that

lim
λ→0

λ (λ I−A )−1
(

µ

x

)
= lim

λ→0

(
µ

λ (λ I−A)−1 x+(λ I−A)−1
∂µ F (0,0)µ

)
=

(
µ

(−A)−1
∂µ F (0,0)µ

)
=: Π0

(
µ

x

)
.

This completes the proof. ut

From the above results we obtain a state space decomposition with respect to the
spectral properties of the linear operator A . More precisely, the projector on the
linear unstable manifold is given by

Π
A
u = ∑

λ∈σ(A):Re(λ )>0
BA
−1,λ

and the projector on the linear center manifold is defined by

Π
A
c = BA

−1,0 +BA
−1,λ (0)+BA

−1,λ (0)
.

Set
Π

A
s := I−

(
Π

A
c +Π

A
u

)
.

6.2.2 Hopf Bifurcation Theorem

The main result of this section is the following theorem.

Theorem 6.2.7 (Hopf Bifurcation). Let Assumptions 3.4.1, 3.5.2 and 6.2.1 be
satisfied. Then there exist a constant ε∗ > 0 and three Ck−1 maps, ε → µ(ε) from
(0,ε∗) into R, ε → xε from (0,ε∗) into D(A), and ε → T (ε) from (0,ε∗) into R,
such that for each ε ∈ (0,ε∗) there exists a T (ε)-periodic function uε ∈Ck (R,X0) ,
which is an integrated solution of (6.2.1) with the parameter value µ = µ(ε) and
the initial value x = xε . So for each t ≥ 0, uε(t) satisfies

uε(t) = xε +A
∫ t

0
uε(l)dl +

∫ t

0
F (µ(ε),uε(l))dl.

Moreover, we have the following properties

(i) There exist a neighborhood N of 0 in X0 and an open interval I inR containing
0, such that for µ̂ ∈ I and any periodic solution û(t) in N with minimal period
T̂ close to 2π

ω(0) of (6.2.1) for the parameter value µ̂, there exists ε ∈ (0,ε∗) such

that û(t) = uε(t +θ) (for some θ ∈ [0,γ (ε))), µ(ε) = µ̂, and T (ε) = T̂ ;
(ii) The map ε → µ(ε) is a Ck−1 function and we have the Taylor expansion
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µ(ε) =
[ k−2

2 ]

∑
n=1

µ2nε
2n +O(εk−1), ∀ε ∈ (0,ε∗) ,

where [ k−2
2 ] is the integer part of k−2

2 ;
(iii) The period γ (ε) of t→ uε(t) is a Ck−1 function and

T (ε) =
2π

ω(0)
[1+

[ k−2
2 ]

∑
n=1

τ2nε
2n]+O(εk−1),∀ε ∈ (0,ε∗) ,

where ω(0) is the imaginary part of λ (0) defined in Assumption 6.2.1;
(iv) The Floquet exponent β (ε) is a Ck−1 function satisfying β (ε)→ 0 as ε → 0

and having the Taylor expansion

β (ε) =
[ k−2

2 ]

∑
n=1

β2nε
2n +O(εk−1), ∀ε ∈ (0,ε∗) .

The periodic solution xε(t) is orbitally asymptotically stable with asymptotic
phase if β (ε)< 0 and unstable if β (ε)> 0.

Proof. By using the results of Section 6.2.1, we deduce that A satisfies Assumption
3.5.2 and we can apply Theorem 6.1.21 to the system

dv(t)
dt

= A v(t)+F (v(t)) , t ≥ 0, v(0) = v0 ∈ D(A ). (6.2.7)

Set
X0c = Π

A
c

(
R×D(A)

)
and

X0h =
(

I−Π
A
c

)(
R×D(A)

)
.

By using Theorem 6.1.21, we can find Ψ ∈Ck
b (X0c,X0h) such that the manifold

M = {xc +Ψ (xc) : xc ∈X0c}

is locally invariant by the semiflow generated by (6.2.7).
By applying ΠA

c to both sides of (6.2.7), we obtain the reduced system in X0c =
ΠA

c (R×X) :

d
dt

(
µ(t)
xc(t)

)
= A0c

(
µ(t)
xc(t)

)
+Π

A
c F

((
µ(t)
xc(t)

)
+Ψ

(
µ(t)
xc(t)

))
, (6.2.8)

where (
µ(t)
xc(t)

)
= Π

A
c

(
µ(t)
u(t)

)
.
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Now since
(

µ

0

)
is a branch of the equilibrium of (6.2.7), it corresponds to a branch

of the equilibrium
(

µ

xc (µ)

)
= ΠA

c

(
µ

0

)
of system (6.2.8). Applying Proposition

6.1.22 to system (6.2.7) and using Assumption 6.2.1, we deduce that the spectrum

of the linearized equation of (6.2.8) around
(

µ

xc (µ)

)
consists of

{
0,λ (µ) ,λ (µ)

}
.

It follows that we can apply the Hopf bifurcation theorem in the book by Hassard et
al. [181] to system (6.2.8). The proof is complete. ut

Remark 6.2.8. In Assumption 6.2.1, if we only assume that k≥ 2 and the condition
(6.2.2) is replaced by

σ (A0)∩ iω (0)Z=
{

λ (0) ,λ (0)
}

(i.e. the spectrum of A0 does not contain a multiple of λ (0)). Then by the Hopf
bifurcation theorem of Crandall and Rabinowitz [76], we deduce that the assertion
(i) of Theorem 6.2.7 holds.

6.3 Normal Form Theory

6.3.1 Nonresonant Type Results

Let m ≥ 1 be a given integer. Let Y be a closed subspace of X . Let Ls
(
Xm

0 ,Y
)

be the space of bounded m-linear symmetric maps from Xm
0 = X0×X0× ...×X0

into Y and Ls (Xm
c ,D(A)) be the space of bounded m−linear symmetric maps from

Xm
c = Xc×Xc× ...×Xc into D(A); that is, for each L ∈Ls (Xm

c ,D(A)) ,

L(x1, ...,xm) ∈ D(A), ∀(x1, ...,xm) ∈ Xm
c ,

and the maps (x1, ..,xm)→L(x1, ...,xm) and (x1, ..,xm)→AL(x1, ...,xm) are m−linear
bounded from Xm

c into X . Let Ls (Xm
c ,Xh∩D(A)) be the space of bounded m−linear

symmetric maps from Xm
c = Xc×Xc× ...×Xc into D(Ah) = Xh ∩D(A) which be-

longs to Ls (Xm
c ,D(A)) .

Let k = dim(Xc) and Y be a subspace of X . We define V m(Xc,Y ) the linear space
of homogeneous polynomials of degree m. More precisely, given a basis

{
b j
}

j=1,...,k
of Xc, V m(Xc,Y ) is the space of finite linear combinations of maps of the form

xc =
k

∑
j=1

x jb j ∈ Xc→ xn1
1 xn2

2 ...xnk
k V
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with
n1 +n2 + ...+nk = m and V ∈ Y.

Define a map G : Ls (Xm
c ,Y )→V m(Xc,Y ) by

G (L)(xc) = L(xc, · · · ,xc), ∀L ∈Ls (Xm
c ,Y ) .

Let G ∈V m(Xc,Y ) be given. We have G(xc) =
1

m! DmG(0)(xc, · · · ,xc). So

G−1(G) =
1

m!
DmG(0).

In other words, we have

L =
1

m!
DmG(0)⇔ G(xc) = L(xc, ...,xc) , ∀xc ∈ Xc.

It follows that G is a bijection from Ls (Xm
c ,Y ) into V m(Xc,Y ). So we can also define

V m(Xc,D(A)) as
V m(Xc,D(A)) := G (Ls (Xm

c ,D(A))).

In order to use the usual formalism in the context of normal form theory, we now
define the Lie bracket (Guckenheimer and Holmes [155, p.141]). Recall that

Xc = X0c ⊂ D(A0)⊂ D(A),

so the following definition makes sense.

Definition 6.3.1. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Then for each
G ∈V m(Xc,D(A)), we define the Lie bracket

[A,G](xc) := DG(xc)(Axc)−AG(xc), ∀xc ∈ Xc. (6.3.1)

Recall that Ac ∈L (Xc) is the part of A in Xc, we obtain

[A,G](xc) = DG(xc)(Acxc)−AG(xc),∀xc ∈ Xc.

Setting L := 1
m! DmG(0) ∈Ls (Xm

c ,D(A)∩Xh) . We also have

DG(xc)(y) = mL(y,xc, ...,xc) , DG(xc)Acxc = mL(Acxc,xc, ...,xc) ,

and
[A,G](xc) =

d
dt

[
L(eActxc, . . . ,eActxc)

]
(0)−AL(xc, . . . ,xc). (6.3.2)

We consider two cases when G belongs to different subspaces, namely, G ∈
V m(Xc,D(A)∩Xh) and G ∈V m(Xc,D(A)), respectively.

(i) G ∈V m(Xc,D(A)∩Xh). We consider the change of variables

v := u−G(Πcu)⇔
{

Πcv = Πcu
Πhv = Πhu−G(Πcu) ⇔ u = v+G(Πcv) . (6.3.3)
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Then
G(xc) := L(xc,xc, ...,xc) ,∀xc ∈ Xc.

The map xc→ AG(xc) is differentiable and

D(AG)(xc)(y) = ADG(xc)(y) = mAL(y,xc, ...,xc) .

Define a map ξ : X → X by

ξ (x) := x+G(Πcx) ,∀x ∈ X .

Since the range of G is included in Xh, we obtain the following equivalence

y = ξ (x)⇔ x = ξ
−1 (y) ,

where
ξ
−1 (y) := y−G(Πcy) ,∀y ∈ X ,

and
Πcξ

−1 (x) = Πcx,∀x ∈ X .

Finally, since G(x) ∈ D(A), we have

ξ

(
D(A)

)
⊂ D(A) and ξ

−1
(

D(A)
)
⊂ D(A).

The following result justifies the change of variables (6.3.3).

Lemma 6.3.2. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let L∈Ls (Xm
c ,Xh∩D(A)) .

Assume that u ∈C ([0,τ] ,X) is an integrated solution of the Cauchy problem

du(t)
dt

= Au(t)+F(u(t)), t ∈ [0,τ] , u(0) = x ∈ D(A). (6.3.4)

Then v(t) = ξ−1 (u(t)) is an integrated solution of the system

dv(t)
dt

= Av(t)+H(v(t)), t ∈ [0,τ] , v(0) = ξ
−1 (x) ∈ D(A), (6.3.5)

where H : D(A)→ X is the map defined by

H(ξ (x)) = F (ξ (x))− [A,G](Πcx)−DG(Πcx) [ΠcF (ξ (x))] .

Conversely, if v ∈ C ([0,τ] ,X) is an integrated solution of (6.3.5), then u(t) =
ξ (v(t)) is an integrated solution of (6.3.4).

Proof. Assume that u ∈C ([0,τ] ,X) is an integrated solution of the system (6.3.4);
that is, ∫ t

0
u(l)dl ∈ D(A),∀t ∈ [0,τ] ,

and
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u(t) = x+A
∫ t

0
u(l)dl +

∫ t

0
F(u(l))dl,∀t ∈ [0,τ] .

Set
v(t) = ξ

−1 (u(t)) ,∀t ∈ [0,τ] .

We have

A
∫ t

0
v(l)dl = A

∫ t

0
u(l)dl−

∫ t

0
AG(Πcu(l))dl

= u(t)− x−
∫ t

0
F(u(l))dl−

∫ t

0
AG(Πcu(l))dl

= u(t)−G(Πcu(t))− (x−G(Πcx))

+(G(Πcu(t))−G(Πcx))

−
∫ t

0
F(u(l))dl−

∫ t

0
AG(Πcu(l))dl

= v(t)−ξ
−1 (x)+(G(Πcu(t))−G(Πcx))

−
∫ t

0
F(u(l))dl−

∫ t

0
AG(Πcu(l))dl.

Since dim(Xc)<+∞, t→Πcu(t) satisfies the following ordinary differential equa-
tions

dΠcu(t)
dt

= A0cΠcu(t)+ΠcF(u(t)).

By integrating both sides of the above ordinary differential equations, we obtain

G(Πcu(t))−G(Πcx) =
∫ t

0
DG(Πcu(l))

(
dΠcu(l)

dl

)
dl

=
∫ t

0
DG(Πcu(l))(A0cΠcu(l))+DG(Πcu(l))(ΠcF(u(l)))dl.

It follows that

A
∫ t

0
v(l)dl = v(t)−ξ (x)

+
∫ t

0
DG(Πcu(l)) [A0cΠcu(l)+ΠcF(u(l))]dl

−
∫ t

0
F(u(l))dl−

∫ t

0
AG(Πcu(l))dl.

Thus
v(t) = ξ (x)+A

∫ t

0
v(l)dl +

∫ t

0
H(v(l))dl,

in which

H(ξ (x)) = F (ξ (x))+AG(Πcξ (x))

−DG(Πcξ (x)) [AcΠcξ (x)+ΠcF (ξ (x))] .
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Since Πcξ = Πc, the first implication follows. The converse follows from the first
implication by replacing F by H and ξ by ξ−1. ut

Set for each η > 0,

BCη (R,X) :=
{

f ∈C (R,X) : sup
t∈R

e−η |t| ‖ f (t)‖<+∞

}
.

We have the following lemma.

Lemma 6.3.3. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. If

f (t) = tkeλ tx

for some k ∈ N, λ ∈ iR, and x ∈ X , then

(Ku +Ks)(Πh f )(0) = (−1)k k!(λ I−Ah)
−(k+1)

Πhx ∈ D(Ah)⊂ D(A).

Proof. We have

Ku ( f )(0) = −
∫ +∞

0
eλ l lke−A0ul

Πuxdl

= − dk

dλ k

∫ +∞

0
eλ le−A0ul

Πuxdl

= − dk

dλ k (−λ I +A0u)
−1

Πux

=
dk

dλ k (λ I−A0u)
−1

Πux

= (−1)kk!(λ I−A0u)
−(k+1)

Πux.

Similarly, we have for µ > ωA that

(µI−A)−1 Ks( f )(0) = lim
τ→−∞

(µI−A)−1
Πs (SA � f (τ + .))(−τ)

= lim
τ→−∞

∫ −τ

0
TA0s(−τ− s)(µI−A)−1

Πs f (s+ τ)ds

= lim
r→+∞

∫ r

0
TA0s(r− s)(µI−A)−1

Πs f (s− r)ds

=
∫ +∞

0
TA0s(l)(µI−A)−1

Πs f (−l)dl.

So we obtain that

(µI−A)−1 Ks( f )(0) =
∫ +∞

0
(−l)k e−λ lTA0(l)(µI−A)−1

Πsxdl

=
dk

dλ k (λ I−A0)
−1 (µI−A)−1

Πsx
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= (−1)kk!(λ I−A0)
−(k+1) (µI−A)−1

Πsx

= (µI−A)−1 (−1)kk!(λ I−As)
−(k+1)

Πsx.

Since (µI−A)−1 is one-to-one, we deduce that

Ks( f )(t) = (−1)kk!(λ I−As)
−(k+1)

Πsx

and the result follows. ut

The first result of this section is the following proposition which is related to
nonresonant normal forms for ordinary differential equations (see Guckenheimer
and Holmes [155], Chow and Hale [62], and Chow et al. [63]).

Proposition 6.3.4. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. For each R∈
V m (Xc,Xh) , there exists a unique map G ∈V m (Xc,Xh∩D(A)) such that

[A,G] (xc) = R(xc),∀xc ∈ Xc. (6.3.6)

Moreover, (6.3.6) is equivalent to

G(xc) = (Ku +Ks)(R(eAc.xc))(0),

or
L(x1, . . . ,xm) = (Ku +Ks)(H

(
eAc.x1, . . . ,eAc.xm

)
)(0),

with L := 1
m! DmG(0) and H := 1

m! DmR(0).

Proof. Assume first that G∈V m (Xc,Xh∩D(A)) satisfies (6.3.6). Then L= 1
m! DmG(0)∈

Ls (Xm
c ,Xh∩D(A)) satisfies

d
dt

[
L(eActx1, ...,eActxm)

]
(0) = AhL(x1, ...,xm)+H(x1, ...,xm),

where H = 1
m! DmR(0)∈Ls (Xm

c ,Xh) . Then (6.3.6) is satisfied if and only if for each
(x1, ...,xm) ∈ Xm

c and each t ∈ R,

d
dt

[
L(eActx1, ...,eActxm)

]
(t) = AhL(eActx1, ...,eActxm)

+H(eActx1, ...,eActxm).
(6.3.7)

Set
v(t) := L(eActx1, ...,eActxm), ∀t ∈ R

and
w(t) := H(eActx1, ...,eActxm), ∀t ∈ R.

The Cauchy problem (6.3.7) can be rewritten as

dv(t)
dt

= Ahv(t)+w(t), ∀t ∈ R. (6.3.8)
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Since L and H are bounded multilinear maps and σ (A0c) ⊂ iR, it follows that for
each η > 0,

v ∈ BCη (R,X) and w ∈ BCη (R,X) .

Let η ∈
(

0,min
(
−ω0 (A0s) , inf

λ∈σ(A0u)
Re(λ )

))
. By projecting (6.3.8) on Xu, we

have
dΠuv(t)

dt
= AuΠuv(t)+Πuw(t),

or equivalently, ∀t,s ∈ R with t ≥ s,

Πuv(t) = eAu(t−s)
Πuv(s)+

∫ t

s
eAu(t−l)

Πuw(l)dl,

Πuv(s) = e−Au(t−s)
Πuv(t)−

∫ t

s
e−Au(l−s)

Πuw(l)dl.

By using the fact that v ∈ BCη (R,X) , we obtain when t goes to +∞ that

Πuv(s) = Ku(Πuw)(s), ∀s ∈ R.

Thus, for s = 0 we have

ΠuL(x1, ...,xm) = Ku(ΠuH(eAc.x1, ...,eAc.xm))(0). (6.3.9)

By projecting (6.3.8) on Xs, we obtain

dΠsv(t)
dt

= AsΠsv(t)+Πsw(t),

or equivalently, ∀t,s ∈ R with t ≥ s,

Πsv(t) = TAs(t− s)Πsv(s)+(SAs �Πsw(.+ s))(t− s).

By using the fact that v ∈ BCη (R,X) , we have when s goes to −∞ that

Πsv(t) = Ks(Πsw)(t), ∀t ∈ R.

Thus, for t = 0 it follows that

ΠsL(x1, ...,xm) = Ks(ΠsH(eAc.x1, ...,eAc.xm))(0). (6.3.10)

Summing up (6.3.9) and (6.3.10), we deduce that

L(x1, ...,xm) = (Ku +Ks)(H
(
eAc.x1, ...,eAc.xm

)
)(0). (6.3.11)

Conversely, assume that L(x1, ...,xm) is defined by (6.3.11) and set

v(t) := (Ku +Ks)(H
(

eAc(t+.)x1, ...,eAc(t+.)xm

)
)(0), ∀t ∈ R.
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Then we have
v(t) = L(eActx1, ...,eActxm), ∀t ∈ R.

Moreover, using Lemma 6.1.6-(iii) and Lemma 6.1.7-(iii), we deduce that for each
t,s ∈ R with t ≥ s,

v(t) = TA0(t− s)v(s)+(SA �w(.+ s))(t− s),

or equivalently,

v(t) = v(s)+A
∫ t

s
v(l)dl +

∫ t

s
w(l)dl.

Since t→ v(t) is continuously differentiable and A is closed, we deduce that

v(t) ∈ D(A), ∀t ∈ R,

and
dv(t)

dt
= Av(t)+w(t), ∀t ∈ R.

The result follows. ut

Remark 6.3.5. (An explicit formula for L) Since n := dim(Xc)<+∞, we can find
a basis {e1, ...,en} of Xc such that the matrix of Ac (with respect to this basis) is
reduced to the Jordan’s form. Then for each xc ∈ Xc, eActxc is a linear combination
of elements of the form

tkeλ tx j

for some k ∈ {1, ...,n} , some λ ∈ σ (Ac) ⊂ iR, and some x j ∈ {e1, ...,en}. Let
λ1, ...,λm ∈ σ (Ac)⊂ iR, x1, ...,xm ∈ {e1, ...,en} , k1, ...,km ∈ {1, ...,n}. Define

f (t) := H
(

tk1eλ1t.x1, ..., tkmeλmt.xm

)
,∀t ∈ R.

Since H is m-linear, we obtain

f (t) = tkeλ y

with
k = k1 + k2 + ...+ km, λ = λ1 + ....+λm,

and
y = H (x1, ...,xm) .

Now by using Lemma 6.3.3, we obtain the explicit formula

(Ku +Ks)(H
(
(.)k1 eλ1.x1, ...,(.)

km eλm.xm

)
)(0)= (−1)k k!(λ I−Ah)

−(k+1)
Πhy∈D(A).

(ii) G ∈ V m(Xc,D(A)). From (6.3.2), for each H ∈ V m(Xc,X), to find G ∈
V m(Xc,D(A)) satisfying

[A,G] = H, (6.3.12)
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is equivalent to find L ∈Ls (Xm
c ,D(A)) satisfying

d
dt

[
L(eActx1, . . . ,eActxm)

]
t=0 = AL(x1, . . . ,xm)+ Ĥ(x1, . . . ,xm) (6.3.13)

for each (x1, . . . ,xm) ∈ Xm
c with

G (Ĥ) = H.

Define Θ c
m : V m(Xc,Xc)→V m(Xc,Xc) by

Θ
c
m (Gc) := [Ac,Gc],∀Gc ∈V m(Xc,Xc) (6.3.14)

and Θ h
m : V m(Xc,Xh∩D(A))→V m(Xc,Xh) by

Θ
h
m (Gh) := [A,Gh],∀Gh ∈V m(Xc,Xh∩D(A)).

We decompose V m(Xc,Xc) into the direct sum

V m(Xc,Xc) = Rc
m⊕C c

m, (6.3.15)

where
Rc

m := R(Θ c
m)

is the range of Θ c
m, and C c

m is some complementary space of Rc
m into V m(Xc,Xc).

The range of the linear operator Θ c
m can be characterized by using the so called

non-resonance theorem. The second result of this section is the following theorem.

Proposition 6.3.6. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let H ∈Rc
m⊕

V m(Xc,Xh). Then there exists G ∈V m(Xc,D(A)) (non-unique in general) satisfying

[A,G] = H. (6.3.16)

Furthermore, if N(Θ c
m) = {0} (the null space of Θ c

m), then G is uniquely determined.

Proof. By projecting on Xc and Xh and using the fact that Xc ⊂D(A), it follows that
solving system (6.3.12) is equivalent to find Gc ∈V m(Xc,Xc) and Gh ∈V m(Xc,Xh∩
D(A)) satisfying

[Ac,Gc] = ΠcH (6.3.17)

and
[A,Gh] = ΠhH. (6.3.18)

Now it is clear that we can solve (6.3.17). Moreover, by using the equivalence be-
tween (6.3.12) and (6.3.13), we can apply Proposition 6.3.4 and deduce that (6.3.18)
can be solved. ut

Remark 6.3.7. In practice, we often have

N(Θ c
m)∩R(Θ c

m) = {0} ,
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In this case, a natural splitting of V m(Xc,Xc) will be

V m(Xc,Xc) = R(Θ c
m)⊕N(Θ c

m).

Define Pm : V m(Xc,X)→V m(Xc,X) the bounded linear projector satisfying

Pm (V m(Xc,X)) = Rc
m⊕V m(Xc,Xh), and (I−Pm)(V m(Xc,X)) = C c

m.

Again consider the Cauchy problem (6.3.3). Assume that DF(0) = 0. Without loss
of generality we also assume that for some m ∈ {2, ...,k} ,

ΠhD jF(0) |Xc×Xc×...×Xc= 0, G
(
ΠcD jF(0) |Xc×Xc×...×Xc

)
∈ C c

j , (Cm−1)

for each j = 1, ...,m−1.
Consider the change of variables

u(t) = w(t)+G(Πcw(t)) (6.3.19)

and the map I + 1
m! G ◦Πc : D(A)→ D(A) is locally invertible around 0. We will

show that we can find G ∈ V m(Xc,D(A)) such that after the change of variables
(6.3.19) we can rewrite the system (6.3.3) as

dw(t)
dt

= Aw(t)+H(w(t)) for t ≥ 0, and w(0) = (I +G◦Πc)x ∈ D(A), (6.3.20)

where H satisfies the condition (Cm). This will provide a normal form method which
is analogous to the one proposed by Faria and Magalhães [136].

Lemma 6.3.8. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let G∈V m (Xc,D(A)) .
Assume that u∈C ([0,τ] ,X) is an integrated solution of the Cauchy problem (6.3.3).
Then w(t) = (I +G ◦Πc)

−1 (u(t)) is an integrated solution of the system (6.3.20),
where H : D(A)→ X is the map defined by

H(w(t)) = F (w(t))− [A,G] (Πcw(t))+O(‖w(t)‖m+1).

Conversely, if w ∈ C ([0,τ] ,X) is an integrated solution of (6.3.20), then u(t) =
(I +G◦Πc)w(t) is an integrated solution of (6.3.3).

Lemma 6.3.8 can be proved similarly as Lemma 6.3.2, here we omit it.

Proposition 6.3.9. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let r > 0 and
let F : BX0 (0,r)→ X be a map. Assume that there exists an integer k ≥ 1 such that
F is k-time continuously differentiable in BX0 (0,r) with F(0) = 0 and DF(0) = 0.
Let m ∈ {2, ...,k} be such that F satisfies the condition (Cm−1). Then there exists a
map G ∈V m(Xc,D(A)) such that after the change of variables

u(t) = w(t)+G(Πcw(t)) ,

we can rewrite system (6.3.3) as (6.3.20) and H satisfies the condition (Cm), where
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H(w(t)) = F (w(t))− [A,G] (Πcw(t))+O(‖w(t)‖m+1).

Proof. Let xc ∈ Xc be fixed. We have

H(xc) = F (xc)− [A,G] (Πcxc)+O(‖xc‖m+1).

It follows that

H(xc) =
1
2!

D2F (0)(xc,xc)+ ....+
1

(m−1)!
Dm−1F (0)(xc, . . . ,xc)

+Pm

[
1

m!
DmF (0)(xc, . . . ,xc)

]
+(I−Pm)

[
1

m!
DmF (0)(xc, . . . ,xc)

]
− [A,G] (xc)+O(‖xc‖m+1)

since DF(0) = 0. Moreover, by using Proposition 6.3.6 we obtain that there exists a
map G ∈V m(Xc,D(A)) such that

[A,G](xc) = Pm

[
1

m!
DmF (0)(xc, . . . ,xc)

]
.

Hence,

H(xc) =
1
2!

D2F (0)(xc,xc)+ ....+
1

(m−1)!
Dm−1F (0)(xc, . . . ,xc)

+(I−Pm)
[ 1

m! DmF (0)(xc, . . . ,xc)
]
+O(‖xc‖m+1).

(6.3.21)

By the assumption, we have for all j = 1, ...,m−1 that

ΠhD jH(0) |Xc×Xc×...×Xc= ΠhD jF(0) |Xc×Xc×...×Xc= 0

and
G
(
ΠcD jH(0) |Xc×Xc×...×Xc

)
= G

(
ΠcD jF(0) |Xc×Xc×...×Xc

)
∈ C c

j .

Now by using (6.3.21), we have

1
m!

ΠhDmH(0) |Xc×Xc×...×Xc= ΠhG
−1
[
(I−Pm)

(
1

m!
DmF (0)(xc, . . . ,xc)

)]
= 0

and

G (ΠcDmH(0) |Xc×Xc×...×Xc) = G
{

ΠcG
−1 [(I−Pm)(DmF (0)(xc, . . . ,xc))]

}
∈C c

m.

The result follows. ut
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6.3.2 Normal Form Computation

In this subsection we provide the method to compute the Taylor’s expansion at
any order and normal form of the reduced system of a system topologically equiva-
lent to the original system:

du(t)
dt

= Au(t)+F(u(t)), t ≥ 0,

u(0) = x ∈ D(A).
(6.3.22)

Assumption 6.3.10. Assume that F ∈Ck
(

D(A),X
)

for some integer k ≥ 2 with

F(0) = 0 and DF(0) = 0.

Set
F1 := F.

Once again we consider two cases; namely, G ∈ V m(Xc,D(A) ∩ Xh) and G ∈
V m(Xc,D(A)), respectively.

(i) G ∈ V m(Xc,D(A)∩Xh). For j = 2, ...,k, we apply Proposition 6.3.4. Then
there exists a unique function G j ∈V j (Xc,Xh∩D(A)) satisfying

[A,G j] (xc) =
1
j!

ΠhD jFj−1(0)(xc, ...,xc) ,∀xc ∈ Xc. (6.3.23)

Define ξ j : X → X and ξ
−1
j : X → X by

ξ j (x) := x+G j(Πcx) and ξ
−1
j (x) := x−G j(Πcx),∀x ∈ X .

Then

Fj(x) := Fj−1 (ξ j (x))− [A,G j] (Πcx)−DG j(Πcx)
[
ΠcFj−1 (ξ j (x))

]
.

Moreover, we have for x ∈ X0 that

ΠcFj(x) = ΠcFj−1 (ξ j (x)) = ΠcFj−1 (x+G j (Πcx)) .

Since the range of G j is included in Xh, by induction we have

ΠcFj(x) = ΠcF (x+G2 (Πcx)+G3 (Πcx)+ ...+G j (Πcx)) .

Now, we obtain

ΠhD jFk(0) |Xc×Xc×...×Xc= 0 for all j = 1, ...,k.

Setting
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uk(t)= ξ
−1
k ◦ξ

−1
k−1◦...ξ

−1
2 (u(t))= u(t)−G2 (Πcu(t))−G3 (Πcu(t))−...−Gk (Πcu(t)) ,

we deduce that uk(t) is an integrated solution of the system
duk(t)

dt
= Auk(t)+Fk(uk(t)), t ≥ 0,

uk(0) = xk ∈ D(A).
(6.3.24)

Applying Lemma 6.1.20 and Theorem 6.1.21 to system (6.3.24), we obtain the fol-
lowing result which is one of the main results of this paper.

Theorem 6.3.11. Let Assumptions 3.4.1, 3.5.2, 6.1.1, and 6.3.10 be satisfied. Then
by using the change of variablesuk(t) = u(t)−G2 (Πcu(t))−G3 (Πcu(t))− ...−Gk (Πcu(t))

⇔
u(t) = uk(t)+G2 (Πcuk(t))+G3 (Πcuk(t))+ ...+Gk (Πcuk(t)) ,

the map t → u(t) is an integrated solution of the Cauchy problem (6.3.22) if and
only if t→ uk(t) is an integrated solution of the Cauchy problem (6.3.24). Moreover,
the reduced system of Cauchy problem (6.3.24) is given by the ordinary differential
equations on Xc :

dxc(t)
dt

= Acxc(t)+ΠcF
[

xc(t)+G2 (xc(t))+
G3 (xc(t))+ ...+Gk (xc(t))

]
+Rc (xc(t)) , (6.3.25)

where the remainder term Rc ∈Ck (Xc,Xc) satisfies

D jRc (0) = 0 for each j = 1, ...,k,

or in other words Rc (xc(t)) is a remainder term of order k.

If we assume in addition that F ∈Ck+2
(

D(A),X
)
, then the map Rc ∈Ck+2 (Xc,Xc)

and Rc (xc(t)) is a remainder term of order k+2; that is

Rc (xc) = ‖xc‖k+2 O(xc) , (6.3.26)

where O(xc) is a function of xc which remains bounded when xc goes to 0, or equiv-
alently,

D jRc (0) = 0 for each j = 1, ...,k+1.

Proof. By Theorem 6.1.21 and Lemma 6.1.20, there exists Ψk ∈ Ck (Xc,Xh) such
that the reduced system of (6.3.24) is given by

dxc(t)
dt

=Acxc(t)+ΠcF [xc(t)+G2 (xc(t))+G3 (xc(t))+ ...+Gk (xc(t))+Ψk (xc(t))]

and
D j

Ψk (0) = 0 for j = 1, ...,k.
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By setting

Rc (xc) = ΠcF [xc +G2 (xc)+G3 (xc)+ ...+Gk (xc)+Ψk (xc)]
−ΠcF [xc +G2 (xc)+G3 (xc)+ ...+Gk (xc)] ,

we obtain the first part of the theorem. If we assume in addition that F ∈Ck+2
(

D(A),X
)
,

then Ψk ∈Ck+2 (Xc,Xh) . Thus,

Rc ∈Ck+2 (Xc,Xc) .

Set
h(xc) := xc +G2 (xc)+G3 (xc)+ ...+Gk (xc) .

We have

Rc (xc) = Πc {F [h(xc)+Ψk (xc)]−F [h(xc)]}

= Πc

∫ 1

0
DF (h(xc)+ sΨk (xc))(Ψk (xc))ds.

Define
ĥ(xc) := h(xc)+ sΨk (xc) .

Since DF(0) = 0, we have

DF
(

ĥ(xc)
)
(Ψk (xc)) = DF (0)(Ψk (xc))+

∫ 1

0
D2F

(
lĥ(xc)

)(
ĥ(xc),Ψk (xc)

)
dl

=
∫ 1

0
D2F

(
lĥ(xc)

)(
ĥ(xc),Ψk (xc)

)
dl.

Hence,

Rc (xc) = Πc

∫ 1

0

∫ 1

0
D2F (l (h(xc)+ sΨk (xc)))(h(xc)+ sΨk (xc) ,Ψk (xc))dlds

and h(xc) is a term of order 1,Ψk (xc) is a term of order k+1, it follows that (6.3.26)
holds. This completes the proof. ut

Remark 6.3.12. In order to apply the above approach, we first need to compute Πc
and Ac, then Πh := I−Πc can be derived. The point to apply the above procedure
is to solve system (6.3.23). To do this, one may compute

(λ I−Ah)
−k 1

j!
ΠhD jF (0) (6.3.27)

for each λ ∈ iR and each k ≥ 1 by using Remark 6.3.5, or one may directly solve
system (6.3.23) by computing Πh

1
j! D jFj−1. This last approach will involve the com-

putation of (6.3.27) for some specific values of λ ∈ iR and some specific values of
k ≥ 1. This turns out to be the main difficulty in applying the above method.
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In next subsection, we will use the last part of Theorem 6.3.11 to avoid some
unnecessary computations. We will apply this theorem for k = 2, F in C4, and the
remainder term Rc (xc) of order 4. This means that if we want to compute the Tay-
lor’s expansion of the reduced system to the order 3 (which is very common in such
a context), we only need to compute G2. So in application the last part of Theorem
6.3.11 will help to avoid a lot of computations.

(ii) G ∈ V m(Xc,D(A)). Now we apply Proposition 6.3.9 recursively to (6.3.22).
Set

u1 := u.

For m = 2, ...,k, let Gm ∈V m(Xc,D(A)) be defined such that

[A,Gm](xc) = Pm

[
1

m!
DmFm−1 (0)(xc, . . . ,xc)

]
for each xc ∈ Xc.

We use the change of variables

um−1 = um +Gm (Πcum) .

Then we consider Fm given by Proposition 6.3.9 and satisfying

Fm(um) = Fm−1 (um)− [A,Gm] (Πcum)+O(‖um‖m+1).

By applying Proposition 6.3.9, we have

ΠhD jFm(0) |Xc×Xc×...×Xc= 0 for all j = 1, ...,m,

and
G
(
ΠcD jFm(0) |Xc×Xc×...×Xc

)
∈ C c

j for all j = 1, ...,m.

Thus by using the change of variables locally around 0

uk(t) = (I +GkΠc)
−1 ...(I +G3Πc)

−1 (I +G2Πc)
−1 u(t),

we deduce that uk(t) is an integrated solution of system (6.3.24). Applying Theo-
rem 6.1.21 and Lemma 6.1.20 to the above system, we obtain the following result
which indicates that systems (6.3.22) and (6.3.24) are locally topologically equiva-
lent around 0.

Theorem 6.3.13. Let Assumptions 3.4.1, 3.5.2, 6.1.1, and 6.3.10 be satisfied. Then
by using the change of variables locally around 0uk(t) = (I +GkΠc)

−1 ...(I +G3Πc)
−1 (I +G2Πc)

−1 u(t)
⇔
u(t) = (I +G2Πc)(I +G3Πc) ...(I +GkΠc)uk(t),

the map t → u(t) is an integrated solution of the Cauchy problem (6.3.22) if and
only if t→ uk(t) is an integrated solution of the Cauchy problem (6.3.24). Moreover,



300 6 Center Manifolds, Hopf Bifurcation and Normal Forms

the reduced system of Cauchy problem (6.3.24) is given by the ordinary differential
equations on Xc :

dxc(t)
dt

= Acxc(t)+
k

∑
m=2

1
m!

ΠcDmFk (0)(xc(t), ...,xc(t))+Rc (xc(t)) ,

where

G

(
1

m!
ΠcDmFk(0) |Xc×Xc×...×Xc

)
∈ C c

m, for all m = 1, ...,k,

and the remainder term Rc ∈Ck (Xc,Xc) satisfies

D jRc (0) = 0 for each j = 1, ...,k,

or in other words Rc (xc(t)) is a remainder term of order k.

If we assume in addition that F ∈Ck+2
(

D(A),X
)
. Then the reduced system of

Cauchy problem (6.3.24) is given by the ordinary differential equations on Xc :

dxc(t)
dt

= Acxc(t)+
k+1

∑
m=2

1
m!

ΠcDmFk (0)(xc(t), ...,xc(t))+Rc (xc(t)) ,

the map Rc ∈Ck+2 (Xc,Xc) , and Rc (xc(t)) is a remainder term of order k+2; that
is

Rc (xc) = ‖xc‖k+2 O(xc) ,

where O(xc) is a function of xc which remains bounded when xc goes to 0, or equiv-
alently,

D jRc (0) = 0 for each j = 1, ...,k+1.

Proof. By Theorem 6.1.21 and Lemma 6.1.20, there exists Ψk ∈ Ck (Xc,Xh) such
that the reduced system of (6.3.24) is given by

dxc(t)
dt

= Acxc(t)+ΠcFk [xc(t)+Ψk (xc(t))]

and
D j

Ψk (0) = 0 for j = 1, ...,k.

By setting
Rc (xc) = ΠcFk [xc +Ψk (xc)]−ΠcFk (xc) ,

we obtain the first part of the Theorem. If we assume in addition that F ∈Ck+2
(

D(A),X
)
,

then Ψk ∈Ck+2 (Xc,Xh) . Thus, Rc ∈Ck+2 (Xc,Xc) and

Rc (xc) = Πc {Fk [xc +Ψk (xc)]−Fk (xc)}

= Πc

∫ 1

0
DFk (xc + sΨk (xc))(Ψk (xc))ds.
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Set
h(xc) := xc + sΨk (xc) .

Since DF(0) = 0, we have

DFk (h(xc))(Ψk (xc)) = DFk (0)(Ψk (xc))+
∫ 1

0
D2Fk (lh(xc))(h(xc),Ψk (xc))dl

=
∫ 1

0
D2Fk (lh(xc))(h(xc),Ψk (xc))dl.

Hence,

Rc (xc) = Πc

∫ 1

0

∫ 1

0
D2Fk (l (xc + sΨk (xc)))(xc + sΨk (xc) ,Ψk (xc))dlds

and Ψk (xc) is a term of order k+1, it follows that

Rc (xc) = ‖xc‖k+2 O(xc) .

The result follows. ut

6.4 Remarks and Notes

(a) Center manifold theory. The classical center manifold theory was first es-
tablished by Pliss [289] and Kelley [208] and was developed and completed in Carr
[56], Sijbrand [319], Vanderbauwhede [343], etc. For the case of a single equilib-
rium, the center manifold theorem states that if a finite dimensional system has a
nonhyperbolic equilibrium, then there exists a center manifold in a neighborhood
of the nonhyperbolic equilibrium which is tangent to the generalized eigenspace as-
sociated to the corresponding eigenvalues with zero real parts, and the study of the
general system near the nonhyperbolic equilibrium reduces to that of an ordinary
differential equation restricted on the lower dimensional invariant center manifold.
This usually means a considerable reduction of the dimension which leads to simple
calculations and a better geometric insight. The center manifold theory has signif-
icant applications in studying other problems in dynamical systems, such as bifur-
cation, stability, perturbation, etc. It has also been used to study various applied
problems in biology, engineering, physics, etc. We refer to, for example, Carr [56]
and Hassard et al. [181].

There are two classical methods to prove the existence of center manifolds. The
Hadamard (Hadamard [167]) method (the graph transformation method) is a geo-
metric approach which bases on the construction of graphs over linearized spaces,
see Hirsch et al. [188] and Chow et al. [65, 66]. The Liapunov-Perron (Liapunov
[228], Perron [286]) method (the variation of constants method) is more analytic in
nature, which obtains the manifold as a fixed point of a certain integral equation.
The technique originated in Krylov and Bogoliubov [220] and was furthered devel-
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oped by Hale [169, 171], see also Ball [36], Chow and Lu [67], Yi [378], etc. The
smoothness of center manifolds can be proved by using the contraction mapping in a
scale of Banach spaces (Vanderbauwhede and van Gils [344]), the Fiber contraction
mapping technique (Hirsch et al. [188]), the Henry lemma (Henry [183], Chow and
Lu [68]), among other methods (Chow et al. [64]). For further results and references
on center manifolds, we refer to the monographs of Carr [56], Chow and Hale [62],
Chow et al. [63], Sell and You [314], Wiggins [373], and the survey papers of Bates
and Jones [39], Vanderbauwhede [343] and Vanderbauwhede and Iooss [345].

There have been several important extensions of the classical center manifold
theory for invariant sets. For higher dimensional invariant sets, it is known that cen-
ter manifolds exist for an invariant torus with special structure (Chow and Lu [69]),
for an invariant set consisting of equilibria (Fenichel [140]), for some homoclinic
orbits (Homburg [190], Lin [229] and Sandstede [306]), for skew-product flows
(Chow and Yi [71]), for any piece of trajectory of maps (Hirsch et al. [188]), and for
smooth invariant manifolds and compact invariant sets (Chow et al. [65, 66]).

Recently, great attention has been paid to the study of center manifolds in infi-
nite dimensional systems and researchers have developed the center manifold theory
for various infinite dimensional systems such as partial differential equations (Bates
and Jones [39], Da Prato and Lunardi [84], Henry [183], Scheel [312]), semiflows
in Banach spaces (Bates et al. [40], Chow and Lu [67], Gallay [148], Scarpellini
[309], Vanderbauwhede [342], Vanderbauwhede and van Gils [344]), delay differ-
ential equations (Hale [172], Hale and Verduyn Lunel [175], Diekmann and van
Gils [104, 105], Diekmann et al. [106], Hupkes and Verduyn Lunel [193]), infinite
dimensional nonautonomous differential equations (Mielke [270, 271], Chicone and
Latushkin [59]), and partial functional differential equations (Lin et al. [230], Faria
et al. [135], Krisztin [219], Nguyen and Wu [277], Wu [374]). Infinite dimensional
systems usually do not have some of the nice properties the finite dimensional sys-
tems have. For example, the initial value problem may not be well posed, the solu-
tions may not be extended backward, the solutions may not be regular, the domain
of operators may not be dense in the state space, etc. Therefore, the center mani-
fold reduction of the infinite dimensional systems plays a very important role in the
theory of infinite dimensional systems since it allows us to study ordinary differen-
tial equations reduced on the finite dimensional center manifolds. Vanderbauwhede
and Iooss [345] described some minimal conditions which allow to generalize the
approach of Vanderbauwhede [343] to infinite dimensional systems.

The goal of Section 6.1 was to combine the integrated semigroup theory with the
techniques of Vanderbauwhede [342, 343], Vanderbauwhede and Van Gills [344]
and Vanderbauwhede and Iooss [345] to develop a center manifold theory for ab-
stract semilinear Cauchy problems with non-dense domain. The materials in Sec-
tion 6.1 were taken from Magal and Ruan [248]. The existence of center-unstable
manifold for abstract semilinear Cauchy problems with non-dense domain was es-
tablished in Liu et al. [235].

(b) Hopf bifurcation theorem. The Hopf bifurcation theorem, proved by several
researchers (see Andronov et al. [18], Hopf [191], Friedrichs [145], Hale [171]),
gives a set of sufficient conditions to ensure that an autonomous ordinary differential
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equation with a parameter exhibits nontrivial periodic solutions for certain values of
the parameter. The theorem has been used to study bifurcations in many applied
subjects (see Marsden and McCraken [257] and Hassard et al. [181]).

In the 1970’s, several Hopf bifurcation theorems were obtained for infinite di-
mensional systems in order to establish the bifurcation of periodic solutions of the
Navier-Stokes equations. Such results are usually based on the so-called Liapunov-
Schmidt or center manifold reduction approach. We refer to Iudovich [201], Sat-
tinger [308], Iooss [200], Joseph and Sattinger [202], Marsden [256], Marsden and
McCraken [257], Crandall and Rabinowitz [76], Henry [183], Da Prato and Lunardi
[84], and Kielhőfer [213] for results on the subject. The Hopf bifurcation theo-
rem has also been extended to functional differential equations (Hale and Verduyn
Lunel[175], Diekmann et al. [106], Wu [374]), functional equations (Hale and De
Oliveira [174]), and integral equations (Diekmann and van Gils [104], Diekmann et
al. [106]). We also refer to Golubitsky and Rabinowitz [151] for a nice commentary
on Hopf bifurcation theorem and more references.

In Section 6.2, which was adapted from Liu et al. [234], we applied the center
manifold theorem developed in Section 6.1 to prove a Hopf bifurcation theorem for
the abstract non-densely defined Cauchy problem. Since the problem is written as
a Cauchy problem, the method may seem fairly classical, however the result is new
and general, which can be applied to several types of equations. We will apply the
main theorem to obtain a known Hopf bifurcation result for functional differential
equations and a general Hopf bifurcation theorem for age structured models.

(c) Normal form theory. A normal form theorem was obtained first by Poincaré
[291] and later by Siegel [317] for analytic differential equations. Simpler proofs of
Poincaré’s theorem and Siegel’s theorem were given in Arnold [32], Meyer [267],
Moser [272], and Zehnder [382]. For more results about normal form theory and
its applications see, for example, the monographs by Arnold [32], Chow and Hale
[62], Guckenheimer and Holmes [155], Meyer and Hall [?], Siegel and Moser [318],
Chow et al. [63], Kuznetsov [223], and others.

Normal form theory has been extended to various classes of partial differen-
tial equations. In the context of autonomous partial differential equations we re-
fer to Ashwin and Mei [33] (PDEs on the square), Eckmann et al. [125] (abstract
parabolic equations), Faou et al. [130, 131] (Hamiltonian PDEs), Hassard, Kazari-
noff and Wan [181] (Functional Differential Equations), Faria [133, 134] (PDEs
with delay), Foias et al. [143] (Navier-Stokes equation), Kokubu [217] (reaction-
diffusion equations), McKean and Shatah [262] (Schrödinger equation and heat
equations), Nikolenko [278] (abstract semi-linear equations), Shatah [316] (Klein-
Gordon equation), Zehnder [383] (abstract parabolic equations), etc. We also refer
to Chow et al. [70] (and references therein) for a normal form theory in quasiperi-
odic partial differential equations.

In Section 6.3 we used the integrated semigroup theory, the semilinear Cauchy
problem theory, and the center manifold theory to establish a normal form theory
for the non-densely defined Cauchy problem. The goal was to provide a method for
computing the required lower order terms of the Taylor expansion and the normal
form of the reduced equations restricted on the center manifold. The main difficulty
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comes from the fact that the center manifold is defined by using implicit formulae
in general. Here we showed that it is possible to find some appropriate changes of
variables (in Banach spaces) to compute the Taylor expansion at any order and the
normal form of the reduced system. The main results and computation procedures
will be used to discuss Hopf bifurcation in age structured population models. The
presentations in Section 6.3 were taken from Liu et al. [236].



Chapter 7
Functional Differential Equations

The goal of this chapter is to apply the theories developed in previous chapters
to functional differential equations. In Section 7.1 retarded functional differential
equations are re-written as abstract Cauchy problems and the integrated semigroup
theory is used to study the existence of integrated solutions and to establish a gen-
eral Hopf bifurcation theorem. Section 7.2 deals with neutral functional differential
equations. In Section 7.3, firstly it is shown that a delayed transport equation for cell
growth and division has asynchronous exponential growth; secondly it is demon-
strated that partial functional differential equations can also be set up as an abstract
Cauchy problem.

7.1 Retarded Functional Differential Equations

For r ≥ 0, let C = C ([−r,0] ;Rn) be the Banach space of continuous functions
from [−r,0] to Rn endowed with the supremum norm

‖ϕ‖= sup
θ∈[−r,0]

|ϕ (θ)|Rn .

Consider the retarded functional differential equations (RFDE) of the form{ dx(t)
dt

= Bx(t)+ L̂(xt)+ f (t,xt),∀t ≥ 0,

x0 = ϕ ∈C,
(7.1.1)

where xt ∈C satisfies xt (θ) = x(t +θ) ,B∈Mn (R) is an n×n real matrix, L̂ : C →
Rn is a bounded linear operator given by

L̂(ϕ) =
∫ 0

−r
dη (θ)ϕ (θ) ,

305
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here η : [−r,0]→Mn (R) is a map of bounded variation, and f : R×C → Rn is a
continuous map.

In order to study the RFDE (7.1.1) by using the integrated semigroup theory, we
need to rewrite (7.1.1) as an abstract non-densely defined Cauchy problem. Firstly,
we regard RFDE (7.1.1) as a PDE. Define u ∈C ([0,+∞)× [−r,0] ,Rn) by

u(t,θ) = x(t +θ), ∀t ≥ 0, ∀θ ∈ [−r,0] .

Note that if x ∈C1 ([−r,+∞) ,Rn) , then

∂u(t,θ)
∂ t

= x′(t +θ) =
∂u(t,θ)

∂θ
.

Hence, we must have

∂u(t,θ)
∂ t

− ∂u(t,θ)
∂θ

= 0,∀t ≥ 0, ∀θ ∈ [−r,0] .

Moreover, for θ = 0, we obtain

∂u(t,0)
∂θ

= x′(t) = Bx(t)+ L̂(xt)+ f (t,xt)

= Bu(t,0)+ L̂(u(t, .))+ f (t,u(t, .)), ∀t ≥ 0.

Therefore, we deduce formally that u must satisfy a PDE
∂u(t,θ)

∂ t
− ∂u(t,θ)

∂θ
= 0,

∂u(t,0)
∂θ

= Bu(t,0)+ L̂(u(t, .))+ f (t,u(t, .)),∀t ≥ 0,

u(0, .) = ϕ ∈ C .

(7.1.2)

In order to rewrite the PDE (7.1.2) as an abstract non-densely defined Cauchy
problem, we extend the state space to take into account the boundary condition.
This can be accomplished by adopting the following state space

X = Rn×C

taken with the usual product norm∥∥∥∥( x
ϕ

)∥∥∥∥= |x|Rn +‖ϕ‖ .

Define the linear operator A : D(A)⊂ X → X by

A
(

0Rn

ϕ

)
=

(
−ϕ ′(0)+Bϕ(0)

ϕ ′

)
, ∀
(

0Rn

ϕ

)
∈ D(A), (7.1.3)

with
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D(A) = {0Rn}×C1 ([−r,0] ,Rn) .

Note that A is non-densely defined because

D(A) = {0Rn}×C 6= X .

We also define L : D(A)→ X by

L
(

0Rn

ϕ

)
=

(
L̂(ϕ)
0C

)
and F : R×D(A)→ X by

F
(

t,
(

0Rn

ϕ

))
=

(
f (t,ϕ)

0C

)
.

Set

v(t) =
(

0Rn

u(t)

)
.

Now we can consider the PDE (7.1.2) as the following non-densely defined Cauchy
problem

dv(t)
dt

= Av(t)+L(v(t))+F(t,v(t)), t ≥ 0; v(0) =
(

0Rn

ϕ

)
∈ D(A). (7.1.4)

7.1.1 Integrated Solutions and Spectral Analysis

In this subsection we first study the integrated solutions of the Cauchy problem
(7.1.4) in the special case

dv(t)
dt

= Av(t)+
(

h(t)
0

)
, t ≥ 0, v(0) =

(
0Rn

ϕ

)
∈ D(A), (7.1.5)

where h ∈ L1 ((0,τ) ,Rn). Recall that v ∈ C ([0,τ] ,X) is an integrated solution of
(7.1.5) if and only if ∫ t

0
v(s)ds ∈ D(A), ∀t ∈ [0,τ] (7.1.6)

and

v(t) =
(

0Rn

ϕ

)
+A

∫ t

0
v(s)ds+

∫ t

0

(
h(s)

0

)
ds, ∀t ∈ [0,τ]. (7.1.7)

From (7.1.6) we note that if v is an integrated solution we must have

v(t) = lim
h→0+

1
h

∫ t+h

t
v(s)ds ∈ D(A).
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Hence v(t) =
(

0Rn

u(t)

)
with u ∈ C ([0,τ] ,C ) . In order to obtain the uniqueness of

integrated solutions of (7.1.5) we want to prove that A generates an integrated semi-
group. So firstly we need to study the resolvent of A.

Theorem 7.1.1. For the operator A defined in (7.1.3), the resolvent set of A satisfies

ρ (A) = ρ (B) ,

where B is an n×n matrix defined in (7.1.1). Moreover, for each λ ∈ ρ (A) , we have
the following explicit formula for the resolvent of A :

(λ I−A)−1
(

α

ϕ

)
=

(
0Rn

ψ

)
⇔ ψ(θ) = eλθ (λ I−B)−1 [ϕ (0)+α]+

∫ 0
θ

eλ (θ−s)ϕ (s)ds.
(7.1.8)

Proof. We first prove that ρ (A) ⊂ ρ (B) for which we only need to show that
σ (B) ⊂ σ (A) . Let λ ∈ σ (B). Then, there exists x ∈ Cn \ {0} such that Bx = λx.
Consider

ϕ(θ) = eλθ x,

we have

A
(

0Rn

ϕ

)
=

(
−ϕ ′(0)+Bϕ (0)

ϕ ′

)
=

(
−λx+Bx

λϕ

)
=

(
0Rn

λϕ

)
Thus λ ∈ σ (A) . This implies that σ (B) ⊂ σ (A) . On the other hand, if λ ∈ ρ (B)

for
(

α

ϕ

)
∈ X , we must have

(
0Rn

ψ

)
∈ D(A) such that

(λ I−A)
(

0Rn

ψ

)
=

(
α

ϕ

)
⇔
{

ψ ′(0)−Bψ (0) = α

λψ−ψ ′ = ϕ

⇔
{
(λ I−B)ψ(0) = α +ϕ (0)
λψ−ψ ′ = ϕ

⇔

{
(λ I−B)ψ(0) = α +ϕ (0)

ψ (θ) = eλ (θ−θ̂)ψ

(
θ̂

)
+
∫

θ

θ̂
eλ (θ−l)ϕ (l)dl,∀θ ≥ θ̂

⇔

{
(λ I−B)ψ(0) = α +ϕ (0)

ψ

(
θ̂

)
= eλ θ̂ ψ (0)−

∫
θ̂

0 eλ (θ̂−l)ϕ (l)dl,∀θ̂ ∈ [−r,0] ,

⇔ ψ

(
θ̂

)
= eλ θ̂ (λ I−B)−1 [α +ϕ (0)]−

∫
θ̂

0 eλ (θ̂−l)ϕ (l)dl, ∀θ̂ ∈ [−r,0] .

Therefore, we obtain that λ ∈ ρ (A) and the formula in (7.1.8) holds. ut

Since B is a matrix on Rn, we have ω0 (B) := sup
λ∈σ(B)

Re(λ ) and the following

lemma.
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Lemma 7.1.2. The linear operator A : D(A) ⊂ X → X is a Hille-Yosida operator.
More precisely, for each ωA > ω0 (B) there exists MA ≥ 1 such that∥∥(λ I−A)−n∥∥

L (X)
≤ MA

(λ −ωA)
n , ∀n≥ 1,∀λ > ωA. (7.1.9)

Proof. Let ωA > ω0 (B) be given. We can define the equivalent norm on Rn

|x| := sup
t≥0

e−ωAt ∥∥eBtx
∥∥ .

Then we have ∣∣eBtx
∣∣≤ eωAt |x| ,∀t ≥ 0

and
‖x‖ ≤ |x| ≤MA ‖x‖ ,

where
MA := sup

t≥0

∥∥∥e(B−ωAI)t
∥∥∥

Mn(R)
.

Moreover, for each λ > ωA, we have∣∣∣(λ I−B)−1 x
∣∣∣= ∣∣∣∣∫ +∞

0
e−λ seBsxds

∣∣∣∣≤ |x|
λ −ωA

.

We define the equivalent norm |.| on X by∣∣∣∣(α

ϕ

)∣∣∣∣= |α|+‖ϕ‖ωA
,

where
‖ϕ‖

ωA
:= sup

θ∈[−r,0]

∣∣∣e−ωAθ
ϕ (θ)

∣∣∣ .
Using (7.1.8) and the above results, we obtain∣∣∣∣(λ I−A)−1

(
α

ϕ

)∣∣∣∣
≤ sup

θ∈[−r,0]

[
e−ωAθ eλθ

∣∣∣(λ I−B)−1 [ϕ (0)+α]
∣∣∣+ e−ωAθ

∫ 0

θ

eλ (θ−s) |ϕ (s)|ds
]

≤ sup
θ∈[−r,0]

[
e−ωAθ eλθ 1

λ −ωA
[|ϕ (0)|+ |α|]+ e−ωAθ eλθ

∫ 0

θ

e−(λ−ωA)sds‖ϕ‖
ωA

]

=
1

λ −ωA
|α|+ sup

θ∈[−r,0]
[
e−ωAθ eλθ

λ −ωA
|ϕ (0) |+

e−ωAθ eλθ

[
e−(λ−ωA)θ −1

]
λ −ωA

‖ϕ‖
ωA
]

≤ 1
λ −ωA

[
|α|+‖ϕ‖

ωA

]
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=
1

λ −ωA

∣∣∣∣(α

ϕ

)∣∣∣∣ .
Therefore, (7.1.9) holds and the proof is completed. ut

Since A is a Hille-Yosida operator, A generates a non-degenerated integrated
semigroup {SA(t)}t≥0 on X . It follows from Corollary 3.6.3 that the abstract Cauchy
problem (7.1.5) has at most one integrated solution.

Lemma 7.1.3. Let h ∈ L1 ((0,τ) ,Rn) and ϕ ∈ C be given. Then there exists an
unique integrated solution, t → v(t), of the Cauchy problem (7.1.5) which can be
expressed explicitly by the following formula

v(t) =
(

0Rn

u(t)

)
with

u(t)(θ) = x(t +θ), ∀t ∈ [0,τ] , ∀θ ∈ [−r,0] , (7.1.10)

where

x(t) =
{

ϕ (t) , t ∈ [−r,0] ,
eBtϕ (0)+

∫ t
0 eB(t−s)h(s)ds, t ∈ [0,τ] .

Proof. Since A is a Hille-Yosida operator, there is at most one integrated solution
of the Cauchy problem (7.1.5). So it is sufficient to prove that u defined by (7.1.10)
satisfies for each t ∈ [0,τ] the following(

0Rn∫ t
0 u(l)dl

)
∈ D(A) (7.1.11)

and (
0Rn

u(t)

)
=

(
0Rn

ϕ

)
+A

(
0Rn∫ t

0 u(l)dl

)
+

( ∫ t
0 h(l)dl

0

)
. (7.1.12)

Since ∫ t

0
u(l)(θ)dl =

∫ t

0
x(l +θ)dl =

∫ t+θ

θ

x(s)ds

and x ∈ C ([−r,τ] ,Rn) ,
∫ t

0 u(l)dl ∈ C1 ([−r,0] ,Rn) . Therefore, (7.1.11) follows.
Moreover,

A
(

0Rn

ϕ

)
=

(
−ϕ ′(0)+Bϕ(0)

ϕ ′

)
whenever ϕ ∈C1 ([−r,0] ,Rn) . Hence

A
(

0∫ t
0 u(l)dl

)
=

(
− [x(t)− x(0)]+B

∫ t
0 x(s)ds

x(t + .)− x(.)

)
= −

(
0
ϕ

)
+

(
− [x(t)−ϕ(0)]+B

∫ t
0 x(s)ds

x(t + .)

)
.

Therefore, (7.1.12) is satisfied if and only if



7.1 Retarded Functional Differential Equations 311

x(t) = ϕ(0)+B
∫ t

0
x(s)ds+

∫ t

0
h(s)ds. (7.1.13)

By using the usual variation of constants formula, we deduce that (7.1.13) is equiv-
alent to

x(t) = eBt
ϕ(0)+

∫ t

0
eB(t−s)h(s)ds.

The proof is completed. ut

Recall that A0 : D(A0)⊂ D(A)→ D(A), the part of A in D(A), is defined by

A0

(
0Rn

ϕ

)
= A

(
0Rn

ϕ

)
, ∀
(

0Rn

ϕ

)
∈ D(A0) ,

where

D(A0) =

{(
0Rn

ϕ

)
∈ D(A) : A

(
0Rn

ϕ

)
∈ D(A)

}
.

From the definition of A in (7.1.3) and the fact that D(A) = {0Rn}×C , we know
that A0 is the linear operator defined by

A0

(
0Rn

ϕ

)
=

(
0Rn

ϕ ′

)
, ∀
(

0Rn

ϕ

)
∈ D(A0) ,

where

D(A0) =

{(
0Rn

ϕ

)
∈ {0Rn}×C1 ([−r,0] ,Rn) :−ϕ

′(0)+Bϕ(0) = 0
}
.

Now by using the fact that A is a Hille-Yosida operator, we deduce that A0 is the
infinitesimal generator of a strongly continuous semigroup

{
TA0(t)

}
t≥0 and

v(t) = TA0(t)
(

0Rn

ϕ

)
is the integrated solution of

dv(t)
dt

= Av(t), t ≥ 0; v(0) =
(

0Rn

ϕ

)
∈ D(A).

Using Lemma 7.1.3 with h = 0, we obtain the following result.

Lemma 7.1.4. The linear operator A0 is the infinitesimal generator of a strongly
continuous semigroup

{
TA0(t)

}
t≥0 of bounded linear operators on D(A) which is

defined by

TA0(t)
(

0Rn

ϕ

)
=

(
0Rn

T̂A0(t)(ϕ)

)
, (7.1.14)

where
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T̂A0(t)(ϕ)(θ) =
{

eB(t+θ)ϕ (0) , t +θ ≥ 0,
ϕ(t +θ), t +θ ≤ 0.

Since A is a Hille-Yosida operator, we know that A generates an integrated semi-

group {SA(t)}t≥0 on X , and t→ SA(t)
(

x
ϕ

)
is an integrated solution of

dv(t)
dt

= Av(t)+
(

x
ϕ

)
, t ≥ 0; v(0) = 0.

Since SA (t) is linear we have

SA(t)
(

x
ϕ

)
= SA(t)

(
0Rn

ϕ

)
+SA(t)

(
x
0

)
,

where

SA(t)
(

0Rn

ϕ

)
=
∫ t

0
TA0(l)

(
0Rn

ϕ

)
dl

and SA(t)
(

x
0

)
is an integrated solution of

dv(t)
dt

= Av(t)+
(

x
0

)
, t ≥ 0; v(0) = 0.

Therefore, by using Lemma 7.1.3 with h(t) = x and the above results, we obtain the
following result.

Lemma 7.1.5. The linear operator A generates an integrated semigroup {SA(t)}t≥0
on X. Moreover,

SA(t)
(

x
ϕ

)
=

(
0Rn

ŜA(t)(x,ϕ)

)
,

(
x
ϕ

)
∈ X ,

where ŜA(t) is the linear operator defined by

ŜA(t)(x,ϕ) = ŜA(t)(0,ϕ)+ ŜA(t)(x,0)

with

ŜA(t)(0,ϕ)(θ) =
∫ t

0
T̂A0(s)(ϕ)(θ)ds =

∫ t

−θ

eB(s+θ)
ϕ(0)ds+

∫ −θ

0
ϕ(s+θ)ds

and

ŜA(t)(x,0)(θ) =
{ ∫ t+θ

0 eBsxds, t +θ ≥ 0,
0, t +θ ≤ 0.

Now we focus on the spectra of A and A+L. Since A is a Hille-Yosida operator,
so is A+L. Moreover, (A+L)0 : D((A+L)0)⊂ D(A)→ D(A), the part of A+L in
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D(A), is a linear operator defined by

(A+L)0

(
0
ϕ

)
=

(
0
ϕ ′

)
, ∀
(

0
ϕ

)
∈ D((A+L)0) ,

where

D((A+L)0) =

{(
0
ϕ

)
∈ {0Rn}×C1 ([−r,0] ,Rn) : ϕ

′(0) = Bϕ(0)+ L̂(ϕ)
}
.

From Proposition 4.2.14 and Theorem 7.1.1, we know that

σ (B) = σ (A) = σ (A0) and σ (A+L) = σ ((A+L)0) .

From (7.1.14), we have

T̂A0(t)(ϕ)(θ) = eB(r+θ)eB(t−r)
ϕ (0) , t ≥ r,θ ∈ [−r,0] .

Therefore,
T̂A0(t) = L2L1,

where L1 : C → Rn and L2 : Rn→ C are linear operators defined by

L1ϕ = eB(t−r)
ϕ (0) , ϕ ∈ C , t ≥ r

and
L2 (x)(θ) = eB(r+θ)x, x ∈ Rn,θ ∈ [−r,0] ,

respectively. Clearly L1 is compact. Hence, we have

ω0,ess(A0) =−∞ and σ (B) = σ (A) = σP (A0) = σ (A0) .

Therefore,
ω0(A0) = sup

λ∈σP(A0)

Re(λ ) .

In the following lemma, we specify the point spectrum of (A+L)0 .

Lemma 7.1.6. The point spectrum of (A+L)0 is the set

σP ((A+L)0) = {λ ∈ C : det(∆ (λ )) = 0} ,

where

∆ (λ ) = λ I−B− L̂
(

eλ .I
)
= λ I−B−

∫ 0

−r
eλθ dη (θ) . (7.1.15)

Proof. Let λ ∈ C be given. Then λ ∈ σP ((A+L)0) if and only if there exists(
0Rn

ϕ

)
∈ D((A+L)0)\{0} such that
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(A+L)0

(
0Rn

ϕ

)
= λ

(
0Rn

ϕ

)
.

That is, λ ∈ σP ((A+L)0) if and only if there exists ϕ ∈C1 ([−r,0] ,Cn)\{0} such
that

ϕ
′ (θ) = λϕ (θ) , ∀θ ∈ [−r,0] (7.1.16)

and
ϕ
′(0) = Bϕ(0)+ L̂(ϕ) . (7.1.17)

Equation (7.1.16) is equivalent to

ϕ (θ) = eλθ
ϕ (0) , ∀θ ∈ [−r,0] . (7.1.18)

Therefore,
ϕ 6= 0⇔ ϕ (0) 6= 0.

By combining (7.1.17) and (7.1.18), we obtain

λϕ (0) = Bϕ(0)+ L̂
(

eλ .
ϕ(0)

)
.

The proof is completed. ut

From the above discussion, we have the following proposition.

Proposition 7.1.7. The linear operator A+L : D(A)→ X is a Hille-Yosida opera-
tor and (A+L)0 is the infinitesimal generator of a strongly continuous semigroup{

T(A+L)0
(t)
}

t≥0
of bounded linear operators on D(A). Moreover,

T(A+L)0
(t)
(

0Rn

ϕ

)
=

(
0Rn

T̂(A+L)0
(t)(ϕ)

)
with

T̂(A+L)0
(t)(ϕ)(θ) = x(t +θ), ∀t ≥ 0,∀θ ∈ [−r,0] ,

where

x(t) =
{

ϕ(t), ∀t ∈ [−r,0] ,
eBtϕ(0)+

∫ t
0 eB(t−s)L̂(xs)ds, ∀t ≥ 0.

Furthermore,

ω0,ess((A+L)0) =−∞, ω0 ((A+L)0) = max
λ∈σP((A+L)0)

Re(λ ) ,

σ (A+L) = σ ((A+L)0) = σP ((A+L)0) = {λ ∈ C : det(∆ (λ )) = 0} ,

and each λ0 ∈ σ ((A+L)0) = σ (A+L) is a pole of (λ I− (A+L))−1 . For each
γ ∈ R, the subset {λ ∈ σ ((A+L)0) : Re(λ )≥ γ} is either empty or finite.

Proof. The first part of the result follows immediately from Lemma 7.1.3 applied
with h(t) = L̂(xt) . So it remains to prove that ω0,ess((A+L)0) =−∞. But this prop-
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erty follows from the fact that T(A+L)0
(t) is compact for each t large enough. This

is an immediate consequence of Theorem 4.7.3 (which applies because LTA0(t) is
compact for each t > 0, and TA0(t) is compact for t ≥ r). ut

7.1.2 Projectors on the eigenspaces

Let λ0 ∈ σ (A+L) be given. From the above discussion we already knew that λ0

is a pole of (λ I− (A+L))−1of finite order k0 ≥ 1. This means that λ0 is isolated in
σ (A+L) and the Laurent’s expansion of the resolvent around λ0 takes the following
form

(λ I− (A+L))−1 =
+∞

∑
n=−k0

(λ −λ0)
n Bλ0

n . (7.1.19)

The bounded linear operator Bλ0
−1 is the projector on the generalized eigenspace of

A+L associated to λ0. The goal of this subsection is to provide a method to compute
Bλ0
−1. Note that

(λ −λ0)
k0 (λ I− (A+L))−1 =

+∞

∑
m=0

(λ −λ0)
m Bλ0

m−k0
.

So we have the following approximation formula

Bλ0
−1 = lim

λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

(
(λ −λ0)

k0 (λ I− (A+L))−1
)
. (7.1.20)

In order to give an explicit formula for Bλ0
−1, we need the following results.

Lemma 7.1.8. For each λ ∈ ρ (A+L) , we have the following explicit formula for
the resolvent of A+L

(λ I− (A+L))−1
(

α

ϕ

)
=

(
0Rn

ψ

)
⇔

ψ (θ) =
∫ 0

θ

eλ (θ−s)
ϕ (s)ds+ eλθ

∆ (λ )−1
[

α +ϕ (0)+ L̂
(∫ 0

.
eλ (.−s)

ϕ (s)ds
)]

.

Proof. We consider the linear operator Aγ : D(A)⊂ X → X defined by

Aγ

(
0Rn

ϕ

)
=

(
−ϕ ′(0)+(B− γI)ϕ(0)

ϕ ′

)
, ∀
(

0Rn

ϕ

)
∈ D(A),

and the bounded linear operator Lγ ∈L (D(A),X) defined by
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Lγ

(
0Rn

ϕ

)
=

(
L̂(ϕ)+ γϕ(0)

0C

)
.

Then we have
A+L = Aγ +Lγ .

Moreover,

ω0 (B− γI) = max
λ∈σ(B−γI)

Re(λ ) = max
λ∈σ(B)

Re(λ )− γ = ω0 (B)− γ.

Hence, by Theorem 7.1.1, for λ ∈ C with Re(λ )> ω0 (B)− γ we have λ ∈ ρ
(
Aγ

)
and (

λ I−Aγ

)−1
(

α

ϕ

)
=

(
0Rn

ψ

)
⇔

ψ(θ) = eλθ (λ I− (B− γI))−1 [ϕ (0)+α]+
∫ 0

θ

eλ (θ−s)
ϕ (s)ds. (7.1.21)

Therefore, for each λ ∈ C with Re(λ ) > ω0 (B)− γ, we know that λ I−
(
Aγ +Lγ

)
is invertible if and only if I−Lγ

(
λ I−Aγ

)−1 is invertible, and

(
λ I−

(
Aγ +Lγ

))−1
=
(
λ I−Aγ

)−1
[
I−Lγ

(
λ I−Aγ

)−1
]−1

. (7.1.22)

We also know that
[
I−Lγ

(
λ I−Aγ

)−1
](

α

ϕ

)
=

(
α̂

ϕ̂

)
is equivalent to ϕ = ϕ̂ and

α−
[
L̂
(

eλ . (λ I− (B− γI))−1
α

)
+ γ (λ I− (B− γI))−1

α

]
= α̂ +

[
L̂
(

eλ . (λ I− (B− γI))−1
ϕ̂ (0)+

∫ 0
. eλ (.−s)ϕ̂ (s)ds

)
+γ (λ I− (B− γI))−1

ϕ̂ (0)

]
.

Because

α− L̂
(

eλ . (λ I− (B− γI))−1
α

)
− γ (λ I− (B− γI))−1

α

=
[
λ I− (B− γI)− L̂

(
eλ .I
)
− γI

]
(λ I− (B− γI))−1

α

=
[
λ I−B− L̂

(
eλ .I
)]

(λ I− (B− γI))−1
α

= ∆ (λ )(λ I− (B− γI))−1
α,

we know that I−Lγ

(
λ I−Aγ

)−1 is invertible if and only if ∆ (λ )= λ I−B− L̂
(
eλ .I
)

is invertible. Moreover,[
I−Lγ

(
λ I−Aγ

)−1
]−1
(

α̂

ϕ̂

)
=

(
α

ϕ

)
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is equivalent to ϕ = ϕ̂ and

α =(λ I− (B− γI))∆ (λ )−1

[
α̂ + L̂

(
eλ . (λ I− (B− γI))−1

ϕ̂ (0)+
∫ 0
. eλ (.−s)ϕ̂ (s)ds

)
+γ (λ I− (B− γI))−1

ϕ̂ (0)

]
.

(7.1.23)
Recalling that A+L = Aγ +Lγ and using (7.1.21), (7.1.22) and (7.1.23), we obtain
for each γ > 0 large enough that

(λ I− (A+L))−1
(

α

ϕ

)
=

(
0Rn

ψ

)
⇔
ψ (θ) = eλθ (λ I− (B− γI))−1

ϕ (0)+
∫ 0

θ
eλ (θ−s)ϕ (s)ds

+eλθ ∆ (λ )−1

[
α + L̂

(
eλ . (λ I− (B− γI))−1

ϕ (0)+
∫ 0
. eλ (.−s)ϕ (s)ds

)
+γ (λ I− (B− γI))−1

ϕ (0)

]
.

Now by taking the limit when γ →+∞, the result follows. ut

The map λ → ∆ (λ ) from C into Mn (C) is differentiable and

∆
(1) (λ ) :=

d∆ (λ )

dλ
= I−

∫ 0

−r
dη (θ)θeλθ .

So the map λ → ∆ (λ ) is analytic and

∆
(n) (λ ) :=

dn∆ (λ )

dλ n =−
∫ 0

−r
dη (θ)θ

neλθ , n≥ 2.

We know that the inverse function

ψ : L→ L−1

of a linear operator L ∈ Isom(X) is differentiable, and

Dψ (L) L̂ =−L−1 ◦ L̂◦L−1.

Applying this result, we deduce that λ → ∆ (λ )−1 from ρ (A+L) into Mn (C) is dif-
ferentiable, and d

dλ
∆ (λ )−1 = −∆ (λ )−1 ( d

dλ
∆ (λ )

)
∆ (λ )−1 . Therefore, we obtain

that the map λ → ∆ (λ )−1 is analytic and has a Laurent’s expansion around λ0 :

∆ (λ )−1 =
+∞

∑
n=−k̂0

(λ −λ0)
n

∆n.

From the following lemma we know that k̂0 = k0.

Lemma 7.1.9. Let λ0 ∈σ (A+L) be given. Then the following statements are equiv-
alent
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(a) λ0 is a pole of order k0 of (λ I− (A+L))−1 ;
(b) λ0 is a pole of order k0 of ∆ (λ )−1 ;
(c) limλ→λ0 (λ −λ0)

k0 ∆ (λ )−1 6= 0 and limλ→λ0 (λ −λ0)
k0+1

∆ (λ )−1 = 0.

Proof. The proof follows from the explicit formula of the resolvent of A+L ob-
tained in Lemma 7.1.8. ut

Lemma 7.1.10. The matrices ∆−1, ...,∆−k0 satisfy

∆k0 (λ0)


∆−1
∆−2

...
∆−k0+1
∆−k0

=

 0
...
0



and (
∆−k0 ∆−k0+1 · · · ∆−2 ∆−1

)
∆k0 (λ0) =

(
0 · · · 0

)
,

where

∆k0 (λ0) =



∆ (λ0) ∆ (1) (λ0) ∆ (2) (λ0)/2! · · · ∆ (k0−1) (λ0)/(k0−1)!

0
. . .

. . .
. . .

...
... 0

. . .
. . . ∆ (2) (λ0)/2!

...
. . .

. . . ∆ (1) (λ0)
0 · · · · · · 0 ∆ (λ0)


.

Proof. We have

(λ −λ0)
k0 I = ∆ (λ )

(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)
=

(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)
∆ (λ ) .

Hence,

(λ −λ0)
k0 I =

(
+∞

∑
n=0

(λ −λ0)
n ∆ (n) (λ0)

n!

)(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)

=
+∞

∑
n=0

(λ −λ0)
n

n

∑
k=0

∆ (n−k) (λ0)

(n− k)!
∆k−k0

and

(λ −λ0)
k0 I =

+∞

∑
n=0

(λ −λ0)
n

n

∑
k=0

∆k−k0

∆ (n−k) (λ0)

(n− k)!
.

By the uniqueness of the Taylor’s expansion for analytic maps, we obtain for n ∈
{0, ...,k0−1} that



7.1 Retarded Functional Differential Equations 319

0 =
n

∑
k=0

∆k−k0

∆ (n−k) (λ0)

(n− k)!
=

n

∑
k=0

∆ (n−k) (λ0)

(n− k)!
∆k−k0 .

Therefore, the result follows. ut

Now we look for an explicit formula for the projector Bλ0
−1 on the generalized

eigenspace associated to λ0. Set

Ψ1 (λ )(ϕ)(θ) :=
∫ 0

θ

eλ (θ−s)
ϕ (s)ds

and

Ψ2 (λ )

((
α

ϕ

))
(θ) := eλθ

[
α +ϕ (0)+ L̂

(∫ 0

.
eλ (.−s)

ϕ (s)ds
)]

.

Then both maps are analytic and

(λ I− (A+L))−1
(

α

ϕ

)
=

 0Rn

Ψ1 (λ )(ϕ)(θ)+∆ (λ )−1
Ψ2 (λ )

(
α

ϕ

)
(θ)

 .

We observe that the only singularity in the last expression is ∆ (λ )−1 . Since Ψ1 and
Ψ2 are analytic, we have for j = 1,2 that

Ψj (λ ) =
+∞

∑
n=0

(λ −λ0)
n

n!
L j

n(λ0),

where |λ −λ0| is small enough and L j
n(.) := dnΨj(.)

dλ n ,∀n≥ 0,∀ j = 1,2. Hence,

lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

(
(λ −λ0)

k0 Ψ1 (λ )
)

= lim
λ→λ0

1
(k0−1)!

+∞

∑
n=0

(n+ k0)!
(n+1)!

(λ −λ0)
n+1

n!
L1

n(λ0)

= 0

and

lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
(λ −λ0)

k0 ∆ (λ )−1
Ψ2 (λ )

]
= lim

λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[(
+∞

∑
n=−k0

(λ −λ0)
n+k0 ∆n

)(
+∞

∑
n=0

(λ −λ0)
n

n!
L2

n(λ0)

)]

= lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)(
+∞

∑
n=0

(λ −λ0)
n

n!
L2

n(λ0)

)]
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= lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
+∞

∑
n=0

n

∑
j=0

(λ −λ0)
n− j

∆n− j−k0

(λ −λ0)
j

j!
L2

j(λ0)

]

= lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
+∞

∑
n=0

(λ −λ0)
n

n

∑
j=0

∆n− j−k0

1
j!

L2
j(λ0)

]

=
k0−1

∑
j=0

1
j!

∆−1− jL2
j(λ0).

From the above results we obtain the explicit formula for the projector Bλ0
−1 on the

generalized eigenspace associated to λ0, which is given in the following proposition.

Proposition 7.1.11. Each λ0 ∈ σ (A+L) is a pole of (λ I− (A+L))−1of order k0 ≥
1. Moreover, k0 is the only integer so that there exists ∆−k0 ∈Mn (R) with ∆−k0 6= 0,
such that

∆−k0 = lim
λ→λ0

(λ −λ0)
k0 ∆ (λ )−1 .

Furthermore, the projector Bλ0
−1 on the generalized eigenspace of A+L associated

to λ0 is defined by the following formula

Bλ0
−1

(
α

ϕ

)
=

 0Rn

∑
k0−1
j=0

1
j! ∆−1− jL2

j(λ0)

(
α

ϕ

) , (7.1.24)

where

∆− j = lim
λ→λ0

1
(k0− j)!

dk0− j

dλ k0− j

(
(λ −λ0)

k0 ∆ (λ )−1
)
, j = 1, ...,k0,

L2
0 (λ )

(
α

ϕ

)
(θ) = eλθ

[
α +ϕ (0)+ L̂

(∫ 0

.
eλ (.−s)

ϕ (s)ds
)]

,

and

L2
j (λ )

(
α

ϕ

)
(θ) =

d j

dλ j

[
L2

0(λ )

(
α

ϕ

)
(θ)

]
=

j

∑
k=0

Ck
j θ

keλθ d j−k

dλ j−k

[
α +ϕ (0)+ L̂

(∫ 0

.
eλ (.−s)

ϕ (s)ds
)]

, j ≥ 1,

here

di

dλ i

[
α +ϕ (0)+ L̂

(∫ 0

.
eλ (.−s)

ϕ (s)ds
)]

= L̂
(∫ 0

.
(.− s)i eλ (.−s)

ϕ (s)ds
)
, i≥ 1

In studying Hopf bifurcation it usually requires to consider the projector for a
simple eigenvalue. Now we consider the case when λ0 is a simple eigenvalue of
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A+L. That is, λ0 is pole of order 1 of the resolvent of A+L and the dimension of
the eigenspace of A+L associated to the eigenvalue λ0 is 1.

We know that λ0 is a pole of order 1 of the resolvent of A+L if and only if there
exists ∆−1 6= 0, such that

∆−1 = lim
λ→λ0

(λ −λ0)∆ (λ )−1 .

From Lemma 7.1.10, we have ∆−1∆ (λ0) = ∆ (λ0)∆−1 = 0. Hence

∆−1

[
B+ L̂

(
eλ0.I

)]
=
[
B+ L̂

(
eλ0.I

)]
∆−1 = λ0∆−1.

From the proof of Lemma 7.1.6, it can be checked that λ0 is simple if and only if
dim [N (∆ (λ0))] = 1. In that case, there exist Vλ0 ,Wλ0 ∈ C

n \{0} such that

W T
λ0

∆ (λ0) = 0 and ∆ (λ0)Vλ0 = 0. (7.1.25)

Hence, by Lemma 7.1.10 (replacing Vλ0W T
λ0

by δVλ0W T
λ0

for some δ 6= 0 if neces-
sary), we can always assume that

∆−1 =Vλ0W
T
λ0
.

Then we can see that Bλ0
−1Bλ0

−1 = Bλ0
−1 if and only if

∆−1 = ∆−1

[
I + L̂

(∫ 0

.
eλ0.ds

)]
∆−1.

Therefore, we obtain the following corollary.

Corollary 7.1.12. λ0 ∈ σ (A+L) is a simple eigenvalue of A+L if and only if

lim
λ→λ0

(λ −λ0)
2

∆ (λ )−1 = 0

and
dim [N (∆ (λ0))] = 1.

Moreover, the projector on the eigenspace associated to λ0 is

Bλ0
−1

(
α

ϕ

)
=

[
0Rn

eλ0θ ∆−1

[
α +ϕ (0)+ L̂

(∫ 0
. eλ0(.−s)ϕ (s)ds

)]]
,

where
∆−1 =Vλ0W

T
λ0

in which Vλ0 ,Wλ0 ∈ C
n \{0} are two vectors satisfying (7.1.25) and
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∆−1 = ∆−1

[
I + L̂

(∫ 0

.
eλ0.ds

)]
∆−1.

7.1.3 Hopf Bifurcation

Applying Theorem 6.1.21, a local center manifold theorem can be established
for the RFDE (7.1.1). See Hale and Verduyn [175] and Guo and Wu [159]. Here we
apply Theorem 6.2.7 to establish a Hopf bifurcation theorem for the RFDE.

Consider the following functional differential equation with a parameter{ dx(t)
dt

= Bx(t)+ f (µ,xt), ∀t ≥ 0,

x0 = ϕ ∈ C ,
(7.1.26)

where µ ∈ R,xt ∈ C satisfies xt (θ) = x(t +θ) ,B ∈Mn (R) is an n×n real matrix,
and f : R×C → Rn is a Ck-map with k ≥ 4.

By setting v(t)=
(

0
xt

)
we can rewrite equation (7.1.26) as the following abstract

non-densely defined Cauchy problem on the Banach space X = Rn×C :

dv(t)
dt

= Av(t)+F(µ,v(t)), t ≥ 0, v(0) =
(

0Rn

ϕ

)
∈ D(A),

where A : D(A)⊂ X → X is the linear operator defined by

A
(

0Rn

ϕ

)
=

(
−ϕ ′(0)+Bϕ(0)

ϕ ′

)
with

D(A) = {0Rn}×C1 ([−r,0] ,Rn)

and F : R×D(A)→ X is defined by

F
(

µ,

(
0Rn

ϕ

))
=

(
f (µ,ϕ)

0C

)
.

We assume that f (µ,0) = 0,∀µ ∈ R, and set

L
(

µ,

(
0Rn

ψ

))
= ∂xF (µ,0)

(
0Rn

ψ

)
=

(
∂ϕ f (µ,0)ψ

0C

)
=:
(

L̂(µ,ψ)
0C

)
.

By Proposition 7.1.7, we know that the linear operator A+L(µ, .) : D(A)→ X is a
Hille-Yosida operator. Moreover, ω0,ess((A+L(µ, .))0) =−∞ and

σ (A+L(µ, .)) = σ ((A+L(µ, .))0)

= σP ((A+L(µ, .))0)
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= {λ ∈ C : det(∆ (µ,λ )) = 0} ,

where
∆ (µ,λ ) := λ I−B− L̂

(
µ,eλ .I

)
.

Hence, A+L satisfies Assumptions 3.4.1, 3.5.2 and 6.2.1(c). In order to apply the
Hopf Bifurcation Theorem 6.2.7 to system (7.1.26), we need to make the following
assumption.

Assumption 7.1.13. Let ε > 0 and f ∈ Ck ((−ε,ε)×C ;Rn) for some k ≥ 4. As-
sume that there exists a continuously differentiable map λ : (−ε,ε)→ C such that
for each µ ∈ (−ε,ε) ,

det(∆ (µ,λ (µ))) = 0

and λ (µ) is a simple eigenvalue of (A+∂xF (µ,0))0 , which is equivalent to

lim
λ→λ (µ)

det(∆ (µ,λ ))

(λ −λ (µ))
6= 0

and
dim(N (∆(µ,λ (µ)))) = 1.

Moreover, assume that

Im(λ (0))> 0, Re(λ (0)) = 0,
dRe(λ (0))

dµ
6= 0,

and
{λ ∈Ω : det(∆ (λ ,0)) = 0}∩ iR=

{
λ (0) ,λ (0)

}
. (7.1.27)

From Theorem 6.2.7 we can derive the following Hopf bifurcation theorem for
functional differential equations.

Theorem 7.1.14. Let Assumption 7.1.13 be satisfied. Then there exist a constant
ε∗ > 0 and three Ck−1-maps, ε → µ(ε) from (0,ε∗) into R, ε → ϕε from (0,ε∗)
into C , and ε→ T (ε) from (0,ε∗) into R, such that for each ε ∈ (0,ε∗) there exists
a T (ε)-periodic function xε ∈ Ck (R,Rn), which is a solution of (7.1.26) for the
parameter value µ = µ(ε) and the initial value ϕ = ϕε . Moreover, we have the
following properties

(i) There exist a neighborhood N of 0 inRn and an open interval I inR containing
0 such that for µ̂ ∈ I and any periodic solution x̂(t) in N with minimal period T̂
close to 2π

ω
of (7.1.26) for the parameter value µ̂, there exists ε ∈ (0,ε∗) such

that x̂(t) = xε(t +θ) (for some θ ∈ [0,γ (ε))), µ(ε) = µ̂, and T (ε) = T̂ .
(ii) The map ε → µ(ε) is a Ck−1-function and

µ(ε) =
[ k−2

2 ]

∑
n=1

µ2nε
2n +O(εk−1),∀ε ∈ (0,ε∗) ,
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where [ k−2
2 ] is the integer part of k−2

2 .

(iii) The period T (ε) of t→ uε(t) is a Ck−1-function and

T (ε) =
2π

ω
[1+

[ k−2
2 ]

∑
n=1

τ2nε
2n]+O(εk−1),∀ε ∈ (0,ε∗) ,

where ω is the imaginary part of λ (0) defined in Assumption 7.1.13;
(iv) The Floquet exponent β (ε) is a Ck−1 function satisfying β (ε)→ 0 as ε → 0

and having the Taylor expansion

β (ε) =
[ k−2

2 ]

∑
n=1

β2nε
2n +O(εk−1), ∀ε ∈ (0,ε∗) .

The periodic solution xε(t) is orbitally asymptotically stable with asymptotic
phase if β (ε)< 0 and unstable if β (ε)> 0.

Remark 7.1.15. In Assumption 7.1.13, if we only assume that k ≥ 2 and replace
condition (7.1.27) by

{λ ∈ C : det(∆ (0,λ )) = 0}∩ iωZ= {iω,−iω}

with ω = Im(λ (0)). Then by using Remark 6.2.8, we deduce that assertion (i) of
Theorem 7.1.14 holds. So we derive a well known Hopf bifurcation theorem for
delay differential equations (see Hale and Verduyn Lunel [175, Theorem 1.1, p. 332
]).

By using the results in Section 6.3, we can also develop a normal form theory for
the RFDEs. See Faria and Magalhães [136, 137] and Guo and Wu [159].

7.2 Neutral Functional Differential Equations

Consider the linear neutral functional differential equation (NFDE) in Lp spaces{ d
dt
(x(t)−L1(xt)) = B(x(t)−L1(xt))+L2(xt), t ≥ 0,

x(0) = x̂ ∈ Rn, x0 = ϕ ∈ Lp ((−r,0),Rn) ,
(7.2.1)

with xt ∈ Lp ((−r,0),Rn) satisfing xt (θ) = x(t +θ) for almost every θ ∈ (−r,0).
Here p∈ [1,+∞), r ∈ [0,+∞), B∈Mn (R) is an n×n real matrix, while L j, j = 1,2,
are bounded linear operators from Lp ((−r,0),Rn) into Rn given by

L j (ϕ) =
∫ 0

−r
η j (θ)ϕ (θ)dθ ,

here η j ∈ Lq((−r,0),Mn (R)) with 1
p +

1
q = 1, j = 1,2.
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7.2.1 Spectral Theory

Set u(t) = xt for t ≥ 0 and we get

d
dt
[u(t,0)−L1(u(t))] = B[u(t,0)−L1(u(t))]+L2(u(t)), t ≥ 0.

Let y(t) = u(t,0)−L1(u(t)). We obtain that

dy(t)
dt

= By(t)+L2(u(t)), t ≥ 0

and
u(t,0) = L1(u(t))+ y(t).

Therefore, u satisfies a PDE

∂u
∂ t
− ∂u

∂θ
= 0, ∀θ ∈ (−r,0),

u(t,0) = L1(u(t))+ y(t),
dy(t)

dt
= By(t)+L2(u(t)),

y(0) = y0 = x̂−L1(ϕ) ∈ Rn,
u(0, ·) = ϕ ∈ Lp ((−r,0),Rn) .

(7.2.2)

Let X = Rn×Lp ((−r,0),Rn)×Rn endowed with the product norm∥∥∥∥∥∥
z1

ϕ

z2

∥∥∥∥∥∥= |z1|Rn +‖ϕ‖Lp((−r,0),Rn)+ |z2|Rn

and X0 = {0Rn} × Lp ((−r,0),Rn)×Rn. Set v(t) =

 0Rn

u(t)
y(t)

 . We can consider

(7.2.2) as an abstract non-densely defined Cauchy problem

dv(t)
dt

= Av(t)+Lv(t)+ L̂v(t), t ≥ 0; v(0) =

0Rn

ϕ

y0

 ∈ D(A), (7.2.3)

where A : D(A)⊂ X → X is a linear operator defined by

A

0Rn

ϕ

y

=

−ϕ(0)
ϕ ′

By


with

D(A) := {0Rn}×W 1,p ((−r,0),Rn)×Rn,
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L, L̂ : X0→ X are defined by

L

 0Rn

ϕ

y

=

 y
0
0

 and L̂

0Rn

ϕ

y

=

L1(ϕ)
0

L2(ϕ)

 ,

respectively. Note that D(A) = X0.

Lemma 7.2.1. The resolvent sets of A and A+L satisfy

ρ (A) = ρ (A+L) = ρ (B) .

We have the following explicit formulas for the resolvents of A and A+L :

(λ I−A)−1

α

ϕ

y

=

0Rn

ϕ̂

ŷ


⇔

 ϕ̂ (θ) = eλθ
α +

∫ 0

θ

eλ (θ−l)
ϕ (l)dl, ∀θ ∈ (−r,0)

ŷ = (λ I−B)−1y

(7.2.4)

and

(λ I− (A+L))−1

α

ϕ

y

=

0Rn

ϕ̂

ŷ


⇔

 ϕ̂ (θ) = eλθ [(λ I−B)−1y+α]+
∫ 0

θ

eλ (θ−l)
ϕ (l)dl, ∀θ ∈ (−r,0)

ŷ = (λ I−B)−1y.

(7.2.5)

Proof. We only prove the result for A+ L, the proof for A is similar. To prove
ρ (A+L) ⊂ ρ (B) , we only need to show that σ (B) ⊂ σ (A+L) . Let λ ∈ σ (B).
Then, there exists ŷ ∈ Cn \{0} such that Bŷ = λ ŷ. Consider ϕ̂(θ) = eλθ ŷ, we have

(A+L)

0Rn

ϕ̂

ŷ

=

−ϕ̂(0)+ ŷ
ϕ̂ ′

Bŷ

=

0Rn

λϕ̂

λ ŷ

 .

Thus λ ∈ σ (A+L) . This implies that σ (B) ⊂ σ (A+L) . On the other hand, if

λ ∈ ρ (B) , for

α

ϕ

y

 ∈ X we must have

0Rn

ϕ̂

ŷ

 ∈ D(A) such that
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(λ I− (A+L))

0Rn

ϕ̂

ŷ

=

α

ϕ

y


⇔

 ϕ̂ (0)− ŷ = α

λϕ̂− ϕ̂ ′ = ϕ

λ ŷ−Bŷ = y

⇔

 ϕ̂

(
θ̂

)
= eλ θ̂ [(λ I−B)−1y+α]+

∫ 0

θ̂

eλ (θ̂−l)
ϕ (l)dl, ∀θ̂ ∈ (−r,0)

ŷ = (λ I−B)−1y.

Therefore, we obtain that λ ∈ ρ(A+L) and the formula in (7.2.5) holds. ut

Since B is a matrix on Rn, we have ω0 (B) := max
λ∈σ(B)

Re(λ ) and the following

lemma.

Lemma 7.2.2. For each ωA > ω0 (B) , one has (ωA,+∞) ⊂ ρ(A) and there exists
MA ≥ 1 such that∥∥(λ I−A)−n∥∥

L (X0)
≤ MA

(λ −ωA)
n , ∀n≥ 1, ∀λ > ωA. (7.2.6)

Moreover,
lim

λ→+∞

(λ I−A)−1 x = 0,∀x ∈ X .

Proof. Let ωA > ω0 (B) . From Lemma 7.2.1 we obtain that (ωA,+∞) ⊂ ρ(B) =
ρ(A). We can define the equivalent norm on Rn as follows

|y| := sup
t≥0

e−ωAt ∥∥eBty
∥∥ , y ∈ Rn.

Then we have ∣∣eBty
∣∣≤ eωAt |y| ,∀t ≥ 0

and
‖y‖ ≤ |y| ≤MA ‖y‖ ,

where
MA := sup

t≥0

∥∥∥e(B−ωAI)t
∥∥∥

Mn(R)
.

Moreover, for each λ > ωA, we have∣∣∣(λ I−B)−1 y
∣∣∣= ∣∣∣∣∫ +∞

0
e−λ seBsyds

∣∣∣∣≤ |y|
λ −ωA

.

We define an equivalent norm |.| on X by∣∣∣∣∣∣
α

ϕ

y

∣∣∣∣∣∣= |α|+‖ϕ‖ωA
+ |y| ,
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where

‖ϕ‖
ωA

:=
∣∣e−ωA·ϕ (·)

∣∣
Lp =

(∫ 0

−r

∣∣∣e−ωAθ
ϕ (θ)

∣∣∣p dθ

)1/p

.

Using (7.2.4) and the above results, we obtain for

 0
ϕ

y

 ∈ X0 that

∣∣∣∣∣∣(λ I−A)−1

 0
ϕ

y

∣∣∣∣∣∣ ≤
∣∣∣∣e−ωA·

∫ 0

·
eλ (·−l)

ϕ (l)dl
∣∣∣∣
Lp
+
∣∣∣(λ I−B)−1 y

∣∣∣
≤
∣∣∣e(λ−ωA)·

∣∣∣
L1

∣∣e−ωA·ϕ (·)
∣∣
Lp +

1
λ −ωA

|y|

≤ 1
λ −ωA

[
‖ϕ‖

ωA
+ |y|

]
.

Therefore, (7.2.6) holds. The last part of the proof is trivial. ut

As an immediate consequence of the above lemma and by applying Proposition
3.4.3, we obtain the following lemma.

Lemma 7.2.3. A0, the part of A in X0, is the infinitesimal generator of a strongly
continuous semigroup

{
TA0(t)

}
t≥0 of bounded linear operators on X0, which is de-

fined by

TA0(t)

 0
ϕ

y

=

 0
T̂A0(t)ϕ

eBty

 , (7.2.7)

where

T̂A0(t)(ϕ)(θ) =
{

ϕ (t +θ) , if t +θ ≤ 0,
0, if t +θ > 0.

Moreover, A generates an integrated semigroup {SA(t)}t≥0 on X, which is defined
by

SA(t)

α

ϕ

y

=

 0
α1[−t,0](.)+

∫ t
0 T̂A0(l)ϕdl∫ t

0 eBlydl

 .

Set
X1 = Rn×{0Lp}×{0Rn} .

Then we have
X = X1⊕X0.

By using the same argument as in the proof of Theorem 3.8.6 we obtain the follow-
ing result.

Lemma 7.2.4. For each τ > 0, each h1 ∈Lp ((0,τ) ,X1) and each h2 ∈L1 ((0,τ) ,X0) ,
there exists a unique integrated solution of the Cauchy problem
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dv(t)
dt

= Av(t)+h(t), t ∈ [0,τ] , h = h1 +h2 and v(0) = v0 :=

 0Rn

ϕ

y0

 ,

which is given by

v(t) = TA0(t)v0 +
d
dt

(SA ∗h)(t),∀t ∈ [0,τ] .

Moreover, we have the following estimate

‖v(t)‖≤MAeωAt ‖v0‖+
(∫ t

0
‖h1(s)‖p ds

)1/p

+MA

∫ t

0
eωA(t−s) ‖h2(s)‖ds,∀t ∈ [0,τ] .

Furthermore, v(t) can be expressed as

v(t) =

 0
u(t)
y(t)


with

(
u(t)
y(t)

)
=

(
T̂A0(t)ϕ

eBty0

)
+

h1(t + .)1[−t,0](.)+
∫ t

0
T̂A0(t− s)h21(s)ds∫ t

0
eB(t−s)h22(s)ds

 ,

here h2(t) = (0,h21(t),h22(t)).

By using the same argument as in the proof of Theorem 3.8.6 and noting that if
h ∈C1([0,τ],X), we have∥∥∥∥ d

dt
(SA ∗h)(t)

∥∥∥∥= ∥∥∥∥ d
dt

(SA ∗Ph)(t)+
d
dt

(SA ∗ (I−P)h)(t)
∥∥∥∥

≤
(∫ t

0
‖Ph(s)‖p ds

)1/p

+MA

∫ t

0
eωA(t−s) ‖(I−P)h(s)‖ds, ∀t ∈ [0,τ] ,

where P : X → X is defined by

Px =

α

0
0

 , ∀x =

α

ϕ

y

 ∈ X .

Let

Γ (t,h) =
(∫ t

0
‖Ph(s)‖p ds

)1/p

+MA

∫ t

0
eωA(t−s) ‖(I−P)h(s)‖ds, ∀t ∈ [0,τ] .

We obtain that
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Γ (t,h) =
(∫ t

0 ‖Ph(s)‖p ds
)1/p

+MA
∫ t

0 eωA(t−s) ‖(I−P)h(s)‖ds

≤ t1/p sup
s∈[0,t]

‖Ph(s)‖+MA

(∫ t
0 eqωA(t−s)ds

)1/q (∫ t
0 ‖(I−P)h(s)‖p ds

)1/p

≤ t1/p ‖P‖ sup
s∈[0,t]

‖h(s)‖+MA

(∫ t
0 eqωA(t−s)ds

)1/q
t1/p ‖I−P‖ sup

s∈[0,t]
‖h(s)‖

≤ δ (t) sup
s∈[0,t]

‖h(s)‖ , ∀t ∈ [0,τ] ,

where 1/p + 1/q = 1 and δ (t) = t1/p ‖P‖+ t1/pMA

(∫ t
0 eqωA(t−s)ds

)1/q
‖I−P‖ ,

which satisfies limt→0+ δ (t) = 0. Hence, we get ‖L+ L̂‖L (X0,X)δ (t)< 1 for t small
enough. Therefore, by using the perturbation result Theorem 3.5.1 we know that
A + L + L̂ statisfies the same properties as A. In particular, (A + L + L̂)0 is the
infinitesimal generator of a strongly continuous semigroup {T(A+L+L̂)0

(t)}t≥0 of
bounded linear operators on X0.

From the definition of A+ L+ L̂ in (7.2.3) and the fact that D(A) := {0Rn}×
W 1,p ((−r,0),Rn)×Rn and D(A) = {0Rn}×Lp ((−r,0),Rn)×Rn, we know that

D
(
(A+L+ L̂)0

)
=


0Rn

ϕ

y

 ∈ {0Rn}×W 1,p ((−r,0),Rn)×Rn

∣∣∣∣∣∣−ϕ(0)+ y+L1(ϕ) = 0

 .

Lemma 7.2.5. The point spectrum of (A+L+ L̂)0 is the set

σP

((
A+L+ L̂

)
0

)
= {λ ∈ C : det(∆ (λ )) = 0} ,

where

∆ (λ ) = (λ I−B)
[
I−L1

(
eλ .I
)]
−L2

(
eλ .I
)

= (λ I−B)
[

I−
∫ 0

−r
eλθ

η1 (θ)dθ

]
−
∫ 0

−r
eλθ

η2 (θ)dθ .
(7.2.8)

Proof. Let λ ∈ C be given. Then λ ∈ σP((A+L+ L̂)0) if and only if there exist
ϕ ∈W 1,p ((−r,0) ,Cn)\{0} and y ∈ Cn such that

ϕ
′ (θ) = λϕ (θ) ,∀θ ∈ (−r,0),

By+L2(ϕ) = λy and ϕ(0) = y+L1(ϕ).

Hence, we obtain that

ϕ (θ) = eλθ
ϕ(0), λy−By−L2

(
eλ .

ϕ(0)
)
= 0
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and
y = ϕ(0)−L1(eλ .

ϕ(0)).

Therefore,

ϕ 6= 0⇔ ϕ (0) 6= 0 and (λ I−B)
[
ϕ(0)−L1(eλ .

ϕ(0))
]
−L2

(
eλ .

ϕ(0)
)
= 0.

The proof is complete. ut

From the above discussion and results, we obtain the following proposition.

Proposition 7.2.6. (A+L+ L̂)0 is the infinitesimal generator of a strongly continu-
ous semigroup {T(A+L+L̂)0

(t)}t≥0 of bounded linear operators on X0. Moreover,

ω0,ess

(
(A+L+ L̂)0

)
= ω0,ess(A0) =−∞,

ω0

((
A+L+ L̂

)
0

)
= max

λ∈σP((A+L+L̂)0)
Re(λ ) ,

σ

(
A+L+ L̂

)
= σ

((
A+L+ L̂

)
0

)
= σP

((
A+L+ L̂

)
0

)
= {λ ∈ C : det(∆ (λ )) = 0}

and each λ0 ∈ σ(A+L+ L̂) is a pole of (λ I− (A+L+ L̂))−1. For each γ ∈ R, the
subset {λ ∈ σ((A+L+ L̂)0) : Re(λ )≥ γ} is either empty or finite.

Proof. We only need to prove that ω0,ess((A+L+ L̂)0) = ω0,ess(A0) = −∞. From
(7.2.7) it is easy to know that for t > r, TA0(t) is compact. Hence ω0,ess(A0) =−∞.

Since for each t > 0, (L+ L̂)TA0(t) is compact, the result follows by applying The-
orem 4.7.3. ut

7.2.2 Projectors on the eigenspaces

Let λ0 ∈ σ(A+L+ L̂) be given. From Proposition 7.2.6 we already know that λ0
is a pole of (λ I−(A+L+ L̂))−1of finite order k0 ≥ 1. This means that λ0 is isolated
in σ(A+L+ L̂) and the Laurent’s expansion of the resolvent around λ0 takes the
following form (

λ I−
(

A+L+ L̂
))−1

=
+∞

∑
n=−k0

(λ −λ0)
n Bλ0

n . (7.2.9)

The bounded linear operator Bλ0
−1 is the projector on the generalized eigenspace of

A+L+ L̂ associated to λ0. Now we give a method to compute Bλ0
−1. Note that

(λ −λ0)
k0
(

λ I−
(

A+L+ L̂
))−1

=
+∞

∑
m=0

(λ −λ0)
m Bλ0

m−k0
.
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So we have the following approximation formula

Bλ0
−1 = lim

λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

(
(λ −λ0)

k0
(

λ I−
(

A+L+ L̂
))−1

)
.

In order to give an explicit formula for Bλ0
−1, we need the following results.

Lemma 7.2.7. For each λ ∈ ρ(A+L+ L̂), we have the following explicit formula
for the resolvent of A+L+ L̂,

(
λ I−

(
A+L+ L̂

))−1

α

ϕ

y

=

 0Rn

ϕ̂

ŷ


⇔


ϕ̂ (θ) = eλθ

Φλ +
∫ 0

θ

eλ (θ−l)
ϕ (l)dl

ŷ = Φλ −L1

(
eλ ·

Φλ

)
−L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
−α,

(7.2.10)

where Φλ is defined by

Φλ = ∆ (λ )−1

 (λ I−B)
(

L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α

)
+L2

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+ y

 (7.2.11)

with ∆ (λ ) defined in (7.2.8).

Proof. If λ ∈ ρ(A+L+ L̂) and γ > 0 is large enough such that Re(λ )>ω0 (B)−γ,
then we obtain that λ ∈ ρ (B− γI). Consider the linear operators Aγ : D(A)⊂X→X
and Lγ : X0→ X defined respectively by

Aγ

0Rn

ϕ

y

=

−ϕ(0)+ y
ϕ ′

(B− γI)y

 , ∀

 0Rn

ϕ

y

 ∈ D(A)

and

Lγ

 0Rn

ϕ

y

=

 L1(ϕ)
0

L2(ϕ)+ γy

 , ∀

 0Rn

ϕ

y

 ∈ X0.

From Lemma 7.2.1, we know that λ ∈ ρ
(
Aγ

)
and

(
λ I−Aγ

)−1

α

ϕ

y

=

0Rn

ϕ̂

ŷ


⇔

 ϕ̂ (θ) = eλθ [((λ + γ) I−B)−1 y+α]+
∫ 0

θ

eλ (θ−l)
ϕ (l)dl

ŷ = [(λ + γ) I−B]−1 y.

(7.2.12)
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Hence, we know that λ I−
(
Aγ +Lγ

)
is invertible if and only if I−Lγ

(
λ I−Aγ

)−1

is invertible, and(
λ I−

(
Aγ +Lγ

))−1
=
(
λ I−Aγ

)−1
[
I−Lγ

(
λ I−Aγ

)−1
]−1

. (7.2.13)

We also know that
[
I−Lγ

(
λ I−Aγ

)−1
] α̃

ϕ̃

ỹ

=

α

ϕ

y

 is equivalent to

ϕ̃ = ϕ,

α̃−L1(eλ ·
α̃)−L1

(
eλ ·yλ

)
= L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α (7.2.14)

and (note that ỹ− γ [(λ + γ)I−B]−1 ỹ = (λ I−B)yλ )

−L2(eλ ·
α̃)−L2(eλ ·yλ )+(λ I−B)yλ = L2

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+ y, (7.2.15)

where yλ = ((λ + γ) I−B)−1 ỹ. By computing (λ I−B)× (7.2.14) + (7.2.15), we
get

(λ I−B)
[
α̃−L1

(
eλ .

α̃

)]
−L2

(
eλ .

α̃

)
+(λ I−B)

[
yλ −L1

(
eλ .yλ

)]
−L2

(
eλ .yλ

)
= (λ I−B)

(
L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α

)
+L2

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+ y,

i.e.

∆ (λ )(α̃ + yλ )

= (λ I−B)
(

L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α

)
+L2

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+ y.

We know from (7.2.14) that

α̃−L1

(
eλ · (α̃ + yλ )

)
= L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α.

Therefore, I−Lγ

(
λ I−Aγ

)−1 is invertible if and only if ∆ (λ ) is invertible. More-
over, [

I−Lγ

(
λ I−Aγ

)−1
]−1

α

ϕ

y

=

 α̃

ϕ̃

ỹ


is equivalent to

ϕ̃ = ϕ, (7.2.16)
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α̃ = L1

(
eλ ·

Φλ

)
+L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α (7.2.17)

and
ỹ = ((λ + γ) I−B) [Φλ − α̃] , (7.2.18)

where Φλ is defined by (7.2.11). Note that A+L+ L̂ = Aγ +Lγ . By using (7.2.12),
(7.2.13) and (7.2.16)-(7.2.18), we obtain that

(
λ I−

(
A+L+ L̂

))−1

α

ϕ

y

=
(
λ I−

(
Aγ +Lγ

))−1

α

ϕ

y

=

0Rn

ϕ̂

ŷ


⇔


ϕ̂ (θ) = eλθ

Φλ +
∫ 0

θ

eλ (θ−l)
ϕ (l)dl

ŷ = Φλ −L1

(
eλ ·

Φλ

)
−L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
−α.

This completes the proof. ut

The map λ → ∆ (λ ) from C into Mn (C) is differentiable and

∆
(1) (λ ) :=

d∆ (λ )

dλ
= I−

∫ 0

−r

(
eλθ +λθeλθ

)
η1 (θ)dθ

+B
∫ 0

−r
θeλθ

η1 (θ)dθ −
∫ 0

−r
θeλθ

η2 (θ)dθ .

So the map λ → ∆ (λ ) is analytic and

∆
(n) (λ ) :=

dn∆ (λ )

dλ n =−
∫ 0

−r

(
nθ

n−1eλθ +λθ
neλθ

)
η1 (θ)dθ

+B
∫ 0

−r
θ

neλθ
η1 (θ)dθ −

∫ 0

−r
θ

neλθ
η2 (θ)dθ , n≥ 2.

We know that the inverse function

ψ : L→ L−1

of a linear operator L ∈ Isom(X) is differentiable, and

Dψ (L) L̂ =−L−1 ◦ L̂◦L−1.

Applying this result, we deduce that λ → ∆ (λ )−1 from ρ(A+L+ L̂) into Mn (C) is
differentiable, and d

dλ
∆ (λ )−1 = −∆ (λ )−1 ( d

dλ
∆ (λ )

)
∆ (λ )−1 . Therefore, we ob-

tain that the map λ → ∆ (λ )−1 is analytic and has a Laurent’s expansion around
λ0 :

∆ (λ )−1 =
+∞

∑
n=−k̂0

(λ −λ0)
n

∆n. (7.2.19)
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Lemma 7.2.8. Let λ0 ∈ σ(A+L+ L̂). Then the following statements are equivalent

(a) λ0 is a pole of order k0 of (λ I− (A+L+ L̂))−1;
(b) λ0 is a pole of order k0 of ∆ (λ )−1 ;
(c) limλ→λ0 (λ −λ0)

k0 ∆ (λ )−1 6= 0 and limλ→λ0 (λ −λ0)
k0+1

∆ (λ )−1 = 0.

Proof. The proof follows from the explicit formula of the resolvent of A+L+ L̂
obtained in Lemma 7.2.7. ut

Lemma 7.2.9. The matrices ∆−1, ...,∆−k0 in (7.2.19) satisfy

∆k0 (λ0)


∆−1
∆−2

...
∆−k0+1
∆−k0

=

 0
...
0



and (
∆−k0 ∆−k0+1 · · · ∆−2 ∆−1

)
∆k0 (λ0) =

(
0 · · · 0

)
,

where

∆k0 (λ0) =



∆ (λ0) ∆ (1) (λ0) ∆ (2) (λ0)/2! · · · ∆ (k0−1) (λ0)/(k0−1)!

0
. . .

. . .
. . .

...
... 0

. . .
. . . ∆ (2) (λ0)/2!

...
. . .

. . . ∆ (1) (λ0)
0 · · · · · · 0 ∆ (λ0)


.

Proof. We have

(λ −λ0)
k0 I = ∆ (λ )

(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)
=

(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)
∆ (λ ) .

Hence,

(λ −λ0)
k0 I =

(
+∞

∑
n=0

(λ −λ0)
n ∆ (n) (λ0)

n!

)(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)

=
+∞

∑
n=0

(λ −λ0)
n

n

∑
k=0

∆ (n−k) (λ0)

(n− k)!
∆k−k0

and

(λ −λ0)
k0 I =

+∞

∑
n=0

(λ −λ0)
n

n

∑
k=0

∆k−k0

∆ (n−k) (λ0)

(n− k)!
.
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By the uniqueness of the Taylor’s expansion for analytic maps, we obtain for n ∈
{0, ...,k0−1} that

0 =
n

∑
k=0

∆k−k0

∆ (n−k) (λ0)

(n− k)!
=

n

∑
k=0

∆ (n−k) (λ0)

(n− k)!
∆k−k0 .

Therefore, the result follows. ut

Set

Ψ1 (λ )

α

ϕ

y

 :=(λ I−B)
(

L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α

)
+L2

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+y,

Ψ2 (λ )(ϕ)(θ) :=
∫ 0

θ

eλ (θ−l)
ϕ (l)dl

and

Ψ3 (λ )

α

ϕ

y

 := L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α.

Then all maps are analytic and

(
λ I−

(
A+L+ L̂

))−1

α

ϕ

y



=



0Rn

eλ ·∆ (λ )−1
Ψ1 (λ )

α

ϕ

y

+Ψ2 (λ )(ϕ)(·)

∆ (λ )−1
Ψ1 (λ )

α

ϕ

y

−L1

eλ ·∆ (λ )−1
Ψ1 (λ )

α

ϕ

y

−Ψ3 (λ )

α

ϕ

y




.

(7.2.20)
We observe that the only singularity in (7.2.20) is ∆ (λ )−1 . Since Ψ1 ,Ψ2 and Ψ3 are
analytic, we have for j = 1,2,3 that

Ψj (λ ) =
+∞

∑
n=0

(λ −λ0)
n

n!
L j

n(λ0), (7.2.21)

where |λ −λ0| is small enough and L j
n(.) := dnΨj(.)

dλ n ,∀n≥ 0,∀ j = 1,2,3. Hence, we
have

lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
(λ −λ0)

k0 Ψi (λ )
]
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= lim
λ→λ0

1
(k0−1)!

+∞

∑
n=0

(n+ k0)!
(n+1)!

(λ −λ0)
n+1

n!
Li

n(λ0)

= 0, i = 2,3.

From (7.2.19) and (7.2.21), we obtain that

lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
(λ −λ0)

k0 ∆ (λ )−1
Ψ1 (λ )

]
= lim

λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[(
+∞

∑
n=−k0

(λ −λ0)
n+k0 ∆n

)(
+∞

∑
n=0

(λ −λ0)
n

n!
L1

n(λ0)

)]

= lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[(
+∞

∑
n=0

(λ −λ0)
n

∆n−k0

)(
+∞

∑
n=0

(λ −λ0)
n

n!
L1

n(λ0)

)]

= lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
+∞

∑
n=0

n

∑
j=0

(λ −λ0)
n− j

∆n− j−k0

(λ −λ0)
j

j!
L1

j(λ0)

]

= lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
+∞

∑
n=0

(λ −λ0)
n

n

∑
j=0

∆n− j−k0

1
j!

L1
j(λ0)

]

=
k0−1

∑
j=0

1
j!

∆−1− jL1
j(λ0)

and

lim
λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
eλθ (λ −λ0)

k0 ∆ (λ )−1
Ψ1 (λ )

]
= lim

λ→λ0

1
(k0−1)!

dk0−1

dλ k0−1

[
eλθ

(
+∞

∑
n=0

(λ −λ0)
n

n

∑
j=0

∆n− j−k0

1
j!

L1
j(λ0)

)]

=
k0−1

∑
i=0

1
i!

θ
ieλ0θ

k0−1−i

∑
j=0

1
j!

∆−1− j−iL1
j(λ0).

From the above results we obtain the explicit formula for the projector Bλ0
−1 on

the generalized eigenspace associated to λ0.

Proposition 7.2.10. Each λ0 ∈ σ(A+ L+ L̂) is a pole of (λ I− (A+ L+ L̂))−1 of
order k0 ≥ 1. Moreover, k0 is the only integer such that there exists ∆−k0 ∈Mn (R)
with ∆−k0 6= 0, such that

∆−k0 = lim
λ→λ0

(λ −λ0)
k0 ∆ (λ )−1 .

Furthermore, the projector Bλ0
−1 on the generalized eigenspace of (A+L+ L̂) asso-

ciated to λ0 is defined by the following formula
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Bλ0
−1

α

ϕ

y

=


0Rn

ϕ̂

∑
k0−1
j=0

1
j!

∆−1− jL1
j(λ0)

α

ϕ

y

−L1 (ϕ̂)

 ,
where

ϕ̂(θ) =
k0−1

∑
i=0

θ
ieλ0θ 1

i!

k0−1−i

∑
j=0

1
j!

∆−1− j−iL1
j(λ0)

α

ϕ

y

 ,

∆− j = lim
λ→λ0

1
(k0− j)!

dk0− j

dλ k0− j

(
(λ −λ0)

k0 ∆ (λ )−1
)
, j = 1, ...,k0,

L1
0 (λ )

α

ϕ

y

=(λ I−B)
(

L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α

)
+L2

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+y

and

L1
j (λ )

α

ϕ

y

 =
d j

dλ j

L1
0(λ )

α

ϕ

y


= (λ I−B)L1

(∫ 0

·
(.− l) j eλ (·−l)

ϕ (l)dl
)

+ j
d j−1

dλ j−1

[
L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α

]
+L2

(∫ 0

.
(.− l) j eλ (.−l)

ϕ (l)dl
)
, j ≥ 1,

here

di

dλ i

[
L1

(∫ 0

·
eλ (·−l)

ϕ (l)dl
)
+α

]
= L1

(∫ 0

·
(·− l)ieλ (·−l)

ϕ (l)dl
)
, i≥ 1.

Applying the results in Chapter 6, one can establish the center manifold theorem,
Hopf bifurcation theorem, and normal form theory for neutral functional differential
equations.

7.3 Partial Functional Differential Equations

In this section we first show that a delayed transport equation for cell growth and
division has asynchronous exponential growth using Theorem 4.6.2 and Corollary
4.6.6. Then we demonstrate that partial functional differential equations can also be
set up as an abstract Cauchy problem.
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7.3.1 A Delayed Transport Model of Cell Growth and Division

Assume that each cell grows linearly so that its mass m(t) at time t after birth
satisfies m(t + τ) = m(τ)+ t for t,τ > 0. Each cell divides into exactly two cells of
equal mass after a random length of time 1+T comprised of a constant deterministic
phase and an exponentially distributed phase with probability

Pr{T > t}= e−pt , t ≥ 0,

where p is a constant. Let u(x, t) be defined so that∫ x2

x1

u(x, t)dx

is the rate per unit time at which cells divide with mass at division between x1 and
x2 with 1 ≤ x1 ≤ x2. The function u(x, t) satisfies the delayed transport equation
(Hannsgen et al. [177, 178])

∂u(x, t)
∂ t

+
∂u(x, t)

∂x
=−pu(x, t)+4pu(2(x−1), t−1), t ≥ 0, x≥ 1,

u(x, t) = φ(x, t), −1≤ t ≤ 0, x≥ 0,
u(x, t) = 0 for t ≥ 0,0≤ x≤ 1.

(7.3.1)

Regarding the basic properties of the solutions of model (7.3.1), Hannsgen et al.
[177, 178] proved the following results.

Proposition 7.3.1. Let φ ∈C1([0,∞)×[−1,0]) with φ(0, t)= 0, −1≤ t ≤ 0,φ(x,0)=
0,0≤ x ≤ 1. If φ is nonnegative, then model (7.3.1) has a unique solution which is
also nonnegative. Let λ = λ0 be the unique real solution of the equation λ + p =
2pe−λ and let

h(x) =

N
∞

∑
n=0

(−2)ncne−2n(λ0+p)(x−2) x≥ 2,

0 0≤ x≤ 2,
(7.3.2)

where
c0 = 1, cn =

1
(2−1)(4−1) · · ·(2n−1)

, n = 1,2, . . . ,

and N is a normalizing constant. Then

h(x)> 0 for x > 2,
∫

∞

2
h(x)dx = 1, and h(x)∼ Ne−(λ0+p)(x−2) as x→ ∞.

If φ satisfies 0≤ φ(x, t)≤m0(x) with m0 ∈C([0,∞))∩L1(0,∞) and m0 nonincreas-
ing, then e−λ0tu(x, t) converges weakly to c(φ)h(.) in L1(1,∞), where

c(φ) =
∫

∞

1 φ(x,0)dx+(λ0 + p)
∫ 0
−1
∫

∞

0 e−λ0θ φ(x,θ)dxdθ

1+λ0 + p
. (7.3.3)
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Let 0 < τ < p
2 , let

Y = { f ∈C([0,∞)) : f (0) = 0 and lim
x→∞

eτx| f (x)|= 0}

with norm ‖ f‖Y = supx≥0 eτx| f (x)|, and let

X = {φ ∈C)[−1,0];Y ) : φ(0)(x) = 0 for x ∈ [0,1]}

with norm ‖φ‖X = sup−1≤θ≤0 ‖φ(θ)‖Y . Define a linear operator B : Y → Y by

B f =− f ′− p f , D(B) = { f ∈ Y : f ′ ∈ Y}.

Define a strongly continuous semigroup {S(t)}t≥0 of bounded linear operators in Y
with infinitesimal generator B by

(S(t) f )(x) =
{

e−pt f (x− t) x≥ t,
0 0≤ x≤ t. (7.3.4)

Define a map F : X → Y by

(Fφ)(x) =
{

4pφ(−1)(2(x−1)) x≥ 1,
0 0≤ x≤ 1. (7.3.5)

Let φ ∈X . For u : [−1,∞)→Y , define ut ∈X for t ≥ 0 by ut(θ) = u(t+θ), −1≤
θ ≤ 0. Consider

u(t) = S(t)φ(0)+
∫ t

0
S(t− s)Fusds, t ≥ 0; u0 = φ . (7.3.6)

By the results in Travis and Webb [340], we know that the problem (7.3.5) has a
unique solution. Moreover, define the linear operator A : X → X by

Aφ = φ
′, D(A) = {φ ∈ X : φ

′ ∈ X ,φ(0) ∈ D(B), and φ
′(0) = Bφ(0)+Fφ}

and a family of operators {T (t)}t≥0 in X by

T (t)φ = ut , t ≥ 0.

Then {T (t)}t≥0 is a strongly continuous semigroup of bounded linear operators in
X with infinitesimal generator A. Furthermore,

(T (t)φ)(0)(x) = u(t)(0)(x)≡ u(x, t)

is the unique solution of model (7.3.1) for φ ∈ D(A).
Now we apply Theorem 4.6.2 and Corollary 4.6.6 to show that the solutions of

model (7.3.1) have asynchronous exponential growth.

Theorem 7.3.2. Let λ0 be the unique real solution of λ + p= 2pe−λ . Then {T (t)}t≥0
has asynchronous exponential growth with intrinsic growth constant λ0. Moreover,
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lim
t→∞

e−λ0tT (t)φ = c(φ)φ0

for all φ ∈ X , where φ0(θ) = eλ0θ h, −1≤ θ ≤ 0, c(φ) is defined as in (7.3.3), and
h is defined as in (7.3.2).

Proof. Since λ0 > 0, we prove the theorem in three steps: (I) ω0,ess(A) < 0; (II)
λ0 = sup{Reλ : λ ∈ σ(A)} and λ0 is a simple pole of (λ I−A)−1; (III) P0 defined
in Definition 4.6.1 is given by P0φ = c(φ)φ0.

(I) We use Proposition 4.6.3 to show that ω0,ess(A) ≤ 2τ− p. More specifically,
we show that T (t) = U(t)+V (t) for t ≥ 2, where ‖U(t)‖ ≤ Ce(2τ−p) and V (t) is
compact. From problem (7.3.6) we have for t ≥ 0, x≥ 0 that

u(t)(x) = e−pt
φ(0)(x− t)+

∫ t

0
e−p(t−s)Fus(x− t + s)ds

= e−pt
φ(0)(x− t)+4p

∫ t

0
e−p(t−s)u(s−1)(2(x− t + s−1))ds

= e−pt
φ(0)(x− t)+4p

∫ t−1

−1
e−p(t−l−1)u(l)(2(x− t + l))dl. (7.3.7)

It follows from (7.3.7) that for t ≥ 1,x≥ 0

u(t)(x) = e−pt
φ(0)(x− t)+4p

∫ 0

−1
e−p(t−l−1)

φ(l)(2(x− t + l))dl

+4p
∫ t−1

0
e−p(t−l−1){e−pl

φ(0)(2(x− t + l)− l)

+4p
∫ l−1

−1
e−p(t−w−1)u(w)[2(2(x− t + l)− l +w)]dw

}
dl.(7.3.8)

Now (7.3.8) implies that for φ ∈ X , t ≥ 2, −1≤ θ ≤ 0, x≥ 0

(T (t)φ)(θ)(x) = u(t +θ)(x)

= e−p(t+θ)
φ(0)(x− t−θ)

+4p
∫ 0

−1
e−p(t+θ−l−1)

φ(l)(2(x− t−θ + l))dl

+4p
∫ 2x−t−θ−1

2(x−t−θ)
e−p(t+θ−1)

φ(0)(v)dv

+16p2
∫ 2x−t−θ−1

2(x−t−θ)

∫ 2(t+θ−x)+v−1

−1
e−p(t+θ−w−2)u(w)[2(v+w)]dwdv

≡ (U1(t)φ)(θ)(x)+(U2(t)φ)(θ)(x)+(U2(t)φ)(θ)(x)+(V (t)φ)(θ)(x).

Notice that U1(t)(X)⊂ X and

‖U1(t)φ‖X = sup
−1≤θ≤0

sup
x≥0

eτxe−p(t+θ)|φ(0)(x− t−θ)|
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≤ sup
−1≤θ≤0

e(τ−p)(t+θ)‖φ(0)‖Y

≤ e(τ−p)(t−1)‖φ‖X .

Since for t ≥ 0, 0≤ x≤ 1, −1≤ l ≤ 0, we have 2(x− t + l)≤ 0 and φ(l)[2(x− t +
l)] = 0, so U2(t)(X)⊂ X . Moreover,

‖U2(t)φ‖X = sup
−1≤θ≤0

sup
x≥0

eτx4p
∫ 0

−1
e−p(t+θ−l−1)e−2τ(x−t−θ+l)‖φ(l)‖Y dl

≤ 4pepe(2τ−p)(t−1)

p−2τ
‖φ‖X .

Next, since for t ≥ 0, 0 ≤ x ≤ 1, 2(x− 1) ≤ v ≤ 2x− t − 1, we have v ≤ 0 and
φ(0)(v) = 0, so U3(t)(X)⊂ X . Furthermore,

‖U3(t)φ‖X = sup
−1≤θ≤0

sup
x≥0

eτx4p
∫ 2x−t−θ−1

2(x−t−θ)
e−p(t+θ−l−1)e−τv‖φ(0)‖Y dl

≤ 4pepe(2τ−p)(t−1)

τ
‖φ‖X .

Let U = U1 +U2 +U3 and we have shown that |U(t)| ≤Ce(2τ−p)t , t ≥ 2, where C
is independent of t.

Since V (t) = T (t)−U(t), we have V (t)(X) ⊂ X . We now show that V (t) is
compact for each t ≥ 2. Fix t ≥ 2 and let Q be a bounded subset of X . It suf-
fices to show that (i) V (t)φ is uniformly bounded for φ ∈ Q; (ii) (V (t)φ)(θ) is
equicontinuous in θ for φ ∈ Q; (iii) (V (t)φ)(θ) is equicontinuous in x in bounded
intervals for φ ∈ Q, −1 ≤ θ ≤ 0; and (iv) for ε > 0 there exists xε > 0 such
that eτx|(V (t)φ)(θ)(x)| < ε for x > xε . Note that for φ ∈ Q, −1 ≤ θ ≤ 0, x ≥
0, 2(x− t−θ) ≤ v ≤ 2x− t−θ − 1, and −1 ≤ w ≤ 2(t +θ − x)+ v− 1, we have
−1≤ w≤ t−2, so that

‖u(w)‖Y = ‖(T (w)φ)(0)‖Y ≤ sup
0≤s≤t−2

|T (s)|‖φ‖X . (7.3.9)

Consequently, for φ ∈ Q, −1≤ θ ≤ 0, x≥ 0

eτx‖(V (t)φ)(θ)(x)‖X

≤ 16p2eτxe−p(t+θ−2)
∫ 2x−t−θ−1

2(x−t−θ)

∫ 2(t+θ−x)+v−1

−1
epwe−2τ(v+w)‖u(w)‖Y dwdv

≤Ce−3τx, (7.3.10)

where C is independent of φ ,θ , and x. Properties (i)-(iii) follow immediately from
(7.3.8), (7.3.9), and the formula for (V (t)φ)(θ)(x).

(II) Let λ̂0 = sup{Reλ : λ ∈ σ(A)}. We use Proposition 4.6.5 (i) and (iv) to show
that λ̂0 = λ0. Notice that X is a Banach lattice, where φ1≥ φ2 means that φ1(θ)(x)≥
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φ2(θ)(x), −1 ≤ θ ≤ 0, x ≥ 0. Moreover, from (7.3.6) it follows that T (t)φ ≥ 0
for all t ≥ 0 and φ ≥ 0. Suppose that φ ∈ X ,φ 6= 0, and Aφ = λφ . Then, φ(θ) =
eλθ φ(0), −1≤ θ ≤ 0, where φ(0) ∈D(B) and φ ′(0) = Bφ(0)+Fφ . Consequently,

λφ(0)(x) =−φ
′(0)(x)− pφ(0)(x)+4pe−λ

φ(0)(2(x−1)), x≥ 1,

which means that

φ(0)(x) = 4pe−λ

∫ x

1
e−(λ+p)(x−y)

φ(0)(2(y−1))dy, x≥ 1. (7.3.11)

It was shown in Hannsgen and Tyson [177] that a solution of (7.3.11) is φ(0)(x) =
h(x) in (7.3.2) and λ = λ0. By Proposition 7.3.1, we have h ∈ Y. Thus, λ0 ∈ σp(A)
and Aφ0 = λ0φ0, where φ0(θ) = eλ0θ h. Since ω0,ess(A) < 0 and λ0 > 0, we have
ω0,ess(A)< λ̂0. By Proposition 4.6.5 (i) we know that λ̂0 > Reλ for all λ ∈ σ(A).

Now consider the scalar delay differential equation

dN
dt

=−pN(t)+2pN(t−1), t ≥ 0; N0 = φ̄ ∈ X̄ ≡C([−1,0]). (7.3.12)

We know that (see Hale [170]) there is a strongly continuous semigroup {T̄ (t)}t≥0
of bounded linear operators in X̄ defined by T̄ (t)φ̄ = Nt , φ̄ ∈ X̄ , t ≥ 0. For φ ∈ X ,
define

φ̄(θ) =
∫

∞

0
φ(θ)(x)dx, −1≤ θ ≤ 0.

From equation (7.3.1) we have

(T̄ (t)φ̄)(θ) =
∫

∞

0
(T̄ (t)φ)(θ)(x)dx.

Since D(A) is dense in X , the last formula holds for all φ ∈ X , t ≥ 0. The infinitesi-
mal generator of {T̄ (t)}t≥0 is

Āφ̄ = φ̄
′, D(Ā) = {φ̄ ∈ X̄ : φ̄

′ ∈ X̄ and φ̄
′(0) =−pφ̄(0)+2pφ̄(−1)}.

Note that T̄ (t) is compact for t ≥ 1, we have ω0,ess(A) = −∞. Also, σp(Ā) = {λ :
λ + p = 2pe−λ}. Thus, for λ /∈ σp(Ā), φ̄ ∈ X̄

(λ I− Ā)−1
φ̄(θ) =

eλθ (φ̄(0)+2p
∫ 0
−1 e−λ (1+σ)φ̄(σ)dσ)

λ + p−2pe−λ
+
∫ 0

θ

eλ (θ−σ)
φ̄(σ)dσ .

By Theorem 4.6.2 and the Residue Theorem, we have for all φ̄ ∈ X̄ that

lim
t→∞
‖e−λ0t T̄ (t)φ̄ − P̄0φ̄‖X̄ = 0, (7.3.13)

P̄0φ̄(θ) =
eλθ (φ̄(0)+2p

∫ 0
−1 e−λ (1+σ)φ̄(σ)dσ)

1+λ0 + p
. (7.3.14)
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Define f ∈ X∗ by

〈 f ,φ〉 ≡
∫ 0

−1

∫
∞

0
φ(θ)(x)dxdθ , φ inX ,

and observe that f is strictly positive. It follows from (7.3.13) and (7.3.14) that

lim
t→∞
〈 f ,e−λ0tT (t)φ〉=

∫ 0

−1
(P̄0φ̄)(θ)dθ , (7.3.15)

which is positive if φ ≥ 0, φ 6= 0. By Proposition 4.6.5 (iv) we know that λ0 = λ̂0
and by Proposition 4.6.5 (v) it follows that λ0 is a simple pole of (λ −A)−1.

(III) Suppose that Aφ = λ0φ . From (7.3.11) we have that∫
∞

1
|φ(0)(x)|dx = 4pe−λ0

∫
∞

1

∣∣∣∣∫ x

1
e−(λ0+p)(x−y)

φ(0)(2(y−1))dy
∣∣∣∣dx

= 4pe−λ0

∫
∞

1

∫ x

1
e−(λ0+p)(x−y)|φ(0)(2(y−1))|dydx

= 4pe−λ0

∫
∞

1

∫
∞

y
e−(λ0+p)(x−y)|φ(0)(2(y−1))|dydx

=
4pe−λ0

λ0 + p

∫
∞

1
|φ(0)(2(y−1))|dy

=
∫

∞

1
|φ(0)(x)|dx.

The above inequality must be an equality, so that for x≥ 1∣∣∣∣∫ x

1
e−(λ0+p)(x−y)

φ(0)(2(y−1))dy
∣∣∣∣= ∫ x

1
e−(λ0+p)(x−y)|φ(0)(2(y−1))|dy.

Thus, φ(0) = const|φ(0)(x)|, so is h−φ(0). If
∫

∞

1 φ(0)(x)dx = 1, then
∫

∞

1 (h(x)−
φ(0)(x))dx = 0, which means that h = φ(0) and φ0 = φ . By Theorem 4.6.2, we
know that

lim
t→∞

e−λ0tT (t)φ = P0φ , ∀φ ∈ X .

Let φ ∈ X . Since Nλ0(A) = N (λ0I−A), it follows that P0 has rank one and there
exists a constant c such that P0φ = cφ0. From (7.3.3) and (7.3.15), we have

c〈 f ,φ0〉=
∫ 0

−1
(P̄0φ̄)(θ)dθ = c(φ)〈 f ,φ0〉.

Since φ0 ≥ 0 and f is strictly positive, we must have c = c(φ).
Now apply Theorem 4.6.2 and Corollary 4.6.6, we know that the solutions of

model (7.3.1) have asynchronous exponential growth and complete the proof. ut
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7.3.2 Partial Functional Differential Equations

Let B : D(B)⊂ Y → Y be a linear operator on a Banach space (Y,‖ ‖Y ). Assume
that it is a Hille-Yosida operator; that is, there exist two constants, ωB ∈ R and
MB > 0, such that (ωB,+∞)⊂ ρ (B) and∥∥(λ I−B)−n∥∥≤ MB

(λ −ωB)
n , ∀λ > ωB, ∀n≥ 1.

Set
Y0 := D(B).

Consider B0, the part of B in Y0, which is defined by

B0y = By for each y ∈ D(B0)

with
D(B0) := {y ∈ D(B) : By ∈ Y0} .

For r ≥ 0, set
CB :=C ([−r,0] ;Y )

which is endowed with the supremum norm

‖ϕ‖
∞
= sup

θ∈[−r,0]
‖ϕ (θ)‖Y .

Consider the partial functional differential equations (PFDE):{ dy(t)
dt

= By(t)+ L̂(yt)+ f (t,yt), ∀t ≥ 0,

y0 = ϕ ∈CB,
(7.3.16)

where yt ∈CB satisfies yt (θ) = y(t +θ) ,θ ∈ [−r,0], L̂ : CB→ Y is a bounded lin-
ear operator, and f : R×CB → Y is a continuous map. Since B is a Hille-Yosida
operator, it is well known that B0, the part of B in Y0, generates a C0-semigroup of
bounded linear operators

{
TB0(t)

}
t≥0 on Y0, and B generates an integrated semi-

group {SB(t)}t≥0 on Y . The solution of the Cauchy problem (7.3.16) must be un-
derstood as a fixed point of

y(t) = TB0(t)ϕ(0)+
d
dt

∫ t

0
SB(t− s)

[
L̂(ys)+ f (s,ys)

]
ds.

Since
{

TB0(t)
}

t≥0 acts on Y0, we observe that it is necessary to assume that

ϕ(0) ∈ Y0⇒ ϕ ∈CB.

Define u ∈C ([0,+∞)× [−r,0] ,Y ) by
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u(t,θ) = y(t +θ), ∀t ≥ 0, ∀θ ∈ [−r,0] .

Note that if y ∈C1 ([−r,+∞) ,Y ) , then

∂u(t,θ)
∂ t

= y′(t +θ) =
∂u(t,θ)

∂θ
.

Hence, we must have

∂u(t,θ)
∂ t

− ∂u(t,θ)
∂θ

= 0, ∀t ≥ 0, ∀θ ∈ [−r,0] .

Moreover, for θ = 0, we obtain

∂u(t,0)
∂θ

= y′(t)=By(t)+L̂(yt)+ f (t,yt)=Bu(t,0)+L̂(u(t, .))+ f (t,u(t, .)),∀t ≥ 0.

Therefore, we deduce formally that u must satisfy a PDE
∂u(t,θ)

∂ t
− ∂u(t,θ)

∂θ
= 0,

∂u(t,0)
∂θ

= Bu(t,0)+ L̂(u(t, .))+ f (t,u(t, .)),∀t ≥ 0,

u(0, .) = ϕ ∈CB.

(7.3.17)

Consider the state space
X = Y ×C

taken with the usual product norm∥∥∥∥( y
ϕ

)∥∥∥∥= ‖y‖Y +‖ϕ‖
∞
.

Define the linear operator A : D(A)⊂ X → X by

A
(

0Y
ϕ

)
=

(
−ϕ ′(0)+Bϕ(0)

ϕ ′

)
, ∀
(

0Y
ϕ

)
∈ D(A) (7.3.18)

with
D(A) = {0Y}×{ϕ ∈C1 ([−r,0] ,Y ) , ϕ(0) ∈ D(B)}.

Note that A is non-densely defined because

X0 := D(A) = {0Y}×CB 6= X .

We also define L : X0→ X by

L
(

0Y
ϕ

)
:=
(

L̂(ϕ)
0C

)
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and F : R×X0→ X by

F
(

t,
(

0Y
ϕ

))
:=
(

f (t,ϕ)
0C

)
.

Set

v(t) :=
(

0Y
u(t)

)
.

Now we can consider the PDE (7.3.17) as the following non-densely defined Cauchy
problem

dv(t)
dt

= Av(t)+L(v(t))+F(t,v(t)), t ≥ 0; v(0) =
(

0Y
ϕ

)
∈ X0. (7.3.19)

In order to study the semilinear PFDE
dy(t)

dt
= By(t)+ L̂(yt)+ f (yt), ∀t ≥ 0,

yϕ

0 = ϕ ∈CB = {ϕ ∈C ([−r,0] ;Y ) : ϕ(0) ∈ D(B)},
(7.3.20)

we considered the associated abstract Cauchy problem

dv(t)
dt

= Av(t)+L(v(t))+F (v(t)) , t ≥ 0; v(0) =
(

0Rn

ϕ

)
∈ D(A), (7.3.21)

where

F
(

0
ϕ

)
=

(
f (ϕ)

0

)
.

We can check that the integrated solutions of (7.3.21) are the usual solutions of the
PFDE (7.3.20).

Now we investigate the properties of the semiflows generated by the PFDE by
using the known results on non-densely defined semi-linear Cauchy problems. In
particular when f is Lipschitz continuous, from the results of Thieme [328], for
each ϕ ∈CB we obtain a unique solution t→ yϕ(t) on [−r,+∞) of (7.3.20), and we
can define a nonlinear C0-semigroup {U(t)}t≥0 on CB by

U(t)ϕ = yϕ

t .

From the results in Magal [242], one may also consider the case where f is Lipschitz
on bounded sets of CB.

In order to describe the local asymptotic behavior around some equilibrium, we
assume that y ∈ D(B) is an equilibrium of the PFDE (7.3.20); that is,

0 = By+L
(
y1[−r,0]

)
+ f

(
y1[−r,0]

)
.

Then by the stability result of Theorem 5.7.1, we obtain the following stability re-
sults for PFDE.
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Theorem 7.3.3 (Exponential Stability). Assume that f : CB→ Rn is continuously
differentiable in some neighborhood of y1[−r,0] and D f

(
y1[−r,0]

)
= 0. Assume in

addition that
ω0,ess((A+L)0)< 0

and each λ ∈ C such that
N (∆ (λ )) 6= 0

has strictly negative real part. Then there exist η ,M,γ ∈ [0,+∞) such that for each
ϕ ∈C with

∥∥ϕ− y1[−r,0]
∥∥

∞
≤ η , the PFDE (7.3.20) has a unique solution t→ yϕ(t)

on [−r,+∞) satisfying∥∥yϕ

t − y1[−r,0]
∥∥

∞
≤Me−γt ∥∥ϕ− y1[−r,0]

∥∥
∞
, ∀t ≥ 0.

The above theorem is well known in the context of RFDE and PFDE (see, for ex-
ample, Hale and Verduyn Lunel [175, Corollary 6.1, p. 215] and Wu [374, Corollary
1.11, p. 71]).

If we denote Πc : X → X the bounded linear operator of projection

Πc = Bλ1
−1 + ...+Bλm

−1

where {λ1,λ2, ...,λm}= σC (A+L) := {λ ∈ σ (A+L) : Re(λ ) = 0} . Then

Xc = Πc (X)

is the direct sum of the generalized eigenspaces associated to the eigenvalues
{λ1,λ2, ...,λm}. Moreover,

Πc (X)⊂ X0

and Πc commutes with the resolvent of (A+L) . Set

Xh = R(I−Πc) (* X0).

Then we have the following state space decomposition

X = Xc⊕Xh and X0 = X0c⊕X0h,

where
X0c = Xc∩X0 = Xc and X0h = Xh∩X0 6= Xh.

Then we can split the original abstract Cauchy problem (7.3.21) into the following
system 

duc(t)
dt

= (A+L)c uc(t)+ΠcF(uc(t)+uh(t)),
duh(t)

dt
= (A+L)h uh(t)+ΠhF(uc(t)+uh(t)),

(7.3.22)

where (A+L)c , the part of A + L in Xc, is a bounded linear operator (since
dim(Xc) < +∞), and (A+L)h , the part of A+ L in Xh, is a non-densely defined
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Hille-Yosida operator. So the first equation of (7.3.22) is an ordinary differential
equation and the second equation of (7.3.22) is a new non-densely defined Cauchy
problem with

σ ((A+L)h) = σ ((A+L))\σC (A+L) .

Assume for simplicity that f is Ck in some neighbordhood of the equilibrium 0CB

and that
f (0) = 0 and D f (0) = 0.

Then we can find (see Theorem 6.1.10) a manifold

M = {xc +ψ (xc) : xc ∈ Xc} ,

where the map ψ : Xc→ Xh∩D(A) is Ck with

ψ (0) = 0, Dψ(0) = 0,

and M is locally invariant by the semiflow generated by (7.3.21).
More precisely, we can find a neighborhood Ω of 0 in CB such that if I ⊂R is an

interval and uc : I→ Xc is a solution of the ordinary differential equation

duc(t)
dt

= (A+L)c uc(t)+ΠcF(uc(t)+ψ (uc(t))) (7.3.23)

satisfying
u(t) := uc(t)+ψ (uc(t)) ∈Ω , ∀t ∈ I,

then u(t) is an integrated solution of (7.3.21), that is,

u(t) = u(s)+A
∫ t

s
u(l)dl +

∫ t

s
F(u(l))dl, ∀t,s ∈ I with t ≥ s.

Conversely, if u : R→ X0 is an integrated solution of (7.3.21) satisfying

u(t) ∈Ω , ∀t ∈ R,

then uc(t) = Πcu(t) is a solution of the ordinary differential equation (7.3.23). This
result leads to the Hopf bifurcation results for PFDE (see Wu [374]). A normal form
theory can be established similarly for the PFDE.

7.4 Remarks and Notes

Since the state space for functional differential equations (FDE) is infinitely di-
mensional, techniques and methods from functional analysis and operator theory
have been further developed and extensively used to study such equations (Hale and
Verduyn Lunel [175], Diekmann et al. [106], Engel and Nagel [126]). In particular,
the semigroup theory of operators on a Banach space has been successfully used
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to study the dynamical behavior of FDE (Adimy and Arino [5], Diekmann et al.
[98], Frasson and Verduyn Lunel [144], Thieme [328], Verduyn Lunel [347], Webb
[357, 362, 363]). In studying bifurcation problems, such as Hopf bifurcation, for
FDE, we need to compute explicitly the flow on the center manifold. To do that,
we need to know detailed information about the underlying center manifold of the
linearized equation.

To obtain explicit formulas for the projectors on the generalized eigenspaces as-
sociated to some eigenvalues for linear functional differential equations (FDE){ dx(t)

dt
= Bx(t)+ L̂(xt) ,∀t ≥ 0

x0 = ϕ ∈C ([−r,0] ,Rn) ,

the usual method is based on the formal adjoint approach, see Hale and Verduyn
Lunel [175]. The method was recently further studied in the monograph of Diek-
mann et al. [98] using the so called sun start adjoint spaces, see also Kaashoek and
Verduyn Lunel [203], Frasson and Verduyn Lunel [144], Diekmann et al. [98] and
the references cited therein. The key idea is to formulate the problem as an abstract
Cauchy problem and many approaches have been used. In the 1970s, Webb [357],
Travis and Webb [340, 341] viewed the problem as a nonlinear Cauchy problem and
focused on many aspects of the problem by using this approach. Another approach
is a direct method, that is to use the variation of constants formula and work directly
with the system (see Arino and Sanchez [30] and Kappel [204]).

We used an integrated semigroup formulation for the problem. Adimy [3, 4],
Adimy and Arino [5], and Thieme [328] were the first to apply integrated semigroup
theory to study FDEs. This approach has been extensively developed by Arino’s
team in the 1990s (see Ezzinbi and Adimy [129] for a survey on this topic). Here
we used a formulation of the FDE that is an intermediate between the formulations
of Adimy [3, 4] and Thieme [328]. In fact, compared with Adimy’s approach we
did not use any Radon measure to give a sense of the value of xt (θ) at θ = 0,
while compared to Thieme’s approach we kept only one equation. Our approach
is more closely related to the one by Travis and Webb [340, 341]. With such a
setting, we can apply the results in Chapter 6 to establish center manifold theorem,
Hopf bifurcation theorem, and normal form theory for FEDs. In Section 7.1 we only
presented results on Hopf bifurcation for retarded functional differential equations.
The presentations in Section 7.1 were taken from Liu et al. [233, 234]. We refer
to the books of Hale and Verduyn Lunel [175], Hassard et al. [181], Diekmann
et al. [106], and Guo and Wu [159] for more results on center manifold theory,
Hopf bifurcation and normal form theory in the context of functional differential
equations. See also Faria and Magalhães [136, 137] for normal forms for FDEs with
applications to Hopf bifurcation.

The materials in Section 7.2 were taken from Ducrot et al. [111]. Hopf bifurca-
tion in NFDEs has been studied by many authors, see for example, Krawcewicz et
al. [218], Wei and Ruan [369], Weedermann [368], Guo and Lamb [158], and Wang
and Wei [353]. However, there are very few results on the center manifold and nor-
mal form theories for NFDEs (Ait Babram et al. [9], Weedermann [367]). We can
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use the settings in Section 7.2 and apply the results in Chapter 6 to establish center
manifold and normal form theories for NFDEs.

The presentation of subsection 7.3.1 was taken from Webb [363] who gave nec-
essary and sufficient conditions for a semigroup to have asynchronous exponen-
tial growth (Theorem 4.6.2) and applied it to a delayed transport equation for cell
growth and division. Piazzera and Tonetto [288] showed that the solutions of a pop-
ulation equation with age structure and delayed birth process have asynchronous
exponential growth. Yan et al. [377] studied a size-structured cannibalism model
with environment feedback and delayed birth process and proved that the model has
asynchronous exponential growth, among other properties. Subsection 7.3.2 demon-
strates that partial functional differential equations can also be set up as an abstract
Cauchy problem. Thus, we can study center manifolds, Hopf bifurcation and normal
forms in partial functional differential equations, see Wu [374]. We refer to Adimy
et al. [6], Ezzinbi and Adimy [129], Faria [134], Faria [135], Fitzgibbon [141], Lin
et al. [230], Martin and Smith [259, 260], Memory [264, 264], Nguyen and Wu
[277], Ruan et al. [301], Ruan and Zhang [302], Ruess [304, 305], Travis and Webb
[340, 341], Yoshida [379], and the monograph of Wu [374] on studies related to
partial functional differential equations.





Chapter 8
Age-structured Models

In this chapter we apply the results obtained in the previous chapters to age-
structured models. In Section 8.1, a Hopf bifurcation theorem is established for
the general age-structured systems. Section 8.2 deals with a susceptible-infectious
epidemic model with age of infection, uniform persistence of the model is estab-
lished, local and global stability of the disease-free equilibrium is studied by spec-
tral analysis, and global stability of the unique endemic equilibrium is discussed by
constructing a Liapunov functional. Section 8.3 focuses on a scalar age-structured
model, detailed results on the existence of integrated solutions, local stability of
equilibria, Hopf bifurcation, and normal forms are presented.

8.1 General Age-structured Models

Consider a general class of age-structured models (Webb [362], Iannelli [195])
∂u
∂ t

+
∂u
∂a

=−D(a)u(t,a)+M(µ,u(t, .))(a), a≥ 0, t ≥ 0,

u(t,0) = B(µ,u(t, .))
u(0, .) = u0 ∈ L1 ((0,+∞) ,Rn) ,

(8.1.1)

where µ ∈ R is a parameter, D(.) = diag(d1(.), ...,dn(.)) ∈ L∞((0,+∞),Mn(R+)),
M : R×L1((0,+∞),Rn)→ L1((0,+∞),Rn) is the mortality function, and B : R×L1

((0,+∞),Rn)→ Rn is the birth function. We make the following assumptions.

Assumption 8.1.1. Assume that there exists γ ∈ L∞ ((0,+∞) ,Mp×n (R)) for integer
p≥ 1 such that:

(a) (Birth function) The map B :R×L1 ((0,+∞) ,Rn)→Rn is 4-time continuously
differentiable and has the following form

B(µ,ϕ)=
∫ +∞

0
β

(
µ,
∫ +∞

0
γ(s)ϕ(s)ds

)
(a)ϕ(a)da+Θ

(
µ,
∫ +∞

0
γ(s)ϕ(s)ds

)
,

353
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where Θ : R×Rp→ Rn and β : R×Rp→ L∞ ((0,+∞) ,Mn (R)) are C4 maps.
(b) (Mortality function) The map M : R×L1 ((0,+∞) ,Rn)→ L1 ((0,+∞) ,Rn) is

4-time continuously differentiable and has the following form

M (ϕ)(a) = M̂
(

µ,
∫ +∞

0
γ(s)ϕ(s)ds

)
(a)ϕ(a),

in which M̂ : R×Rp→ L∞ ((0,+∞) ,Mn (R)) .

We assume that there exists a smooth branch of equilibria from which bifurcation
will occur.

Assumption 8.1.2. Assume that there exists a parameterized curve µ → u(µ)(.)
from (−ε,ε) into L1 ((0,+∞) ,Rn) such that

u(µ) ∈W 1,1 ((0,+∞) ,Rn) ,

∂u(µ)(a)
∂a

=−D(a)u(µ)(a)+M(µ,u(µ))(a) for almost every a≥ 0,

and
u(µ)(0) = B(µ,u(µ)) .

Consider the Banach space

X = Rn×L1 ((0,+∞) ,Rn) ,

the linear operator A : D(A)⊂ X → X defined by

A
(

0
ϕ

)
=

(
−ϕ(0)
−ϕ ′−Dϕ

)
with

D(A) = {0}×W 1,1 ((0,+∞) ,Rn) ,

and the map F : R×D(A)→ X defined by

F
(

µ,

(
0
ϕ

))
=

(
B(µ,ϕ)
M(µ,ϕ)

)
.

Observe that A is non-densely defined since

D(A) = {0}×L1 ((0,+∞) ,Rn) 6= X .

Setting v(t) =
(

0
u(t, .)

)
, we can rewrite system (8.1.1) as the following non-

densely defined abstract Cauchy problem

dv(t)
dt

= Av(t)+F (µ,v(t)) , t ≥ 0; v(0) =
(

0
u0

)
∈ D(A). (8.1.2)
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Therefore, the theories developed in the previous chapters can be applied to study
the existence of integrated solutions, stability of equilibria, center manifolds, Hopf
bifurcation, and normal forms of system (8.1.2) (thus system (8.1.1)). Here we prove
a general Hopf bifurcation theorem for the general age-structured system (8.1.1).

Notice that for λ > max
i=1,...,n

sup
a≥0

ess(−di(a)) , we have λ ∈ ρ (A) and (since the

matrices D(a) and D(l) commute)

(λ I−A)−1
(

α

ψ

)
=

(
0
ϕ

)
⇔ ϕ (a) = e−

∫ a
0 λ+D(l)dl

α +
∫ a

0
e−

∫ a
s λ+D(l)dl

ψ(s)ds.

The linear operator A is a Hille-Yosida operator and A0, the part of A in D(A), is the
infinitesimal generator of the strongly continuous semigroup

{
TA0(t)

}
of bounded

linear operators on D(A),

TA0(t)
(

0
ϕ

)
=

(
0

T̂A0(t)ϕ

)
,

where

T̂A0(t)(ϕ)(a) =
{

exp
(
−
∫ a

a−t D(l)dl
)

ϕ(a− t) if a≥ t,
0 otherwise.

Notice that

A
(

0
u(µ)

)
+F

(
µ,

(
0

u(µ)

))
= 0.

So we make the following change of variables

w(t) := v(t)−
(

0
u(µ)

)
and obtain that

dw(t)
dt

= Aw(t)+G(µ,w(t)), t ≥ 0, w(0) = x ∈ D(A), (8.1.3)

where

G(µ,x) = F
(

µ,x+
(

0
u(µ)

))
−F

(
µ,

(
0

u(µ)

))
.

Note that
G(µ,0) = 0,∀µ ∈ (−ε,ε) .

The linearized equation of (8.1.2) around the equilibrium
(

0
u(µ)

)
(or (8.1.3)

around the equilibrium 0) is given by
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dv̂(t)
dt

= Av̂(t)+∂xF
(

µ,

(
0

u(µ)

))
v̂(t), t ≥ 0, v̂(0) = x ∈ D(A).

To simplify the notation, set

xµ =

(
0

u(µ)

)
.

We first estimate the essential growth rate of the strongly continuous semigroup
generated by

(
A+∂xF

(
µ,xµ

))
0 , the part of A+ ∂xF

(
µ,xµ

)
: D(A) ⊂ X → X in

D(A). We observe that

∂xF
(
µ,xµ

)( 0
ϕ

)
=

(
∂xB(µ,u(µ))(ϕ)

L1(a)ϕ(a)+L2
(∫ +∞

0 γ(s)ϕ(s)ds
)
(a)

)
,

where L1 ∈ L∞ ((0,+∞) ,Mn (R)) is defined by

L1(a) := M̂
(

µ,
∫ +∞

0
γ(s)u(µ)(s)ds

)
(a)

and

L2 (γ̂)(a) = ∂γ̂ H
(

µ,
∫ +∞

0
γ(s)u(µ)(s)ds

)
(a)(γ̂) ,

here H : R×Rp→ L∞ ((0,+∞) ,Rn) is a map defined by

H(µ, γ̂)(a) = M̂ (µ, γ̂)(a)u(µ)(a).

We split ∂xF
(
µ,xµ

)
into the sum of two operators

∂xF
(
µ,xµ

)( 0
ϕ

)
= B

(
0
ϕ

)
+C

(
0
ϕ

)
,

where B : D(A)⊂ X → X is the bounded linear operator

B
(

0
ϕ

)
=

(
0

L1(.)ϕ(.)

)
and C : D(A)⊂ X → X is the compact bounded linear operator defined by

C
(

0
ϕ

)
=

(
∂xB(µ,u(µ))(ϕ)

L2
(∫ +∞

0 γ(s)ϕ(s)ds
)
(a)

)
.

We consider the linear non-autonomous semiflow {U(a,s)}a≥s≥0 ⊂ Mn (R) on Rn

generated by

dU(a,s)x
da

= (−D(a)+L1(a))U(a,s)x for almost every a≥ s≥ 0,

U(s,s)x = x ∈ Rn.
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This is, a→ U(a,s)x is the unique solution from (s,+∞) into Rn of the integral
equation

U(a,s)x = e−
∫ a

s D(r)drx+
∫ a

s
e−

∫ a
l D(r)drL1(l)U(l,s)xdl.

We make an assumption on the estimation of U(a,s).

Assumption 8.1.3. Assume that there exist two constants, ν > 0 and M ≥ 1, such
that

‖U(a,s)‖ ≤Me−ν(a−s),∀a≥ s≥ 0.

Set
Ω := {λ ∈ C : Re(λ )>−ν} .

Here we use the same approach as in Thieme [330], Magal [242], or Magal and
Ruan [245]. More precisely, for each λ ∈Ω set

Rλ

(
α

ψ

)
=

(
0
ϕ

)
⇔ ϕ(a) = e−λaU(a,0)α +

∫ a

0
e−λ (a−s)U(a,s)ψ(s)ds.

(8.1.4)

Then Rλ is a pseudo resolvent and

Rλ = (λ I− (A+B))−1 .

Moreover, for each ωA+B ∈ (0,ν) , we can find MA+B ≥ 1 such that∥∥∥(λ I− (A+B))−1
∥∥∥≤ MA+B

(λ +ωA+B)
n , ∀λ >−ωA+B,∀n≥ 1. (8.1.5)

Then (A+B)0 , the part of A+B in D(A), generates a strongly continuous semigroup
{T(A+B)0

(t)}t≥0 on D(A), which is defined by

T(A+B)0
(t)
(

0
ϕ

)
=

(
0

T̂(A+B)0
(t)ϕ

)
,

where

T̂(A+B)0
(t)(ϕ)(a) =

{
U(a,a− t)ϕ(a− t) if a≥ t,
0 otherwise.

From (8.1.5) we obtain∥∥∥T(A+B)0
(t)
∥∥∥≤MA+Be−ωA+Bt , ∀t ≥ 0.

Thus, for each ωA+B ∈ (0,ν) ,

ω0,ess ((A+B)0)≤ ω0 ((A+B)0)≤−ωA+B.
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Now since C is a compact bounded linear operator, we can apply the perturbation
results in Theorem 4.7.3 to obtain that

ω0,ess ((A+B+C)0)≤−ωA+B, ∀ωA+B ∈ (0,ν) .

We obtain the following proposition.

Proposition 8.1.4. Let Assumptions 8.1.1-8.1.3 be satisfied. Then

ω0,ess ((A+∂xF (0,x0))0)< 0;

that is, the essential growth rate of the C0−semigroup {T(A+∂xF(0,x0))0
(t)}t≥0 is

strictly negative.

In order to apply Theorem 6.2.7, it remains to precise the spectral properties
of
(
A+∂xF

(
µ,xµ

))
0 . Let λ ∈ Ω be given. Since (λ I− (A+B)) is invertible,

it follows that
(
λ I−

(
A+∂xF

(
µ,xµ

)))
= (λ I− (A+B+C)) is invertible if and

only if I−C (λ I− (A+B))−1 is invertible. Moreover, when I−C (λ I− (A+B))−1

is invertible we have

(λ I− (A+B+C))−1 = (λ I− (A+B))−1
[
I−C (λ I− (A+B))−1

]−1
. (8.1.6)

Here in order to compute the resolvent and to derive a characteristic equation, we
need more details. We have

∂ϕ B(µ,u(µ))(ϕ) =
∫ +∞

0
βµ,u(µ)(a)ϕ(a)da

+
∫ +∞

0
L3

(
µ,
∫ +∞

0
γ(s)ϕ(s)ds

)
(a)da

+DΘ

(
µ,
∫ +∞

0
γ(s)u(µ)(s)ds

)(∫ +∞

0
γ(s)ϕ(s)ds

)
,

where

βµ,u(µ)(a) = β

(
µ,
∫ +∞

0
γ(s)u(µ)(s)ds

)
(a)

and L3 : R×Rp→ L∞ ((0,+∞) ,Mn (R)) is given by

L3 (µ, γ̂)(a) = ∂γ̂ Ĥ(µ,
∫ +∞

0
γ(s)u(µ)(s)ds)(a)(γ̂) ,

in which Ĥ : R×Rp→ L∞ ((0,+∞) ,Rn) is a map defined by

Ĥ(µ, γ̂)(a) = β (µ, γ̂)(a)u(µ)(a).

Consider (
I−C (λ I− (A+B))−1

)(
α

ϕ

)
=

(
α̂

ϕ̂

)
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or (
α

ϕ

)
−C

(
0

e−λ .U(.,0)α +
∫ .

0 e−λ (.−s)U(.,s)ϕ(s)ds

)
=

(
α̂

ϕ̂

)
.

We obtain the systemα−∂ϕ B(µ,u(µ))
(

e−λ .U(.,0)α +
∫ .

0 e−λ (.−s)U(.,s)ϕ(s)ds
)
= α̂

ϕ(a)−L2

(∫ +∞

0 γ(s)
[
e−λ sU(s,0)α +

∫ s
0 e−λ (s−l)U(s, l)ϕ(l)dl

]
ds
)
(a) = ϕ̂(a).

(8.1.7)
Set

Γ1(ϕ) =
∫ +∞

0
βµ,u(µ)(a)ϕ(a)da

and
Γ2(ϕ) =

∫ +∞

0
γ(a)ϕ(a)da.

We obtain[
I−∂ϕ B(µ,u(µ))e−λ .U(.,0).)

]
α−∂ϕ B(µ,u(µ))

(∫ .

0
e−λ (.−s)U(.,s)ϕ(s)ds

)
= α̂.

By applying

ϕ → Γ1

(∫ s

0
e−λ (s−l)U(s, l)ϕ(l)dl

)
=: x1

and

ϕ → Γ2

(∫ s

0
e−λ (s−l)U(s, l)ϕ(l)dl

)
=: x2

to both sides of the second equation of system (8.1.7), we obtain[
I−∂ϕ B(µ,u(µ))

(
e−λ .U(.,0).

)]
α

−
[
x1 +

∫ +∞

0 L3 (µ,x2)(a)da+DΘ
(
µ,
∫ +∞

0 γ(s)u(µ)(s)ds
)
(x2)

]
= α̂,

x1−Γ1

(∫ .
0 e−λ (.−l)U(., l)L2(x2)(l)dl

)
−Γ1

(∫ .
0 e−λ (.−l)U(., l)L2(Γ2

(
e−λ .U(.,0)α

)
)(l)dl

)
= x̂1,

x2−Γ2

(∫ .
0 e−λ (.−l)U(., l)L2(x2)(l)dl

)
−Γ2

(∫ .
0 e−λ (.−l)U(., l)L2(Γ2

(
e−λ .U(.,0)α

)
)(l)dl

)
= x̂2,

(8.1.8)
where

x̂1 := Γ1

(∫ s

0
e−λ (s−l)U(s, l)ϕ̂(l)dl

)
and

x̂2 := Γ2

(∫ s

0
e−λ (s−l)U(s, l)ϕ̂(l)dl

)
.

The above system can be rewritten as a finite dimensional system of linear equations
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∆ (µ,λ )

 α

x1
x2

=

 α̂

x̂1
x̂2


and we obtain the characteristic equation

det(∆ (µ,λ )) := 0.

When ∆ (µ,λ ) is invertible, we have

∆ (µ,λ )−1 =
1

det(∆ (µ,λ ))
[cof(∆ (µ,λ ))]T ,

where cof(∆ (µ,λ )) is the matrix of cofactors of ∆ (µ,λ ). So we obtain α

x1
x2

=
1

det(∆ (µ,λ ))
[cof(∆ (µ,λ ))]T

 α̂

x̂1
x̂2

 . (8.1.9)

Denote

[cof(∆ (µ,λ ))]T =

N11 N12 N13
N21 N22 N23
N31 N32 N33

 ,

where the blocks Ni j are such that the system (8.1.9) can be rewritten as α

x1
x2

= det(∆ (µ,λ ))−1

N11α̂ +N12x̂1 +N13x̂2
N21α̂ +N22x̂1 +N23x̂2
N31α̂ +N32x̂1 +N33x̂2

 . (8.1.10)

Finally, by using the second equation of (8.1.7), we have

ϕ(a) = ϕ̂(a)+L2(x2)(a)+L2

(∫ +∞

0
γ(s)e−λ sU(s,0)(α)ds

)
(a). (8.1.11)

Therefore, we derive that if det(∆ (µ,λ )) 6= 0, then I−C (λ I− (A+B))−1 is invert-
ible, and by using equations (8.1.7), (8.1.10), and (8.1.11), we obtain the following
explicit formula(

I−C (λ I− (A+B))−1
)(

α

ϕ

)
=

(
α̂

ϕ̂

)
⇔


α = det(∆ (µ,λ ))−1 (N11α̂ +N12x̂1 +N13x̂2) ,
ϕ(a) = ϕ̂(a)+det(∆ (µ,λ ))−1L2(N31α̂ +N32x̂1 +N33x̂2)(a)
+det(∆ (µ,λ ))−1L2

(∫ +∞

0 γ(s)e−λ sU(s,0)(N11α̂ +N12x̂1 +N13x̂2)ds
)
(a).

(8.1.12)
We observe that the only singularity in the above expression comes from det(∆ (µ,λ ))−1

when λ approaches an eigenvalue. By the above discussion, we obtain the following
result.
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Lemma 8.1.5. Let Assumptions 8.1.1-8.1.3 be satisfied. Then we have the following:

(i) σ(A+B+C)∩Ω = σp(A+B+C)∩Ω = {λ ∈Ω : det(∆ (µ,λ )) = 0} ;
(ii) If λ ∈ ρ(A+B+C), we have the following formula for the resolvent

(λ I− (A+B+C))−1
(

α̂

ϕ̂

)
=

(
0
ψ

)
⇔ ψ(a) = e−λaU(a,0)det(∆ (µ,λ ))−1 (N11α̂ +N12x̂1 +N13x̂2 )

+
∫ a

0 e−λ (a−s)U(a,s)

[
ϕ̂(a)+det(∆ (µ,λ ))−1L2(N31α̂ +N32x̂1 +N33x̂2)(a)

+det(∆ (µ,λ ))−1L2

(∫ +∞

0 γ(s)e−λ sU(s,0)
(

N11α̂+
N12x̂1 +N13x̂2

)
ds
)
(a)

]
ds,

(8.1.13)
where

x̂1 =
∫ +∞

0
βµ,u(µ)(a)

(∫ a

0
e−λ (a−l)U(a, l)ϕ̂(l)dl

)
da,

x̂2 =
∫ +∞

0
γ(a)

(∫ a

0
e−λ (a−l)U(a, l)ϕ̂(l)dl

)
da

and Ni j is defined in (8.1.9);
(iii) If λ0 ∈ {λ ∈Ω : det∆ (µ,λ ) = 0} = Ω ∩σ(A+B+C), then λ0 is isolated.

Moreover, λ0 is a simple pole of the resolvent of A+B+C if

lim
λ→λ0

det(∆ (µ,λ ))

λ −λ0
6= 0.

Furthermore, λ0 is a simple eigenvalue if in addition to condition (8.1.9) the di-
mension of the eigenspace of A+B+C associated to λ0 is 1, which is equivalent
to

dim(N (∆(λ0,µ))) = 1.

Proof. Assume that λ ∈ Ω and det(∆ (λ ,µ)) 6= 0. From (8.1.3), (8.1.5), and
(8.1.11) we obtain (8.1.12). Therefore, we obtain that {λ ∈Ω : det(∆ (λ ,µ)) 6= 0}⊂
ρ(A+B+C) and

σ(A+B+C)∩Ω ⊂ {λ ∈Ω : det(∆ (λ ,µ)) = 0} .

Conversely, assume that λ ∈ Ω and det(∆ (λ ,µ)) = 0. We claim that we can find(
0
ψ

)
∈ D(A)\{0} such that

(A+B+C)

(
0
ψ

)
= λ

(
0
ψ

)
. (8.1.14)

Indeed, set
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α

ϕ

)
:= (λ I− (A+B))

(
0
ψ

)
⇔
(

0
ψ

)
= (λ I− (A+B))−1

(
α

ϕ

)
.

So we can find a solution of (8.1.14) if and only if we can find
(

α

ϕ

)
∈ X\{0}

satisfying [
I−C (λ I− (A+B))−1

](
α

ϕ

)
= 0.

Now from the above discussion this is equivalent to find (α,x1,x2)
T 6= 0 satisfying

∆(λ ,µ)(α,x1,x2)
T = 0,

where

x1 =
∫ +∞

0
βµ,u(µ)(a)

(∫ a

0
e−λ (a−l)U(a, l)ϕ(l)dl

)
da,

x2 =
∫ +∞

0
γ(a)

(∫ a

0
e−λ (a−l)U(a, l)ϕ(l)dl

)
da.

But by the assumption det(∆ (λ ,µ)) = 0, we can find
(

0
ψ

)
∈D(A)\{0} satisfying

(8.1.13), which yields λ ∈ σp(A+B+C). Hence, {λ ∈Ω : det(∆ (λ ,µ)) = 0} ⊂
σp(A+B+C) and (i) follows. Assertion (iii) follows from (8.1.12) and the same
argument as in the above proof. The proof is complete. ut

From the above discussion we know that Assumptions 3.4.1, 3.5.2 and 6.2.1(c)
hold. In order to apply the Hopf Bifurcation Theorem 6.2.7 to system (8.1.2), we
only need to make the following assumption.

Assumption 8.1.6. There exists a continuously differentiable map λ : (−ε,ε)→ C
such that for each µ ∈ (−ε,ε) ,

det(∆ (µ,λ (µ))) = 0,

and λ (µ) is a simple eigenvalue of
(
A+∂xF

(
µ,xµ

))
0 which is equivalent to verify

that

lim
λ→λ (µ)

det(∆ (µ,λ ))

(λ −λ (µ))
6= 0

and
dim(N (∆(µ,λ (µ)))) = 1.

Moreover, assume that

Im(λ (0))> 0, Re(λ (0)) = 0,
dRe(λ (0))

dµ
6= 0,
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and
{λ ∈Ω : det(∆ (λ ,0)) = 0}∩ iR=

{
λ (0) ,λ (0)

}
. (8.1.15)

If λ (µ) is a solution of the characteristic equation, so is λ (µ). So from the above
assumption we obtain a pair of conjugated simple eigenvalues. Now by using Theo-
rem 6.2.7, we derive the following Hopf bifurcation theorem for the age-structured
system (8.1.1).

Theorem 8.1.7. Let the Assumptions 8.1.1-8.1.3 and 8.1.6 be satisfied. Then there
exist a constant ε∗ > 0 and three Ck−1 maps, ε→ µ(ε) from (0,ε∗) into R, ε→ u0,ε
from (0,ε∗) into L1((0,+∞),Rn), and ε → T (ε) from (0,ε∗) into R, such that for
each ε ∈ (0,ε∗) there exists a T (ε)-periodic function uε ∈Ck

(
R,L1((0,+∞),Rn)

)
,

which is a solution of (8.1.1) for the parameter value µ = µ(ε) and the initial value
u0 = u0,ε . Moreover, we have the following properties;

(i) There exist a neighborhood N of 0 in L1((0,+∞),Rn) and an open interval I
in R containing 0 such that for µ̂ ∈ I and any periodic solution û(t) in N, with
minimal period T̂ close to 2π

Im(λ (0)) , of (8.1.1) for the parameter value µ̂, there
exists ε ∈ (0,ε∗) such that û(t) = uε(t +θ) (for some θ ∈ [0, p(ε))), µ(ε) = µ̂,
and T (ε) = T̂ ;

(ii) The map ε → µ(ε) is a Ck−1 function and

µ(ε) =
[ k−2

2 ]

∑
n=1

µ2nε
2n +O(εk−1),∀ε ∈ (0,ε∗) ,

where [ k−2
2 ] is the integer part of k−2

2 ;
(iii) The period p(ε) of t→ uε(t) is a Ck−1 function and

T (ε) =
2π

Im(λ (0))
[1+

[ k−2
2 ]

∑
n=1

τ2nε
2n]+O(εk−1),∀ε ∈ (0,ε∗) ,

where Im(λ (0)) is defined in Assumption 8.1.6;
(iv) The Floquet exponent β (ε) is a Ck−1 function satisfying β (ε)→ 0 as ε → 0

and having the Taylor expansion

β (ε) =
[ k−2

2 ]

∑
n=1

β2nε
2n +O(εk−1), ∀ε ∈ (0,ε∗) .

The periodic solution xε(t) is orbitally asymptotically stable with asymptotic
phase if β (ε)< 0 and unstable if β (ε)> 0.

Remark 8.1.8. If we only assume that k ≥ 2, and the condition (8.1.15) is replaced
by

{λ ∈ C : det(∆ (0,λ )) = 0}∩ iωZ= {iω,−iω}
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with ω = Im(λ (0)), then by using Remark 6.2.8, we deduce that assertion (i) of
Theorem 8.1.7 holds.

8.2 A Susceptible-Infectious Model with Age of Infection

Consider a population divided into two subgroups: susceptible individuals S(t) at
time t and infected individuals I(t,a) at time t with the age of infection a ≥ 0; that
is, the time since the infection began. For two given age values a1 and a2 with 0 ≤
a1 < a2 ≤ +∞, the number of infected individuals with age of infection a between
a1 and a2 is ∫ a2

a1

i(t,a)da.

The infection-age allows different interpretations for values of a. For example, an
individual may be exposed (infected but not yet infectious to susceptibles) from age
a = 0 to a = a1 and infectious (infected and infectious to susceptibles) from age
a1 to age a2. Consider an infection-age model with a mass action law incidence
function 

dS(t)
dt

= γ−νSS(t)−ηS(t)
∫ +∞

0 β (a)i(t,a)da,
∂ i(t,a)

∂ t
+

∂ i(t,a)
∂a

=−νI (a) i(t,a),

i(t,0) = ηS(t)
∫ +∞

0 β (a)i(t,a)da,
S(0) = S0 ≥ 0, i(0, .) = i0 ∈ L1

+ (0,+∞) .

(8.2.1)

The parameter γ > 0 is the influx rate of the susceptible class and νS > 0 is the
exit (or/and mortality) rate of susceptible individuals. The function β (a) can be
interpreted as the probability to be infectious (capable of transmitting the disease)
with age of infection a≥ 0. The quantity∫ +∞

0
β (a)i(t,a)da

is the number of infectious individuals within the subpopulation (I). The function
β (a) allows variable probability of infectiousness as the disease progresses within
an infected individual. η > 0 is the rate at which an infectious individual infects the
susceptible individuals. Finally, νI (a) is the exit (or/and mortality, or/and recovery)
rate of infected individuals with an age of infection a ≥ 0. As a consequence the
quantity

lνI (a) := exp
(
−
∫ a

0
νI (l)dl

)
is the probability for an individual to stay in the class (I) after a period of time a≥ 0.
We make the following assumption.
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Assumption 8.2.1. The function a→ β (a) is bounded and uniformly continuous
from [0,+∞) to [0,+∞) , the function a→ νI(a) belongs to L∞

+(0,+∞) and satisfies
νI(a)≥ νS for almost every a≥ 0.

Consider the two cases of β (a) described in Figure 8.1, in which an incubation
period of 10 time units (hours or days) was used depending on the time scale. In case
(A), after the incubation period the infectiousness function β (a) increases with the
age of infection. This situation corresponds to a disease which becomes more and
more transmissible with the age of infection. In case (B), after the incubation period
the infectiousness of infected individuals increases, passes through a maximum at
a = 20, and then decreases and is eventually equal to 0 for large values of a≥ 0.
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Fig. 8.1: Two cases of β (a), the probability to be infectious as a function of infection-age a.

The basic reproduction number R0, defined as the number of secondary infec-
tions produced by a single infected individual, is given by

R0 = η
γ

νS

∫ +∞

0
β (a)lνI (a)da.

System (8.2.1) has at most two equilibria. The disease-free equilibrium

(
S̄F , 0

)
=

(
γ

νS
, 0
)

always exists. Moreover, when R0 > 1, there exists a unique endemic equilibrium

(S̄E , ı̄E)

(i.e. with ı̄E ∈ L1
+ (0,+∞)\{0}) defined by

S̄E = 1/
(

η

∫ +∞

0
β (a)lνI (a)da

)
=

S̄F

R0
, ı̄E(a) = lνI (a)ı̄E(0)

with ı̄E(0) := γ−νSS̄E .
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8.2.1 Integrated Solutions and Attractors

Without loss of generality, we can add the equation of the recovered class{ dR(t)
dt

=
∫ +∞

0 (νI (a)−νS) i(t,a)da−νSR(t),∀t ≥ 0,

R(0)≥ 0

to system (8.2.1). Since by assumption νI (a)≥ νS for almost every a≥ 0, we deduce
that R(0)≥ 0⇒ R(t)≥ 0,∀t ≥ 0. Now, by setting

N(t) = S(t)+
∫ +∞

0
i(t,a)da+R(t),

we can see that N(t) satisfies the following ordinary differential equation

dN(t)
dt

= γ−νSN(t). (8.2.2)

So N(t) converges to
γ

νS
. Moreover, since R(t)≥ 0,∀t ≥ 0, we obtain the following

estimate
S(t)+

∫ +∞

0
i(t,a)da≤ N(t), ∀t ≥ 0. (8.2.3)

Note that in the Volterra integral formulation, system (8.2.1) can be formulated
as follows

dS(t)
dt

= γ−νSS(t)−ηS(t)
∫ +∞

0
β (a)i(t,a)da,

i(t,a) =
{

exp
(∫ a

a−t νI (l)dl
)

i0(a− t) if a− t ≥ 0,
exp(

∫ a
0 νI (l)dl)b(t−a) if a− t ≤ 0,

where t→ b(t) is the unique continuous function satisfying

b(t) = ηS(t)
[ ∫ t

0 β (a)exp(
∫ a

0 νI (l)dl)b(t−a)da
+
∫ +∞

t β (a)exp
(∫ a

a−t νI (l)dl
)

i0(a− t)da

]
. (8.2.4)

In order to take into account the boundary condition, we extend the state space
and consider

X̂ = R×L1 (0,+∞)

and the linear operator Â : D
(

Â
)
⊂ X̂ → X̂ on X̂ defined by

Â
(

0
ϕ

)
=

(
−ϕ(0)
−ϕ ′−νIϕ

)
with D

(
Â
)
= {0}×W 1,1 (0,+∞) .
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If λ ∈Cwith Re(λ )>−νS, then λ ∈ ρ

(
Â
)

and we have following explicit formula

for the resolvent of Â :(
λ I− Â

)−1
(

α

ψ

)
=

(
0
ϕ

)
⇔ ϕ(a) = e−

∫ a
0 νI(l)+λdl

α +
∫ a

0
e−

∫ a
s νI(l)+λdl

ψ(s)ds.

Note that system (8.2.1) can be written as

dS(t)
dt

= γ−νSS(t)−ηS(t)
∫ +∞

0 β (a)i(t,a)da,

d
dt

(
0

i(t, .)

)
= Â

(
0

i(t, .)

)
+

(
ηS(t)

∫ +∞

0 β (a)i(t,a)da
0

)
S(0) = S0 ≥ 0,
i(0, .) = i0 ∈ L1

+ (0,+∞) .

(8.2.5)

Set
X = R×R×L1 (0,+∞) , X+ = R+×R+×L1 (0,+∞) ,

and let A : D(A)⊂ X → X be the linear operator defined by

A

 S(
0
i

)=

 −νSS

Â
(

0
i

)=

[
−νS 0

0 Â

] S(
0
i

)
with

D(A) = R×D(Â).

Then D(A) = R×{0}×L1 (0,+∞) is not dense in X . Consider the nonlinear map
F : D(A)→ X defined by

F

 S(
0
i

)=

 γ−ηS
∫ +∞

0 β (a)i(a)da(
ηS
∫ +∞

0 β (a)i(a)da
0

) .

Define
X0 := D(A) = R×{0}×L1 (0,+∞)

and
X0+ := D(A)∩X+ = R+×{0}×L1

+ (0,+∞) .

We can rewrite system (8.2.5) as the following abstract Cauchy problem

du(t)
dt

= Au(t)+F(u(t)), t ≥ 0; u(0) = x ∈ D(A). (8.2.6)

By using the fact that the nonlinearities are Lipschitz continuous on bounded sets,
(8.2.3), and Theorem 5.2.7, we obtain the following proposition.
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Proposition 8.2.2. There exists a uniquely determined semiflow {U(t)}t≥0 on X0+

such that for each x =

 S0(
0
i0

) ∈ X0+, there exists a unique continuous map

U ∈C ([0,+∞) ,X0+) which is an integrated solution of the Cauchy problem (8.2.6);
that is, ∫ t

0
U(s)xds ∈ D(A), ∀t ≥ 0,

and
U(t)x = x+A

∫ t

0
U(s)xds+

∫ t

0
F (U(s)x)ds, ∀t ≥ 0.

Moreover,
limsup
t→+∞

S(t)≤ γ

νS
.

By using the results in Magal and Thieme [251] (see also Thieme and Vrabie
[339]) and by using the fact that a→ β (a) is uniformly continuous, we have the
following result.

Proposition 8.2.3. The semiflow {U(t)}t≥0 is asymptotically smooth; that is, for
any nonempty closed bounded set B ⊂ X0+ for which U(t)B ⊂B, there is a com-
pact set J ⊂B such that J attracts B.

Moreover, by using (8.2.3), we have the following proposition.

Proposition 8.2.4. The semiflow {U(t)}t≥0 is bounded dissipative; that is, there is
a bounded set B0 ⊂ X0+ such that B0 attracts each bounded set in X0+.

By Propositions 8.2.3 and 8.2.4 and the results of Hale [173], we obtain the
following result.

Proposition 8.2.5. There exists a compact set A ⊂ X0+ such that

(i) A is invariant under the semiflow U(t); that is,

U(t)A = A ,∀t ≥ 0;

(ii) A attracts the bounded sets of X0+ under U ; that is, for each bounded set
B ⊂ X0+,

lim
t→+∞

δ (U(t)B,A ) = 0,

where the semi-distance δ (., .) is defined as

δ (B,A ) = sup
x∈B

inf
y∈A
‖x− y‖ ;

(iii) A is locally asymptotically stable.
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8.2.2 Local and Global Stability of the Disease-free Equilibrium

The linearized system at the disease-free equilibrium
(
S̄F ,0

)
is

dS(t)
dt

=−νSS(t)−η S̄F
∫ +∞

0 β (a)i(t,a)da,

∂ i(t,a)
∂ t

+
∂ i(t,a)

∂a
=−νI (a) i(t,a),

i(t,0) = η S̄F
∫ +∞

0 β (a)i(t,a)da,
S(0) = S0 ≥ 0,
i(0, .) = i0 ∈ L1

+ (0,+∞) .

Notice that the dynamics of i do not depend on S and so, in order to study the
uniform persistence of the disease, we only need to focus on the linear subsystem

∂ i(t,a)
∂ t

+
∂ i(t,a)

∂a
=−νI (a) i(t,a),

i(t,0) = η S̄F
∫ +∞

0 β (a)i(t,a)da,
i(0, .) = i0 ∈ L1

+ (0,+∞) ,

where S̄F =
γ

νS
. Define

B̂κ

(
0
φ

)
=

(
κ
∫ +∞

0 β (a)φ(a)da
0

)
with κ = η

γ

νS
. For λ ∈ C with Re(λ ) > −νS, define the characteristic function

∆ (λ ) as

∆ (λ ) = 1−κ

∫ +∞

0
β (a)e−

∫ a
0 νI(l)+λdlda.

Moreover, since λ I− Â is invertible, we deduce that λ I− (Â+ B̂κ) is invertible if
and only if I− B̂κ(λ I− Â)−1 is invertible or

λ ∈ ρ

(
Â+ B̂κ

)
⇔ 1 ∈ ρ

(
B̂κ

(
λ I− Â

)−1
)
,

and we have(
λ I−

(
Â+ B̂κ

))−1
=
(

λ I− Â
)−1

[
I− B̂κ

(
λ I− Â

)−1
]−1

.

But we also have
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α

ψ

)
− B̂κ

(
λ I− Â

)−1
(

α

ψ

)
=

(
γ

ϕ

)
⇔

{
α−

[
κ
∫ +∞

0 β (a)
[
e−

∫ a
0 νI(l)+λdlα +

∫ a
0 e−

∫ a
s νI(l)+λdlψ(s)ds

]
da
]
= γ

ψ = ϕ
.

We can isolate α only if ∆(λ ) 6= 0. So for λ ∈ C with Re(λ ) > −νS, the linear
operator I− B̂κ(λ I− Â)−1 is invertible if and only if ∆ (λ ) 6= 0, and we have[

I− B̂κ

(
λ I− Â

)−1
]−1(

γ

ϕ

)

=

∆ (λ )−1
[

κ

∫ +∞

0
β (a)

∫ a

0
e−

∫ a
s νI(l)+λdl

ϕ(s)dsda+ γ

]
ϕ

 .

It follows that for λ ∈ C with Re(λ )>−νS and ∆ (λ ) 6= 0, we have(
λ I−

(
Â+ B̂κ

))−1
(

α

ψ

)
=

(
0
ϕ

)
⇔

ϕ(a) = e−
∫ a

0 νI(l)+λdl
{

∆ (λ )−1
[

κ

∫ +∞

0
β (a)

∫ a

0
e−

∫ a
s νI(l)+λdl

ψ(s)dsda+α

]}
+
∫ a

0
e−

∫ a
s νI(l)+λdl

ψ(s)ds.

Assume that R0 = κ
∫ +∞

0 β (a)e−
∫ a

0 νI(l)dlda > 1. Then we can find λ0 ∈R such that

κ

∫ +∞

0
β (a)e−

∫ a
0 (νI(l)+λ0)dlda = 1,

and λ0 > 0 is a dominant eigenvalue of Â+ B̂κ (see Webb [363]). Moreover, we have

d∆ (λ0)

dλ
= κ

∫ +∞

0
aβ (a)e−

∫ a
0 νI(l)+λ0dlda > 0,

and the expression

Π̂

(
α

ψ

)
= lim

λ→λ0
(λ −λ0)

(
λ I−

(
Â+ B̂κ

))−1
(

α

ψ

)
exists and satisfies

Π̂

(
α

ψ

)
=

(
0
ϕ

)
⇔ ϕ(a) = e−

∫ a
0 νI(l)+λ0dl

{(
d∆ (λ0)

dλ

)−1 [
κ
∫ +∞

0 β (a)
∫ a

0 e−
∫ a

s νI(l)+λ0dlψ(s)dsda+α

]}
.
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The linear operator Π̂ : X̂ → X̂ is the projector onto the generalized eigenspace of
Â+ B̂κ associated with the eigenvalue λ0. Define Π : X → X by

Π

 S
α

i

=

 0

Π̂

(
α

ψ

) .

Define

M̂0 =

{
i ∈ L1

+ (0,+∞) :
∫ ā

0
i(a)da > 0

}
and

M0 = [0,+∞)× M̂0 = {x ∈ X0+ : Πx 6= 0} , ∂M0 = [0,+∞)×L1
+ (0,+∞)\M0.

Then X0+ = M0∪∂M0.

Lemma 8.2.6. The subsets M0 and ∂M0 are both positively invariant under the
semiflow {U(t)}t≥0 ; that is,

U(t)M0 ⊂M0 and U(t)∂M0 ⊂ ∂M0.

Moreover, for each x ∈ ∂M0,

U(t)x→ xF as t→+∞,

where xF =

 S̄F(
0R
0L1

) is the disease-free equilibrium of {U(t)}t≥0.

When R0 ≤ 1, we have the following result extending the results proved in
Thieme and Castillo-Chavez [337, Theorem 2] and D’Agata et al. [80, Proposition
3.10].

Theorem 8.2.7. Assume that R0 ≤ 1. Then the disease-free equilibrium
(
S̄F ,0

)
is

global asymptotically stable for the semiflow generated by system (8.2.1).

Proof. Since R0 ≤ 1, we first observe that

R0 = η
γ

νS

∫ +∞

0
β (a)lνI (a)da≤ 1⇔ γ

νS
≤ S̄E . (8.2.7)

Set

ΓI(a) = η S̄E

∫ +∞

a
e−

∫ s
a νI(l)dl

β (s)ds, ∀a≥ 0.

Since

η S̄E =

(∫ +∞

0
e−

∫ s
0 νI(l)dl

β (s)ds
)−1

,

we have
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Γ ′I (a) = νI(a)ΓI(a)−η S̄Eβ (a) for almost every a≥ 0,
ΓI(0) = 1.

Define
D((A+F)0) =

{
x ∈ D(A) : Ax+F(x) ∈ D(A)

}
.

Let x ∈ D((A+F)0)∩X0+. Then we know (see Thieme [328] or Magal [242]) that
i(t, .) ∈W 1,1 (0,+∞) ,∀t ≥ 0, and for each ∀t ≥ 0,

i(t,0) = S(t)η
∫ +∞

0
β (a)i(t,a)da,∀t ≥ 0,

the map t→ i(t, .) belongs to C1
(
[0,+∞) ,L1 (0,+∞)

)
, and ∀t ≥ 0,

di(t, .)
dt

=−∂ i(t, .)
∂a

−νI(a)i(t,a) for almost every a ∈ (0,+∞) .

So ∀t ≥ 0,

d
∫ +∞

0 ΓI(a)i(t,a)da
dt

=−
∫ +∞

0
ΓI(a)

∂ iR(t,a)
∂a

da−
∫ +∞

0
ΓI(a)νI(a)iI(t,a)da.

By using the fact that i(t, .) ∈W 1,1 (0,+∞) , we deduce that i(t,a)→ 0 as a→+∞.
By integrating by part we obtain that

d
∫ +∞

0 ΓI(a)i(t,a)da
dt

= − [ΓI(a)i(t,a)]
+∞

0 +
∫ +∞

0
Γ
′

I (a)i(t,a)da

−
∫ +∞

0
ΓI(a)νI(a)iR(t,a)da

= i(t,0)−η S̄E

∫ +∞

0
β (a)i(t,a)da

= η
(
S(t)− S̄E

)∫ +∞

0
β (a)i(t,a)da. (8.2.8)

The density of D((A+F)0)∩X0+ in X0+ implies that the above equality holds for
any initial value x ∈ X0+.

Let x∈A , the attractor for system (8.2.5), be fixed. Since there exists a complete

orbit

u(t) =

 S(t)(
0

i(t, .)

)
t∈R

⊂A , it follows from the S(t) equation in system

(8.2.5) that for each t < 0,

S(0) = e−
∫ 0
t νS+

∫+∞

0 β (a)i(l,a)dadlS(t)+
∫ 0

t
e−

∫ s
t νS+

∫+∞

0 β (a)i(l,a)dadl
γds

≤ e−
∫ 0
t νS+

∫+∞

0 β (a)i(l,a)dadlS(t)+
∫ 0

t
e−

∫ s
t νSdl

γds.
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Taking the limit when t→−∞, we have S(0)≤ γ

νS
. Since the above argument holds

for any x ∈A , we have that

S(t)≤ γ

νS
, ∀t ∈ R. (8.2.9)

Combining (8.2.7), (8.2.8) and (8.2.9), we know that t→
∫ +∞

0 ΓI(a)i(t,a)da is non-
increasing along the complete orbit.

Now assume that A *M0. Let x ∈A \M0. By using the definition of ΓI and the
definition of M0, it follows that∫ +∞

0
ΓI(a)i(0,a)da > 0.

Since t→
∫ +∞

0 ΓI(a)i(t,a)da is non-increasing, it follows that∫ +∞

0
ΓI(a)i(t,a)da≥

∫ +∞

0
ΓI(a)i(0,a)da > 0, ∀t ≤ 0.

Thus, the α-limit set of the complete orbit passing through x satisfies

α(x) := ∩t≤0∪s≤t {u(t)} ⊂A ∩M0.

Moreover, there exists a constant C > 0 such that for each x̂ =

 Ŝ(
0
ı̂

) ∈ α(x),

we have ∫ +∞

0
ΓI(a)ı̂(a)da =C > 0 (8.2.10)

and
Ŝ≤ γ

νS
. (8.2.11)

Let

û(t) =

 Ŝ(t)(
0

ı̂(t, .)

)
t≥0

be the solution of the Cauchy problem (8.2.6) with

initial value x̂ ∈ α(x). Then (8.2.10) implies that x̂ ∈ M0, and by using (8.2.4) we
deduce that there exists t1 > 0 such that∫ +∞

0
β (a)ı̂(t,a)da > 0, ∀t ≥ t1.

Now by using the invariance of the α-limit set α(x) by the semiflow generated by
(8.2.6), the S(t) equation, and (8.2.11), we have for each t2 > t1 that

Ŝ(t)<
γ

νS
, ∀t ≥ t2.

Finally, since by (8.2.7) we have γ

νS
≤ S̄E , and by using (8.2.8) we obtain
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d
∫ +∞

0 ΓI(a)ı̂(t,a)da
dt

< 0, ∀t ≥ t2,

so the map t →
∫ +∞

0 ΓI(a)ı̂(t,a)da is not constant. This contradiction assures that
A ⊂ ∂M0. It follows that

A = {xF} ,

the result follows. ut

8.2.3 Uniform Persistence

By applying the results in Magal and Zhao [252] (or Magal [243]) and Proposi-
tion 8.2.5, we have the following proposition.

Proposition 8.2.8. Assume that R0 > 1. The semiflow {U(t)}t≥0 is uniformly per-
sistent with respect to the pair (∂M0,M0) ; that is, there exists ε > 0 such that

liminf
t→+∞

‖ΠU(t)x‖ ≥ ε, ∀x ∈M0.

Moreover, there exists a compact subset A0 of M0 which is a global attractor for
{U(t)}t≥0 in M0; that is,

(i) A0 is invariant under U ; i.e.,

U(t)A0 = A0,∀t ≥ 0;

(ii) For each compact subset C ⊂M0,

lim
t→+∞

δ (U(t)C ,A0) = 0.

Furthermore, the subset A0 is locally asymptotically stable.

Proof. Since the disease-free equilibrium xF =

 S̄F(
0R
0L1

) is globally asymp-

totically stable in ∂M0, to apply Theorem 4.1 in Hale and Waltman [176], we
only need to study the behavior of the solutions starting in M0 in some neigh-
borhood of xF . It is sufficient to prove that there exists ε > 0, such that for each

x =

 S0(
0
i0

) ∈ {y ∈M0 : ‖xF − y‖ ≤ ε} , there exists t0 ≥ 0 such that

‖xF −U(t0)x‖> ε.

This will show that {y ∈ X0+ : ‖xF − y‖ ≤ ε} is an isolating neigborhood of {xF}
(i.e. there exists a neigborhood of {xF} in which {xF} is the largest invariant set for
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U), and
W s ({xF})∩M0 =∅,

where

W s ({xF}) =
{

x ∈ X0+ : lim
t→+∞

U(t)x = xF

}
.

Assume by contradiction that for each n ≥ 0, we can find xn =

 Sn
0(

0
in0

) ∈{
y ∈M0 : ‖xF − y‖ ≤ 1

n+1

}
such that

‖xF −U(t)xn‖ ≤
1

n+1
, ∀t ≥ 0. (8.2.12)

Set  Sn(t)(
0

in(t, .)

) :=U(t)xn.

We have ∣∣Sn(t)− S̄F
∣∣≤ 1

n+1
,∀t ≥ 0.

Moreover, the map t→
(

0
in(t, .)

)
is an integrated solution of the Cauchy problem

d
dt

(
0

in(t, .)

)
= Â

(
0

in(t, .)

)
+F2(Sn(t),

(
0

in(t, .)

)
), t ≥ 0;

(
0

in(0, .)

)
=

(
0
in0

)
.

Since Â is resolvent positive and F2 monotone non-increasing, we deduce that

in(t, .)≥ ı̃n(t, .), (8.2.13)

where t→ ı̃n(t, .) is a solution of the linear Cauchy problem

d
dt

(
0

ı̃n(t, .)

)
= Â

(
0

ı̃n(t, .)

)
+F2(S̄F + 1

n+1 ,

(
0

ı̃n(t, .)

)
), t ≥ 0;

(
0

ı̃n(0, .)

)
=

(
0
in0

)
,

or ı̃n(t,a) is a solution of the PDE
∂ ı̃n(t,a)

∂ t
+

∂ ı̃n(t,a)
∂a

=−νI (a) ı̃n(t,a),

ı̃n(t,0) = η

(
S̄F −

1
n+1

)∫ +∞

0 β (a)ı̃n(t,a)da,

ı̃n(0, .) = in0 ∈ L1
+ (0,+∞) .

We observe that
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F2(S̄F −
1

n+1
,

(
0
ϕ

)
) = B̂κn

(
0
ϕ

)
with

κn = η

(
S̄F −

1
n+1

)
.

Now since R0 > 1, we deduce that for all n≥ 0 large enough, the dominated eigen-
value of the linear operator Â+ B̂κn : D(A) ⊂ X → X satisfies the characteristic
equation

η

(
S̄F −

1
n+1

)∫ +∞

0
β (a)e−

∫ a
0 νI(l)+λ0ndlda = 1.

It follows that λ0n > 0 for all n≥ 0 large enough. Now xn ∈M0, we have

Π̂n

(
0
in0

)
6= 0,

where Π̂n is the projector on the eigenspace associated to the dominante eigenvalue
λ0n. It follows that

lim
t→+∞

‖ı̃n(t, .)‖=+∞,

and by using (8.2.13) we obtain

lim
t→+∞

‖in(t, .)‖=+∞.

We obtain a contradiction with (8.2.12), and the result follows. ut

8.2.4 Local and Global Stabilities of the Endemic Equilibrium

We first have the following result on the local stability of the endemic equilib-
rium.

Proposition 8.2.9. Assume that R0 > 1. Then the endemic equilibrium xE =

 S̄E(
0
ı̄E

)
is locally asymptotically stable for {U(t)}t≥0.

Proof. The linearized equation of (8.2.6) around the endemic equilibrium xE is

dv(t)
dt

= Av(t)+DF (xE)(v(t)), t ≥ 0, v(0) = x ∈ D(A),

which corresponds to the following PDE
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dx(t)
dt

=−νSx(t)−η S̄E
∫ +∞

0 β (a)y(t,a)da− x(t)η
∫ +∞

0 β (a)ı̄E(a)da,
∂y(t,a)

∂ t
+

∂y(t,a)
∂a

=−νI (a)y(t,a),

y(t,0) = η S̄E
∫ +∞

0 β (a)y(t,a)da+ x(t)η
∫ +∞

0 β (a)ı̄E(a)da,
x(0) = x0 ∈ R,
y(0, .) = y0 ∈ L1 (0,+∞) .

Since the semigroup
{

TA0(t)
}

t≥0 generated by A0, the part of A in D(A), satisfies∥∥TA0(t)
∥∥≤ M̂e−νSt , ∀t ≥ 0,

for some constant M̂ > 0, it follows that the essential growth rate ωess(A0) of{
TA0(t)

}
t≥0 is no more than−νS. Let {T(A+DF(xE ))0

(t)}t≥0 be the linear C0-semigroup

generated by (A+DF (xE))0 , the part of A+DF (xE) : D(A) ⊂ X → X in D(A).
Since DF (xE) is a compact bounded linear operator, it follows from Theorem 4.7.3
that

ωess((A+DF (xE))0)≤−νS.

It remains to study the point spectrum of (A+DF (xE))0 . Consider the exponential
solutions (i. e. solutions of the form u(t) = eλ tx with x 6= 0) to derive the character-
istic equation and obtain the following system

λx =−νSx−η S̄E
∫ +∞

0 β (a)y(a)da− xη
∫ +∞

0 β (a)ı̄E(a)da

λy(a)+
dy(a)

da
=−νI (a)y(a),

y(0) = η S̄E
∫ +∞

0 β (a)y(a)da+ xη
∫ +∞

0 β (a)ı̄E(a)da,

where λ ∈C with Re(λ )>−νS and (x,y)∈R×W 1,1 (0,+∞)\{0} . By integrating
y(a) we obtain the system of two equations for λ ∈ C with Re(λ )>−νS,(

λ +νS +η

∫ +∞

0
β (a)ı̄E(a)da

)
x =−η S̄Ey(0)

∫ +∞

0
β (a)lνI (a)e

−aλ da

and (
1−η S̄E

∫ +∞

0
β (a)lνI (a)e

−aλ da
)

y(0) = +xη

∫ +∞

0
β (a)ı̄E(a)da,

where

S̄E :=
(

η

∫ +∞

0
β (a)lνI (a)da

)−1

, η

∫ +∞

0
β (a)ı̄E(a)da = γ S̄−1

E −νS,

and (x,y(0)) ∈ R2 \{0} . We have

1 = η S̄E

∫ +∞

0
β (a)lνI (a)e

−aλ da
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−
(
γ S̄−1

E −νS
)(

λ +νS + γ S̄−1
E −νS

)η S̄E

∫ +∞

0
β (a)lνI (a)e

−aλ da

= η S̄E

∫ +∞

0
β (a)lνI (a)e

−aλ da

[
1−

(
γ S̄−1

E −νS
)(

λ + γ S̄−1
E

) ] .
Thus, it remains to study the characteristic equation for λ ∈ C with Re(λ )>−νS,

1 = η S̄E

∫ +∞

0
β (a)lνI (a)e

−aλ da

[
(λ +νS)(
λ + γ S̄−1

E

)] . (8.2.14)

By considering the real and the imaginary parts of λ , we obtain[(
Re(λ )+ γ S̄−1

E

)
+ iIm(λ )

]
[(Re(λ )+νS)− iIm(λ )][

(Re(λ )+νS)
2 + Im(λ )2

]
= η S̄E

[∫ +∞

0 β (a)lνI (a)e
−aRe(λ ) [cos(aIm(λ ))+ isin(aIm(λ ))]da

]
.

By identifying the real and imaginary parts, we obtain for the real part that(
Re(λ )+ γ S̄−1

E

)
(Re(λ )+νS)+ Im(λ )2

=
[
(Re(λ )+νS)

2 + Im(λ )2
]

η S̄E

[∫ +∞

0 β (a)lνI (a)e
−aRe(λ ) cos(aIm(λ ))da

]
.

Thus,(
γ S̄−1

E −νS
)
(Re(λ )+νS)

=
[
(Re(λ )+νS)

2 + Im(λ )2
][

η S̄E

[∫ +∞

0 β (a)lνI (a)e
−aRe(λ ) cos(aIm(λ ))da

]
−1
]
.

Assume that there exists λ ∈ C with Re(λ ) ≥ 0 satisfying (8.2.14). Since S̄E =(
η
∫ +∞

0 β (a)lνI (a)da
)−1

, we deduce that

η S̄E

[∫ +∞

0
β (a)lνI (a)e

−aRe(λ ) cos(aIm(λ ))da
]
≤ 1,

and since R0 = η
γ

νS

∫ +∞

0 β (a)lνI (a)da =
γ

νS

1
S̄E

> 1, we obtain γ S̄−1
E − νS > 0.

Thus, (
γ S̄−1

E −νS
)
(Re(λ )+νS)> 0.

It follows that the characteristic equation (8.2.14) has no root with non-negative real
part. The proof is complete. ut

Assume that R0 > 1. By using Proposition 8.2.8 (since A0 is invariant under U),
we can find a complete orbit {u(t)}t∈R ⊂A0 of {U(t)}t≥0 ; that is,

u(t) =U(t− s)u(s),∀t,s ∈ R with t ≥ s.
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So we have

u(t) =

 S(t)(
0

i(t, .)

) ∈A0, ∀t ∈ R,

and {(S(t), i(t, .))}t∈R is a complete orbit of system (8.2.1). Moreover, by using the
same arguments as in Lemma 3.6 and Proposition 4.3 in D’Agata et al. [80], we
have the following lemma.

Lemma 8.2.10. There exist constants M > ε > 0 such that for each complete orbit
 S(t)(

0
i(t, .)

)
t∈R

of U in A0, we have

ε ≤ S(t)≤M, ∀t ∈ R,

and

ε ≤
∫ +∞

0
β (a)i(t,a)da≤M, ∀t ∈ R.

Moreover, O = ∪t∈R {(S(t), i(t, .))} is compact in R×L1 (0,+∞) .

To make a change of variable, using Volterra integral formulation (8.2.3) of the
solution we have

i(t,a) = exp
(∫ a

0
−νI(r)dr

)
b(t−a),

where

b(t) = ηS(t)
∫ +∞

0
β (a)i(t,a)da.

Set

u(t,a) := exp
(∫ a

0
(νI (r)−νS)dr

)
i(t,a) = e−νSab(t−a),

l̂(a) := exp
(
−
∫ a

0
(νI (r)−νS)dr

)
,

and
β̂ (a) := β (a)l̂(a).

Then we have
i(t,a) = l̂(a)u(t,a)

and (S(t),u(t,a))t∈R is a complete orbit of the following system
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dS(t)
dt

= γ−νSS(t)−ηS(t)
∫ +∞

0 β̂ (a)u(t,a)da,
∂u(t,a)

∂ t
+

∂u(t,a)
∂a

=−νIu(t,a)

u(t,0) = ηS(t)
∫ +∞

0 β̂ (a)u(t,a)da,
S(0) = S0 ≥ 0,
u(0, .) = u0 ∈ L1

+ (0,+∞) .

(8.2.15)

Moreover, by using (8.2.15) we deduce that

d
[
S(t)+

∫ +∞

0 u(t,a)da
]

dt
= γ−νS

[
S(t)+

∫ +∞

0
u(t,a)da

]
, (8.2.16)

and since t→
[
S(t)+

∫ +∞

0 u(t,a)da
]

is a bounded complete orbit of the above ordi-
nary differential equation, we have

γ = νS

[
S(t)+

∫ +∞

0
u(t,a)da

]
, ∀t ∈ R.

For the sake of simplicity, we make the following assumption.

Assumption 8.2.11. Assume that

νI(a) = νS,∀a≥ 0, and γ = νS.

We now prove the global stability of the endemic equilibrium.

Theorem 8.2.12. Assume that R0 > 1 and Assumption 8.2.11 is satisfied. Then the
equilibrium (S̄E , ı̄E ) is globally asymptotically stable.

Proof. Under the Assumption 8.2.11 system (8.2.1) becomes

dS(t)
dt

= νS−νSS(t)−ηS(t)
∫ +∞

0 β (a)i(t,a)da,
∂ i(t,a)

∂ t
+

∂ i(t,a)
∂a

=−νI i(t,a),

i(t,0) = ηS(t)
∫ +∞

0 β (a)i(t,a)da,
S(0) = S0 ≥ 0, i(0, .) = i0 ∈ L1

+ (0,+∞) .

(8.2.17)

In this special case, the endemic equilibrium satisfies the following system of equa-
tions

0 = νS−νSS̄E −η S̄E

∫ +∞

0
β (a)ı̄E(a)da

ı̄E(a) = e−νSa ı̄E(0) (8.2.18)

with

1 = η S̄E

∫ +∞

0
β (a)e−νSada.
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Moreover, by Lemma 8.2.10 we can consider a complete orbit {(S(t), i(t, .))}t∈R of
system (8.2.17) satisfying

ε ≤ S(t)≤M, ε ≤
∫ +∞

0
β (a)i(t,a)da≤M, ∀t ∈ R.

Moreover, O = ∪t∈R {(S(t), i(t, .))} is compact in R×L1 (0,+∞) . Furthermore, we
have

i(t,a)
ı̄E(a)

=
b(t−a)

ı̄E(0)
=

ηS(t−a)
∫ +∞

0 β (l)i(t−a, l)dl
ı̄E(0)

.

Thus,
η

ı̄E(0)
ε

2 ≤ i(t,a)
ı̄E(a)

≤ η

ı̄E(0)
M2.

To construct a Liapunov functional, let

g(x) = x−1− lnx.

Note that g′(x) = 1− 1
x

. Thus, g is decreasing on (0,1] and increasing on [1,∞).
The function g has only one extremum which is a global minimum at 1, satisfying
g(1) = 0. We first define expressions VS(t) and Vi(t), and calculate their derivatives.
Then, we will analyze the Liapunov functional V =VS +Vi. Let

VS(t) = g
(

S(t)
S̄E

)
.

Then

dVS

dt
= g′

(
S(t)
S̄E

)
1

S̄E

dS
dt

=

(
1− S̄E

S(t)

)
1

S̄E
[νS−νSS(t)−

∫
∞

0 ηβ (l)i(t, l)S(t)dl]

=

(
1− S̄E

S(t)

)
1

S̄E

[
νS
(
S̄E −S(t)

)
+
∫

∞

0 ηβ (l)
(
ı̄E(l)S̄E − i(t, l)S(t)

)
dl
]

=−νS

(
S(t)− S̄E

)2

S(t)S̄E
+
∫

∞

0 ηβ (l)ı̄E(l)
(

1− i(t, l)
ı̄E(l)

S(t)
S̄E
− S̄E

S(t)
+

i(t, l)
ı̄E(l)

)
dl.

(8.2.19)
Let

Vi(t) =
∫

∞

0
α(a)g

(
i(t,a)
ı̄E(a)

)
da,

where
α(a) :=

∫
∞

a
ηβ (l)ı̄E(l)dl. (8.2.20)

Then
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dVi

dt
=

d
dt
∫

∞

0 α(a)g
(

i(t,a)
ı̄E(a)

)
da

=
d
dt
∫

∞

0 α(a)g
(

b(t−a)
ı̄E(0)

)
da

=
d
dt
∫ t
−∞

α(t− s)g
(

b(s)
ı̄E(0)

)
ds

= α(0)g
(

b(t)
ı̄E(0)

)
+
∫ t
−∞

α ′(t− s)g
(

b(s)
ı̄E(0)

)
da,

and thus
dVi

dt
= α(0)g

(
i(t,0)
ı̄E(0)

)
+
∫

∞

0
α
′(a)g

(
i(t,a)
ı̄E(a)

)
da. (8.2.21)

Moreover, by the definition of α we have

α(0)g
(

i(t,0)
ı̄E(0)

)
=
∫

∞

0
ηβ (l)ı̄E(l)g

(
i(t,0)
ı̄E(0)

)
dl. (8.2.22)

Noting additionally that α ′(a) =−ηβ (a)ı̄E(a), we may combine equations (8.2.21)
and (8.2.22) to get

dVi

dt
=
∫

∞

0
ηβ (a)ı̄E(a)

[
g
(

i(t,0)
ı̄E(0)

)
−g
(

i(t,a)
ı̄E(a)

)]
da.

Filling in for the function g, we obtain

dVi

dt
=
∫

∞

0
ηβ (a)ı̄E(a)

[
i(t,0)
ı̄E(0)

− i(t,a)
ı̄E(a)

− ln
i(t,0)
ı̄E(0)

+ ln
i(t,a)
ı̄E(a)

]
da. (8.2.23)

Let
V (t) =VS(t)+Vi(t).

Then by combining (8.2.19) and (8.2.23), we have

dV
dt

=−νS

(
S(t)− S̄E

)2

S(t)S̄E

+
∫

∞

0 ηβ (a)ı̄E(a)

1− i(t,a)
ı̄E(a)

S(t)
S̄E
− S̄E

S(t)
+

i(t,0)
ı̄E(0)

− ln
i(t,0)
ı̄E(0)

+ ln
i(t,a)
ı̄E(a)

da.
(8.2.24)

Now we show that
dV
dt

is non-positive. To do this, we demonstrate that two of the
terms in (8.2.24) cancel out:
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∫
∞

0 ηβ (a)ı̄E(a)
[

i(t,0)
ı̄E(0)

− i(t,a)
ı̄E(a)

S(t)
S̄E

]
da

=
1

S̄E

∫
∞

0 ηβ (a)ı̄E(a)S̄E da
i(t,0)
ı̄E(0)

− 1
S̄E

∫
∞

0 ηβ (a)i(t,a)S(t)da

=
1

S̄E
ı̄E(0)

i(t,0)
ı̄E(0)

− 1
S̄E

i(t,0)

= 0.

(8.2.25)

Using this to simplify equation (8.2.24) gives

dV
dt

=−νS

(
S(t)− S̄E

)2

S(t)S̄E

+
∫

∞

0 ηβ (a)ı̄E(a)
[

1− S̄E

S(t)
− ln

i(t,0)
ı̄E(0)

+ ln
i(t,a)
ı̄E(a)

]
da.

(8.2.26)

Noting that ı̄E(0)/i(t,0) is independent of a, we may multiply both sides of (8.2.25)
by this quantity to obtain∫

∞

0
ηβ (a)ı̄E(a)

[
1− i(t,a)

ı̄E(a)
S(t)
S̄E

ı̄E(0)
i(t,0)

]
da = 0. (8.2.27)

We now add (8.2.27) to (8.2.26), and also add and subtract ln(S(t)/S̄E) to get

dV
dt

=−νS

(
S(t)− S̄E

)2

S(t)S̄E
+
∫

∞

0
ηβ (a)ı̄E(a)C(a)da,

where

C(a) = 2− i(t,a)
ı̄E(a)

S(t)
S̄E

ı̄E(0)
i(t,0)

− S̄E

S(t)
− ln

i(t,0)
ı̄E(0)

+ ln
i(t,a)
ı̄E(a)

+ ln
S(t)
S̄E
− ln

S(t)
S̄E

=

(
1− S̄E

S(t)
+ ln

S̄E

S(t)

)
+

(
1− i(t,a)

ı̄E(a)
S(t)
S̄E

ı̄E(0)
i(t,0)

+ ln
i(t,a)
ı̄E(a)

S(t)
S̄E

ı̄E(0)
i(t,0)

)
=−

[
g
(

S̄E

S(t)

)
+g
(

i(t,a)
ı̄E(a)

S(t)
S̄E

ı̄E(0)
i(t,0)

)]
≤ 0.

Thus,
dV
dt
≤ 0 with equality if and only if

S̄E

S(t)
= 1 and

i(t,a)
ı̄E(a)

ı̄E(0)
i(t,0)

= 1. (8.2.28)

Using (8.2.18), the second condition in (8.2.28) is equivalent to

i(t,a) = i(t,0)e−νSa, ∀a≥ 0. (8.2.29)
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Next we look for the largest invariant set Q for which (8.2.28) holds. In Q, we
must have S(t) = S̄E for all t and so dS

dt = 0. Combining this with (8.2.29), we obtain

0 = νS−νSS̄E −
∫

∞

0 ηβ (a)i(t,a)daS̄E
= νS−νSS̄E −

∫
∞

0 ηβ (a)i(t,0)e−νSa daS̄E

= νS−νSS̄E −
i(t,0)
ı̄E(0)

∫
∞

0 ηβ (a)ı̄E(0)e−νSa daS̄E

= νS−νSS̄E −
i(t,0)
ı̄E(0)

∫
∞

0 ηβ (a)ı̄E(a)daS̄E

= νS−νSS̄E −
i(t,0)
ı̄E(0)

(
νS−νSS̄E

)
=

(
1− i(t,0)

ı̄E(0)

)(
νS−νSS̄E

)
.

Since S̄E is not equal to 1, we must have i(t,0) = ı̄E(0) for all t. Thus, the set Q
consists of only the endemic equilibrium.

Assume that A0 is larger than {xE}. Then there exists x ∈A0 \{xE} , and we can
find a complete orbit {u(t)}t∈R ⊂ A0 of U , passing through x at t = 0, with alpha
limit set α (x). Since

u(0) = x 6= xE , (8.2.30)

we deduce that t→V (u(t)) is a non-increasing map. Thus, V is a constant functional
on α(x). Since α (x) is invariant under U , it follows that

α (x) = {xE} . (8.2.31)

Recalling from Proposition 8.2.9 that the endemic equilibrium is locally asymp-
totically stable, equation (8.2.31) implies x = xE which contradicts (8.2.30) and
completes the proof. ut

8.2.5 Numerical Examples

We present three examples to illustrate the infection-age model (8.2.1). In these
examples the infection-age is used to track the period of incubation, the period of
infectiousness, the appearance of symptoms, and the quarantine of infectives.

Example 8.2.13. In the first example we interpret infection-age as an exposed pe-
riod (infected but not yet infectious) from a = 0 to a = a1 and an infectious period
from a = a1 to a = a2. The total numbers of exposed individuals E(t) and infectious
individuals I(t) at time t are

E(t) =
∫ a1

0
ı(t,a)da, I(t) =

∫ a2

a1

ı(t,a)da.



8.2 A Susceptible-Infectious Model with Age of Infection 385

This interpretation of the model is typical of a disease such as influenza, in which
there is an initial non-infectious period followed by a period of increasing then de-
creasing infectiousness. We investigate the role of quarantine in controlling an epi-
demic using infection-age to track quarantined individuals. Consider a population
of initially γ/νS susceptible individuals with an on-going influx at a rate γ and ef-
flux at a rate νS. These rates influence the extinction or endemicity of the epidemic;
specifically, the continuing arrival of new susceptibles enables the disease to persist,
which might otherwise extinguish.

Set γ = 365, νS = 1/365 (time units are days). For a population of approxi-
mately 100,000 people these rates may be interpreted in terms of daily immigration
and emigration of the population. Set a1 = 5 and a2 = 21. We use the form of the
transmission function β (a) in Fig. 8.2(A) (see Fig. 8.2):

β (a) =

{
0.0 if 0.0≤ a≤ 5.0,
0.66667(a−5.0)2e−.6(a−5.0) if a > 5.0.

Set the transmission rate η = 1.5×10−5 and νI(a) = νQ(a)+νH(a)+νS, where

νQ(a) =

{
− log(.95) if 0.0≤ a≤ 5.0,
0.0 if a > 5.0,

νH(a) =

{
0.0 if 0.0≤ a≤ 5.0,
− log(.5) if a > 5.0.

The function νQ(a) represents quarantine of exposed individuals at a rate of 5% per
day and the function νH(a) represents hospitalized (or removed) infectious individu-
als at a rate of 50% per day. It is assumed that exposed individuals are asymptomatic
(only asymptomatic individuals are quarantined) and only infectious individuals are
symptomatic (symptomatic individuals are hospitalized or otherwise isolated from
susceptibles). These assumptions were valid for the SARS epidemic in 2003, but
may not hold for other influenza epidemics. In fact, in the 1918 influenza pandemic
the infectious period preceded the symptomatic period by several days, resulting
in much higher transmission. We assume that the initial susceptible population is
S(0) = γ/νS = 133,225 and initial age distribution of infectives (see Fig. 8.2) is
ı(0,a) = 50.0(a+ 2.0)e−0.4(a+2.0),a ≥ 0.0. For these parameters R0 < 1.0 and the
epidemic is extinguished in approximately one year (Fig. 8.3).
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Fig. 8.2: The period of infectiousness begins at day 5 and lasts 16 days. The transmission probability peaks at 8.33333
days. Symptoms appear at day 5, which coincides with the beginning of the infectious period. Infected individuals are
hospitalized (or otherwise removed) at a rate of 50% per day after day 5. Pre-symptomatic individuals are quarantined
at a rate of 5% per day during the pre-symptomatic period. From the initial infection-age distribution we obtain E(0) =
179.9 and I(0) = 72.5.

Fig. 8.3: With quarantine of asymptomatic individuals at a rate of 5% per day, the disease is extinguished and the
susceptible population converges to the disease-free steady state S̄F = γ/νS = 133,225, ĪF = 0.0. R0 = 0.939.

Example 8.2.14. In the second example we simulate Example 8.2.13 without quar-
antine measures implemented (that is, all parameters and initial conditions are as
in Example 8.2.13 except that νQ(a)≡ 0.0). Without quarantine control the disease
becomes endemic (Fig. 8.4). In this case R0 > 1 and the solutions converge to the
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endemic equilibrium. From Fig. 8.4 it is seen that the solutions oscillate as they
converge to the disease equilibrium over a period of years. The on-going source γ

of susceptibles allows the disease to persist albeit at a relatively low level. At equi-
librium the population of susceptibles is significantly lower than the disease-free
susceptible population.

Fig. 8.4: Without quarantine implemented, the disease becomes endemic and the populations converge with damped
oscillations to the disease steady state S̄E = γ

R0 νS
= 102,480, Ē = 369, Ī = 120, and ı̄E (a) = lνI (a)ı̄E (0), lνI (a) =

exp(−
∫ a

0 νI (l)dl), ı̄E (0) = γ−νS S̄E = 85.8. R0 = 1.26.

Example 8.2.15. In the third example we assume that the infectious period and the
symptomatic period are not coincident, as in the above two examples. In this case
the severity of the epidemic may be much greater, since the transmission potential
of some infectious individuals will not be known during some part of their period of
infectiousness. We illustrate this case in an example in which the infectious period
overlaps the asymptomatic period by one day. All parameters and initial conditions
are as in Example 8.2.13, except that symptoms first appear on day 6, which means
that hospitalization (or removal) of infectious individuals does not begin until 1
day after the period of infectiousness begins. It is also assumed that quarantine of
infected individuals does not end until day 6 (Fig. 8.5). In this scenario the epi-
demic, even with quarantine measures implemented as in Example 8.2.13, becomes
endemic. The epidemic populations exhibit extreme oscillations with the infected
populations attaining very low values and the population converging to the steady
state (Fig. 8.6).
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Fig. 8.5: The period of infectiousness overlaps by 1 day with the asymptomatic period. Quarantine of asymptomatic
individuals ends on day 6. Hospitalization of symptomatic individuls begins on day 6.

Fig. 8.6: When the infectious period overlaps the asymptomatic period, even with quarantine implemented, the disease
becomes endemic and the populations converge with damped oscillations to the disease steady state S̄E = γ

R0 νS
=

74,834, Ē = 690, Ī = 303, and ı̄E (a) = lνI (a)ı̄E (0), lνI (a) = exp(−
∫ a

0 νI (l)dl), ı̄E (0) = γ−νS S̄E = 160.0. R0 = 1.78.

8.3 A Scalar Age-structured Model

In this section we focus on a scalar age-structured model. Let u(t,a) denote the
density of a population at time t with age a. Consider the following age structured
model
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∂u(t,a)

∂ t
+

∂u(t,a)
∂a

=−µu(t,a), a ∈ (0,+∞) ,

u(t,0) = αh
(∫ +∞

0 γ(a)u(t,a)da
)
,

u(0, .) = ϕ ∈ L1
+ ((0,+∞) ;R) ,

(8.3.1)

where µ > 0 is the mortality rate of the population, the function h(·) describes the
fertility of the population, α ≥ 0 is considered as a bifurcation parameter.

We first make an assumption on the functions h(·) and γ(·).

Assumption 8.3.1. Assume that h : R→ R is defined by

h(x) = xe−βx, β > 0, ∀x ∈ R,

and γ ∈ L∞
+ ((0,+∞) ,R) with ∫ +∞

0
γ(a)e−µada = 1.

8.3.1 Existence of Integrated Solutions

Set

Y = R×L1 ((0,+∞) ;R) , Y0 = {0}×L1 ((0,+∞) ;R) ,
Y+ = R+×L1 ((0,+∞) ;R+) , Y0+ = Y0∩Y+.

Assume that Y is endowed with the product norm

‖x‖= |α|+‖ϕ‖L1((0,+∞);R) , ∀x =
(

α

ϕ

)
∈ Y.

Denote by
YC = Y + iY and YC0 = Y0 + iY0

the complexified Banach space of Y and Y0, respectively. We can identify YC to

Y = C×L1 ((0,+∞) ;C)

endowed with the product norm

‖x‖= |α|+‖ϕ‖L1((0,+∞);C) , ∀x =
(

α

ϕ

)
∈ YC.

From now on, for each x ∈ Y, we denote by

x =
(

α

ϕ

)
, Re(x) =

x+ x
2

, and Im(x) =
x− x

2
.
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Consider the linear operator A : D(A)⊂ Y → Y defined by

A
(

0
ϕ

)
=

(
−ϕ (0)
−ϕ ′−µϕ

)
with

D(A) = {0}×W 1,1 ((0,+∞) ;R) .

Moreover, for each λ ∈ C with Re(λ )>−µ , we have λ ∈ ρ (A) and

(λ I−A)−1
(

α

ψ

)
=

(
0
ϕ

)
⇔ ϕ(a) = e−(λ+µ)a

α +
∫ a

0
e−(λ+µ)(a−s)

ψ(s)ds.

Note that
λ ∈ ρ (A)⇔ λ ∈ ρ (A)

and

(λ I−A)−1 x =
(

λ I−A
)−1

x, ∀x ∈ Y, ∀λ ∈ ρ (A) .

It is well known that A is a Hille-Yosida operator. Moreover, A0 is the part of A
in Y0 generates a C0-semigroup of bounded linear operators

{
TA0(t)

}
t≥0 , which is

defined by

TA0(t)
(

0
ϕ

)
=

(
0

T̂A0(t)ϕ

)
,

where

T̂A0(t)(ϕ)(a) =
{

e−µtϕ(a− t) if a≥ t,
0 if a≤ t.

{SA(t)}t≥0 is the integrated semigroup generated by A and is defined by

SA(t)
(

α

ϕ

)
=

(
0

L(t)α +
∫ t

0 T̂A0(s)ϕds

)
,

where

L(t)(α)(a) =
{

0 if a≥ t,
e−µaα if a≤ t.

Define H : Y0→ Y and H1 : Y0→ R by

H
(

0
ϕ

)
=

H1

(
0
ϕ

)
0

 , H1

(
0
ϕ

)
= h

(∫ +∞

0
γ(a)ϕ(a)da

)
.

Then, by identifying v(t) =
(

0
u(t)

)
, the problem (8.3.1) can be considered as the

following Cauchy problem
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dv(t)
dt

= Av(t)+αH(v(t)) for t ≥ 0, v(t) = y ∈ Y0+. (8.3.2)

Since h is Lipschitz continuous on [0,+∞) , the following lemma is a consequence
of the results in Proposition 5.4.1.

Lemma 8.3.2. Let Assumption 8.3.1 be satisfied. Then for each α ≥ 0, there exists
a family of continuous maps {Uα(t)}t≥0 on Y0+ such that for each y ∈Y0+, the map
t→Uα(t)y is the unique integrated solution of (8.3.2), that is,

Uα(t)y = y+A
∫ t

0
Uα(s)yds+

∫ t

0
αH(Uα(l)y)dl, ∀t ≥ 0,

or equivalently

Uα(t)y = TA0(t)y+
d
dt

(SA ∗αH(Uα(.)y))(t), ∀t ≥ 0.

Moreover, {Uα(t)}t≥0 is a continuous semiflow, that is, U(0) = Id,

Uα(t)Uα(s) =Uα(t + s),∀t,s≥ 0,

and the map (t,x)→Uα(t)x is continuous from [0,+∞)×Y0+ into Y0+.

8.3.2 Spectral Analysis

We recall that y ∈ Y0+ is an equilibrium of {Uα(t)}t≥0 if and only if

y ∈ D(A) and Ay+αH (y) = 0.

Here if α > 1, equation (8.3.1) has two non-negative equilibria given by

v =
(

0
u

)
with u(a) =Ce−µa,

where C is a solution of

C = αh
(

C
∫ +∞

0
γ(a)e−µada

)
with C ≥ 0.

But by Assumption 8.3.1 we have
∫ +∞

0 γ(a)e−µada = 1, so

C = 0 or C =C (α) := β
−1 ln(α) .

From now on we set

vα =

(
0

uα

)
with uα(a) =C (α)e−µa, ∀α > 1. (8.3.3)
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We have

αH (vα) =

(
C (α)

0

)
,

αDH (ψ)

(
0
ϕ

)
=

(
αh′
(∫ +∞

0 γ(a)ψ(a)da
)∫ +∞

0 γ(a)ϕ(a)da
0

)
,

so

αDH (vα)

(
0
ϕ

)
=

(
η (α)

∫ +∞

0 γ(a)ϕ(a)da
0

)
,

where

η (α) = αh′
(∫ +∞

0
γ(a)e−µadaC (α)

)
= α

(
1−βC (α)

)
exp
(
−βC (α)

)
= 1− ln(α) .

We also have for k ≥ 1 that

αDkH (ψ)

((
0

ϕ1

)
, ...,

(
0
ϕk

))
=

αh(k)
(∫ +∞

0 γ(a)ψ(a)da
) k

∏
i=1

∫ +∞

0 γ(a)ϕi(a)da

0

 .

The characteristic equation of the problem is

1 = η (α)
∫ +∞

0
γ(a)e−(λ+µ)ada with λ ∈ C and Re(λ )>−µ. (8.3.4)

Set
Ω = {λ ∈ C : Re(λ )>−µ}

and consider the map ∆ : R×Ω → C defined by

∆ (α,λ ) = 1−η (α)
∫ +∞

0
γ(a)e−(λ+µ)ada. (8.3.5)

One can prove that ∆ is holomorphic. Moreover, for each k ≥ 1 and each λ ∈ Ω ,
we have

dk∆ (α,λ )

dλ k = (−1)k+1
η (α)

∫ +∞

0
ak

γ(a)e−(λ+µ)ada.

To simplify the notation, we set

Bα x = Ax+αDH (vα)x with D(Bα) = D(A)

and identify Bα to

BCα (x+ iy) = BCα x+ iBCα y, ∀(x+ iy) ∈ D
(

BCα
)

:= D(A)+ iD(A) .
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Note that the part of Bα in D(Bα) is the generator of the linearized equation at vα .

Lemma 8.3.3. Let Assumption 8.3.1 be satisfied. Then the linear operator Bα :
D(A)⊂ Y → Y is a Hille-Yosida operator and

ωess ((Bα)0)≤−µ.

Proof. Since αDH (vα) is a bounded linear operator, it follows that BCα is a Hille-
Yosida operator. Moreover, by applying Theorem 3 in Thieme [331] (or Theorem
1.2 in Ducrot et al. [110] or Theorem 4.7.3) to Bα + εI for each ε ∈ (0,µ) , we
deduce that ωess ((Bα)0)≤−µ. ut

Lemma 8.3.4. Let Assumption 8.3.1 be satisfied. Then the linear operator Bα :
D(A)⊂ Y → Y is a Hille-Yosida operator and we have the following:

(i) σ
(
BCα
)
∩Ω = {λ ∈Ω : ∆ (α,λ ) = 0} ;

(ii) If λ ∈Ω ∩ρ
(
BCα
)
, we have the following explicit formula for the resolvent(

0
ϕ

)
=
(

λ I−BCα
)−1

(
δ

ψ

)
⇔ ϕ(a) =

∫ a

0
e−(λ+µ)(a−s)

ψ(s)ds (8.3.6)

+∆ (α,λ )−1
[

δ +η (α)
∫ +∞

0
χλ (s)ψ(s)ds

]
e−(λ+µ)a,

where

χλ (s) =
∫ +∞

s
γ(l)e−(λ+µ)(l−s)dl, ∀s≥ 0.

Proof. Assume that λ ∈Ω and ∆ (α,λ ) 6= 0. Then we have(
λ I−BCα

)( 0
ϕ

)
=

(
δ

ψ

)
⇔ (λ I−A)

(
0
ϕ

)
=

(
δ

ψ

)
+αDH (vα)

(
0
ϕ

)
⇔
(

0
ϕ

)
= (λ I−A)−1

(
δ

ψ

)
+(λ I−A)−1

αDH (vα)

(
0
ϕ

)
⇔ ϕ(a) = e−(λ+µ)a

δ +
∫ a

0
e−(λ+µ)(a−s)

ψ(s)ds

+e−(λ+µ)a
η (α)

∫ +∞

0
γ(a)ϕ(a)da.

Thus

∆ (α,λ )
∫ +∞

0
γ(a)ϕ(a)da=

∫ +∞

0
γ(a)e−(λ+µ)a

δ +
∫ +∞

0
γ(a)

∫ a

0
e−(λ+µ)(a−s)

ψ(s)dsda,
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so

ϕ(a) = e−(λ+µ)a
[

1+η (α)∆ (α,λ )−1
∫ +∞

0
γ(l)e−(λ+µ)ldl

]
δ

+
∫ a

0
e−(λ+µ)(a−s)

ψ(s)ds

+η (α)e−(λ+µ)a
∆ (α,λ )−1

∫ +∞

0
γ(l)

∫ l

0
e−(λ+µ)(l−s)

ψ(s)dsdl.

But we have

1+η (α)∆ (α,λ )−1
∫ +∞

0
γ(a)e−(λ+µ)a = ∆ (α,λ )−1

and ∫ +∞

0
γ(l)

∫ l

0
e−(λ+µ)(l−s)

ψ(s)dsdl =
∫ +∞

0

∫ +∞

s
γ(l)e−(λ+µ)(l−s)dlψ(s)ds.

Hence (ii) follows. We conclude that

{λ ∈Ω : ∆ (α,λ ) 6= 0} ⊂ ρ

(
λ I−BCα

)
∩Ω ,

which implies that

σ

(
λ I−BCα

)
∩Ω ⊂ {λ ∈Ω : ∆ (α,λ ) = 0} .

Assume that λ ∈ Ω is given such that ∆ (α,λ ) = 0. Then for ϕ(.) = e−(λ+µ). we
have

BCα

(
0
ϕ

)
= λ

(
0
ϕ

)
,

so λ I−BCα is not invertible. We deduce that

{λ ∈Ω : ∆ (α,λ ) = 0} ⊂ σ

(
λ I−BCα

)
∩Ω ,

and (i) follows. ut

The following lemma is well known (see, for example, Dolbeault [108, Theorem
2.1.2, p. 43].

Lemma 8.3.5. Let f be an holomorphic map from an open connected subset Ω ⊂C
and let z0 ∈ C. Then the following assertions are equivalent:

(i) f = 0 on Ω ;
(ii) f is null in a neighborhood of z0;
(iii) For each k ∈ N, f (k) (z0) = 0.

Lemma 8.3.6. Let Assumption 8.3.1 be satisfied. Then we have the following:
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(i) If λ0 ∈ σ
(
BCα
)
∩Ω , then λ0 is isolated in σ

(
BCα
)

;

(ii) If λ0 ∈ σ
(
BCα
)
∩Ω and if k≥ 1 is the smallest integer such that

dk∆ (α,λ0)

dλ k 6=

0, then λ0 a pole of order k of
(
λ I−BCα

)−1
. Moreover, if k = 1, then λ0 is a

simple isolated eigenvalue of BCα and the projector on the eigenspace associated
to λ0 is defined by

Π̂λ0

(
δ

ψ

)
=

(
0

d∆(α,λ0)
dλ

−1 [
δ +η(α)

∫ +∞

0 χλ0(s)ψ(s)ds
]

e−(λ0+µ).

)
;

(iii) For ∀x ∈ YC,
Π̂λ0x = Π̂

λ0
x.

Proof. Since Ω is open and connected, we can apply Lemma 8.3.5 to ∆ , and since
for each λ > 0 large enough ∆ (λ ) > 0, we have that for each λ ∈ Ω , there exists
m≥ 0 such that dm∆(α,λ )

dλ m 6= 0. Moreover, for each λ0 ∈Ω ,

∆ (α,λ ) = ∑
k≥0

(λ −λ0)
k

k!
dk∆ (α,λ0)

dλ k

whenever |λ −λ0| is small enough. It follows that each root of ∆ is isolated. More-
over, assume that there exists λ0 ∈ Ω such that ∆ (α,λ0) = 0. Let m0 ≥ 1 be the
smallest integer such that dm0 ∆(α,λ0)

dλ
m0 6= 0. Then we have

∆ (α,λ ) = (λ −λ0)
m0 g(λ )

with

g(λ ) =
∞

∑
k=m0

(λ −λ0)
k−m0

k!
dk∆ (α,λ0)

dλ k

whenever |λ −λ0| is small enough. So the multiplicity of λ0 is k. Now by using
Lemma 8.3.4 we deduce that if λ0 ∈ σ

(
BCα
)
∩Ω , then λ0 is isolated in σ

(
BCα
)
.

Moreover, by using (8.3.6) we have for k ≥ 1 that

lim
λ→λ0

(λ −λ0)
k
(

λ I−BCα
)−1

(
δ

ψ

)
= lim

λ→λ0
(λ −λ0)

k
∆ (α,λ )−1

[
δ +η(α)

∫ +∞

0
χλ (s)ψ(s)ds

](
0

e−(λ+µ).

)
= lim

λ→λ0
(λ −λ0)

k−m0 1
g(λ )

[
δ +η(α)

∫ +∞

0
χλ (s)ψ(s)ds

](
0

e−(λ+µ).

)
,

so

lim
λ→λ0

(λ −λ0)
k
(

λ I−BCα
)−1

(
0
ψ

)
= 0 if k > m0. (8.3.7)
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But λ0 is isolated, we have(
λ I−BCα

)−1
=

∞

∑
k=−∞

(λ −λ0)
k Dk,

where
Dk =

1
2πi

∫
SC(λ0,ε)

+
(λ −λ0)

−k−1
(

λ I−BCα
)−1

dλ (8.3.8)

for ε > 0 small enough and each k ∈Z. By combining (8.3.7) and (8.3.8), we obtain
when ε → 0 that

D−k = 0 for each k ≥ m0 +2.

It follows that λ0 is a pole of the resolvent and(
λ I−BCα

)−1
=

∞

∑
k=−m0−1

(λ −λ0)
k Dk.

Noticing that

lim
λ→λ0

(λ −λ0)
m0+1

(
λ I−BCα

)−1
= D−m0−1

and using (8.3.7) once more, we deduce that D−m0−1 = 0. Finally, we have

lim
λ→λ0

(λ −λ0)
m0
(

λ I−BCα
)−1

= D−m0

and

D−m0

(
δ

ψ

)
=

1
g(λ0)

[
δ +η(α)

∫ +∞

0
χλ0(s)ψ(s)ds

](
0

e−(λ0+µ).

)
.

Therefore, λ0 is a pole of order m0 ≥ 1. ut

8.3.3 Hopf Bifurcation

To study Hopf bifurcation in equation (8.3.1), we make the following assumption.

Assumption 8.3.7. Assume that α∗ > 1 and θ ∗ > 0 such that iθ ∗ and −iθ ∗ are
simple eigenvalues of Bα∗ and

sup{ Re(λ ) : λ ∈ σ (Bα∗)\{iθ ∗,−iθ ∗}}< 0.

Under Assumption 8.3.7 we have

d∆ (α∗,−iθ ∗)
dλ

=
d∆ (α∗, iθ ∗)

dλ
6= 0.
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Moreover, by using assertion (iii) in Lemma 8.3.6, we can define Π̂c : Y → Y as

Π̂c

(
δ

ϕ

)
= Π̂iθ∗

(
δ

ϕ

)
+ Π̂−iθ∗

(
δ

ϕ

)
, ∀
(

δ

ϕ

)
∈ Y.

By using Theorem 4.5.8 and Lemma 4.5.2, we deduce the following result.

Lemma 8.3.8. Let Assumptions 8.3.1 and 8.3.7 be satisfied. Then

σ

(
Bα∗ |Π̂c(Y )

)
= {iθ ∗,−iθ ∗} , σ

(
Bα∗ |(I−Π̂c)(Y )

)
= σ (Bα∗)\{iθ ∗,−iθ ∗} ,

and
ω0

(
Bα∗ |(I−Π̂c)(Y )

)
< 0.

We have

Π̂c

(
1
0

)
=

[
0

d∆(α∗,iθ∗)
dλ

−1
e−(iθ

∗+µ).+ d∆(α∗,−iθ∗)
dλ

−1
e−(−iθ∗+µ).

]

=

∣∣∣∣d∆ (α∗, iθ ∗)
dλ

∣∣∣∣−2 [ 0
Re(∆ (α∗, iθ ∗)) ê1 + Im(∆ (α∗, iθ ∗)) ê2

]
with

ê1 =
[
e−(iθ

∗+µ).+ e−(−iθ∗+µ).
]
, ê2 =

(
e−(iθ

∗+µ).− e−(−iθ∗+µ).
)

i
.

Set
Π̂s :=

(
I− Π̂c

)
.

Then we have

Π̂s

(
1
0

)
=
(

I− Π̂c

)(1
0

)
=

(
1

− d∆(α∗,iθ∗)
dλ

−1
e−(iθ

∗+µ).− d∆(α∗,−iθ∗)
dλ

−1
e−(−iθ∗+µ).

)

=

(
1

−
∣∣∣ d∆(α∗,iθ∗)

dλ

∣∣∣−2
[Re(∆ (α∗, iθ ∗)) ê1 + Im(∆ (α∗, iθ ∗)) ê2]

)
.

In order to compute the second derivative of the center manifold at 0, we need
the following lemma.

Lemma 8.3.9. Let Assumptions 8.3.1 and 8.3.7 be satisfied. Then for each λ ∈ iR\
{−iθ ∗, iθ ∗} ,(

λ I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)
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=

(
0

− d∆(α∗,iθ∗)
dλ

−1 e−(iθ∗+µ).

λ−iθ∗ −
d∆(α∗,−iθ∗)

dλ

−1 e−(−iθ∗+µ).

λ+iθ∗ +∆ (α∗,λ )−1 e−(λ+µ).

)

Moreover, if λ = iθ ∗, we have(
iθ ∗I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)

=

 0

− d∆(α∗,−iθ∗)
dλ

−1 e−(−iθ∗+µ).

2iθ ∗
+ d∆(α∗,iθ∗)

dλ

−2 [
− d∆(α∗,iθ∗)

dλ
.− 1

2
d2∆(α∗,iθ∗)

dλ 2

]
e−(iθ

∗+µ).


and if λ =−iθ ∗, we have(
−iθ ∗I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)
=

(
0

− d∆(α∗,iθ∗)
dλ

−1 e−(iθ∗+µ).

−2iθ∗ + d∆(α∗,−iθ∗)
dλ

−2 [
− d∆(α∗,−iθ∗)

dλ
.− 1

2
d2∆(α∗,−iθ∗)

dλ 2

]
e−(−iθ∗+µ).

)
.

Proof. For each λ ∈ ρ
(
BC

α∗
)
, we have(

λ I−BCα∗
)−1

(
0

e−(±iθ∗+µ).

)
= (λ ± iθ ∗)−1

(
0

e−(±iθ∗+µ).

)
.

Hence,(
λ I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)
=
(

λ I−BCα∗
)−1

Π̂s

(
1
0

)
=

(
0

− d∆(α∗,iθ∗)
dλ

−1 e−(iθ∗+µ).

λ−iθ∗ −
d∆(α∗,−iθ∗)

dλ

−1 e−(−iθ∗+µ).

λ+iθ∗ +∆ (α∗,λ )−1 e−(λ+µ).

)
.

Thus,(
0I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)
=

(
0

− d∆(α∗,iθ∗)
dλ

−1 e−(iθ∗+µ).

−iθ∗ − d∆(α∗,−iθ∗)
dλ

−1 e−(−iθ∗+µ).

iθ∗ +∆ (α∗,0)−1 e−µ.

)

=

(
0∣∣∣ d∆(α∗,iθ∗)

dλ
iθ ∗
∣∣∣2 [ Re

(
d∆(α∗,iθ∗)

dλ
iθ ∗
)

e1 + Im
(

d∆(α∗,iθ∗)
dλ

iθ ∗
)

e2

]
+∆ (α∗,0)−1 e−µ.

)
.

Moreover, we have
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iθ ∗I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)
= lim

λ→iθ∗
with λ∈ρ(BCα)

(
λ I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)
,

so(
iθ ∗I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)
= lim

λ→iθ∗
with λ∈ρ(BCα)

(
0

− d∆(α∗,iθ∗)
dλ

−1 e−(iθ∗+µ).

λ−iθ∗ −
d∆(α∗,−iθ∗)

dλ

−1 e−(−iθ∗+µ).

λ+iθ∗ +∆ (α∗,λ )−1 e−(λ+µ).

)
.

Notice that

−d∆ (α∗, iθ ∗)
dλ

−1 e−(iθ
∗+µ).

λ − iθ ∗
+∆ (α∗,λ )−1 e−(λ+µ).

=
(λ − iθ ∗)2

d∆(α∗,iθ∗)
dλ

(λ − iθ ∗)∆ (α∗,λ )

[
−∆ (α∗,λ )e−(iθ

∗+µ).+(λ − iθ ∗) d∆(α∗,iθ∗)
dλ

e−(λ+µ).
]

(λ − iθ ∗)2

and

(λ − iθ ∗)2

d∆(α∗,iθ∗)
dλ

(λ − iθ ∗)∆ (α∗,λ )
=

1
d∆(α∗,iθ∗)

dλ

∆(α∗,λ )
λ−iθ∗

→ d∆ (α∗, iθ ∗)
dλ

−2

as λ → iθ ∗.

We have

∆ (α,λ )= (λ − iθ ∗)
d∆ (α∗, iθ ∗)

dλ
+
(λ − iθ ∗)2

2
d2∆ (α∗, iθ ∗)

dλ 2 +(λ − iθ ∗)3 g(λ − iθ ∗)

with g(0) = 1
3!

d2∆(α∗,iθ∗)
dλ 2 . Therefore,[

−∆ (α∗,λ )e−(iθ
∗+µ).+(λ − iθ ∗) d∆(α∗,iθ∗)

dλ
e−(λ+µ).

]
(λ − iθ ∗)2

=
−(λ − iθ ∗) d∆(α∗,iθ∗)

dλ

[
e−(iθ

∗+µ).− e−(λ+µ).
]

(λ − iθ ∗)2

+
−
[
(λ−iθ∗)2

2
d2∆(α∗,iθ∗)

dλ 2 +(λ − iθ ∗)3 g(λ − iθ ∗)
]

e−(iθ
∗+µ).

(λ − iθ ∗)2

→−d∆ (α∗, iθ ∗)
dλ

e−(iθ
∗+µ).− 1

2
d2∆ (α∗, iθ ∗)

dλ 2 e−(iθ
∗+µ). as λ → iθ ∗.

Finally, it implies that
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iθ ∗I−BCα∗ |Π̂s(Y )

)−1
Π̂s

(
1
0

)

=

 0

− d∆(α∗,−iθ∗)
dλ

−1 e−(−iθ∗+µ).

2iθ ∗
+ d∆(α∗,iθ∗)

dλ

−2 [
− d∆(α∗,iθ∗)

dλ
.− 1

2
d2∆(α∗,iθ∗)

dλ 2

]
e−(iθ

∗+µ).

 .

The case λ =−iθ ∗ can be proved similarly. This completes the proof. ut

In order to apply the Center Manifold Theorem 6.1.21 to the above system, we
include the parameter α into the state variable. So we consider the system

dv(t)
dt

= Av(t)+α (t)H(v(t)),

dα(t)
dt

= 0,

v(0) = v0 ∈ Y0, α(0) = α0 ∈ R.

(8.3.9)

Making a change of variables

α = α̂ +α
∗ and v = v̂+ vα∗ ,

we obtain the system

dv̂(t)
dt

= Av̂(t)+(α̂ (t)+α∗)
[
H(v̂(t)+ v(α̂(t)+α∗))−H(v(α̂(t)+α∗))

]
,

dα̂ (t)
dt

= 0.
(8.3.10)

Set
X = Y ×R, X0 = D(A)×R

and
Ĥ(α̂, v̂) = (α̂ +α

∗)
[
H(v̂+ v(α̂+α∗))−H(v(α̂+α∗))

]
.

We have
∂vĤ(α̂, v̂)(w) = (α̂ +α

∗)DH(v̂+ v(α̂+α∗))(w)

and

∂α̂ Ĥ(α̂, v̂)(α̃) = α̃

{
H(v̂+ v(α̂+α∗))−H(v(α̂+α∗))

+(α̂ +α
∗)
[
DH(v̂+ v(α̂+α∗))

(
dv(α̂+α∗)

dα̂

)
−DH(v(α̂+α∗))

(
dv(α̂+α∗)

dα̂

)]}
.

So ∂vĤ(0,0) = α∗DH(vα∗) and ∂α̂ Ĥ(0,0) = 0.
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Consider the linear operator A : D(A )⊂X→X defined by

A

(
v̂
α̂

)
=

(
(A+α∗DH (vα∗)) v̂

0

)
(8.3.11)

with D(A ) = D(A)×R and the map F : D(A )→X defined by

F
(

v
α̂

)
=

F1

(
v̂
α̂

)
0

 ,

where F1 : X → R is defined by

F1

(
v̂
α̂

)
= (α̂ +α

∗)
[
H(v̂+ v(α̂+α∗))−H(v(α̂+α∗))

]
−α

∗DH (vα∗)(v̂) .

Then we have

F
(

0
α̂

)
= 0, ∀α̂ > 1−α

∗, and DF(0) = 0.

Now we can apply Theorem 6.1.21 to the system

dw(t)
dt

= A w(t)+F (w(t)) , w(0) = w0 ∈ D(A ). (8.3.12)

We have for λ ∈ ρ (A )∩Ω = Ω \ (σ (Bα∗)∪{0}) that

(λ I−A )−1

 δ

ψ

r

=

 (λ I−Bα∗)
−1
(

δ

ψ

)
r
λ

 .

By using a similar argument as in the proof of Lemma 8.3.6 and employing Lemma
8.3.5, we obtain the following lemma.

Lemma 8.3.10. Let Assumptions 8.3.1 and 8.3.7 be satisfied. Then

σ (A ) = σ (Bα)∪{0} .

Moreover, the eigenvalues 0 and ±iθ ∗ of A are simple. The corresponding projec-
tors Π0,Π±iθ∗ : X + iX →X + iX are defined respectively by

Π0

(
v
r

)
=

(
0
r

)
,

Π±iθ∗

(
v
r

)
=

(
Π̂±iθ∗v

0

)
In this context, the projector Πc : X →X is defined by
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Πc (x) = (Π0 +Πiθ∗ +Π−iθ∗)(x) , ∀x ∈X .

Note that we have

Πiθ∗ (x) = Π−iθ∗(x), ∀x ∈X + iX ,

so the above projector Πc maps X into X . Set

Xc = R (Πc (X ))

and define the basis of Xc by

e1 =

 0R
e−(µ+iθ∗).+ e−(µ−iθ∗).

0R

 , e2 =

 0R
e−(µ+iθ∗).−e−(µ−iθ∗).

i
0R

 , e3 =

 0R
0L1

1


and

A e1 =−θ
∗e2, A e2 = θ

∗e1, A e3 = 0.

Then the matrix of Ac in the basis {e1,e2,e3} of Xc is given by

M =

 0 −θ ∗ 0
θ ∗ 0 0
0 0 0

 . (8.3.13)

Moreover, we have

Πc

 1
0L1

0R

 =

 Π̂+iθ∗

(
1

0L1

)
+ Π̂−iθ∗

(
1

0L1

)
0R


=

 0R
d∆(α∗,iθ∗)

dλ

−1
e−(iθ

∗+µ).+ d∆(α∗,−iθ∗)
dλ

−1
e−(−iθ∗+µ).

0R

 .

Thus,

Πc

 δ

0L1

r

= δ

∣∣∣∣d∆ (α∗, iθ ∗)
dλ

∣∣∣∣−2

(Re(∆ (α∗, iθ ∗))e1 + Im(∆ (α∗, iθ ∗))e2)+ re3.

Therefore, we can apply Theorem 6.1.21. Let Γ : X0c→X0s be the map defined in
Theorem 6.1.21. Since Xs ⊂ Y ×{0R} and {e1,e2,e3} is a basis of Xc, it follows
that

Ψ (x1e1 + x2e2 + x3e3) =

(
Ψ1 (x1e1 + x2e2 + x3e3)

0R

)
.

Since F ∈ C∞ (X0,X ), we can assume that Ψ ∈ C3
b (X0c,X0s) , and the reduced

system is given by
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dxc(t)
dt

= A0 |Xc xc(t)+ΠcF (xc(t)+Ψ (xc(t)))

= A0 |Xc xc(t)+F1 (xc(t)+Ψ (xc(t)))Πc

 1
0L1

0R

 ,

DΓ (0) = 0,

Γ

(
0Y
α̂

)
= 0 for all α̂ ∈ R with |α̂| small enough.

The system expressed in the basis {e1,e2,e3} of Xc is given by

d
dt

 x1(t)
x2(t)
x3(t)

= M

 x1(t)
x2(t)
x3(t)

+G(x1(t),x2(t),x3(t))V, (8.3.14)

where M is given by (8.3.13),

V =

∣∣∣∣d∆ (α∗, iθ ∗)
dλ

∣∣∣∣−2
Re(∆ (α∗, iθ ∗))

Im(∆ (α∗, iθ ∗))
0


and

G(x1,x2,x3) = F1 ◦ (I +Ψ)(x1e1 + x2e2 + x3e3) .

Here x3 corresponds to the parameter of the system. Note that we can compute
explicitly the third order Taylor expansion of the reduced system around 0 and have

DG(xc) = DF1 (xc +Ψ (xc))(I +DΨ (xc)) ,

D2G(xc)
(
x1

c ,x
2
c
)

= D2F1 (xc +Ψ (xc))
(
(I +DΨ (xc))

(
x1

c
)
,(I +DΨ (xc))

(
x2

c
))

+DF1 (xc +Ψ (xc))D2
Ψ (xc)

(
x1

c ,x
2
c
)
,

D3G(xc)
(
x1

c ,x
2
c ,x

3
c
)

= D3F1 (xc +Ψ (xc))
(
(I +DΨ (xc))

(
x1

c
)
,(I +DΨ (xc))

(
x2

c
)
,(I +DΨ (xc))

(
x3

c
))

+D2F1 (xc +Ψ (xc))
((

D2
Ψ (xc)

)(
x1

c ,x
3
c
)
,(I +DΨ (xc))

(
x2

c
))

+D2F1 (xc +Ψ (xc))
(
(I +DΨ (xc))

(
x1

c
)
,D2

Ψ (xc)
(
x2

c ,x
3
c
))

+D2F1 (xc +Ψ (xc))
(
D2

Ψ (xc)
(
x1

c ,x
2
c
)
,(I +DΨ (xc))

(
x3

c
))

+DF1 (xc +Ψ (xc))D3
Ψ (xc)

(
x1

c ,x
2
c ,x

3
c
)
.

Since DF1(0) = 0,Ψ (0) = 0, and DΨ (0) = 0, we obtain that

DG(0) = 0, D2G(0)
(
x1

c ,x
2
c
)
= D2F1 (0)

(
x1

c ,x
2
c
)

and
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D2G(xc)
(
x1

c ,x
2
c ,x

3
c
)
= D3F1 (0)

(
x1

c ,x
2
c ,x

3
c
)

+D2F1 (0)
(
D2

Ψ (0)
(
x1

c ,x
3
c
)
,x2

c
)

+D2F1 (0)
(
x1

c ,D
2
Ψ (0)

(
x2

c ,x
3
c
))

+D2F1 (0)
(
D2

Ψ (0)
(
x1

c ,x
2
c
)
,x3

c
)
.

Moreover, by computing the Taylor expansion to the order 3 of the problem, we
have

G(h) =
1
2!

D2G(0)(h,h)+
1
3!

D3G(0)(h,h,h)

+
1
4!

∫ 1

0
(1− t)4 D4F1 (th)(h,h,h,h)dt.

Notice that we can compute explicitly that

1
2!

D2G(0)(h,h)+
1
3!

D3G(0)(h,h,h) .

Because F1 is explicit, we only need to compute D2Ψ(0). For each x,y ∈Xc,

D2
Ψ(0)(x,y) = lim

λ→+∞

∫ +∞

0
TA0(l)Π0sλ (λ −A)−1 D(2)F(0)

(
e−A0clx,e−A0cly

)
dl.

Using the fact that

eActe1 = cos(θ ∗t)e1− sin(θ ∗t)e2,

eActe2 = sin(θ ∗t)e1 + cos(θ ∗t)e2,

eActe3 = e3

and

cos(θ ∗t) =

(
eiθ∗t + e−iθ∗t

)
2

, sin(θ ∗t) =

(
eiθ∗t − e−iθ∗t

)
2i

,

and following Lemma 8.3.9 and the same method at the end of Chapter 6 (i.e. the
same method as in the proof of (iii) in Theorem 6.1.21), we can obtain an explicit
formula for D2Ψ(0)(ei,e j) : For i, j = 1,2,

D2
Ψ(0)(ei,e j) = ∑

λ∈Λi, j ,
k,l=1,2

 ci j (λ )
(

λ I−BCα |Π̂s(Y )

)−1
Π̂s

(
1

0L1

)
D2F1 (ek,el)

0

 ,

where Λi, j is a finite subset included in iR. So we can compute D2Ψ(0) and thus
have proven that the system (8.3.14) on the center manifold is C3 in its variables.

Next, we need to study the eigenvalues of the characteristic equation (8.3.4).
Assume that the parameter α > e and consider
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∆ (α,λ ) = 1−η (α)
∫ +∞

0
γ(a)e−(λ+µ)ada

with
η (α) = 1− ln(α) .

We have
∂∆ (α,λ )

∂α
=− 1

α

[∫ +∞

0
γ(a)e−(λ+µ)ada

]
.

If ∆ (α,λ ) = 0 and α > e, then

∂∆ (α,λ )

∂α
=

1
αη (α)

< 0.

In addition to Assumption 8.3.7, we also make the following assumptions.

Assumption 8.3.11. Assume that there is a number α∗ > e such that

a) If λ ∈Ω and ∆ (α,λ ) = 0, then Re
(

∂∆(α,λ )
∂λ

)
> 0;

b) There exists a constant C > 0 such that for each α ∈ [e,α∗] ,

Re(λ )≥−µ and ∆ (α,λ ) = 0⇒ |λ | ≤C;

c) There exists θ ∗ > 0 such that ∆ (α∗, iθ ∗) = 0 and ∆ (α∗, iθ) 6= 0,∀θ ∈ [0,+∞)\
{θ ∗} ;

d) For each α ∈ [e,α∗) , ∆ (α, iθ) 6= 0,∀θ ∈ [0,+∞) .

Note that if α = e, we have ∆ (α,λ ) = 1, so there is no eigenvalue. By the
continuity of ∆ (α,λ ) and using Assumption 8.3.11 b), we deduce that there exists
α1 ∈ [e,α∗] such that

∆ (α,λ ) 6= 0,∀λ ∈Ω , ∀α ∈ [e,α1) .

Because of Assumption 8.3.11 a), we can apply locally the implicit function
theorem and deduce that if α̂ > e, λ̂ ∈ Ω , and ∆

(
α̂, λ̂

)
= 0, then there exist two

constants ε > 0, r > 0, and a continuously differentiable map λ̂ : (α̂− ε, α̂ + ε)→
C, such that

∆ (α,λ ) = 0 and (α,λ ) ∈ (α̂− ε, α̂ + ε)×BC (0,r)⇔ λ = λ̂ (α) .

Moreover, we have
∆

(
α̂, λ̂ (α)

)
= 0

and
∂∆

(
α̂, λ̂ (α)

)
∂α

+
∂∆

(
α̂, λ̂ (α)

)
∂λ

dλ̂ (α)

dα
= 0.

Thus,
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dλ̂ (α)

dα
=

1
∂∆

(
α̂,λ̂ (α)

)
∂λ

−1
αη (α)

.

However,

Re

∂∆

(
α̂, λ̂ (α)

)
∂λ

> 0⇔ Re

 1
∂∆

(
α̂,λ̂ (α)

)
∂λ

> 0,

so
dRe

(
λ̂ (α)

)
dα

> 0.

Summarizing the above analysis, we have the following Lemma.

Lemma 8.3.12. Let Assumptions 8.3.1, 8.3.7 and 8.3.11 be satisfied. Then we have
the following:

(a) For each α ∈ [e,α∗), the characteristic equation ∆ (α,λ ) = 0 has no roots with
positive real part;

(b) There exist constants ε > 0, η > 0, and a continuously differentiable map λ̂ :
(α∗− ε,α∗+ ε)→ C, such that

∆

(
α, λ̂ (α)

)
= 0, ∀α ∈ (α∗− ε,α∗+ ε)

with
λ̂ (α∗) = iθ ∗ and

d
dα

Re
(

λ̂ (α∗)
)
> 0,

and for each α ∈ (α∗− ε,α∗+ ε) , if

∆ (α,λ ) = 0, λ 6= λ̂ (α) , and λ 6= λ̂ (α),

then
Re(λ )<−η .

In order to find the critical values of the parameter α and verify the transversal-
ity condition, we need to be more specific about the function γ(a). We make the
following assumption.

Assumption 8.3.13. Assume that

γ(a) =
{

δ (a− τ)n e−ζ (a−τ) if a≥ τ

0 if a ∈ [0,τ)
(8.3.15)

for some integer n≥ 1, τ ≥ 0, ζ > 0, and

δ =

(∫ +∞

τ

(a− τ)n e−ζ (a−τ)da
)−1

> 0.
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Note that if n ≥ 1, then γ satisfies the conditions in Assumption 8.3.1. We have
for λ ∈Ω that∫ +∞

0
γ(a)e−(µ+λ )ada =

∫ +∞

τ

γ(a)e−(µ+λ )ada

= δe−(µ+λ )τ
∫ +∞

τ

(a− τ)ne−(µ+ζ+λ )(a−τ)da

= δe−(µ+λ )τ
∫ +∞

0
lne−(µ+ζ+λ )ldl.

Set

In (λ ) =
∫ +∞

0
lne−(µ+ζ+λ )ldl for each n≥ 0 and each λ ∈Ω .

Then we have

∆ (α,λ ) = 1−η (α)
∫ +∞

0
γ(a)e−(λ+µ)ada

= 1−η (α)δe−(µ+λ )τ In (λ ) .

Then by integrating by part we have for n≥ 1 that

In (λ ) =
∫ +∞

0
lne−(µ+ζ+λ )ldl

=

[
lne−(µ+ζ+λ )l

−(µ +ζ +λ )

]+∞

0

−
∫ +∞

0

nln−1e−(µ+ζ+λ )l

(µ +ζ +λ )
dl

=
n

(µ +ζ +λ )
In−1 (λ )

and
I0 (λ ) =

∫ +∞

0
e−(µ+ζ+λ )ldl =

1
(µ +ζ +λ )

.

Therefore,

In (λ ) =
n!

(µ +ζ +λ )n+1 , ∀n≥ 0

with 0! = 1.
The characteristic equation (8.3.4) becomes

1 = η (α)δn!
e−τ(µ+λ )

(µ +ζ +λ )n+1 , Re(λ )>−µ. (8.3.16)

When n = 0, the above characteristic equation (8.3.16) is well known in the context
of delay differential equations (see Hale and Verduyn Lunel [175], p.341). Note also
that when τ = 0, (8.3.16) becomes trivial. Indeed, assume that τ = 0 and η < 0, then
we have
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(µ +ζ +λ )n+1 =−|η |δn! = |η |δn!ei(2k+1)π for k = 0,1,2, ...

so
λ =−(µ +ζ )+ n+1

√
|η |δn!ei (2k+1)

n+1 π for k = 0,1,2, ...

We have

d∆ (α,λ )

dλ
= η

∫ +∞

0
aγ(a)e−(λ+µ)ada

= ηδe−(λ+µ)τ
∫ +∞

τ

a(a− τ)ne−(µ+ζ+λ )(a−τ)da

= ηδe−(λ+µ)τ

[∫ +∞

τ

(a− τ)n+1e−(µ+ζ+λ )(a−τ)da

+τ

∫ +∞

τ

(a− τ)ne−(µ+ζ+λ )(a−τ)da
]

= ηδe−(λ+µ)τ [In+1 + τIn]

= ηδe−(λ+µ)τ

[
n+1

(µ +ζ +λ )
+ τ

]
In

=

[
n+1

(µ +ζ +λ )
+ τ

]
[1−∆ (α,λ )] .

If ∆ (α,λ ) = 0, it follows that

d∆ (α,λ )

dλ
=

[
n+1

(µ +ζ +λ )
+ τ

]
6= 0 and Re

(
d∆ (α,λ )

dλ

)
> 0.

Hence, all eigenvalues are simple and we can apply the implicit function theorem
around each solution of the characteristic equation.

Notice that

|µ +ζ +λ |2 = |η (α)δn!|
2

n+1 e−
2τ

n+1 (µ+ζ+Re(λ )).

So

Im(λ )2 = |η (α)δn!|
2

n+1 e−
2τ

n+1 (µ+ζ+ Re(λ ))− (µ +ζ + Re(λ ))2 . (8.3.17)

Thus, there exists δ1 > 0 such that −µ < Re(λ ) ≤ δ1. This implies that the char-
acteristic equation (8.3.16) satisfies Assumption 8.3.11 b). Using (8.3.17) we also
know that for each real number δ , there is at most one pair of complex conjugate
eigenvalues such that Re(λ ) = δ .

Lemma 8.3.14. Let Assumption 8.3.13 be satisfied. Then Assumptions 8.3.1, 8.3.7
and 8.3.11 are satisfied.

Proof. In order to prove the above lemma it is sufficient to prove that for α > e
large enough there exists λ ∈ C such that
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∆ (α,λ ) = 0 and Re(λ )> 0.

The characteristic equation can be rewritten as follows

(ξ +λ )n+1 =−χ (α)e−τ(ξ+λ ), Re(λ )≥ 0,

where

χ (α) = (ln(α)−1)δn!eτξ = ln
(

α

e

)
δn!eτξ > 0 and ξ = µ +ζ > 0.

Replacing λ by λ̂ = τ (ξ +λ ) and χ (α) by χ̂ (α) = τn+1χ (α) , we obtain

λ̂
n+1 =−χ̂ (α)e−λ̂ and Re

(
λ̂

)
≥ τξ .

⇔ λ̂
n+1 = χ̂ (α)e−λ̂+(2k+1)πi and Re

(
λ̂

)
≥ τξ ,k ∈ Z.

So we must find λ̂ = a+ ib with a > τξ such thata = χ̂ (α)
1

n+1 e−a cos
(

b+(2k+1)π
n+1

)
,

b = χ̂ (α)
1

n+1 e−a sin
(
− b+(2k+1)π

n+1

) (8.3.18)

for some k ∈ Z.
From the first equation of system (8.3.18) we must have

a

χ̂ (α)
1

n+1 e−a
∈ [0,1) and cos

(
b+(2k+1)π

n+1

)
> 0.

Moreover, system (8.3.18) can also be written as

tan
(

b+(2k+1)π

n+1

)
=−b

a
,

and

aea = χ̂ (α)
1

n+1 cos
(

b+(2k+1)π

n+1

)
.

Set

b̂ =
b+(2k+1)π

n+1
.

Then
b = (n+1) b̂− (2k+1)π.

The problem becomes to find θ̂ ∈ R\
{

π

2 +mπ : m ∈ Z
}

such that

cos(θ̂)> 0, tan
(

θ̂

)
=− (n+1) θ̂ − (2k+1)π

a
, k ∈ Z, (8.3.19)
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and
aea = χ̂ (α)

1
n+1 cos

(
θ̂

)
. (8.3.20)

Fix a > τξ = τ(µ + ξ ), then it is clear that we can find θ̂ ∈ [−π

2 ,
π

2 ] such that
(8.3.19) is satisfied. Moreover, χ̂ (e) = 0 and χ̂ (α)→ +∞ as α → +∞. Thus, we
can find α̂ > e, in turn we can find α > e, such that (8.3.20) is satisfied. The result
follows. ut

Therefore, by the Hopf Bifurcation Theorem 6.2.7 and Proposition 6.1.22 we
have the following result.

Theorem 8.3.15. Let Assumptions 8.3.1 and 8.3.13 be satisfied and assume that
τ > 0. Then the characteristic equation (8.3.16) with α = αk, k ∈ N \ {0} , has a
unique pair of purely imaginary roots ±iωk, where

1 = n!η(αk)
e−µτ(√

(µ + ς)2 +ω2
k

)n+1

and ωk > 0 is the unique solution of

−
(

ωτ +(n+1)arctan
ω

ς +µ

)
= π−2kπ,

such that the age-structured model (8.3.1) undergoes a Hopf bifurcation at the equi-
librium u = uαk given by (8.3.3). In particular, a non-trivial periodic solution bifur-
cates from the equilibrium u = uαk when α = αk.

To carry out some numerical simulations, we consider the equation
∂u
∂ t

+
∂u
∂a

=−µu(t,a), t ≥ 0, a≥ 0

u(t,0) = h
(∫ +∞

0 b(a)u(t,a)da
)

u(0,a) = u0(a)

with the initial value function

u0(a) = aexp(−0.08a),

the fertility rate function
h(x) = αxexp(−βx)

and the birth rate function (see Fig. 8.7)

b(a) =
{

δ exp(−γ (a− τ))(a− τ) , if a≥ τ,
0, if a ∈ [0,τ] .

where
µ = 0.1, β = 1, δ = 1, γ = 1, τ = 5.
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Fig. 8.7: The birth rate function b(a) with δ = 1,γ = 1, and τ = 5.

The equilibrium is given by

u(a) =Ce−µa, a≥ 0, C = h
(∫ +∞

0
b(a)e−µaCda

)
.

We choose α ≥ 0 as the bifurcation parameter. When α = 10, the solution con-
verges to the equilibrium (see Fig. 8.8 upper figure). When α = 20, the equilibrium
loses its stability, a Hopf bifurcation occurs and there is a time periodic solution (see
Fig. 8.8 lower figure).

8.3.4 Direction and Stability of Hopf bifurcation

In this section, we apply the normal form theory of Chapter 6 to the Cauchy
problem (8.3.2) and to compute up to the third terms of the Taylor’s expansion for
the reduced system on the center manifold, from which explicit formulae are given
to determine the direction of the Hopf bifurcation and the stability of the bifurcated
periodic solutions.

Consider systems (8.3.9) and (8.3.12). We apply the method described in Theo-
rem 6.3.11 with k = 2. The main point is to compute L2 ∈Ls

(
X 2

c ,Xh∩D(A )
)

by solving the following equation for each (w1,w2) ∈X 2
c :

d
dt

[
L2(eActw1,eActw2)

]
(0) = AhL2(w1,w2)+

1
2!

ΠhD2F (0)(w1,w2). (8.3.21)

Note that

d
dt

[
L2(eActw1,eActw2)

]
(0) = L2 (Acw1,w2)+L2 (w1,Acw2) .
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Fig. 8.8: The age distribution of u(t,a), which converges to the equilibrium when α = 10 (upper) and is time periodic
when α = 20 (lower).

So system (8.3.21) can be rewritten as

L2 (Acw1,w2)+L2 (w1,Acw2) =AhL2(w1,w2)+
1
2!

ΠhD2F (0)(w1,w2). (8.3.22)

We first observe that

D2F(0)(w1,w2) =

(
0R

D2W (0)(w1,w2)

)
and

D3F(0)(w1,w2,w3) =

(
0R

D3W (0)(w1,w2,w3)

)
for each

w1 :=
(

α̂1
v1

)
, w2 :=

(
α̂2
v2

)
, w3 :=

(
α̂3
v3

)
∈ D(A ),
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with vi =

(
0R
ϕi

)
, i = 1,2,3, where

D2W (0)(w1,w2)

= D2W (0)
((

α̂1
v1

)
,

(
α̂2
v2

))
= αkD2H

(
vαk

)
(v1,v2)+ α̂2DH

(
vαk

)
(v1)+ α̂1DH

(
vαk

)
(v2)

+α̂2αkD2H
(
vαk

)(
v1,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+α̂1αkD2H

(
vαk

)(
v2,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
, (8.3.23)

and

D3W (0)(w1,w2,w3)

= D3W (0)
((

α̂1
v1

)
,

(
α̂2
v2

)
,

(
α̂3
v3

))
= α̂1D2H

(
vαk

)
(v2,v3)+ α̂2D2H

(
vαk

)
(v1,v3)+ α̂3D2H

(
vαk

)
(v1,v2)

+2α̂2α̂3D2H
(
vαk

)(
v1,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+2α̂1α̂3D2H

(
vαk

)(
v2,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+2α̂1α̂2D2H

(
vαk

)(
v3,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+ α̂2α̂3αkD2H

(
vαk

)(
v1,

d2vα̂+αk

d (α̂)2

∣∣∣∣∣
α̂=0

)

+α̂1α̂3αkD2H
(
vαk

)(
v2,

d2vα̂+αk

d (α̂)2

∣∣∣∣∣
α̂=0

)
+ α̂1α̂2αkD2H

(
vαk

)(
v3,

d2vα̂+αk

d (α̂)2

∣∣∣∣∣
α̂=0

)

+αkD3H
(
vαk

)
(v1,v2,v3)+ α̂3αkD3H

(
vαk

)(
v1,v2,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+α̂2αkD3H

(
vαk

)(
v1,v3,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+ α̂1αkD3H

(
vαk

)(
v2,v3,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+α̂2α̂3αkD3H

(
vαk

)(
v1,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

,
dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+α̂1α̂3αkD3H

(
vαk

)(
v2,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

,
dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+α̂1α̂2αkD3H

(
vαk

)(
v3,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

,
dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
, (8.3.24)

in which (k = 1,2,3)
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DkH
(
vαk

)(( 0
ϕ1

)
, ...,

( 0
ϕk

))
=

 h(k)
(∫ +∞

0 γ (a)uαk (a)da
) k

Π
i=1

∫ +∞

0 γ (a)ϕi (a)da

0

 ,

h(1)(x) = (1−βx)exp(−βx) ,
h(2)(x) =

(
β 2x−2β

)
exp(−βx) ,

h(3)(x) =
(
−β 3x+3β 2

)
exp(−βx) ,

vαk =
( 0

uαk

)
=

(
0

ln(αk
∫+∞

0 γ(a)e−µada)
β
∫+∞

0 γ(a)e−µada
exp(−µ·)

)
,

∫ +∞

0 γ (a)uαk (a)da =
ln(αk

∫+∞

0 γ(a)e−µada)
β

,
duα̂+αk

dα̂
= 1

α̂+αk
× exp(−µ·)

β
∫+∞

0 γ(a)e−µada
,∫ +∞

0 γ (a)
duα̂+αk

dα̂

∣∣∣∣
α̂=0

(a)da = 1
βαk

,
d2uα̂+αk

d(α̂)2 =− 1
(α̂+αk)

2 ×
exp(−µ·)

β
∫+∞

0 γ(a)e−µada
,

∫ +∞

0 γ (a)
d2uα̂+αk

d(α̂)2

∣∣∣∣
α̂=0

(a)da =− 1
β (αk)

2 .

To simplify the computation, we use the eigenfunctions of A in Xc and consider

ê1 :=

 1(
0R
0C

) , ê2 :=

 0R(
0R

e−(µ+iωk).

) , ê3 =:

 0R(
0R

e−(µ−iωk).

) .

We have
A ê1 = 0, A ê2 = iωkê2, and A ê3 =−iωkê3.

In order to simplify the notation, from now on we set

χ :=
∫ +∞

0
γ (a)e−µada =

n!exp(−µτ)

(µ + ς)n+1 . (8.3.25)

(i) Computation of L2(ê1, ê1): We have

ΠhD2F (0)(ê1, ê1) = 0

and
Acê1 = 0.

By (8.3.22) we have

L2 (Acê1, ê1)+L2 (ê1,Acê1) = AhL2(ê1, ê1)+
1
2!

ΠhD2F (0)(ê1, ê1).

So
0 = AhL2(ê1, ê1).

Since 0 belongs to the resolvent set of Ah, we obtain

L2(ê1, ê1) = 0. (8.3.26)
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(ii) Computation of L2(ê1, ê2): Since Acê1 = 0 and Acê2 = iωkê2, the equation

L2 (Acê1, ê2)+L2 (ê1,Acê2) = AhL2(ê1, ê2)+
1
2!

ΠhD2F (0)(ê1, ê2)

is equivalent to

(iωk−Ah)L2 (ê1, ê2) =
1
2!

ΠhD2F (0)(ê1, ê2),

where

D2F (0)(ê1, ê2)

=


0R

D2W (0)

( 1
0X

)
,

 0R(
0R

e−(µ+iωk).

)


=

 0R

DH
(
vαk

)( 0R
e−(µ+iωk).

)
+

 0R

αkD2H
(
vαk

)(( 0R
e−(µ+iωk).

)
,

dvα̂+αk
dα̂

∣∣∣∣
α̂=0

)

=


0R

h(1)
(∫ +∞

0 γ (a)uαk (a)da
)∫ +∞

0 γ (a)e−(µ+iωk)ada

+αkh(2)
(∫ +∞

0 γ (a)uαk (a)da
)∫ +∞

0 γ (a)e−(µ+iωk)ada
∫ +∞

0 γ (a)
duα̂+αk

dα̂

∣∣∣∣
α̂=0

(a)da

0L1

 .

Thus, we have

D2F (0)(ê1, ê2) = c12

 0R(
1

0L1

)
with

c12 = h(1)
(∫ +∞

0
γ (a)uαk (a)da

)∫ +∞

0
γ (a)e−(µ+iωk)ada

+αkh(2)
(∫ +∞

0
γ (a)uαk (a)da

)∫ +∞

0
γ (a)e−(µ+iωk)ada

∫ +∞

0
γ (a)

duα̂+αk

dα̂

∣∣∣∣
α̂=0

(a)da

=

(
1−β

∫ +∞

0
γ (a)uαk (a)da

)
exp
(
−β

∫ +∞

0
γ (a)uαk (a)da

)
χ

1− ln(αχ)

+αk

(
β

2
∫ +∞

0
γ (a)uαk (a)da−2β

)
exp
(
−β

∫ +∞

0
γ (a)uαk (a)da

)
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× χ

1− ln(αχ)
× 1

αk

1
β

=
χ

1− ln(αχ)

[(
1−β

∫ +∞

0
γ (a)uαk (a)da

)
exp
(
−β

∫ +∞

0
γ (a)uαk (a)da

)
+

(
β

∫ +∞

0
γ (a)uαk (a)da−2

)
exp
(
−β

∫ +∞

0
γ (a)uαk (a)da

)]
= − χ

1− ln(αχ)
exp
(
−β

∫ +∞

0
γ (a)uαk (a)da

)
= − χ

1− ln(αχ)

(
αk

∫ +∞

0
γ (a)e−µada

)−1

= − 1
αk(1− ln(αχ))

.

So

L2 (ê1, ê2) =−
1

2αk(1− ln(αχ))
(iωk−Ah)

−1
Πh

 0R
1

0L1

 .

By using a similar method together with Lemmas 8.3.9 and 8.3.10, we obtain the
following results:

L2(ê1, ê2) = L2(ê2, ê1) =

 0(
0

ψ1,2

) , (8.3.27)

L2(ê1, ê3) = L2(ê3, ê1) =

 0(
0

ψ1,3

) , (8.3.28)

L2 (ê2, ê3) = L2 (ê3, ê2) =

 0(
0

ψ2,3

) , (8.3.29)

L2 (ê2, ê2) =

 0(
0

ψ2,2

) , (8.3.30)

L2 (ê3, ê3) =

 0(
0

ψ3,3

) , (8.3.31)

where

ψ1,2 (a) = ψ1,3 (a) :=− 1
2αk (1− ln(αkχ))
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×

 − d∆(αk,−iωk)
dλ

−1 e−(−iωk+µ)a

2iωk
+

d∆(αk,iωk)
dλ

−2 [
− d∆(αk,iωk)

dλ
a− 1

2
d2∆(αk,iωk)

dλ 2

]
e−(iωk+µ)a

 ,

ψ2,2 (a) = ψ3,3 (a) :=
β χ (ln(αkχ)−2)

2(1− ln(αkχ))2

×

 − d∆(αk,iωk)
dλ

−1 e−(iωk+µ)a

iωk
−

d∆(αk,−iωk)
dλ

−1 e−(−iωk+µ)a

3iωk
+∆ (αk,2iωk)

−1 e−(2iωk+µ)a

 ,

and

ψ2,3 (a) =
β χ (ln(αkχ)−2)

2(1− ln(αkχ))2

×

 d∆(αk,iωk)
dλ

−1 e−(iωk+µ)a

iωk
−

d∆(αk,−iωk)
dλ

−1 e−(−iωk+µ)a

iωk
+∆ (αk,0)

−1 e−µa

 .

By using (8.3.26)-(8.3.31), and the fact that

e1 = ê1, e2 = ê2 + ê3, and e3 =
ê2− ê3

i
,

we obtain the following lemma.

Lemma 8.3.16. The symmetric and bilinear map L2 : X 2
c →Xh∩D(A ) is defined

by

(a) L2 (e1,e1) = 0;
(b) L2 (e1,e2) and L2 (e2,e1) are defined by

L2 (e1,e2) = L2 (e2,e1) =

 0R(
0R

2Reψ1,2

) ;

(c) L2 (e1,e3) and L2 (e3,e1) are defined by

L2 (e1,e3) = L2 (e3,e1) =

 0R(
0R

2Imψ1,2

) ;

(d) L2 (e2,e2) is defined by

L2 (e2,e2) =

 0R(
0R

2Reψ2,2 +2ψ2,3

) ;
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(e) L2 (e2,e3) and L2 (e3,e2) are defined by

L2 (e2,e3) = L2 (e3,e2) =

 0R(
0R

2Imψ2,2

) ;

(f) L2 (e3,e3) =

 0R(
0R

−2Reψ2,2 +2ψ2,3

) .

Define G2 : X →Xh∩D(A ) by

G2(Πcw) := L2 (Πcw,Πcw) , ∀w ∈X ,

the changes of variables ξ2 : X →X and ξ
−1
2 : X →X by

ξ2 (w) := w−G2(Πcw) and ξ
−1
2 (w) := w+G2(Πcw), ∀w ∈X ,

and F2 : D(A )→X by

F2(w) := F
(
ξ
−1
2 (w)

)
+A G2(Πcw)−DG2(Πcw)AcΠcw

−DG2(Πcw)ΠcF
(
ξ
−1
2 (w)

)
.

By applying Theorem 6.3.11 to (8.3.12) for k = 2, we obtain the following theorem.

Theorem 8.3.17. By using the change of variables

w2(t) = w(t)−G2 (Πcw(t))⇔ w(t) = w2(t)+G2 (Πcw2(t)) ,

the map t → w(t) is an integrated solution of the Cauchy problem (8.3.12) if and
only if t→ w2(t) is an integrated solution of the Cauchy problem

dw2(t)
dt

= A w2(t)+F2(w2(t)), t ≥ 0,

w2(0) = w2 ∈ D(A ).
(8.3.32)

Moreover, the reduced equation of the Cauchy problem (8.3.32) is given by the or-
dinary differential equations on R×Yc (where Yc := Π̂c (X )):

dα̂(t)
dt

= 0,
dyc(t)

dt
= Bαk |Π̂c(Y )

yc(t)+ Π̂cW (I +G2)

(
α̂(t)
yc(t)

)
+ R̂c

(
α̂(t)
yc(t)

)
,

(8.3.33)

where R̂c ∈ C4 (R×Yc,Yc) , and R̂c

(
α̂(t)
yc(t)

)
is a remainder term of order 4; that

is,
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R̂c

(
α̂

yc

)
= ‖(α̂,yc)‖4 O(α̂,yc) ,

where O(α̂,yc) is a function of (α̂,yc) which remains bounded when (α̂,yc) goes to
0, or equivalently,

D jR̂c (0) = 0 for each j = 1,2,3.

Furthermore,
∂ jR̂c (0)

∂ jα̂
= 0, ∀ j = 1,2,3,4,

which implies that

R̂c

(
α̂

yc

)
= O

(
α̂

3 ‖yc‖+ α̂
2 ‖yc‖2 + α̂ ‖yc‖3 +‖yc‖4

)
.

In the following theorem we compute the Taylor’s expansion of the reduced sys-
tem (8.3.33) by using the formula obtained for L2 in Lemma 8.3.16.

Theorem 8.3.18. The reduced system (8.3.33) expressed in terms of the basis {e1,e2,e3}
has the following form

dα̂(t)
dt

= 0,

d
dt

(
x(t)
y(t)

)
= Mc

(
x(t)
y(t)

)
+
(

H̃2 + H̃3 + R̂c

) α̂(t)(
x(t)
y(t)

) ,
(8.3.34)

where

Mc =

[
0 ωk
−ωk 0

]
;

the map H̃2 : R3→ R2 is defined by

H̃2

 α̂

x
y

= χ2 (α̂,x,y)
∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
Re

(
d∆(αk,iωk)

dλ

)
Im
(

d∆(αk,iωk)
dλ

) ,
in which

χ2 (α̂,x,y) =− 2
αk [1− ln(αkχ)]

α̂x+
2χβ (ln(αkχ)−2)

[1− ln(αkχ)]2
x2;

the map H̃3 : R3→ R2 is defined by

H̃3

 α̂

x
y

= χ3 (α̂,x,y)
∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
Re

(
d∆(αk,iωk)

dλ

)
Im
(

d∆(αk,iωk)
dλ

) ,
in which
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χ3 (α̂,x,y)

=

(
− 2α̂

αkχ
+

4β (ln(αkχ)−2)x
1− ln(αkχ)

)
×
[(

x2− y2)∫ +∞

0
γ (a)Reψ2,2 (a)da

+
(
x2 + y2)∫ +∞

0
γ (a)ψ2,3 (a)da+2xy

∫ +∞

0
γ (a) Imψ2,2 (a)da

+2α̂x
∫ +∞

0
γ (a)Reψ1,2 (a)da+2α̂y

∫ +∞

0
γ (a) Imψ1,2 (a)da

]
+

1

(αk)
2 (1− ln(αkχ))

α̂
2x+

2β χ

αk (1− ln(αkχ))2 α̂x2

+
4β 2 (− ln(αkχ)+3)χ2

3(1− ln(αkχ))3 x3;

and the remainder term R̂c ∈C4
(
R3,R2

)
satisfies

R̂c

 α̂

x
y

= O

(
α̂

3
∥∥∥∥( x

y

)∥∥∥∥+ α̂
2
∥∥∥∥( x

y

)∥∥∥∥2

+ α̂

∥∥∥∥( x
y

)∥∥∥∥3

+

∥∥∥∥( x
y

)∥∥∥∥4
)
. (8.3.35)

Proof. We firstly prove that the reduced system (8.3.33) expressed in terms of the
basis {e1,e2,e3} has the following form

dα̂(t)
dt

= 0,

d
dt

(
x(t)
y(t)

)
= Mc

(
x(t)
y(t)

)
+
(

Ĥ2 + Ĥ3 + R̂c

) α̂(t)(
x(t)
y(t)

) ,
(8.3.36)

where the map Ĥ2 : R3→ R2 is defined by

Ĥ2

 α̂

x
y

= ψ̃

∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
Re

(
d∆(αk,iωk)

dλ

)
Im
(

d∆(αk,iωk)
dλ

) (8.3.37)

with

ψ̃ =− α̂

αkχ

∫ +∞

0
γ (a)ψ (a)da+

β (ln(αkχ)−2)
2χ

(∫ +∞

0
γ (a)ψ (a)da

)2

and ∫ +∞

0
γ (a)ψ (a)da

= x
2χ

1− ln(αkχ)
+2
(
x2− y2)∫ +∞

0
γ (a)Reψ2,2 (a)da
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+2
(
x2 + y2)∫ +∞

0
γ (a)ψ2,3 (a)da+4xy

∫ +∞

0
γ (a) Imψ2,2 (a)da

+4α̂x
∫ +∞

0
γ (a)Reψ1,2 (a)da+4α̂y

∫ +∞

0
γ (a) Imψ1,2 (a)da.

The map Ĥ3 : R3→ R2 is defined by

Ĥ3

 α̂

x
y

= ψ̂

∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
Re

(
d∆(αk,iωk)

dλ

)
Im
(

d∆(αk,iωk)
dλ

) , (8.3.38)

where

ψ̂ =
1

(αk)
2 (1− ln(αkχ))

α̂
2x+

2β χ

αk (1− ln(αkχ))2 α̂x2+
4β 2 (− ln(αkχ)+3)χ2

3(1− ln(αkχ))3 x3.

By using the Taylor’s expansion of W around 0, the reduced system (8.3.33) can be
rewritten as follows:

dα̂(t)
dt

= 0,

dyc(t)
dt

= Bαk |Π̂c(X)yc(t)+
1
2!

Π̂cD2W (0)
(
(I +G2)

(
α̂(t)
yc(t)

))2

+
1
3!

Π̂cD3W (0)
(
(I +G2)

(
α̂(t)
yc(t)

))3

+ R̃c

(
α̂(t)
yc(t)

)
.

Set

yc =

(
0

xb1 + yb2

)
=

(
0

x
(
e−(µ+iωk).+ e−(µ−iωk).

)
+ y
(

e−(µ+iωk).−e−(µ−iωk).

i

)).
Since we consider {e1,e2,e3} as the basis for Xc = R (Πc) , i.e.,

{( 0
b1

)
,
( 0

b2

)}
is a

basis of Yc := Π̂c (X ) , we obtain that

Mc =

[
0 ωk
−ωk 0

]
.

Now we compute Ĥ2 (X ). We have

(I +G2)

(
α̂

yc

)
= α̂e1 + xe2 + ye3 +L2 (α̂e1 + xe2 + ye3, α̂e1 + xe2 + ye3)

= α̂e1 + xe2 + ye3 + α̂
2L2 (e1,e1)+ x2L2 (e2,e2)+ y2L2 (e3,e3)

+2α̂xL2 (e1,e2)+2α̂yL2 (e1,e3)+2xyL2 (e2,e3) .

By Lemma 8.3.16, it follows that
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(I +G2)

(
α̂

yc

)
=

 α̂(
0
ψ

)
⇔ ψ (a) = x

(
e
−(µ+iωk)a

+ e−(µ−iωk)a
)
+ y
(

e−(µ+iωk)a−e−(µ−iωk)a

i

)
+2
(
x2− y2

)
Re(ψ2,2 (a))+2

(
x2 + y2

)
ψ2,3 (a)

+4α̂xRe(ψ1,2 (a))+4α̂yIm(ψ1,2 (a))+4xyIm(ψ2,2 (a)) .

(8.3.39)

By (8.3.23) we deduce that

1
2!

D2W (0)

 α̂(
0
ψ

)2

= α̂DH
(
vαk

)( 0
ψ

)
+

1
2

αkD2H
(
vαk

)((0
ψ

)
,

(
0
ψ

))
+α̂αkD2H

(
vαk

)(( 0
ψ

)
,

(
0

1
αk
× exp(−µ·)

β
∫+∞

0 γ(a)e−µada

))
=

(
ψ̃

0

)
,

where

ψ̃ =− α̂

αkχ

∫ +∞

0
γ (a)ψ (a)da+

β (ln(αkχ)−2)
2χ

(∫ +∞

0
γ (a)ψ (a)da

)2

with ∫ +∞

0
γ (a)ψ (a)da

= x
2χ

1− ln(αkχ)
+2
(
x2− y2)∫ +∞

0
γ (a)Reψ2,2 (a)da

+2
(
x2 + y2)∫ +∞

0
γ (a)ψ2,3 (a)da+4xy

∫ +∞

0
γ (a) Imψ2,2 (a)da

+4α̂x
∫ +∞

0
γ (a)Reψ1,2 (a)da+4α̂y

∫ +∞

0
γ (a) Imψ1,2 (a)da.

By projecting on Xc and using Lemma 8.3.8 and the same identification as above,
we obtain

1
2!

Π̂cD2W (0)
(
(I +G2)

(
α̂

yc

))2

= ψ̃Π̂c

(
1
0

)
= ψ̃

∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
[

0

Re
(

d∆(αk,iωk)
dλ

)
b1 + Im

(
d∆(αk,iωk)

dλ

)
b2

]
,

and (8.3.37) follows. Set
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R̂c

(
α̂

yc

)
= R̃c

(
α̂

yc

)
+

1
3!

Π̂c

{
D3W (0)

(
(I +G2)

(
α̂

yc

))3

−D3W (0)
(

α̂

yc

)3
}
.

Then by (8.3.39) and (8.3.24), we deduce that the remainder term satisfies the order

condition (8.3.35). Thus, it only remains to compute 1
3! D3W (0)

(
α̂

yc

)3

. In order to

compute Ĥ3 (X ), we consider

D3W (0)
(

α̂

yc

)3

= 3α̂D2H
(
vαk

)
(yc,yc)+6(α̂)2 D2H

(
vαk

)(
yc,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+3(α̂)2

αkD2H
(
vαk

)(
yc,

d2vα̂+αk

d (α̂)2

∣∣∣∣∣
α̂=0

)
+αkD3H

(
vαk

)
(yc,yc,yc)

+3α̂αkD3H
(
vαk

)(
yc,yc,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+3(α̂)2

αkD3H
(
vαk

)(
yc,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

,
dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
.

Using the same notation as above for yc and after some computation, we deduce that

1
3!

D3W (0)
(

α̂

yc

)3

=

(
ψ̂

0

)
with

ψ̂ =
1
6

h(2)
(∫ +∞

0
γ (a)uαk (a)da

)(
3A
(

2xχ

1− ln(αkχ)

)2

+
3(α̂)2

αkβ

2xχ

1− ln(αkχ)

)

+
1
6

h(3)
(∫ +∞

0
γ (a)uαk (a)da

)
×

[
αk

(
2xχ

1− ln(αkχ)

)3

+
3α̂

β

(
2xχ

1− ln(αkχ)

)2

+
3(α̂)2

αkβ 2
2xχ

1− ln(αkχ)

]

=
1

(αk)
2 (1− ln(αkχ))

α̂
2x+

2β χ

αk (1− ln(αkχ))2 α̂x2

+
4β 2 (− ln(αkχ)+3)χ2

3(1− ln(αkχ))3 x3.

By Lemma 8.3.8, we obtain
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1
3!

Π̂cD3W (0)
(

α̂

yc

)3

= ψ̂Π̂c

(
1
0

)
= ψ̂

∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
[

0

Re
(

d∆(αk,iωk)
dλ

)
b1 + Im

(
d∆(αk,iωk)

dλ

)
b2

]

and (8.3.38) follows. Moreover, (8.3.36) can be rewritten as (8.3.34). ut

From Theorem 8.3.18, dropping the auxiliary equation for the parameter, we
obtain the following equations

d
dt

(
x(t)
y(t)

)
= Mc

(
x(t)
y(t)

)

+χ2 (α̂,x,y)
∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
Re

(
d∆(αk,iωk)

dλ

)
Im
(

d∆(αk,iωk)
dλ

)
+χ3 (α̂,x,y)

∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2
Re

(
d∆(αk,iωk)

dλ

)
Im
(

d∆(αk,iωk)
dλ

)
+R̂c

 α̂

x
y

 , (8.3.40)

where Mc, χ2 (α̂,x,y) , χ3 (α̂,x,y) and R̂c are defined in Theorem 8.3.18 and α̂ is
the parameter here.

We now study the direction of the Hopf bifurcation and the stability of the bi-
furcating periodic solutions following the Hopf bifurcation theorem presented in
Hassard et al. [181, page 16]. We first make some preliminary remarks. Rewrite
system (8.3.40) as follows

dX
dt

= F(X , α̂), (8.3.41)

where the equilibrium point is X = 0 ∈ R2 and the critical value of the bifurcation
parameter α̂ is 0. Since the equilibrium solutions belong to the center mainfold, we
have for each |α̂| small enough that

F(0, α̂) = 0.

Notice that ∂xF (0, α̂) is unknown whenever α̂ 6= 0. The system (8.3.40) only pro-
vides an approximation of order 2 for ∂xF (0, α̂) with respect to α̂. Nevertheless by
using Proposition 6.1.22, we know that the eigenvalues of ∂xF (0, α̂) λ (α̂) are the
roots of the original characteristic equation

1 = η(α)
∫ +∞

0
γ (a)e−(µ+λ )ada⇔ 1 = η (α̂ +αk)

∫ +∞

0
γ (a)e−(µ+λ )ada (8.3.42)

with
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η(α) =
1− ln

(
α
∫ +∞

0 γ (a)e−µada
)∫ +∞

0 γ (a)e−µada
=

1− ln(αχ)

χ
,

and
λ (0) =±ωki.

The implicit function theorem implies that the characteristic equation has a unique
pair of complex conjugate roots λ (α̂),λ (α̂) close to iωk,−iωk for β̂ in a neighbor-
hood of 0. Here λ (α̂) = a(α̂)+ ib(α̂), a(0) = 0 and ib(0) = iωk (where ωk > 0 are
provided by Theorem 8.3.15 for k ∈ N). From (8.3.42), we have

η
′ (α̂ +αk)

∫ +∞

0
γ (a)e−(µ+λ (α̂))ada−η (α̂ +αk)

∫ +∞

0
aγ (a)e−(µ+λ )ada

dλ (α̂)

dα̂
= 0

and∫ +∞

0
aγ (a)e−(µ+λ )ada =

∫ +∞

τ

a(a− τ)n e−(µ+λ )ada

=
∫ +∞

τ

(a− τ)n+1 e−(µ+λ )ada+ τ

∫ +∞

τ

(a− τ)n e−(µ+λ )ada

= (n+1)!
e−(λ+µ)τ

(ς +λ +µ)n+2 + τn!
e−(λ+µ)τ

(ς +λ +µ)n+1

=

[
(n+1)

(ς +λ +µ)
+ τ

]
n!

e−(λ+µ)τ

(ς +λ +µ)n+1

=

[
(n+1)

(ς +λ +µ)
+ τ

]∫ +∞

0
γ (a)e−(µ+λ )ada.

Thus

η
′ (α̂ +αk)−η (α̂ +αk)

[
(n+1)

(ς +λ +µ)
+ τ

]
dλ (α̂)

dα̂
= 0

and

dλ (0)
dα̂

=
η ′ (αk)

η (αk)

[
(n+1)

(ς + iωk +µ)
+ τ

]−1

=
η ′ (αk)

η (αk)

(ς + iωk +µ)

(n+1)+ τ (ς + iωk +µ)

=
η ′ (αk)

η (αk)

(ς + iωk +µ) [[(n+1)+ τ (ς +µ)]− iτωk]

[(n+1)+ τ (ς +µ)]2 + τ2ω2
k

,

a′(0) = Re

[
η ′ (αk)

η (αk)

[
(n+1)

(ς + iωk +µ)
+ τ

]−1
]

=
η ′ (αk)

η (αk)
Re
[

(ς + iωk +µ)

(n+1)+ τ (ς + iωk +µ)

]
.

It follows that
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a′(0) =
αkχ

[ln(αkχ)−1]
(ς +µ) [(n+1)+ τ (ς +µ)]+ τω2

k

[(n+1)+ τ (ς +µ)]2 + τ2ω2
k

> 0. (8.3.43)

Finally, the spectrum of ∂xF (0, α̂) is

σ (∂xF (0, α̂)) =
{

λ (α̂),λ (α̂)
}
.

Using a procedure as in the proof of Lemma 3.3 on p.92 in Kuznetsov [223] and
introducing a complex variable z, we rewrite system (8.3.41) for sufficiently small
|α̂| as a single equation:

·
z = λ (α̂)z+g(z,

−
z ; α̂), (8.3.44)

where

λ (α̂) = a(α̂)+ ib(α̂), g(z,
−
z , α̂) =

3

∑
i+ j=2

1
i! j!

gi j(α̂)zi−z
j
+O(|z|3).

One can verify that system (8.3.41) satisfies

(1) F(0, α̂) = 0 for α̂ in an open interval containing 0, and 0 ∈ R2 is an isolated
stationary point of F ;

(2) F(X , α̂) is jointly CL+2(L≥ 2) in X and α̂ in a neighborhood of (0,0)∈R2×R;
(3) A(α̂) = DX F(0, α̂) has a pair of complex conjugate eigenvalues λ and λ̄ such

that λ (α̂) = a(α̂)+ ib(α̂), where b(0) = ω0 > 0, a(0) = 0, a′(0) 6= 0,

then by Hassard et al. [181, Theorem II, p. 16], there exist an εp > 0 and a
CL+1−function

α̂(ε) =
[ L

2 ]

∑
1

α̂2iε
2i +O(εL+1), 0 < ε < εp, (8.3.45)

such that for each ε ∈ (0,εp) system (8.3.41) has a family of periodic solutions
Pε(t) with period T (ε) occurring for α̂ = α̂(ε). The period T (ε) of Pε(t) is a
CL+1−function given by

T (ε) =
2π

ω0
[1+

[ L
2 ]

∑
1

τ2iε
2i]+O(εL+1), 0 < ε < εp. (8.3.46)

Two of Floquet exponents of Pε(t) approach 0 as ε ↓ 0. One is 0 for ε ∈ (0,εp) and
the other is a CL+1−function

β (ε) =
[ L

2 ]

∑
1

β2iε
2i +O(εL+1), 0 < ε < εp. (8.3.47)

Moreover, Pε(t) is orbitally asymptotically stable with asymptotic phase if β (ε)< 0
and unstable if β (ε)> 0.
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Next we need to compute the coefficients α̂2i and β2i in (8.3.45) and (8.3.47). If
the Poincaré normal form of (8.3.44) is

·
ξ = λ (α̂)ξ +

[L/2]

∑
j=1

c j(α̂)ξ |ξ |2 j +O(|ξ ||(ξ , α̂)|L+1)≡C(ξ ,ξ , α̂), (8.3.48)

where C(ξ ,ξ , α̂) is CL+2 jointly in (ξ ,ξ , α̂) in a neighborhood of 0 ∈ C×C×R,
then the results in Hassard et al. [181, p. 32 and p. 44] imply that the periodic
solution of period T (ε) such that ξ (0, α̂) = ε of (8.3.48) has the form

ξ = ε exp[2πit/T (ε)]+O(εL+2),

where

T (ε) =
2π

ω0
[1+

L

∑
1

τiε
i]+O(εL+1) (8.3.49)

and

µ(ε) = α̂(ε) =
L

∑
1

µiε
i +O(εL+1). (8.3.50)

Furthermore, the coefficients are given by the following formulae:

µ1 = 0,

µ2 = −Rec1(0)
a′(0)

,

µ3 = 0,

µ4 = − 1
a′(0)

[Rec2(0)+µ2Rec′1(0)+
a′′(0)

2
µ

2
2 ],

τ1 = 0,

τ2 =
−1
ω0

[Imc1(0)+µ2b′(0)],

τ3 = 0,

τ4 = − 1
ω0

[a′(0)µ4 +
a′′(0)

2
µ

2
2 + Imc′1(0)µ2 + Imc2(0)−ω0τ

2
2 ],

β1 = 0
β2 = 2Rec1(0),

where

c1(0) =
i

2ω0
(g20(0)g11(0)−2 |g11(0)|2−

1
3
|g02(0)|2)+

g21(0)
2

. (8.3.51)

Applying the results in [181, pp. 45-51], we can change equation (8.3.44) into the
Poincaré normal form (8.3.48) by using the following transformation:
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z = ξ +χ(ξ ,
−
ξ ; µ)

= ξ +
L+1

∑
i+ j=2

1
i! j!

χi j(µ)ξ
i
−
ξ

j

, χi j ≡ 0 for i = j+1.

To use the bifurcation formulae for µ(ε),β (ε) and T (ε), we need only to compute
c1(0),c′1(0), and c2(0). For sufficiently small ε, if µ2 6= 0, β2 6= 0, the direction
of the Hopf bifurcation and the stability of the bifurcating periodic solutions are
determined by the signs of µ2 and β2.

By introducing a complex variable z = x+ iy, when α̂ = 0 the system (8.3.40)
reduces to

·
z=−iωkz(t)+[χ2 (0,Re(z) , Im(z))+χ3 (0,Re(z) , Im(z))]

(
d∆ (αk, iωk)

dλ

)−1

+h.o.t.

Set z(t) := z(t), then we obtain

dz(t)
dt

= iωkz(t)+[χ2 (0,Re(z) ,−Im(z))+χ3 (0,Re(z) ,−Im(z))]
(

d∆ (αk, iωk)

dλ

)−1

+h.o.t.

(8.3.52)
where

χ2 (0,Re(z) ,−Im(z)) =
2χβ (ln(αkχ)−2)

[1− ln(αkχ)]2
(Re(z))2 ,

χ3 (0,Re(z) ,−Im(z)) =
4β (ln(αkχ)−2)

1− ln(αkχ)
Re(z)

×
[(

(Re(z))2− (Im(z))2
)∫ +∞

0
γ (a)Reψ2,2 (a)da

+
(
(Re(z))2 +(Im(z))2

)∫ +∞

0
γ (a)ψ2,3 (a)da

−2Re(z) Im(z)
∫ +∞

0
γ (a) Imψ2,2 (a)da

]
+

4β 2 (− ln(αkχ)+3)χ2

3(1− ln(αkχ))3 (Re(z))3

with

ψ2,2 (a) =
β χ (ln(αkχ)−2)

2(1− ln(αkχ))2

×

−d∆ (αk, iωk)

dλ

−1 e−(iωk+µ)a

iωk
− d∆ (αk,−iωk)

dλ

−1 e−(−iωk+µ)a

3iωk
+∆ (αk,2iωk)

−1 e−(2iωk+µ)a

 ,
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ψ2,3 (a) =
β χ (ln(αkχ)−2)

2(1− ln(αkχ))2

×

 d∆ (αk, iωk)

dλ

−1 e−(iωk+µ)a

iωk
− d∆ (αk,−iωk)

dλ

−1 e−(−iωk+µ)a

iωk
+∆ (αk,0)

−1 e−µa

 .

Now by considering equation (8.3.52), we obtain that after some computations

g11 =
χβ (ln(αkχ)−2)

[1− ln(αkχ)]2

(
d∆ (αk, iωk)

dλ

)−1

.

Moreover, we deduce that

g20 = g11, g02 = g11,

g21 =
i2ce+2c f +2be− i2b f +3ae− i3a f

4
, (8.3.53)

where

a =
4χ2β 2 (3− ln(αkχ))

3 [1− ln(αkχ)]3

+
4β (ln(αkχ)−2)

1− ln(αkχ)

[∫ +∞

0
γ (a)Reψ2,2 (a)da+

∫ +∞

0
γ (a)ψ2,3 (a)da

]
,

b =
4β (ln(αkχ)−2)

1− ln(αkχ)

[
−
∫ +∞

0
γ (a)Reψ2,2 (a)da+

∫ +∞

0
γ (a)ψ2,3 (a)da

]
,

c =
8β (ln(αkχ)−2)

1− ln(αkχ)

∫ +∞

0
γ (a) Imψ2,2 (a)da,

e =

∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2

Re
(

d∆ (αk, iωk)

dλ

)
,

f =

∣∣∣∣d∆ (αk, iωk)

dλ

∣∣∣∣−2

Im
(

d∆ (αk, iωk)

dλ

)
.

Hence, we obtain

c1(0) =
i

2ω0
(g20(0)g11(0)−2 |g11(0)|2−

1
3
|g02(0)|2)+

g21(0)
2

and

µ2 =−
Rec1(0)

α ′(0)
, β2 = 2Rec1(0), τ2 =

−1
ωk

[Imc1(0)+µ2b′(0)].

We summarize the above discussions into a theorem on the direction and stability
of Hopf bifurcation in the age-structured model (8.3.1).
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Theorem 8.3.19. The direction of the Hopf bifurcation described in Theorem 8.3.15
is determined by the sign of µ2 : if µ2 > 0(< 0), then the bifurcating periodic solu-
tions exist for α > αk(α < αk). The bifurcating periodic solutions are stable (un-
stable) if β2 < 0(> 0). The period of the bifurcating periodic solutions of the age-
structured model (8.3.1) increases (decreases) if τ2 > 0(< 0).

8.3.5 Normal Forms

Now we apply the normal form theory developed in Chapter 6 to the age-
structured population model (8.3.1). Set X = R×X , X0 = R×D(A). Consider the
linear operator A : D(A )⊂X →X defined by (8.3.11).

Recall that
Πiωk (x) = Π−iωk(x), ∀x ∈X + iX .

The projectors Πc : X →X and Πh : X →X are defined by

Πc (x) : =
(
Π0 +Πiωk +Π−iωk

)
(x) , ∀x ∈X ,

Πh (x) : = (I−Πc)(x) , ∀x ∈X .

Denote

Xc := Πc (X ) , Xh := Πh (X ) ,Ac := A |
Xc
, Ah := A |

Xh
.

Now we have the decomposition

X = Xc⊕Xh.

Define the basis of Xc by

ê1 :=

 1(
0R
0C

) , ê2 :=

 0R(
0R
c1

) , ê3 =:

 0R(
0R
c2

)
with

c1 = e−(µ+iωk). and c2 = e−(µ−iωk)..

We have
A ê1 = 0, A ê2 = iωkê2, and A ê3 =−iωkê3.

Set

w :=
(

α̂

v̂

)
=

 α̂(
0
û

) ∈ D(A ),

Π̂cv̂ := v̂c, Π̂hv̂ := v̂h wc := Πcw =

(
α̂

Π̂cv̂

)
=

(
α̂

v̂c

)
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and

wh := Πhw = (I−Πc)w =

(
0

Π̂hv̂

)
=

(
0
v̂h

)
.

Notice that
{(

0
c1

)
,

(
0
c2

)}
is the basis of Xc. Set

v̂c =

(
0

x1c1 + x2c2

)
and

χ :=
∫ +∞

0
γ (a)e−µada =

n!exp(−µτ)

(µ + ς)n+1 .

We observe that for each

w1 :=
(

α̂1
v1

)
, w2 :=

(
α̂2
v2

)
∈ D(A )

with vi =

(
0R
ϕi

)
, i = 1,2,

D2W (0)(w1,w2) = D2W (0)
((

α̂1
v1

)
,

(
α̂2
v2

))
= αkD2H

(
vαk

)
(v1,v2)+ α̂2DH

(
vαk

)
(v1)+ α̂1DH

(
vαk

)
(v2)

+α̂2αkD2H
(
vαk

)(
v1,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
+α̂1αkD2H

(
vαk

)(
v2,

dvα̂+αk

dα̂

∣∣∣∣
α̂=0

)
with

D2H
(
vαk

)(( 0
ϕ1

)
,
( 0

ϕ2

))
=

 β [ln(αkχ)−2]
αkχ

2
Π
i=1

∫ +∞

0 γ (a)ϕi (a)da

0

 .

Then

1
2!

D2W (0)(w)2 =
1
2!

D2W (0)

 α̂(
0
û

)2

=

(˜̃ψ
0

)
,

where

˜̃ψ =− α̂

αkχ

∫ +∞

0
γ (a) û(a)da+

β (ln(αkχ)−2)
2χ

(∫ +∞

0
γ (a) û(a)da

)2

.

By projecting on Xc and using Lemma 8.3.8, we obtain
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1
2!

Π̂cD2W (0)

 α̂(
0
û

)2

= ˜̃ψΠ̂c

(
1
0

)

= ˜̃ψ [ 0
d∆(αk,iωk)

dλ

−1
c1 +

d∆(αk,−iωk)
dλ

−1
c2

]
.

Now we compute 1
2! D2W (0)(wc)

2, 1
2! ΠcD2F(0)(wc)

2 , 1
2! ΠhD2F(0)(wc)

2 and 1
3! D3W (0)(wc)

3

expressed in terms of the basis {ê1, ê2, ê3}. We first obtain that

1
2!

D2W (0)(wc)
2 =

1
2!

D2W (0)

 α̂(
0

x1c1 + x2c2

)2

=

(
ψ̃

0

)
,

where

ψ̃ = − α̂

αkχ

∫ +∞

0
γ (a)(x1c1 + x2c2)(a)da

+
β (ln(αkχ)−2)

2χ

(∫ +∞

0
γ (a)(x1c1 + x2c2)(a)da

)2

.

Thus

1
2!

ΠcD2F(0)(wc)
2 =

 0

1
2! Π̂cD2W (0)

((
α̂

v̂c

))2

=

(
0

ψ̃Π̂c
(1

0

))

=

 0

ψ̃

[
0

d∆(αk,iωk)
dλ

−1
c1 +

d∆(αk,−iωk)
dλ

−1
c2

] (8.3.54)

and

1
2!

ΠhD2F(0)(wc)
2 =

1
2!

(I−Πc)D2F(0)
((

α̂

v̂c

))2

=

 0

ψ̃

[
1

− d∆(αk,iωk)
dλ

−1
c1− d∆(αk,−iωk)

dλ

−1
c2

] . (8.3.55)

Next we obtain

1
3!

D3W (0)(wc)
3 =

1
3!

D3W (0)
(

α̂

v̂c

)3

=

(
ψ̂

0

)
with
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ψ̂ =
1

(αk)
2 (1− ln(αkχ))

α̂
2
(

x1 + x2

2

)
+

2β χ

αk (1− ln(αkχ))2 α̂

(
x1 + x2

2

)2

+
4β 2 (− ln(αkχ)+3)χ2

3(1− ln(αkχ))3

(
x1 + x2

2

)3

.

By Lemma 8.3.8, we obtain

1
3!

ΠcD3F(0)(wc)
3 =

(
0

1
3! Π̂cD3W (0)(wc)

3

)
=

 0

ψ̂Π̂c

(
1
0

)
=

 0

ψ̂

[
0

d∆(αk,iωk)
dλ

−1
c1 +

d∆(αk,−iωk)
dλ

−1
c2

] . (8.3.56)

In the following we will compute the normal form of system (8.3.12). Define
Θ c

m : V m(Xc,Xc)→V m(Xc,Xc) by

Θ
c
m (Gc) := [Ac,Gc], ∀Gc ∈V m(Xc,Xc) (8.3.57)

and Θ h
m : V m(Xc,Xh∩D(A ))→V m(Xc,Xh) by

Θ
h
m (Gh) := [A ,Gh], ∀Gh ∈V m(Xc,Xh∩D(A )). (8.3.58)

We decompose V m(Xc,Xc) into the direct sum

V m(Xc,Xc) = Rc
m⊕C c

m,

where
Rc

m := R(Θ c
m),

is the range of Θ c
m, and C c

m is some complementary space of Rc
m into V m(Xc,Xc).

Define Pm : V m(Xc,X )→V m(Xc,X ) the bounded linear projector satisfying

Pm (V m(Xc,X )) = Rc
m⊕V m(Xc,Xh), and (I−Pm)(V m(Xc,X )) = C c

m.

Now we apply the method described in Theorem 6.3.11 for k = 3 to system
(8.3.12). The main point is to compute G2 ∈V 2(Xc,D(A )) such that

[A ,G2](wc) = P2

[
1
2!

D2F (0)(wc,wc)

]
for each wc ∈Xc (8.3.59)

in order to obtain the normal form, because the reduced system is the following

dwc(t)
dt

= Acwc(t)+
1
2!

ΠcD2F3 (0)(wc(t),wc(t))

+
1
3!

ΠcD3F3 (0)(wc(t),wc(t),wc(t))+Rc (wc(t)) (8.3.60)
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where

1
2!

ΠcD2F3 (0)(wc,wc) =
1
2!

ΠcD2F2 (0)(wc,wc)

=
1
2!

ΠcD2F (0)(wc,wc)− [Ac,ΠcG2](wc) (8.3.61)

and

1
3!

ΠcD3F3 (0)(wc,wc,wc) =
1
3!

ΠcD3F2 (0)(wc,wc,wc)−Πc[A ,G3](wc)

=
1
3!

ΠcD3F2 (0)(wc,wc,wc)− [Ac,ΠcG3](wc). (8.3.62)

Set
Gm,k := ΠkGm, ∀k = c,h, m≥ 2.

Recall that (8.3.59) is equivalent to find G2,c ∈V 2(Xc,Xc) and G2,h ∈V 2(Xc,Xh∩
D(A )) satisfying

[Ac,G2,c] = ΠcP2

[
1
2!

D2F (0)(wc,wc)

]
(8.3.63)

and

[A ,G2,h] = ΠhP2

[
1
2!

D2F (0)(wc,wc)

]
. (8.3.64)

From (8.3.62), we know that the third order term 1
3! ΠcD3F2 (0)(wc,wc,wc) in the

equation is needed after computing the normal form up to the second order. In the
following lemma we find the expression of 1

3! ΠcD3F2 (0)(wc,wc,wc) .

Lemma 8.3.20. Let G2 ∈ V 2(Xc,D(A )) be defined in (8.3.59). Then after the
change of variables

w = w+G2 (Πcw) , (8.3.65)

system (8.3.12) becomes (after dropping the bars)

dw(t)
dt

= A w(t)+F2 (w(t)) , w(0) = w0 ∈ D(A ),

where
F2 (w(t)) = F(w(t))− [A ,G2](wc(t))+O(‖w(t)‖3).

In particular,

1
3!

ΠcD3F2 (0)(wc,wc,wc)

= ΠcD2F(0)(wc,G2(wc))+
1
3!

ΠcD3F(0)(wc,wc,wc)

−DG2,c(wc)

[
1
2!

ΠcD2F(0)(wc,wc)− [Ac,G2,c](wc)

]
. (8.3.66)
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Proof. From Proposition 6.3.6, the first part is obvious. We only need to prove
formula (8.3.66). Set

wk(t) := Πkw(t), wk(t) := Πkw(t), ∀k = c,h.

We can split the system (8.3.12) as

dwc(t)
dt

= Acwc(t)+ΠcF (wc(t)+wh(t)) ,

dwh(t)
dt

= Ahwh(t)+ΠhF (wc(t)+wh(t)) .

Note that (8.3.65) is equivalent to

wc = wc +G2,c (wc) , wh = wh +G2,h (wc) .

Since dim(Xc)<+∞, we have

·
wc(t) = [I +DG2,c(wc(t))]−1 [Ac (wc(t)+G2,c(wc(t)))+ΠcF(w(t)+G2(wc(t)))]

= Ac (wc(t)+G2,c(wc(t)))+ΠcF(w(t)+G2(wc(t)))

−DG2,c(wc(t)) [Ac (wc(t)+G2,c(wc(t)))+ΠcF(w(t)+G2(wc(t)))]

+DG2,c(wc(t))DG2,c(wc(t))
[

Ac (wc(t)+G2,c(wc(t)))
+ΠcF(w(t)+G2(wc(t)))

]
+O(‖w(t)‖4).

Hence

ΠcF2(w(t)) = ΠcF(w(t)+G2(wc(t)))− [Ac,G2,c] (wc(t))

−DG2,c(wc(t)) [ΠcF(w(t)+G2(wc(t)))− [Ac,G2,c] (wc(t))]+O(‖w(t)‖4).

Let wc ∈Xc. It follows that

ΠcF2(wc) = ΠcF(wc +G2(wc))− [Ac,G2,c] (wc)

−DG2,c(wc) [ΠcF(wc +G2(wc))− [Ac,G2,c] (wc)]+O(‖wc‖4).

Thus we have

ΠcF2(wc) =
1
2!

ΠcD2F (0)(wc,wc)− [Ac,G2,c](wc)

+ΠcD2F(0)(wc,G2(wc))+
1
3!

ΠcD3F(0)(wc,wc,wc)

−DG2,c(wc)

[
1
2!

ΠcD2F(0)(wc,wc)− [Ac,G2,c](wc)

]
+O(‖wc‖4).

Then (8.3.66) follows and the proof is complete. ut
Set

wc = α̂ ê1 + x1ê2 + x2ê3.
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We compute the normal form expressed in terms of the basis {ê1, ê2, ê3}. Consider
V m(C3,C3) and V m(C3,Xh∩D(A )), which denote the linear space of the homoge-
neous polynomials of degree m in 3 real variables, α̂,x= (x1,x2) with coefficients in
C3 and Xh∩D(A ), respectively. The operators Θ c

m and Θ h
m considered in (8.3.57)

and (8.3.58) now act in the spaces V m(C3,C3) and V m(C3,Xh ∩D(A )), respec-
tively, and satisfy

Θ c
m(Gm,c)

 α̂

x1
x2

= [Ac,Gm,c]

 α̂

x1
x2


= DGm,cAc

 α̂

x1
x2

−AcGm,c

 α̂

x1
x2



=


DxG1

m,c

 α̂

x1
x2

McxDx

(
G2

m,c
G3

m,c

) α̂

x1
x2

Mc

(
x1
x2

)
−Mc

(
G2

m,c
G3

m,c

) α̂

x1
x2



 ,

Θ h
m
(
Gm,h

)
= [A ,Gm,h] = DGm,hAc−AhGm,h,

∀Gm,c

 α̂

x1
x2

=

G1
m,c

G2
m,c

G3
m,c

 α̂

x1
x2

 ∈V m(C3,C3),

∀Gm,h ∈V m(C3,Xh∩D(A ))

(8.3.67)

with

Ac =

0 0 0
0 iωk 0
0 0 −iωk

 and Mc =

[
iωk 0
0 −iωk

]
.

We define Θ
c
m : V m(C3,C2)→V m(C3,C2) by

Θ
c
m

(
G2

m,c
G3

m,c

)
= Dx

(
G2

m,c
G3

m,c

)
Mc

(
x1
x2

)
−Mc

(
G2

m,c
G3

m,c

)
, (8.3.68)

∀
(

G2
m,c

G3
m,c

)
∈V m(C3,C2).

Lemma 8.3.21. For m ∈ N\{0,1}, we have the decomposition

V m(C3,C2) = R(Θ
c
m)⊕N(Θ

c
m) (8.3.69)

and



8.3 A Scalar Age-structured Model 437

N(Θ
c
m) = span


(

0
xq1

1 xq2
2 αq3

)
,

(
xq′1

1 xq′2
2 αq′3

0

)∣∣∣∣∣q1−q2 =−1,

q′1−q′2 = 1,qi,q′i ∈ N, i = 1,2,3.

 . (8.3.70)

Proof. The canonical basis of V m(C3,C2) is

Φ =

{(
xq1

1 xq2
2 αq3

0

)
,

(
0

xq1
1 xq2

2 αq3

)∣∣∣∣q1 +q2 +q3 = m
}
.

Since Mc =

[
iωk 0
0 −iωk

]
, for each

(
xq1

1 xq2
2 αq3

0

)
,

(
0

xq1
1 xq2

2 αq3

)
∈Φ , we have

Θ
c
m

(
xq1

1 xq2
2 αq3

0

)
= Dx

(
xq1

1 xq2
2 αq3

0

)
Mc

(
x1
x2

)
−Mc

(
xq1

1 xq2
2 αq3

0

)
= iωk (q1−q2−1)

(
xq1

1 xq2
2 αq3

0

)
and

Θ
c
m

(
0

xq1
1 xq2

2 αq3

)
= Dx

(
0

xq1
1 xq2

2 αq3

)
Mc

(
x1
x2

)
−Mc

(
0

xq1
1 xq2

2 αq3

)
= iωk (q1−q2 +1)

(
0

xq1
1 xq2

2 αq3

)
.

Hence, the operators Θ
c
m defined in (8.3.68) have diagonal matrix representations in

the canonical basis of V m(C3,C2). Thus, (8.3.69) and (8.3.70) hold. ut

From (8.3.70), we obtain

N(Θ
c
2) = span

{(
x1α̂

0

)
,

(
0

x2α̂

)}
, (8.3.71)

N(Θ
c
3) = span

{(
x2

1x2
0

)
,

(
x1α̂2

0

)
,

(
0

x1x2
2

)
,

(
0

x2α̂2

)}
.

Define PR
m and PN

m : V m(C3,C2)→ V m(C3,C2) the bounded linear projectors satis-
fying

PR
m
(
V m(C3,C2)

)
= R(Θ

c
m)

and
PN

m
(
V m(C3,C2)

)
= N(Θ

c
m).

We are now ready to compute the normal form of the reduced system expressed
in terms of the basis {ê1, ê2, ê3} of Xc. From (8.3.54), (8.3.55), (8.3.63), (8.3.64),
(8.3.67)-(8.3.69) and (8.3.71), we know that to find G2 ∈V 2(Xc,D(A )) defined in
(8.3.59) is equivalent to find
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G2,c =

G1
2,c

G2
2,c

G3
2,c

 := ΠcG2 ∈V 2(C3,C3)

and
G2,h := ΠhG2 ∈V 2(C3,Xh∩D(A )

such that

[Ac,G2,c]

 α̂(
x1
x2

) =

 DxG1
2,cMcx

Dx

(
G2

2,c
G3

2,c

)
Mc

(
x1
x2

)
−Mc

(
G2

2,c
G3

2,c

)
=

(
0

PR
2

(
Ĥ1

2

))

and

[A ,G2,h] = DG2,hAc−AhG2,h

=

 0

ψ̃

[
1

− d∆(αk,iωk)
dλ

−1
c1− d∆(αk,−iωk)

dλ

−1
c2

] ,

where

Ĥ1
2

 α̂(
x1
x2

) = ψ̃

[
d∆(αk,iωk)

dλ

−1

d∆(αk,−iωk)
dλ

−1

]

=

(
A1x1α̂ +A2α̂x2 +

1
2 a20x2

1 +a11x1x2 +
1
2 a02x2

2
Ā1x2α̂ +A2α̂x1 +

1
2 ā02x2

1 + ā11x1x2 +
1
2 ā20x2

2

)
with

A1 = A2 =−
d∆ (αk, iωk)

dλ

−1 1
αk (1− ln(αkχ))

,

a20 = a11 = a02 =
d∆ (αk, iωk)

dλ

−1
χβ (ln(αkχ)−2)

(1− ln(αkχ))2 .

From (8.3.61), it is easy to obtain the second order terms of the normal form
expressed in terms of the basis {ê1, ê2, ê3} :

1
2!

ΠcD2F3 (0)(wc,wc) = (ê1, ê2, ê3)

(
0

PN
2

(
Ĥ1

2

))
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= (ê1, ê2, ê3)

 0(
A1x1α̂

A1x2α̂

)
= A1x1α̂ ê2 +A1x2α̂ ê3.

Notice that the terms O(|x|α2) are irrelevant to determine the generic Hopf bifurca-
tion. Hence, it is only needed to compute the coefficients of 0(

x2
1x2
0

) and

 0(
0

x1x2
2

)
in the third order terms of the normal form. Firstly following similar computations
in Section 8.3.4, we have

G2,h

 0(
x1
x2

)=

 0(
0
Ψ

)
with

Ψ = x2
1ψ2,2 + x2

2ψ3,3 +2x1x2ψ2,3

and

G2,c

 0(
x1
x2

)=

 0(
1

i2ωk
(a20x2

1−2a11x1x2− 1
3 a02x2

2)
1

i2ωk
( 1

3 ā02x2
1 +2ā11x1x2− ā20x2

2)

) .

Therefore, we have

[
D2W (0)(wc,G2(wc))

]
α̂=0 =

(
β (ln(αkχ)−2)

χ
S1S2

0

)

with

S1 =
∫ +∞

0
γ (a)(x1c1 + x2c2)(a)da,

S2 =
∫ +∞

0
γ (a)

(
1

i2ωk
(a20x2

1−2a11x1x2− 1
3 a02x2

2)c1

+ 1
i2ωk

( 1
3 ā02x2

1 +2ā11x1x2− ā20x2
2)c2 +Ψ

)
(a)da.

Hence [
Π̂cD2W (0)(wc,G2(wc))

]
α̂=0

=
β (ln(αkχ)−2)

χ
S1S2

(
Π̂c

(
1
0

))
=

β (ln(αkχ)−2)
χ

S1S2

[
0

d∆(αk,iωk)
dλ

−1
c1 +

d∆(αk,−iωk)
dλ

−1
c2

]
. (8.3.72)
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From (8.3.56), (8.3.66) and (8.3.72), we have[
1
3!

ΠcD3F2 (0)(wc,wc,wc)

]
α̂=0

=


0

ψ̂

[
0

d∆(αk,iωk)
dλ

−1
c1 +

d∆(αk,−iωk)
dλ

−1
c2

]
+

β (ln(αkχ)−2)
χ

S1S2

[
0

d∆(αk,iωk)
dλ

−1
c1 +

d∆(αk,−iωk)
dλ

−1
c2

]


 .

Now we give the third order terms of the normal form expressed in terms of the
basis {ê1, ê2, ê3} :

1
3!

ΠcD3F3 (0)(wc,wc,wc)

= (ê1, ê2, ê3)



0

PN
3


4β 2(− ln(αkχ)+3)χ2

3(1−ln(αkχ))3

( x1+x2
2

)3
[

d∆(αk,iωk)
dλ

−1

d∆(αk,−iωk)
dλ

−1

]
+ d∆(αk,iωk)

dλ

−1 β (ln(αkχ)−2)
χ

S1S2

d∆(αk,−iωk)
dλ

−1 β (ln(αkχ)−2)
χ

S1S2






+O(|x|α̂2)

= (ê1, ê2, ê3)

 0(
C1x2

1x2
C1x1x2

2

)+O(|x|α̂2)

with

C1 =

 i
2ωk

(a2
11−

7
3 |a11|2)+ d∆(αk,iωk)

dλ

−1 β 2(− ln(αkχ)+3)χ2

2(1−ln(αkχ))3

+ d∆(αk,iωk)
dλ

−1 β (ln(αkχ)−2)
1−ln(αkχ)

[ ∫ +∞

0 γ (a)ψ2,2 (a)da
+
∫ +∞

0 γ (a)2ψ2,3(a)da

]
 .

Therefore, we obtain the following normal form of the reduced system

d
dt

(
x1(t)
x2(t)

)
= Mc

(
x1(t)
x2(t)

)
+

(
A1x1α̂

A1x2α̂

)
+

(
C1x2

1x2
C1x1x2

2

)
+O(|x|α̂2 + |(α̂,x)|4).

The normal form above can be written in real coordinates (w1,w2) through
the change of variables x1 = w1− iw2, x2 = w1 + iw2. Setting w1 = ρ cosξ , w2 =
ρ sinξ , this normal form becomes{

ρ̇ = ι1α̂ρ + ι2ρ3 +O(α̂2ρ + |(ρ, α̂)|4),
ξ̇ = −σk +O(|(ρ, α̂)|), (8.3.73)

where
ι1 = Re(A1) , ι2 = Re(C1) .
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Following Chow and Hale [62] we know that the sign of ι1ι2 determines the direc-
tion of the bifurcation and that the sign of ι2 determines the stability of the nontrivial
periodic orbits. In summary we have the following theorem.

Theorem 8.3.22. The flow of the age-structured model (8.3.1) on the center man-
ifold of the origin at α = αk,k ∈ N+, is given by (8.3.73). Moreover, we have the
following

(i) Hopf bifurcation is supercritical if ι1ι2 < 0 and subcritical if ι1ι2 > 0;
(ii) The nontrivial periodic solution is stable if ι2 < 0 and unstable if ι2 > 0.

8.4 Remarks and Notes

Age-structured models are hyperbolic partial differential equations (Hadeler and
Dietz [168], Keyfitz and Keyfitz [212], Perthame [287]). Pioneer studies were due to
Sharpe and Lotka [315] and McKendrick [263] on linear age-strudctured models and
to Kermack and McKendrick [209, 210, 211] on age-structured epidemic models.
The nonlinear extension of McKendrick’s model by Gurtin and MacCamy [162]
triggered a renewed interest in both linear and nonlinear age-structured models. We
refer to the monographs of Hoppensteadt [192], Webb [362], Iannelli [195], Cushing
[79], and Inaba [199] for basic theories on age-structured equations.

To investigate age-structured models, one can use the classical method; that is, to
use solutions integrated along the characteristics and work with nonlinear Volterra
equations. We refer to the monographs of Webb [362], Metz and Diekmann [266]
and Iannelli [195] on this method. A second approach is the variational method,
we refer to Anita [19], Aineseba [8] and the references cited therein. One can also
regard the problem as a semilinear problem with non-dense domain and use the
integrated semigroups method, which is the approach we used in this monograph.
We refer to Thieme [328, 330, 331], Magal [242], Thieme and Vrabie [339], Magal
and Thieme [251], Thieme and Vosseler [338] for more details on this approach.

Webb [360] was the first to show rigorously that a nonlinear age-structured pop-
ulation model defined in terms of birth and death rates determines a nonlinear semi-
group on the population state space with the age-distribution as the population state.
Webb [361] also used the theory of semigroups of linear operators to give an elegant
proof of the asynchronous exponential growth of age-structured populations derived
by Sharpe and Lotka [315] (Diekmann and Gyllenberg [99]). The principle of lin-
earized stability established in Webb [362] says that a steady state is exponentially
stable if the spectrum of the infinitesimal generator of the linearized semigroup lies
entirely in the open left half-plane, whereas it is unstable if there is at least one spec-
tral value with positive real part. This not only provides a fundamental tool to study
stability of age-structured models but also indicates that periodic solutions may exist
in age-structured models via Hopf bifurcation. The existence of non-trivial periodic
solutions in age structured models was observed in some studies (Cushing [77, 78],
Prüss [294], Levine [227], Diekmann et al. [103], Hastings [182], Swart [324], Ian-
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nelli [195], Breda et al. [46]). Diekmann and van Gils [104] established a Hopf
bifurcation theorem for integral equations of convolution type that applies to age-
structured models (Hastings [182]). Bertoni [43] proved a Hopf bifurcation theorem
for nonlinear equations of structured populations.

Section 8.1 presented a general Hopf bifurcation theorem a general class of age-
structured systems. The results were taken from Liu et al. [234]. Section 8.2 dealt
with the local and global dynamics of a susceptible-infectious model (8.2.1) with
age of infection. Thieme and Castillo-Chavez [336, 337] studied the uniform per-
sistence of the system and the local exponential asymptotic stability of the endemic
equilibrium. The global asymptotic stability of the endemic equilibrium was studied
in D’Agata et al. [80] when the function a→ eνSaβ (a)lνI (a) is non-decreasing. The
existence of integrated solutions of the model by using integrated semigroup theory,
uniform persistence, local stability and global stability of both the disease-free and
endemic equilibria were studied in Section 8.2 which were adapted from Magal et
al. [244]. Section 8.3 provided detailed results on the existence of integrated solu-
tions, local stability of equilibria, Hopf bifurcation, and normal forms for a scalar
age-structured model with nonlinear boundary condition which were taken from
Magal and Ruan [248], Liu et al. [236] and Chu et al. [73].

(a) Other Types of Structured Models. The techniques used in this chapter can
be used to study nonlinear dynamics (for example Hopf bifurcation) in other struc-
tured equations (Webb [364]), such as an evolutionary epidemiological model of
type A influenza (Inaba1998, Inaba2002, Magal and Ruan [249], Liu et al. [236]), a
blood-stage malaria infection model (Su et al. [323]), an age-structured model with
two time delays (Fu et al. [147]), an age-structured compartmental pest-pathogen
model (Wang and Liu [355]), age-structured consumer-resource (predator-prey)
models (Levine [227], Liu et al. [237], Liu and Li [232]), size-structured models
(Calsina and Farkas [53], Calsina and Ripoll [54]), spatially and age structured pop-
ulation dynamics models (Liu et al. [238]), etc. It will be interesting to study the sta-
bility change and Hopf bifurcation in age-structured SIR epidemic models (Thieme
[330], Andreasen [17]).

(b) Age-structured Models with Diffusion. Gurtin [161] generalized the linear
equation of Skellam [322] to a linear age-dependent model for population diffu-
sion. Gurtin and MacCamy [162, 164] and MacCamy [241] proposed nonlinear age-
dependent population models with diffusion. Webb [359] studied an age-dependent
susceptible-exposed-infectious-recovered (SEIR) epidemic model with spatial dif-
fusion. Since then, age-structured models with diffusion have been extensively stud-
ied, see Busenberg and Iannelli [52], Delgado et al. [91], Fitzgibbon et al. [142], Ku-
nisch et al. [222], Langlais [225, 226], Magal and Ruan [245], Marcati [254], Mar-
cati and Serafini [255], Walker [350, 351] and the references cited therein. Traveling
wave solutions in age-structured diffusive models have been studied by Al-Omari
and Gourley [10], Ducrot [109], Ducrot and Magal [112, 113, 114], and Ducrot et
al. [115].

(c) Additional Comments on the Global Stability of Age-structured Mod-
els Using Liapunov Functionals. In Section 8.2, to obtain the global stability of
the endemic equilibrium (S̄E , ı̄E) for the age-structured susceptible-infectious model
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(8.2.1), we followed Magal et al. [244] in three steps: (i) Introduced integrated semi-
group theory in order to obtain a comprehensive spectral theory for the linear C0-
semigroups obtained by linearizing the system around the endemic equilibrium; (ii)
Proved uniform persistence of the system to assure the existence of a global attractor
A0 in the subset M0 of the state space. (iii) Applied a change of variables to trans-
form equation (8.2.1) to a special case with νI (a) = νS,∀a≥ 0 and γ = νS, chose a
Liapunov functional as

V (S(t), i(t, .)) =
S(t)
S̄E
−1− ln

(
S(t)
S̄E

)
+
∫

∞

0

∫
∞

a
ηβ (l)ı̄E(l)dl

[
i(t,a)
ı̄E(a)

−1− ln
(

i(t,a)
ı̄E(a)

)]
da,

and showed that this functional is decreasing over the complete orbits on A0, im-
plying that A0 reduces to the endemic equilibrium which in turn is globally stable
by LaSalle’s invariance principle.

Some researchers have attempted to follow the techniques of Magal et al. [19]
to discuss global stability of various age-structured models. However, most of these
studies skipped steps (i) and (ii) and just directly followed step (iii) by constructing a
Liapunov functional to show global stability of the endemic equilibrium, which are
incomplete (Wang et al. [354]). Firstly, in order to apply LaSalle’s invariance prin-
ciple, one needs to show that the semiflow generated by the model is relatively com-
pact. Secondly, one needs to make sure that the semiflow generated by the model
is uniformly persistent since a term ln( i(t,a)

ı̄E (a)
) appears in the Liapunov functional,

which may yield singularity after differentiation. In fact, because of this term the
Liapunov functional V is well-defined only on the attractor A0 but not on M0.





Chapter 9
Parabolic Equations

The theories developed in previous chapters can be used to study some parabolic
equations as well. In this chapter, we first consider linear abstract Cauchy prob-
lems with non-densely defined and almost sectorial operators; that is, the part of
this operator in the closure of its domain is sectorial. Such problems naturally arise
for parabolic equations with nonhomogeneous boundary conditions. By using the
integrated semigroup theory, we prove an existence and uniqueness result for inte-
grated solutions. Moreover, we study the linear perturbation problem. Then in the
second section we provide detailed stability and bifurcation analyses for a scalar
reaction-diffusion equation, namely, a size-structured model.

9.1 Abstract Non-densely Defined Parabolic Equations

9.1.1 Introduction

Consider the abstract linear parabolic equations of the form

du(t)
dt

= Au(t)+ f (t), t > 0; u(0) = x ∈ D(A), (9.1.1)

where A : D(A) ⊂ X → X is a linear operator on a Banach space X . When dealing
with parabolic equations, it is usually assumed that the operator A is a sectorial
elliptic operator. This property usually holds when elliptic operators are considered
in Lebesgue spaces or Hölder spaces and with homogeneous boundary conditions.
As pointed out for instance by Lunardi [240], this property does not hold anymore
when dealing with these operators in some more regular spaces. As observed in
Prevost [292] in the context of parabolic equations with nonhomogeneous boundary
conditions, it turns out to be natural to impose a weaker condition than sectoriality.
Motivated by these examples, we make the following assumption.

Assumption 9.1.1. Assume that

445
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(a) A0, the part of A in D(A), is a sectorial operator;
(b) A is almost sectorial.

By using functional calculus and 1−α growth semigroups, this kind of problems
has been considered by Periago and Straub [284] who defined the fractional power
of λ I−A for some λ > 0 large enough. We also refer to DeLaubenfels [90] and
Haase [166] for more update results on functional calculus, and to Da Prato [81]
for pioneer work on 1−α growth semigroups. More recently, the case of nonau-
tonomous Cauchy problems has also been studied by Carvalho et al. [57]. In these
studies, based on the existence of 1−α growth semigroups, a notion of solution has
been developped.

Here we consider the Cauchy problem (9.1.1) by using integrated semigroup the-
ory and an approach similar to the one used by Pazy [281]. Our goal is to study the
existence of integrated solutions for the Cauchy problem (9.1.1). Under Assumption
9.1.1 the linear operator A is not (in general) a Hille-Yosida operator. The aim of this
section is to apply the theory developed in Chapter 3 to the context of linear oper-
ators with a sectorial part. In Remark 9.1.11, we will also give a brief comparison
between the integrated semigroup approach and the approach used by Periago and
Straub [284].

In order to introduce the theoretical framework, consider the following parabolic
problem with nonautonomous boundary condition:

∂v(t,x)
∂ t

=
∂ 2v(t,x)

∂x2 +g(t,x), t > 0, x > 0

−∂v(t,0)
∂x

= h(t)

v(0, .) = v0 ∈ Lp ((0,+∞) ,R) ,

(9.1.2)

where g ∈ L1 ((0,τ) ,Lp ((0,+∞) ,R)) and h ∈ Lq ((0,τ) ,R) . Consider the linear
operator A : D(A)⊂ X → X defined by

A
(

0
ϕ

)
=

(
ϕ ′(0)

ϕ ′′

)
with

D(A) = {0R}×W 2,p ((0,+∞) ,R) .

One may observe that A0, the part of A in D(A) = {0R}×Lp ((0,+∞) ,R) , is the
linear operator defined by

A0

(
0
ϕ

)
=

(
0

ϕ ′′

)
with

D(A0) =

{(
0
ϕ

)
∈ {0R}×W 2,p ((0,+∞) ,R) : ϕ

′(0) = 0
}
.

In particular, it is well known that A0 is the infinitesimal generator of an analytic
semigroup on D(A). But the resolvent of A is defined by the formula



9.1 Abstract Non-densely Defined Parabolic Equations 447

(λ I−A)−1
(

α

ψ

)
=

(
0
ϕ

)
⇔ ϕ(x) =

e−
√

λx

−
√

λ
α +

e−
√

λx

2
√

λ

∫ +∞

0
e−
√

λ s
ψ(s)ds+

1

2
√

λ

∫ +∞

0
e−
√

λ |x−s|
ψ(s)ds

for λ ∈ C with Re(λ )> 0.
Due to the boundary condition, we have the following inequalities

0 < liminf
λ→+∞

λ
1/p∗

∥∥∥(λ I−A)−1
∥∥∥

L (X)
< limsup

λ→+∞

λ
1/p∗

∥∥∥(λ I−A)−1
∥∥∥

L (X)
<+∞,

where
p∗ :=

2p
1+ p

.

It follows that A is not a Hille-Yosida operator when p ∈ (1,+∞). Set

f (t) :=
(

h(t)
g(t)

)
.

By identifying u(t) =
(

0
v(t, .)

)
, the PDE problem (9.1.2) can be rewritten as the

following abstract Cauchy problem

du
dt

= Au(t)+ f (t) for t ≥ 0 and u(0) =
(

0
v0

)
∈ D(A). (9.1.3)

In this section we will prove that for each p̂ > p∗ and each f ∈ L p̂ (0,τ;X) (with
τ > 0), the Cauchy problem (9.1.3) has a unique integrated solution and there exists
a constant Mτ,p̂ > 0 such that

‖u(t)‖ ≤Mτ,p̂

(∫ t

0
‖ f (s)‖p̂ ds

)1/ p̂

, ∀t ∈ [0,τ] .

For parabolic problems in dimension n, the same difficulty arises, and we refer to
Tanabe [325, Section 3.8, p.82], Agranovich [7], and Volpert and Volpert [348] for
general estimates for the resolvent of elliptic operators in the n dimensional case.

9.1.2 Almost Sectorial Operators

We first recall some definitions.

Definition 9.1.2. Let L : D(L)⊂ X → X a linear operator on a Banach space X . L is
said to be a sectorial operator if there are constants ω̂ ∈R, θ ∈ ]π/2,π[ , and M̂ > 0
such that
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(i) ρ(L)⊃ Sθ ,ω̂ = {λ ∈ C : λ 6= ω̂, |arg(λ − ω̂)|< θ} ;

(ii)
∥∥∥(λ I−L)−1

∥∥∥≤ M̂
|λ − ω̂|

,∀λ ∈ Sθ ,ω̂ .

We refer for instance to Friedmann [146], Tanabe [325], Henry [183], Pazy [281],
Temam [327], Lunardi [240], Cholewa and Dlotko [61], Engel and Nagel [126] for
more details on the subject. In particular, when L is a sectorial operator and densely
defined, then L is the infinitesimal generator of a strongly continuous analytic semi-
group TL(t) given by

TL(t) =
1

2πi

∫
ω̂+γr,η

(λ I−L)−1eλ tdλ , t > 0, and TL(0)x = x, ∀x ∈ X ,

where r > 0,η ∈ (π/2,θ) , and γr,η is the curve {λ ∈ C : |arg(λ )|= η , |λ | ≥ r}∪
{λ ∈ C : |arg(λ )| ≤ η , |λ |= r}, oriented counterclockwise (see Lunardi [240, Propo-
sition 2.1.1, p.35]). Recall that a family of bounded linear operators {T (t)}t≥0 sat-
isfying the semigroup property is said to be an analytic semigroup (following for
instance Lunardi [240]) if the function t → T (t) is analytic in (0,+∞[ with values
in L (X) (i.e. T (t) = ∑

+∞

n=0 (t− t0)
n Ln for |t− t0| small enough).

Now we introduce the notion of almost sectorial operators.

Definition 9.1.3. Let L : D(L) ⊂ X → X be a linear operator on a Banach space X
and α ∈ (0,1] be given. L is said to be an α-almost sectorial operator if there are
constants ω̂ ∈ R, θ ∈ (π/2,π) , and M̂ > 0 such that

(i) ρ(L)⊃ Sθ ,ω̂ = {λ ∈ C : λ 6= ω̂, |arg(λ − ω̂)|< θ} ;

(ii)
∥∥∥(λ I−L)−1

∥∥∥≤ M̂
|λ−ω̂|α , ∀λ ∈ Sθ ,ω̂ .

This class of operators has been used by Periago and Straub [284] as well as by
Carvalho et al. [57]. In these works the authors constructed functional calculus for
such operators and defined a notion of solutions for the corresponding linear abstract
Cauchy problem. Here we focus on linear almost sectorial operators with a sectorial
part over the closure of its domain. In order to use this notion, we first derive some
characterization for this class of operators.

Proposition 9.1.4. Let A : D(A)⊂ X → X be a linear operator and A0 be its part in
X0 = D(A). Then the following statements are equivalent:

(i) The operator A0 is sectorial in X0 and A is 1
p∗−almost sectorial for some p∗ ∈

[1,+∞);
(ii) There exist two constants, ωA ∈ R and MA > 0, such that the following prop-

erties are satisfied:

(ii-a) {λ ∈ C : Re (λ )> ωA} ⊂ ρ(A0) and∥∥∥(λ I−A0)
−1
∥∥∥

L (X0)
≤ MA

|λ −ωA|
, ∀λ ∈ C with Re (λ )> ωA,
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(ii-b) (ωA,+∞)⊂ ρ (A) and

lim
λ→+∞

λ
1/p∗

∥∥∥(λ I−A)−1
∥∥∥

L (X)
<+∞.

Proof. From Definitions 9.1.2 and 9.1.3 it directly follows that (i) implies (ii). Now
assume that (ii) holds. By using Lunardi [240, Proposition 2.1.11, p.43], we know
that (ii− a) ensures that A0 is a sectorial operator on X0. Since ρ(A) and ρ(A0)
are nonempty, we have ρ(A) = ρ(A0) (see Lemma 2.2.10). Since A0 is sectorial
on X0, there exist ωA ∈ R and θ ∈ (π/2,π) such that Sθ ,ωA ⊂ ρ(A). Without loss
of generality (by replacing ωA by ωA + ε for some ε > 0 large enough), one may
assume that there exist some positive constants C > 0 and θ ∈ (π/2,π) such that∥∥∥(λ −ωA)(λ I−A0)

−1
∥∥∥≤C, ∀λ ∈ Sθ ,ωA ,

(µ−ωA)
1/p∗

∥∥∥(µI−A)−1
∥∥∥

L (X)
≤C, ∀µ ∈ (ωA,+∞) .

Now for each λ ∈ ρ(A0) and each µ ∈ (ωA,+∞) , one has

(λ I−A)−1 = (µ−λ )(λ I−A0)
−1 (µI−A)−1 +(µI−A)−1 . (9.1.4)

Therefore, for each λ ∈ Sθ ,ωA we choose µ = ωA + |λ −ωA| and have∥∥∥(λ I−A)−1
∥∥∥

L (X)
=
∥∥∥(µ−λ )(λ I−A0)

−1 (µI−A)−1 +(µI−A)−1
∥∥∥ ,

≤ C
|µ−λ |
|λ −ωA|

C
(µ−ωA)1/p∗ +

C
(µ−ωA)1/p∗ .

From the definition of µ one has

|λ −ωA|= |µ−ωA|.

Thus, |λ −µ| ≤ 2|λ −ωA|, which implies that∥∥∥(λ I−A)−1
∥∥∥

L (X)
≤C

(2C+1)

|λ −ωA|1/p∗ =
M̃

|λ −ωA|1/p∗ , ∀λ ∈ Sθ ,ωA .

This completes the proof of the result. ut

From now on, we only use the following assumption.

Assumption 9.1.5. Let A : D(A) ⊂ X → X be a linear operator on a Banach space
X . Assume that there exist two constants, ωA ∈ R and MA > 0, such that

(a) ρ(A0)⊃ {λ ∈ C : Re (λ )> ωA} and∥∥∥(λ −ωA)(λ I−A0)
−1
∥∥∥

L (X0)
≤MA, ∀λ ∈ C : Re (λ )> ωA;
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(b) (ωA,+∞)⊂ ρ (A) and there exists p∗ ≥ 1 such that

limsup
λ→+∞

λ
1/p∗

∥∥∥(λ I−A)−1
∥∥∥

L (X)
<+∞.

Note that under Assumption 9.1.5 (a), the operator A0 : D(A0)⊂ X0→ X0 is the
infinitesimal generator of a strongly continuous and analytic semigroup on X0. It
will be denoted by {TA0(t)}t≥0 in the following. We also remark that if p∗ = 1 in
Assumption 9.1.5 (b), it is clear that A is a Hille-Yosida operator. It is also clear that
if Assumption 9.1.5 (b) is satisfied, then for each δ ∈ R, we have

limsup
λ→+∞

λ
1/p∗

∥∥∥(λ I− (A+δ I))−1
∥∥∥

L (X)
= limsup

λ→+∞

λ
1/p∗

∥∥∥(λ I−A)−1
∥∥∥

L (X)
.

9.1.3 Semigroup Estimates and Fractional Powers

The aim of this subsection is to give some estimates and differentiability proper-
ties for the integrated semigroup {SA(t)}t≥0. Moreover, these estimates will allow
us to give an alternative construction for the fractional powers of the operator −A
by using a semigroup approach. The definition of fractional powers as well as func-
tional calculus has been well developed for almost sectorial operators (see for in-
stance Periago and Straub [284]). These constructions essentially use the resolvent
operator. Our construction follows the one given by Pazy [281] by using integrated
semigroup theory.

Lemma 9.1.6. Let Assumption 9.1.5 be satisfied. Then for each δ ∈ (−∞,−ωA)
(i.e. ωA +δ ≤ 0), there exist M̃1 = M̃1(δ )> 0 and M̃2 = M̃2(δ )> 0 such that∥∥S(A+δ I)(t)

∥∥
L (X)

≤ M̃1, ∀t ≥ 0, (9.1.5)

and ∥∥S(A+δ I)(t)
∥∥

L (X)
≤ M̃2t1/p∗ , ∀t ∈ [0,1] . (9.1.6)

Proof. Let δ ∈ (−∞,−ωA) be fixed. By replacing A by A+δ I in (3.4.2), we have
for each µ > ωA +δ , each t ≥ 0, and x ∈ X thst

S(A+δ I)(t)x = µ

∫ t

0
T(A0+δ I)(s)(µI− (A+δ I))−1 xds

+
[
I−T(A0+δ I)(t)

]
(µI− (A+δ I))−1 x.

So if µ > 0 is fixed, we obtain∥∥S(A+δ I)(t)x
∥∥

X ≤ µ

∥∥∥(µI− (A+δ I))−1 x
∥∥∥∫ t

0

∥∥∥T
(A0+δ I)(s)

∥∥∥ds

+
∥∥∥(µI− (A+δ I))−1 x

∥∥∥[1+∥∥∥T
(A0+δ I)(t)

∥∥∥] .
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But
∥∥∥T

(A0+δ I)(s)
∥∥∥≤Me(ωA+δ )t , it follows that

∥∥S(A+δ I)(t)x
∥∥

X ≤ µ

∥∥∥(µI− (A+δ I))−1 x
∥∥∥∫ t

0
Me(ωA+δ )sds

+
∥∥∥(µI− (A+δ I))−1 x

∥∥∥[1+Me(ωA+δ )t
]

(9.1.7)

and since ωA +δ < 0, one obtains that∥∥S(A+δ I)(t)x
∥∥

X ≤ µ

∥∥∥(µI− (A+δ I))−1 x
∥∥∥∫ ∞

0
Me(ωA+δ )sds

+
∥∥∥(µI− (A+δ I))−1 x

∥∥∥ [1+M]

and (9.1.5) follows.
Let C̃ > 0 and λ0 > 0 be fixed such that (λ0,+∞)⊂ ρ (A) and

λ
1/p∗

∥∥∥(λ I− (A+δ I))−1
∥∥∥

L (X)
≤ C̃, ∀λ ∈ [λ0,+∞) . (9.1.8)

For each t ∈ (0,1] we replace µ by λ0
t ∈ [λ0,∞) in (9.1.7). Since ωA + δ < 0, one

has e(ωA+δ )t ≤ 1 while
∫ t

0 e(ωA+δ )sds≤ t for each t ∈ [0,1]. This yields that

∥∥S(A+δ I)(t)x
∥∥ ≤ λ0M

∥∥∥∥∥
(

λ0

t
I− (A+δ I)

)−1

x

∥∥∥∥∥
+

∥∥∥∥∥
(

λ0

t
I− (A+δ I)

)−1

x

∥∥∥∥∥ [1+M] . (9.1.9)

On the other hand, from (9.1.8) with λ = λ0
t we have∥∥∥∥∥

(
λ0

t
I− (A+δ I)

)−1

x

∥∥∥∥∥≤ C̃(
λ0
t

)1/p∗
‖x‖ . (9.1.10)

Finally, combining (9.1.9) together with (9.1.10) one obtains

∥∥S(A+δ I)(t)x
∥∥ ≤ λ0MC̃t1/p∗

λ
1/p∗
0

‖x‖+ C̃t1/p∗

λ
1/p∗
0

[1+M]‖x‖

≤ C̃

λ
1/p∗
0

[(λ0 +1)M+1] t1/p∗ ‖x‖ ,

and (9.1.6) follows. ut

We now assume that ωA < 0 and let δ ∈ (−∞,−ωA) be given and fixed. Then
(see Pazy [281, p.70]) one has for each γ > 0 and each x ∈ X0 that
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(δ I−A0)
−γ x =

1
Γ (γ)

∫ +∞

0
tγ−1TA0−δ I(t)xdt (9.1.11)

and
(δ I−A0)

0 = I.

We first derive some estimates for the fractional powers of operator A0.

Lemma 9.1.7. Let Assumption 9.1.5 (a) be satisfied and assume that ωA < 0. Let
γ ∈ (0,1) be given. Then there exists some constant M̌ > 0 such that

∥∥(λ I−A0)
−γ
∥∥≤ M̌
|λ |γ

, ∀λ ∈ C with Re (λ )> 0. (9.1.12)

Proof. Under Assumption 9.1.5 (a) we know that A0 generates an analytical semi-
group on X0. Hence, by using the formula (6.4) on p. 69 in Pazy [281], we have

(λ I−A0)
−γ =

sinπγ

π

∫ +∞

0
t−γ ((t +λ ) I−A0)

−1 dt.

Then∥∥(λ I−A0)
−γ
∥∥ ≤ M

sinπγ

π

∫ +∞

0

1
tγ

1
|t +λ |

dt

= M
sinπγ

π

1
|λ |γ

∫ +∞

0

1
lγ

1∣∣l + e−iarg(λ )
∣∣dl

= M
sinπγ

π

1
|λ |γ

[∫ 1/2

0

1
lγ

1∣∣l + eiarg(λ )
∣∣dl +

∫ +∞

1/2

1
lγ

1∣∣l + eiarg(λ )
∣∣dl

]

≤ M
sinπγ

π

1
|λ |γ

[∫ 1/2

0

1
lγ

1
1− l

dl +
∫ +∞

1/2

1
lγ

1
l

dl
]

≤ M̌
|λ |γ

.

This completes the proof of Lemma 9.1.7. ut

Note that we have for each x ∈ X0, each δ ∈ (0,−ωA) and each γ > 0 that

(−A0)
−γ x =

1
Γ (γ)

∫ +∞

0
tγ−1e−δ tT(A0+δ I)(t)xdt.

By integrating by parts, we obtain

(−A0)
−γ x =

1
Γ (γ)

∫ +∞

0
[1− γ +δ t] tγ−2e−δ tS(A+δ I)(t)xdt. (9.1.13)
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Note that (9.1.13) is well defined for each x∈X0 and each γ > 0 because
∥∥S(A+δ I)(t)

∥∥≤∫ t
0

∥∥T(A0+δ I)(s)
∥∥ds ≤ Mt for each t ≥ 0. Hence (9.1.13) leads us to the following

definition of fractional power of the resolvent of A.

Lemma 9.1.8. Let Assumption 9.1.5 be satisfied and assume that ωA < 0. Then for
each γ > 1−1/p∗ and each δ ∈ (0,−ωA), the operator (−A)−γ is well defined by

(−A)−γ x =
1

Γ (γ)

∫ +∞

0
[1− γ +δ t] tγ−2e−δ tS(A+δ I)(t)xdt, ∀x ∈ X . (9.1.14)

Moreover, we have the following properties:

(i) (µI−A0)
−1 (−A)−γ = (−A0)

−γ (µI−A)−1 , ∀µ > ωA;
(ii) (−A0)

−γ x = (−A)−γ x,∀x ∈ X0;
(iii) When γ = 1, (−A)−1 defined by (9.1.14) is the inverse of −A;
(iv) For each γ ≥ 0 and β > 1−1/p∗,

(−A0)
−γ (−A)−β = (−A)−(γ+β ) .

Proof. Let x ∈ X be given and the function H : [0,+∞)→L (X) be defined by

t→ H(t) =
{
[1− γ +δ t] tγ−2e−δ tS(A+δ I)(t) if t > 0,
0 if t = 0.

The map t→ SA(t) is Hölder continuous since

SA(t + r)−SA(r) = TA0(r)SA(t).

So there exists C > 0 such that

‖SA(t + r)−SA(r)‖ ≤Ct1/p∗ , ∀t ∈ [0,1] ,∀r ≥ 0.

It follows that H is continuous on (0,+∞) with respect to the operator norm topol-
ogy and therefore is a Bochner measurable map. Moreover, for each γ > 1−1/p∗,
one has∫ +∞

0
‖H(t)‖dt =

∫ +∞

0

∥∥∥[1− γ +δ t] tγ−2e−δ tS(A+δ I)(t)x
∥∥∥dt

≤
∫ +∞

0
[1− γ +δ t] tγ−2e−δ t ∥∥S(A+δ I)(t)x

∥∥dt

≤
∫ 1

0
[1− γ +δ t] tγ−2e−δ t ∥∥S(A+δ I)(t)x

∥∥dt

+
∫ +∞

1
[1+ γ +δ t] tγ−2e−δ t ∥∥S(A+δ I)(t)x

∥∥dt

≤ [1+ γ +δ ]

(∫ 1

0
tγ−2t1/p∗M̃2 ‖x‖dt +

∫ +∞

1
tγ−1e−δ tM̃1 ‖x‖dt

)
,
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where M̃1 and M̃2 are the constants introduced in Lemma 9.1.6. So we have∫ +∞

0
‖H(t)‖dt ≤ [1+ γ +δ ]‖x‖

(
M̃2

∫ 1

0
t(γ−2)+1/p∗dt + M̃1

∫ +∞

1
tγ−1e−δ tdt

)
,

(9.1.15)
and since

(γ−2)+1/p∗ >−1−1/p∗+1/p∗ =−1,

the function H is Bochner integrable.
On the other hand one has∥∥(−A)−γ x

∥∥ =

∥∥∥∥ 1
Γ (γ)

∫ +∞

0
[1− γ +δ t] tγ−2e−δ tS(A+δ I)(t)xdt

∥∥∥∥
=

1
Γ (γ)

∥∥∥∥∫ +∞

0
H(t)dt

∥∥∥∥
≤ 1

Γ (γ)

∫ +∞

0
‖H(t)‖dt.

We conclude from (9.1.15) that

∥∥(−A)−γ
∥∥≤ [1+ γ +δ ]

Γ (γ)
.

(
M̃2

∫ 1

0
t(γ−2)+1/p∗dt + M̃1

∫ +∞

1
tγ−1e−δ tdt

)
,

and (−A)−γ is well defined by (9.1.14) for each x ∈ X , each γ > 1−1/p∗ and each
δ ∈ (0,−ωA) .

Assertions (i)-(iii) are direct consequences from definition (9.1.14). It remains to
prove (iv).

Let γ ≥ 0, β > 1−1/p∗, x∈ X and µ >ωA be fixed. Since (µI−A)−1 commutes
with (−A0)

−γ and (−A)−β , we have

(µI−A)−1 (−A0)
−γ (−A)−β x = (−A0)

−γ (−A)−β (µI−A)−1 x.

Since (µI−A)−1 ∈ X0, we obtain

(µI−A)−1 (−A0)
−γ (−A)−β x = (−A0)

−γ (−A0)
−β (µI−A)−1 x.

Recalling that (see Pazy [281, Lemma 6.2, p.70]) for each γ,β ≥ 0, the following
relation holds

(−A0)
−γ (−A0)

−β = (−A0)
−(γ+β ) ,

one obtains that

(µI−A)−1 (−A0)
−γ (−A)−β x = (−A0)

−(γ+β ) (µI−A)−1 x,

= (−A)−(γ+β ) (µI−A)−1 x,

= (µI−A)−1 (−A)−(γ+β ) x.
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Finally, (iv) follows because (µI−A)−1 is a one-to-one operator. This completes
the proof of the result. ut

Let us recall that, since
{

TA0(t)
}

t≥0 is an analytic semigroup, we can define for
each β ≥ 0 the operator (−A0)

β : D
(
(−A0)

β
)
⊂ X0→ X0 as the inverse of (−A0)

−β

(i.e. (−A0)
β =

(
(−A0)

−β
)−1

). Moreover (see Pazy [281, Theorem 6.8, p.72]), we
know that (−A0)

β is a closed operator, D((−A0)
γ)⊂D

(
(−A0)

β
)

for all γ ≥ β ≥ 0,
D
(
(−A0)β

)
= X0, and for each γ,β ∈ R

(−A0)
γ (−A0)

β = (−A0)
γ+β .

We also know that (see Pazy [281, Theorem 6.13, p.74]) for each t > 0, (−A0)
β TA0(t)

is a bounded operator, and∥∥∥(−A0)
β TA0(t)

∥∥∥≤Mβ t−β eωAt , ∀t > 0. (9.1.16)

As a consequence of the above results, we have the following lemma.

Lemma 9.1.9. Let Assumption 9.1.5 be satisfied and assume that ωA < 0. Then for
each q∗ ∈

[
1, 1

1−1/p∗

)
and each τ > 0 we have

SA(.)|(0,τ) ∈W 1,q∗ ((0,τ) ,L (X)) . (9.1.17)

Proof. Taking µ = 0 in (3.4.2), we have

SA(t)x = (−A)−1 x−TA0(t)(−A)−1 x, ∀t ≥ 0, ∀x ∈ X .

Since
{

TA0(t)
}

t≥0 is an analytic semigroup, the map t → TA0(t) is operator norm
continuously differentiable on (0,+∞) , so t → SA(t) is continuously differentiable
on (0,+∞) , and

dSA(t)x
dt

=−A0TA0(t)(−A)−1 x, ∀t > 0, ∀x ∈ X .

Due to Lemma 9.1.8, we have for each t > 0, each β > 1− 1/p∗, and each x ∈ X
that

dSA(t)x
dt

= −A0TA0(t)(−A0)
−(1−β ) (−A)−β x,

= −A0 (−A0)
−(1−β ) TA0(t)(−A)−β x,

= (−A0)
β TA0(t)(−A)−β x.

So the map t→ SA(t) is continuously differentiable on (0,+∞) , and

dSA(t)x
dt

= (−A0)
β TA0(t)(−A)−β x, ∀t > 0, ∀x ∈ X , ∀β > 1−1/p∗. (9.1.18)
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Since {SA(t)}t≥0 is exponentially bounded, we have for each τ > 0 and each q̂≥ 1
that SA(.)|(0,τ) ∈ Lq̂ ((0,τ) ,L (X)).

Let β ≥ 1 be fixed such that β > 1− 1/p∗ and let x ∈ D
(
(−A0)

β
)
. It is well

known that
TA0(t)x = TA0(s)x+A0

∫ t

s
TA0(l)xdl,

so
(−A0)

β TA0(t)x = (−A0)
β TA0(s)x−

∫ t

s
(−A0)

β+1 TA0(l)xdl.

We deduce that

(−A0)
β
[
TA0(t)x−TA0(s)x

]
=
∫ t

s
(−A0)

β+1 TA0(l)xdl.

It follows that∥∥∥(−A0)
β
[
TA0(t)x−TA0(s)x

]∥∥∥≤Mβ+1

∫ t

s

1
lβ+1 dl ‖x‖ ,

and the map t → (−A0)
β TA0(t) is continuous from (0,+∞) into L (X0). Since

(−A)−β is a bounded operator, the map H : t → (−A0)
β TA0(t)(−A)−β is contin-

uous from (0,+∞) into L (X) and thus Bochner measurable. Now due to (9.1.16)
one obtains that ∥∥∥∥dSA(t)x

dt

∥∥∥∥ =
∥∥∥(−A0)

β TA0(t)(−A)−β x
∥∥∥

≤ Mβ t−β eωAt
∥∥∥(−A)−β x

∥∥∥
≤ Mβ t−β eωAt

∥∥∥(−A)−β

∥∥∥‖x‖ ,
so ∫

τ

0

∥∥∥∥dSA(t)
dt

∥∥∥∥q∗

L (X)

dt ≤
(

Mβ

∥∥∥(−A)−β

∥∥∥)q∗ ∫ τ

0
t−q∗β eωAtdt.

Since q∗ ∈
[
1, 1

1−1/p∗

)
, it follows that q∗β < 1 and the map t→ t−q∗β is integrable

on (0,τ) . The result follows. ut

As a direct corollary we have the following result.

Corollary 9.1.10. Let Assumption 9.1.5 be satisfied. Then the familly of bounded
linear operators {T (t) = dSA(t)

dt }t>0 satisfies T (s+ t) = T (s)T (t) for all s, t > 0,
and for each β > 1− 1

p∗ there exists some constant Mβ > 0 such that

‖tβ T (t)‖ ≤Mβ eωAt , ∀t > 0.

Remark 9.1.11. The above results are related to the work of Periago and Straub
[284] by using the following formulas for integrated semigroups and their deriva-
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tives with respect to t > 0,

S(t) =
∫

Γ

λ
−1
(

eλ t −1
)
(λ −A)−1dλ , T (t) =

∫
Γ

eλ t(λ −A)−1dλ , (9.1.19)

where Γ is an angle

{λ ∈ C : |arg(λ −ωA)|= η , |λ −ωA| ≥ r}∪{λ ∈ C : |arg(λ −ωA)| ≤ η , |λ −ωA|= r}

oriented counterclockwise with r > 0 and η ∈ (π/2,θ). To prove (9.1.19), simply
observe that for x ∈ X ,

T (t)x = lim
µ→∞

µ (µI−A0)
−1 T (t)x

= lim
µ→∞

T (t)µ (µI−A0)
−1 x

= lim
µ→∞

∫
Γ

eλ t(λ −A0)
−1dλ µ (µI−A)−1 x

= lim
µ→∞

µ (µI−A0)
−1
∫

Γ

eλ t(λ −A)−1xdλ ,

and the second formula in (9.1.19) follows. By taking the time derivative in the first
formula of (9.1.19), we also deduce that the first equality in (9.1.19) holds. Now
by using Theorem 3.9 in Periago and Straub [284], we obtain that t → T (t) and
t→ S(t) are analytic functions on (0,+∞).

9.1.4 Linear Cauchy Problems

In this subsection we investigate the existence and uniqueness of integrated so-
lutions for the linear Cauchy problem (9.1.1). The following theorem is the main
result of this section.

Theorem 9.1.12. Let Assumption 9.1.5 be satisfied. Let λ >ωA and p̂∈ (p∗,+∞) be
fixed. Then for each f ∈ L p̂ ((0,τ) ,X), the map t→ (SA ∗ f )(t) is continuously dif-
ferentiable, (SA ∗ f )(t)∈D(A), ∀t ∈ [0,τ] , and if we denote by u(t) = (SA � f )(t) =
d
dt (SA ∗ f )(t), then

u(t) = A
∫ t

0
u(s)ds+

∫ t

0
f (s)ds, ∀t ∈ [0,τ] .

Moreover, for each β ∈
(

1− 1
p∗ ,1−

1
p̂

)
and each t ∈ [0,τ] , we have

(SA � f )(t) =
∫ t

0
(λ I−A0)

β TA0(t− s)(λ I−A)−β f (s)ds (9.1.20)

as well as the estimate:
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‖(SA � f )(t)‖ ≤Mβ

∥∥∥(λ I−A)−β

∥∥∥
L (X)

∫ t

0
(t− s)−β eωA(t−s) ‖ f (s)‖ds, (9.1.21)

where Mβ is some positive constant.

Proof. Without loss of generality, one may assume that ωA < 0. Let p̂ ∈ (p∗,+∞)
be fixed and let f ∈ C1

c ((0,τ) ,X) . Then the map t → (SA ∗ f )(t) is continuously
differentiable on [0,τ] and

(SA � f )(t) =
∫ t

0
SA(t− s) f ′(s)ds, ∀t ∈ [0,τ] .

Using Fubini ’s Theorem one obtains for each t ∈ [0,τ] that∫ t

0
SA(t− s) f ′(s)ds =

∫ t

0

∫ t−s

0

dSA(r)
dr

f ′(s)drds

=
∫ t

0

∫ t−r

0

dSA(r)
dr

f ′(s)dsdr

=
∫ t

0

dSA(r)
dr

f (t− r)dr.

Since 1≤ 1
1−1/p̂ < 1

1−1/p∗ , we infer from Lemma 9.1.9 that

SA(.) ∈W 1, 1
1−1/p̂ ((0,τ) ,L (X)) .

Thus, Hölder inequality provides, for each t ∈ [0,τ] , that

‖(SA � f )(t)‖ ≤
∥∥∥∥ d

dt
SA(.)

∥∥∥∥
L

1
1−1/p̂ ((0,τ),L (X))

.‖ f‖L p̂((0,τ),X) .

The first part of the theorem follows from the density of C1
c ((0,τ) ,X) into L p̂ ((0,τ) ,X)

and Theorem 3.4.7. Moreover, for each β ∈
(

1− 1
p∗ ,1−

1
p̂

)
and each λ > ωA, one

has
dSA(t)

dt
= (λ I−A0)

β TA0(t)(λ I−A)−β , ∀t > 0.

Hence,

‖(SA � f )(t)‖ ≤Mβ

∥∥∥(λ I−A)−β

∥∥∥
L (X)

∫ t

0
(t− s)−β eωA(t−s) ‖ f (s)‖ds.

This completes the proof of the result. ut

As a consequence of this result, one can derive some estimate for the resolvent
of operator A. Indeed estimate (9.1.21) can be rewritten as for each β > 1− 1

p∗ that

‖(SA � f )(t)‖ ≤
∫ t

0
χ(t− s)‖ f (s)‖ds, ∀t ≥ 0,∀ f ∈C1 ((0,+∞) ,X) ,



9.1 Abstract Non-densely Defined Parabolic Equations 459

with χ(s) =Mβ s−β eωAs wherein Mβ > 0 is some constant. Therefore Theorem 3.7.3
(with B = Id, χ(s) = Mβ s−β eωAs) implies for any n≥ 1 and each β > 1− 1

p∗ that

∥∥(λ I−A)−n∥∥
L (X)

≤
Mβ

(n−1)!

∫ +∞

0
sn−1−β e−(λ−ωA)sds

=
Mβ

(n−1)!(λ −ωA)
(n−β )

∫ +∞

0
l(n−β )−1e−ldl

=
Mβ Γ (n−β )

Γ (n)
1

(λ −ωA)
(n−β )

.

Conversely, if the above inequality is sastified, then Theorems 3.4.7 and 3.7.3 imply
that for each f ∈ L p̂ (0,τ,X) with 1− 1

p̂ < β , the map t→ (SA ∗ f )(t) is continuously
differentiable and∥∥∥∥ d

dt
(SA ∗ f )

∥∥∥∥≤C
∫ t

0
(t− s)−β e−ωA(t−s) ‖ f (s)‖ds, ∀t ∈ [0,τ] .

But this condition is not easy to verify in practice compared to Assumption 9.1.5
(b).

Corollary 9.1.13. Let Assumption 9.1.5 be satisfied. Let p̂∈ (p∗,+∞) be fixed. Then
for each f ∈ L p̂ ((0,τ) ,X) and each x∈X0, the Cauchy problem (9.1.1) has a unique
integrated solution u ∈C ([0,τ] ,X0) given by

u(t) = TA0(t)x+(SA � f )(t), ∀t ∈ [0,τ] . (9.1.22)

9.1.5 Perturbation Results

In this subsection, we investigate the properties of A+B : D(A)∩D(B)⊂ X→ X ,
where B : D(B)⊂ X → X is a linear operator. Inspired by Pazy [281], we make the
following assumption.

Assumption 9.1.14. Recall that X0 = D(A) and let B : D(B) ⊂ X0 → Y be a linear
operator from D(B) into a Banach space Y ⊂ X . Assume that there exists α ∈ (0,1) ,
such that the operator B is (λ I−A0)

α -bounded for some λ > ωA (that means
B(λ I−A0)

−α is a bounded linear operator).

Notice that when Assumption 9.1.14 holds, we have

D((λ I−A0)
α)⊂ D(B),

and thus
D((λ I−A0)

α)⊂ D(A)∩D(B).

In order to state and prove the main result of this subsection, we first introduce
the following lemma
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Lemma 9.1.15. Let Assumptions 9.1.5 and 9.1.14 be satisfied and assume that Y =
X. Let γ ∈ (α,1) be given and fixed. Then there exists some constant C > 0 such
that ∥∥B(δ I−A0)

−γ
∥∥≤ C

(δ −ωA)γ−α
, ∀δ > ωA, (9.1.23)

and ∥∥∥B(λ I−A0)
−1
∥∥∥≤ C

|λ −ωA|1−α
, ∀λ ∈ C with Re (λ )> ωA. (9.1.24)

Moreover, if
α < 1/p∗,

then for ω̃ > 0 large enough we have∥∥∥B(λ I−A)−1
∥∥∥≤ 1/2, ∀λ ∈ C with Re (λ )> ωA + ω̃. (9.1.25)

Proof. Let λ > ωA be fixed. We have for δ > ωA that

B(δ I−A0)
−γ = B(λ I−A0)

−α (λ I−A0)
α (δ I−A0)

−γ ,

= B(λ I−A0)
−α (λ I−A0)

α

[
1

Γ (γ)

∫ +∞

0
tγ−1e−δ tTA0(t)dt

]
.

Since (λ I−A0)
−α is bounded and (λ I−A0)

α is closed, we have

B(δ I−A0)
−γ =

1
Γ (γ)

∫ +∞

0
tγ−1e−δ tB(λ I−A0)

−α (λ I−A0)
α TA0(t)dt,

so that ∥∥B(δ I−A0)
−γ
∥∥ ≤ C̃

Γ (γ)

∫ +∞

0
tγ−α−1e−δ teωAtdt,

≤ C̃
Γ (γ)

∫ +∞

0

(
l

δ −ωA

)γ−α−1

e−l 1
δ −ωA

dl,

≤ C1

(δ −ωA)γ−α

and (9.1.23) follows. Now, for all γ > α, all λ ∈ C with Re(λ ) > ωA, and δ ∈ R
such that δ > ωA, one has

B(λ I−A0)
−1 = B(δ I−A0)

−γ (δ I−A0)
γ (λ I−A0)

−1 .

By using (9.1.4) as well as the resolvent formula, we have

(δ I−A0)
γ (λ I−A0)

−1 = (δ −λ )(δ I−A0)
−(1−γ) (λ I−A0)

−1 +(δ I−A0)
−(1−γ) .
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Therefore, one obtains that∥∥∥(δ I−A0)
γ (λ I−A0)

−1
∥∥∥≤ |δ −λ | M̌

(δ −ωA)1−γ

MA

|λ −ωA|
+

M̌
(δ −ωA)1−γ

.

By taking δ = ωA + |λ −ωA|> ωA, one has |λ −δ | ≤ 2|λ −ωA|. Thus,∥∥∥(δ I−A0)
γ (λ I−A0)

−1
∥∥∥≤ C2

|λ −ωA|1−γ

and (9.1.24) follows.
Finally, we prove (9.1.25). To do so notice that

B(λ I−A)−1 = B(δ I−A0)
−γ (δ I−A0)

γ (λ I−A)−1 ,

and similarly,

(δ I−A0)
γ (λ I−A)−1 = (δ −λ )(δ I−A0)

−(1−γ) (λ I−A)−1 +(δ I−A)−(1−γ) .
(9.1.26)

Since α < 1/p∗, we can find γ > 0 such that

α < γ < 1/p∗ and 1− γ > 1−1/p∗.

Then due to Lemma 9.1.8, (δ I−A)−(1−γ) is well defined. Moreover, by setting
δ = ωA + |λ −ωA| in (9.1.26), we obtain∥∥∥(δ I−A0)

γ (λ I−A)−1
∥∥∥≤ |λ −ωA| .

M̌

|λ −ωA|1−γ
.

M̃

|λ −ωA|1/p∗ +
M̃

|λ −ωA|1−γ
.

Therefore, there exist two constants C3,C4 > 0 such that∥∥∥B(λ I−A)−1
∥∥∥≤ C3

|λ −ωA|1/p∗−α
+

C4

|λ −ωA|1−α
.

Thus, for ω̃ > 0 large enough, we obtain for each λ ∈C with Re (λ )−ωA > ω̃ that∥∥∥B(λ I−A)−1
∥∥∥≤ C3

ω̃1/p∗−α
+

C4

ω̃1−α
≤ 1

2

and (9.1.25) follows. ut

The main result of this subsection is the following theorem.

Theorem 9.1.16. Let Assumptions 9.1.5 and 9.1.14 be satisfied and assume that
Y = X. Assume in addition that

α < 1/p∗.

Then A+B : D(A)∩D(B)⊂X→X satisfies Assumption 9.1.5. More precisely, there
exist two constants, ω̂ > 0 and M̃ > 1, such that
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(i) (ω̂,+∞)⊂ ρ(A+B) and the resolvent of A+B is given by

(λ I− (A+B))−1 =(λ I−A)−1

+(λ I−A)−1
∞

∑
k=0

[
B(λ I−A)−1

]k
B(λ I−A)−1

whenever λ ∈ C with Re (λ )> ω̂;
(ii) (A+B)0 , the part of A+B in X0, is the infinitesimal generator of an analytic

semigroup
{

T(A+B)0
(t)
}

t≥0
on X0 and

∥∥∥(λ I− (A+B))−1
∥∥∥≤ M̃

(λ − ω̂)1/p∗ , ∀λ > ω̂.

Proof. For each λ ∈ C with Re (λ ) > ωA + ω̃, where ω̃ is provided by Lemma
9.1.15, we have

(λ I− (A+B)0)
−1 = (λ I−A)−1

(
∞

∑
k=0

[
B(λ I−A)−1

]k
)

= (λ I−A0)
−1 +(λ I−A)−1

∞

∑
k=1

[
B(λ I−A)−1

]k
.

Thus,

(λ I− (A+B)0)
−1 = (λ I−A0)

−1 +(λ I−A)−1
∞

∑
k=0

[
B(λ I−A)−1

]k
B(λ I−A0)

−1 .

(9.1.27)
We infer by combining Assumption 9.1.5 (b), (9.1.24) and (9.1.25) that∥∥∥(λ I− (A+B)0)

−1
∥∥∥ ≤ M̂

|λ −ωA|
+

M

|λ −ωA|1/p∗
1

1−1/2
C2

|λ −ωA|1−α
,

≤ 1
|λ −ωA|

(
M̂+

C2M

|λ −ωA|1/p∗−α

)
,

≤ 1
|λ −ωA|

(
M̂+

C2M
ω̃1/p∗−α

)
.

Thus, there exists some constant C > 0 such that for each λ ∈ C with Re (λ ) >
ωA + ω̃, ∥∥∥(λ I− (A+B)0)

−1
∥∥∥≤ C
|λ −ωA|

,

which implies that (A+B)0 is a sectorial operator. Next, for λ > ωA + ω̃ we have
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(λ I− (A+B))−1 = (λ I−A)−1 +(λ I−A)−1
∞

∑
k=0

[
B(λ I−A)−1

]k
.

Combining Assumption 9.1.5 (b), (9.1.25) together with (9.1.27) leads to∥∥∥(λ I− (A+B))−1
∥∥∥≤ M̂

|λ −ωA|1/p∗ +
M

|λ −ωA|1/p∗

(
1

1−1/2
× 1

2

)
.

Hence, there exist two constants, ω̂ > ωA + ω̃ and M̃ > 0, such that (ω̂,+∞) ⊂
ρ (A+B) and ∥∥∥(λ I− (A+B))−1

∥∥∥≤ M̃

(λ − ω̂)1/p∗ , ∀λ > ω̂.

The result is proved. ut

By taking p∗ = 1, we have the following immediate corollary.

Corollary 9.1.17. If A is a Hille-Yosida operator and A0 is the infinitesimal gen-
erator of an analytic semigroup such that B(λ I−A0)

−α is a bounded operator
for some α ∈ (0,1) and some λ > ωA, then A+B is a Hille-Yosida operator and
(A+B)0 is the infinitesimal generator of an analytic semigroup.

Using Proposition 9.1.4, we also have the following corollary.

Corollary 9.1.18. Let A : D(A) ⊂ X → X be a 1
p∗−almost sectorial operator for

some p∗ ≥ 1 and with sectorial part A0 on X0. Let B : D(B) ⊂ X0→ X be a linear
closed operator such that there exists α < 1

p∗ and D
(
(λ I−A0)

α
)
⊂D(B) for some

λ >ωA. Then A+B is a 1
p∗−almost sectorial operator with a sectorial part (A+B)0

in X0.

Theorem 9.1.19. Let Assumptions 9.1.5 and 9.1.14 be satisfied and assume that
Y = X0. Then A+B : D(A)∩D(B)⊂ X → X satisfies Assumption 9.1.5.

Proof. For each λ ∈ C with Re (λ )> ωA + ω̃, we have

(λ I− (A+B)0)
−1 = (λ I−A)−1

(
∞

∑
k=0

[
B(λ I−A)−1

]k
)
,

= (λ I−A0)
−1 +(λ I−A)−1

∞

∑
k=1

[
B(λ I−A)−1

]k
,

= (λ I−A0)
−1 +(λ I−A0)

−1
∞

∑
k=1

[
B(λ I−A)−1

]k
B(λ I−A0)

−1 .

Thus, we have for any λ ∈ C with Re (λ )> ω̃ +ωA that∥∥∥(λ I− (A+B)0)
−1
∥∥∥≤ C
|λ −ωA|

,



464 9 Parabolic Equations

where C > 0 is some constant. Similarly we also deduce that there exists ω̂ > ωA
such that ∥∥∥(λ I− (A+B))−1

∥∥∥≤ M̃

(λ − ω̂)1/p∗ , ∀λ > ω̂,

and the result follows. ut

In order to extend the linear theory to the semi-linear ones, it will be useful to
find some invariant L p̂ space. We address this question in the next proposition.

Proposition 9.1.20. Let Assumptions 9.1.5 and 9.1.14 be satisfied. Assume in addi-
tion that ωA < 0. If there exists p̂ ∈ [1,+∞) such that

p∗ < p̂ <
1
α
. (9.1.28)

Then

(i) The map x→BTA0(.)x defines a bounded linear operator from X0 into L p̂ ((0,τ) ,X0) ;
(ii) For each f ∈ L p̂ ((0,τ) ,X) ,

B(SA � f )(.) ∈ L p̂ ((0,τ) ,Y ) .

Moreover, for each β ∈ (1−1/p∗,1−α) , the following estimate holds:

‖B(SA � f )(.)‖L p̂((0,τ),Y ) ≤Cα,β

∫
τ

0
t−(β+α)dt ‖ f (.)‖L p̂((0,τ),X) , (9.1.29)

where

Cα,β =:
∥∥B(λ I−A0)

−α
∥∥

L (X0,Y )
Mβ+α

∥∥∥(λ I−A)−β

∥∥∥
L (X)

.

Proof. First note that since
p̂ ∈ (p∗,+∞) , (9.1.30)

the assumptions of Theorem 9.1.12 are satisfied. Now let λ > ωA be given. Then for
any t > 0, we have for each γ > α that

BTA0(t) = B(λ I−A0)
−γ (λ I−A0)

γ TA0(t)

= B(λ I−A0)
−α (λ I−A0)

α TA0(t).

Therefore, for any x ∈ X0, we have∥∥BTA0(.)x
∥∥

L p̂((0,τ),Y ) =
∥∥B(λ I−A0)

−α (λ I−A0)
α TA0(.)x

∥∥
L p̂((0,τ),Y )

=

(∫
τ

0

∥∥B(λ I−A0)
−α (λ I−A0)

α TA0(t)x
∥∥p̂

Y dt
)1/p̂

≤
∥∥B(λ I−A0)

−α
∥∥

L (X0,Y )

(∫
τ

0

∥∥(λ I−A0)
α TA0(t)x

∥∥p̂
X0

dt
)1/p̂
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≤ Mα

∥∥B(λ I−A0)
−α
∥∥

L (X0,Y )

(∫
τ

0
t−p̂α dt

)1/p̂

‖x‖X0
.

Now fix p̂ such that

p̂ <
1
α
. (9.1.31)

Then we obtain that the map t → t−p̂α is integrable over (0,τ) and the map
x→ BTA0(.)x is bounded by X0 into L p̂ ((0,τ) ,Y ). Moreover, the following estimate
holds: ∥∥BTA0(.)x

∥∥
L p̂((0,τ),Y ) ≤C‖x‖X0

,

where C is defined by

C := Mα

∥∥B(λ I−A0)
−α
∥∥

L (X0,Y )

(∫
τ

0
t−p̂α

)1/ p̂

.

Note that due to (9.1.30) and (9.1.31), one can find β such that

β > 1−1/p∗ and α +β < 1. (9.1.32)

Fix such a value β . Then since β > 1−1/p∗, the fractional power of (λ I−A)−β is
well defined for λ large enough and we have

B(SA � f )(t)

= B(λ I−A0)
−α (λ I−A0)

α

∫ t

0
(λ I−A0)

β TA0(t− s)(λ I−A)−β f (s)ds,

= B(λ I−A0)
−α

∫ t

0
(λ I−A0)

β+α TA0(t− s)(λ I−A)−β f (s)ds.

Thus

‖B(SA � f )‖L p̂((0,τ),Y ) ≤ Cα,β

((∫
τ

0

∫ t

0
(t− s)−(β+α) ‖ f (s)‖dsdt

)p̂
)1/p̂

= Cα,β

∥∥∥((.)−(β+α) ∗‖ f (.)‖
)
(.)
∥∥∥

L p̂((0,τ),R)

≤ Cα,β

∫
τ

0
t−(β+α)dt ‖ f (.)‖L p̂((0,τ),X) ,

where
Cα,β =:

∥∥B(λ I−A0)
−α
∥∥

L (X0,Y )
Mβ+α

∥∥∥(λ I−A)−β

∥∥∥
L (X)

.

Due to (9.1.32), the map t→ t−(β+α) is integrable over (0,τ) and the result follows.
ut

The following result is another formulation of the perturbation result.
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Theorem 9.1.21. Under the same assumptions as in Proposition 9.1.20, {T(A+B)0
(t)}t≥0,

the C0-semigroup generated by (A+B)0 , is the unique solution of the fixed point
problem

T(A+B)0
(t) = TA0(t)+(SA �V )(t), (9.1.33)

where V (.)x ∈ L p̂
ω∗ ((0,+∞) ,X) (for ω∗ > 0 large enough) is the solution of

V (t)x = BTA0(t)x+B(SA �V (.)x)(t), t > 0, (9.1.34)

in which L p̂
ω∗ ((0,+∞) ,X) is the space of Bochner measurable maps f : (0,+∞)→X

such that

‖ f‖
L p̂

ω∗
:=
(∫ +∞

0

∥∥∥e−ω∗t f (t)
∥∥∥p̂

dt
)1/p̂

<+∞.

Proof. Let λ ∈ (ωA,+∞) be fixed. Multiplying (9.1.34) by the map t → e−ω̂t and
using the same arguments as in the proof of Proposition 9.1.20, we obtain

e−ω̂tV (t)x = e−ω̂tBTA0(t)x+ e−ω̂tB(SA �V (.)x)(t)

= e−ω̂tB(λ I−A0)
−α (λ I−A0)

α TA0(t)

+B(λ I−A0)
−α

∫ t

0
e−ω̂(t−s) (λ I−A0)

β+α TA0(t− s)(λ I−A)−β e−ω̂sV (s)xds.

Thus, for each ω̂ > 0 large enough we obtain, for any p̂ ∈
(

p∗, 1
α

)
, that∥∥∥e−ω̂.B(λ I−A0)

−α (λ I−A0)
α TA0(.)x

∥∥∥
L p̂

≤
∥∥∥e−ω̂.B(λ I−A0)

−α (λ I−A0)
α TA0(.)

∥∥∥
L p̂

≤Mα

∥∥B(λ I−A0)
−α
∥∥

L (X0,Y )

(∫ +∞

0 t−p̂α e−p̂ω̂tdt
)1/p̂
‖x‖X0

,

and for each β ∈ (1−1/p∗,1−α) ,∥∥∥e−ω̂.B(SA �V (.)x)(.)
∥∥∥

L p̂

≤Cα,β

((∫
τ

0
∫ t

0 e−ω̂(t−s)(t− s)−(β+α)e−ω̂s ‖V (s)x‖dsdt
)p̂
)1/p̂

≤Cα,β

∫
τ

0 t−(β+α)e−ω̂tdt
∥∥∥e−ω̂.V (.)x

∥∥∥
L p̂
.

Taking ω∗ > 0 large enough leads to

Cα,β

∫
τ

0
t−(β+α)e−ω∗tdt < 1.

From some fixed point argument, we conclude that (9.1.34) has a unique solution.
Therefore, we can define a strongly continuous familly of linear operators {L(t)}t≥0
such that

L(t) = TA0(t)+(SA �V )(t),
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where V (.)∈ L p̂
ω∗ ((0,+∞) ,X) satisfies (9.1.34). Due to Theorem 2.1 in Arendt [21],

to complete the proof of the result, it is sufficient to check that the following equality
holds for each λ > 0 large enough:

(λ I− (A+B)0)
−1 =

∫ +∞

0
e−λ tL(t)dt.

On one hand, we have∫ +∞

0
e−λ tL(t)dt =

∫ +∞

0
e−λ tTA0(t)dt +

∫ +∞

0
e−λ t (SA �V )(t)dt

= (λ I−A0)
−1 +λ

∫ +∞

0
e−λ t (SA ∗V )(t)dt

= (λ I−A0)
−1 +λ

∫ +∞

0
e−λ tSA(t)dt

∫ +∞

0
e−λ tV (t)dt

= (λ I−A0)
−1 +(λ I−A)−1

∫ +∞

0
e−λ tV (t)dt.

On the other hand we infer from (9.1.34) that∫ +∞

0
e−λ tV (t)dt = B

∫ +∞

0
e−λ tL(t)dt.

Thus we obtain∫ +∞

0
e−λ tL(t)dt = (λ I−A0)

−1 +(λ I−A)−1 B
∫ +∞

0
e−λ tL(t)dt,

and finally∫ +∞

0
e−λ tL(t)dt = (λ I−A0)

−1 +(λ I−A)−1
∞

∑
k=0

[
B(λ I−A)−1

]
B(λ I−A0)

−1 .

The result follows from Theorem 9.1.16 (i). ut

Following the techniques and theories in Chapter 6, one can develop the center
manifold theory, Hopf bifurcation theorem and normal form theory for parabolic
equations with almost sectorial operators.

9.1.6 Applications

(a) A Scalar Parabolic Equation on (0,1).
Let p ∈ [1,+∞) and ε > 0 be given. In this subsection we consider a parabolic

equation with nonhomogeneous Robin’s boundary condition
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∂v(t,a)
∂ t

=
∂ 2v(t,x)

∂x2 +h2(t)(x), t ≥ 0, x ∈ (0,1) ,

α0
∂v(t,0)

∂x
+β0v(t,0) = h0(t),

α1
∂v(t,1)

∂x
+β1v(t,1) = h1(t),

v(0,x) = v0 ∈ Lp ((0,1) ,R) .

(9.1.35)

Assumption 9.1.22. Assume that

α
2
0 +β

2
0 > 0 and α

2
1 +β

2
1 > 0.

Consider the space
X := R2×Lp ((0,1) ,R) ,

endowed with the usual product norm∥∥∥∥∥∥
 x0

x1
ϕ

∥∥∥∥∥∥= |x0|+ |x1|+‖ϕ‖Lp((0,1),R)

Define the linear operator A : D(A)⊂ X → X as follows

A

 0
0
ϕ

=

− [α0ϕ ′(0)+β0ϕ(0)]
− [α1ϕ ′(1)+β1ϕ(1)]

ε2ϕ ′′


with

D(A) = {0R}2×W 2,p ((0,1) ,R) .

Set

f (t) =

 h0(t)
h1(t)
h2(t)

 .

Then by identifying

u(t) =

 0R
0R
v(t)

 ,

we can rewrite the parabolic problem (9.1.35) as the following abstract Cauchy
problem

d
dt

u(t) = Au(t)+ f (t), t > 0; u(0) =

0R
0R
v0

 ∈ D(A).

Then it is easy to observe that the domain of A is non-densely defined because

X0 := D(A) = {0R}2×Lp ((0,1) ,R) 6= X .
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By construction A0, the part of A in X0, coincides with the usual formulation for
the parabolic system (9.1.35) with homogeneous boundary conditions. Indeed A0 :
D(A0)⊂ X0→ X0 is a linear operator on X0 defined by

A0

 0
0
ϕ

=

 0
0

ϕ ′′


with

D(A0) = {0R}2×
{

ϕ ∈W 2,p ((0,1) ,R) :
[
αxϕ

′(x)+βxϕ(x)
]
= 0 for x = 0,1

}
.

The first main result of this section is the following theorem.

Theorem 9.1.23. Let Assumption 9.1.22 be satisfied. The linear operator A0 is the
infinitesimal generator of an analytic semigroup on X0, (0,+∞)⊂ ρ(A), and

limsup
λ (∈R)→+∞

λ
1

p∗
∥∥∥(λ I−A)−1

∥∥∥
L (X)

<+∞

with

p∗ :=


2p

1+ p
if α2

0 > 0 and α2
1 > 0,

2p if α2
0 = 0 or α2

1 = 0.
(9.1.36)

In the rest of this subsection, set

Ωω = {λ ∈ C : Re(λ )> ω} , ∀ω ∈ R,

and for each λ ∈ C define

∆ (λ ) = (−µα0 +β0)(µα1 +β1)eµ − (µα0 +β0)(−µα1 +β1)e−µ ,

where
µ :=

√
λ .

To prove the following lemma, we use the same method as in Engel and Nagel [126,
p. 388-390] to obtain an explicite formula for the resolvent of A.

Lemma 9.1.24. Let Assumption 9.1.22 be satisfied. There exists ωA ≥ 0 such that

ΩωA ⊂ {λ ∈ C : ∆ (λ ) 6= 0} ⊂ ρ (A) ,

and for each λ := µ2 ∈ΩωA we have
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0
ϕ

= (λ I−A)−1

 y0
y1
f

⇐⇒
ϕ(x) =

1
∆ (λ )

[
(µα1 +β1)eµ(1−x)+(µα1−β1)e−µ(1−x)

]
y0

+
1

∆ (λ )
[(−µα0 +β0)eµx− (µα0 +β0)e−µx]y1

+
∆1(x)
∆ (λ )

1
2µ

∫ 1
0 e−µs f (s)ds+

∆2(x)
∆ (λ )

1
2µ

∫ 1
0 e−µ(1−s) f (s)ds+ 1

2µ

∫ 1
0 e−µ|x−s| f (s)ds,

where

∆1(x) =
[
−(µα0 +β0)(µα1 +β1)eµ(1−x)+(β1−µα1)(µα0 +β0)e−µ(1−x)

]
and

∆2(x) =
[
(µα0 +β0)(β1−µα1)e−µx− (β1−µα1)(−µα0 +β0)eµx] .

Proof. In order to compute the resolvent we set

u(x) =
1

2µ

∫ 1

0
e−µ|x−s| f (s)ds =

1
2µ

∫ +∞

−∞

e−µ|x−s| f̄ (s)ds,

where f̄ extends f by 0 on R\ [0,1] . We have

u(x) =
1

2µ

[∫ x

−∞

e−µ(x−s) f̄ (s)ds+
∫ +∞

x
eµ(x−s) f̄ (s)ds

]
,

so
u′(x) =−1

2

∫ x

−∞

e−µ(x−s) f̄ (s)ds+
1
2

∫ +∞

x
eµ(x−s) f̄ (s)ds.

Set

u(0) = γ0 :=
1

2µ

∫ 1

0
e−µs f (s)ds and u(1) = γ1 :=

1
2µ

∫ 1

0
e−µ(1−s) f (s)ds

and observe that
u′(0) = µγ0 and u′(1) =−µγ1.

Denote
u1(x) = e−µx and u2(x) = eµx.

Then we solve the problem

(λ I−A)

 0
0
ϕ

=

 y0
y1
f


and look for ϕ under the form



9.1 Abstract Non-densely Defined Parabolic Equations 471

ϕ(x) = u(x)+ z1u1(x)+ z2u2(x),

where z1,z2 ∈ Y.
For x = 0,1, we obtain

αx
[
u′(x)+ z1u′1(x)+ z2u′2(x)

]
+βx [u(x)+ z1u1(x)+ z2u2(x)] = yx.

So we must solve the system

z1
(
α0u′1(0)+β0u1(0)

)
+ z2

(
α0u′2(0)+β0u2(0)

)
= y0−α0u′(0)−β0u(0),

z1
(
α1u′1(1)+β1u1(1)

)
+ z2

(
α1u′2(1)+β1u2(1)

)
= y1−α1u′(1)−β1u(1),

which are equivalent to

z1 (−µα0 +β0)+ z2 (µα0 +β0) = y0−µα0γ0−β0γ0 = y0− γ0 (µα0 +β0) ,
z1 (−µα1 +β1)e−µ + z2 (µα1 +β1)eµ = y1 +µα1γ1−β1γ1 = y1− γ1 (β1−µα1) .

Thus {
z1 (−µα0 +β0)+ z2 (µα0 +β0) = y0− (µα0 +β0)γ0,
z1 (−µα1 +β1)e−µ + z2 (µα1 +β1)eµ = y1− (β1−µα1)γ1,

which imply that

z1 =
1
∆
[(µα1 +β1)eµ (y0− (µα0 +β0)γ0)− (µα0 +β0)(y1− (β1−µα1)γ1)]

= 1
∆
[(µα1 +β1)eµ y0− (µα1 +β1)eµ (µα0 +β0)γ0− (µα0 +β0)y1
+(β1−µα1)(µα0 +β0)γ1]

and

z2 =
1
∆
[(−µα0 +β0)(y1− (β1−µα1)γ1)− (−µα1 +β1)e−µ (y0− (µα0 +β0)γ0)]

= 1
∆
[(−µα0 +β0)y1− (−µα1 +β1)e−µ y0
+(β1−µα1)(µα0 +β0)e−µ γ0− (−µα0 +β0)γ1].

Hence, we have

(λ I−A)

 0
0
ϕ

=

 y0
y1
f

⇐⇒
ϕ(x) = 1

∆

[
(µα1 +β1)eµ(1−x)+(µα1−β1)e−µ(1−x)

]
y0

+ 1
∆
[(−µα0 +β0)eµx− (µα0 +β0)e−µx]y1

+ 1
∆
[(µα0 +β0)(β1−µα1)e−µx− (β1−µα1)(−µα0 +β0)eµx]γ1

+ 1
∆

[
−(µα0 +β0)(µα1 +β1)eµ(1−x)+(β1−µα1)(µα0 +β0)e−µ(1−x)

]
γ0

+ 1
2µ

∫ 1
0 e−µ|x−s| f (s)ds.

This completes the proof. ut
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From the above explicit formula for the resolvent of A we deduce the following
result.

Lemma 9.1.25. Let Assumption 9.1.22 be satisfied. We have the following:

(a) There exists ωA ≥ 0 and MA > 0 such that∥∥∥(λ I−A0)
−1
∥∥∥

L (X0)
≤ MA

|λ |
, ∀λ ∈ΩωA ;

(b) If α2
0 > 0 and α2

1 > 0, then

0< liminf
λ (∈R)→+∞

λ
1

p∗
∥∥∥(λ I−A)−1

∥∥∥
L (X)

≤ limsup
λ (∈R)→+∞

λ
1

p∗
∥∥∥(λ I−A)−1

∥∥∥
L (X)

<+∞

with
p∗ :=

2p
1+ p

≤ p;

(c) If either α2
0 = 0 or α2

1 = 0, then

0< liminf
λ (∈R)→+∞

λ
1

p∗
∥∥∥(λ I−A)−1

∥∥∥
L (X)

≤ limsup
λ (∈R)→+∞

λ
1

p∗
∥∥∥(λ I−A)−1

∥∥∥
L (X)

<+∞

with
p∗ := 2p > p.

Proof. Assertion (a) follows directly from the explicit formula of the resolvent of
A obtained in Lemma 9.1.24. So we only prove assertions (b) and (c). Let λ > ωA.
Then

(λ I−A)−1

 y0
0
0

=

 0
0

ϕ0


⇔ ϕ(x) = 1

∆

[
(µα1 +β1)eµ (1−x)+(µα1−β1)e−µ (1−x)

]
y0.

If λ := µ2 > 0, we have∥∥∥∥∥∥(λ I−A)−1

 y0
0
0

∥∥∥∥∥∥
=

1
|∆ |

(∫ 1

0

(∣∣∣(µα1 +β1)eµ (1−x)+(µα1−β1)e−µ (1−x)
∣∣∣)p

dx
)1/p

‖y0‖

≤ |µα1 +β1|
|∆ |

[(∫ 1

0

∣∣∣eµ p(1−x)
∣∣∣dx
)1/p

+

(∫ 1

0

∣∣∣e−µ p(1−x)
∣∣∣dx
)1/p

]
‖y0‖

≤ |µα1 +β1|
|∆ |

[(∫ 1

0
eµ prdr

)1/p

+

(∫ 1

0
e−µ prdr

)1/p
]
‖y0‖
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≤ |µα1 +β1|
|∆ |

([
1

µ p
(eµ p−1)

]1/p

+

[
1

µ p

(
1− e−µ p)]1/p

)
‖y0‖

≤ |µα1 +β1|
|∆ |

1
µ1/p p1/p [e

µ +1]‖y0‖ .

We also have∥∥∥∥∥∥(λ I−A)−1

 y0
0
0

∥∥∥∥∥∥
≥ |µα1 +β1|

|∆ |

∣∣∣∣∣
(∫ 1

0

∣∣∣eµ p(1−x)
∣∣∣dx
)1/p

−
(∫ 1

0

∣∣∣e−µ p(1−x)
∣∣∣dx
)1/p

∣∣∣∣∣‖y0‖

≥ |µα1 +β1|
|∆ |

1
µ1/p p1/p

[
eµ
(
1− e−µ p)1/p−1

]
‖y0‖ .

But
∆ = (−µα0 +β0)(µα1 +β1)eµ − (µα0 +β0)(−µα1 +β1)e−µ ,

so if α2
0 > 0, we have

lim
λ→+∞

µ
1+ 1

p

∥∥∥∥∥∥(λ I−A)−1

 y0
0
0

∥∥∥∥∥∥= 1
|α0| p1/p

‖y0‖

and if α2
0 = 0, we have

lim
λ→+∞

µ
1
p

∥∥∥∥∥∥(λ I−A)−1

 y0
0
0

∥∥∥∥∥∥= 1
|β0| p1/p

‖y0‖ ,

and the result follows. ut

Set
X1 = Y 2×{0Lp} .

Then we have
X = X1⊕X0.

Define a bounded linear projector Π : X → X0 such that

ΠX = X0 and (I−Π)X0 = X .

By using Theorem 9.1.12 we obtain the following result.

Theorem 9.1.26. Let Assumption 9.1.22 be satisfied. Let p∗ ≥ 1 be defined by
(9.1.36). Then for each p̂> p∗, each f ∈ L p̂ ((0,τ),X1)⊕L1 ((0,τ),X0) (with τ > 0),
and each x ∈ X0, there exists a unique integrated solution of the Cauchy problem
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du(t)
dt

= Au(t)+ f (t), ∀t ∈ [0,τ] ; u(0) = x ∈ X0.

Remark 9.1.27. Theorem 9.1.26 shows that to obtain the existence and uniqueness
of a solution for the parabolic equation (9.1.35), it is sufficient to assume that

h0 and h1 belong to L p̂ ((0,τ),Y )

for some p̂ > p∗, and
h2 ∈ L1 ((0,τ),Lp ((0,1),Y )) .

Remark 9.1.28. To conclude this section we would like to mention that it is also
possible to apply the linear perturbation Theorem 9.1.16 by using the Gagliardo-
Nirenberg’s Theorem [279].

(b) A Scalar Parabolic Equation on (0,+∞).
Consider the following parabolic problem on R+

∂v(t,a)
∂ t

= ε2 ∂ 2v(t,a)
∂x2 +h2(t)(x), t ≥ 0, x ∈ (0,+∞) ,

α
∂v(t,0)

∂x
+βv(t,0) = h0(t),

v(0,x) = v0 ∈ Lp ((0,+∞) ,Y ) .

(9.1.37)

where p ∈ [1,+∞) and ε > 0.

Assumption 9.1.29. Assume that α2 +β 2 > 0.

Set
X = Y ×Lp ((0,+∞) ,Y ) and X0 = {0Y}×Lp ((0,+∞) ,Y ) .

Define the linear operator A : D(A)⊂ X → X by

A
(

0
ϕ

)
=

(
− [αϕ ′(0)+βϕ(0)]

ε2ϕ ′′

)
with

D(A) = {0Y}2×W 2,p ((0,+∞) ,Y )

and the linear operator A0 : D(A0)⊂ X → X by

A0

(
0
ϕ

)
=

(
0

ϕ ′′

)
with

D(A0) = {0Y}×
{

ϕ ∈W 2,p ((0,+∞) ,Y ) :
[
αϕ
′(x)+βϕ(x)

]
= 0
}
.

Let

f (t) =
(

h0(t)
h2(t)

)
.
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Then by identifying

u(t) =
(

0
v(t)

)
,

we can rewrite the diffusion problem on R+ as

d
dt

u(t) = Au(t)+ f (t), t > 0; u(0) =
(

0
v0

)
∈ D(A).

Theorem 9.1.30. Let Assumption 9.1.29 be satisfied. The linear operator A0 is the
infinitesimal generator of an analytic semigroup on X0, (0,+∞)⊂ ρ(A), and

limsup
λ (∈R)→+∞

λ
1

p∗
∥∥∥(λ I−A)−1

∥∥∥
L (X)

<+∞,

where p∗ is given by

p∗ :=


2p

1+ p
if α2 > 0,

2p if α2
0 = 0.

(9.1.38)

Moreover, the explicit formula of the resolvent of the linear operator A is given by(
0
ϕ

)
= (λ I−A)−1

(
y
f

)
⇔ ϕ(x) =

e−µx

(β −µα)
y− (µα +β )

2µ (β −µα)

∫ +∞

0 e−µs f (s)dse−µx

+
1

2µ

∫ +∞

0 e−µ|x−s| f (s)ds.

Proof. Let µ2 = λ . In order to compute the resolvent we set

u(x) =
1

2µ

∫ +∞

0
e−µ|x−s| f (s)ds =

1
2µ

∫ +∞

−∞

e−µ|x−s| f̄ (s)ds,

where f̄ extends f by 0 on R−. We have

u′(x) =−1
2

∫ x

−∞

eµ(s−x) f̄ (s)ds+
1
2

∫ +∞

x
eµ(x−s) f̄ (s)ds,

so
u(0) = γ =

1
2µ

∫ +∞

0
e−µs f (s)ds.

Observe that
u′(0) = µγ

Set
u1(x) = e−µx

and solve
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(λ I−A)
(

0
ϕ

)
=

(
y
f

)
,

then we have
ϕ(x) = u(x)+ c1u1(x).

Solving
α
[
u′(0)+ c1u′1(0)

]
+β

[
u(0)+ c1u′1(0)

]
= y,

we obtain
c1 (−µα +β ) = y−µαγ−βγ = y− γ (µα +β ) ,

c1 =
y− γ (µα +β )

(β −µα)
.

Finally, we have the explicit formula

(λ I−A)
(

0
ϕ

)
=

(
y0
f

)
⇔ ϕ(x) =

y− γ (µα +β )

(β −µα)
e−µx +

1
2µ

∫ +∞

0
e−µ|x−s| f (s)ds.

The fact that A0 is the infinitesimal generator of an analytic semigroup on X0,
(0,+∞)⊂ ρ(A), is a consequence of the above formula. By using a similar argument
of Lemma 9.1.24, estimation on the resolvent follows. ut

Now set
X1 = Y ×{0Lp} .

Then we have
X = X1⊕X0.

Theorem 9.1.31. Let Assumption 9.1.29 be satisfied. Let p∗ ≥ 1 be defined by
(9.1.38). Then for each p̂> p∗, each f ∈ L p̂ ((0,τ),X1)⊕L1 ((0,τ),X0) (with τ > 0),
and each x ∈ X0, there exists a unique integrated solution of the Cauchy problem

du(t)
dt

= Au(t)+ f (t), ∀t ∈ [0,τ] ; u(0) = x ∈ X0.

9.2 A Size-structured Model

Consider a size-structured model with Ricker type birth function and random
fluctuation in the growth process described by a reaction-diffusion equation with a
nonlinear and nonlocal boundary condition:
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∂u(t,x)
∂ t

+
∂ (gu(t,x))

∂x︸ ︷︷ ︸
growth in size

= ε
2 ∂ 2u(t,x)

∂x2︸ ︷︷ ︸
random noise

−µu(t,x)︸ ︷︷ ︸
death

,

−ε2 ∂u(t,0)
∂x

+gu(t,0) = αh(
∫ +∞

0 γ (x)u(t,x)dx),

u(0, .) = u0 ∈ L1
+ (0,+∞) ,

(9.2.1)

where u(t,x) represents the population density of certain species at time t with size
x, g > 0, ε ≥ 0, µ > 0, and α > 0 are constants, γ ∈ L∞

+ (0,+∞)\{0} , and the map
h : R→ R is defined by

h(x) = xe−ξ x, ∀x≥ 0.

Equation (9.2.1) is viewed as a size structured model, for example for the growth
of trees or fish population, where x = 0 is the minimal size. The growth of indi-

viduals is described by two terms. First, the term
∂ (gu(t,x))

∂x
represents the av-

erage growth rate of individuals, and the diffusion term ε2 ∂ 2u(t,x)
∂x2 describes the

stochastic fluctuations around the tendency to growth. So ε2 ∂ 2u(t,x)
∂x2 − ∂ (gu(t,x))

∂x
describes the fact that given a group of individuals located in some small neighbor-
hood of a given size x0 ∈ (0,+∞) , after a period of time this group of individuals
will disperse due to the diffusion, and the mean value of the distribution increases
due to the convection term. The terms −µu(t,x) is classical and describes the mor-
tality process of individuals following an exponential law with mean 1/µ . The birth
function given by αh(

∫ +∞

0 γ (x)u(t,x)dx) is a Ricker [297, 298] type birth function.
This type of birth function has been commonly used in the literature, to take into
account some limitation of births when the population increases. In particular, the
birth rate function is αγ(x) when the total population is close to zero and it is very
natural to introduce a stochastic random noise to describe the growth of individuals
with respect to their size.

In the special case when ε = 0, by making a simple change of variable we can
assume that g= 1. Then system (9.2.1) becomes a model which is very similar to the
age structured models studied in Chapter 7, which exhibits Hopf bifurcation when

γ(x) = (x− τ)n e−β (x−τ)1[τ,+∞)(x).

In this section, we investigate the bifurcation by regarding α and ε as parameters of
the semiflow.

Without loss of generality, we assume that g = 1 and consider the system
∂u(t,x)

∂ t
+

∂u(t,x)
∂x

= ε2 ∂ 2u(t,x)
∂x2 −µu(t,x), t ≥ 0,x≥ 0,

−ε2 ∂u(t,0)
∂x

+u(t,0) = αh(
∫ +∞

0 γ (x)u(t,x)dx),

u(0, .) = u0 ∈ L1
+ (0,+∞) .

(9.2.2)
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Assumption 9.2.1. Assume that ε > 0, µ > 0, α > 0, γ ∈ L∞
+ (0,+∞) \ {0}, and

h : R→ R is defined by

h(x) = xexp(−ξ x), ∀x ∈ R,

where ξ > 0.

Consider the space
X := R×L1 (0,+∞)

endowed with the usual product norm∥∥∥∥(α

ϕ

)∥∥∥∥= |α|+‖ϕ‖L1(0,+∞) .

Define the linear operator A : D(A)⊂ X → X by

A
(

0
ϕ

)
=

(
ε2ϕ ′(0)−ϕ(0)
ε2ϕ ′′−ϕ ′−µϕ

)
with

D(A) = {0}×W 2,1 (0,+∞) .

Then
X0 := D(A) = {0}×L1 (0,+∞) .

Define the map H : X0→ X by

H
(

0
ϕ

)
=

(
αh(

∫ +∞

0 γ (x)ϕ(x)dx)
0

)
.

By identifying v(t)=
(

0
u(t)

)
, the partial differential equation (9.2.2) can be rewrit-

ten as the following non-densely defined Cauchy problem

dv(t)
dt

= Av(t)+H (v(t)) t ≥ 0; v(0) =
(

0
u0

)
∈ D(A). (9.2.3)

In the following, for z ∈ C,
√

z denotes the principal branch of the general multi-
valued function z

1
2 . The branch cut is the negative real axis and the argument of z,

denoted by argz, is π on the upper margin of the branch cut. Then z = ρeiθ ,θ ∈
(−π,π),ρ > 0, and

√
z =
√

ρei θ
2 . In the following, we will use the following nota-

tion:
Ω := {λ ∈ C : Re(λ )>−µ} ,

and for λ ∈Ω ,
Λ := 1+4ε

2 (λ +µ) . (9.2.4)

Since λ ∈Ω , Re(Λ)> 0, so we can use the above definition to define
√

Λ . Set
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σ
± :=

1±
√

Λ

2ε2 , (9.2.5)

Λ0 = 1+4ε
2
µ := Λ for λ = 0, (9.2.6)

and

σ
−
0 =

1−
√

Λ0

2ε2 := σ
− for λ = 0. (9.2.7)

So σ± are solutions of the equation

ε
2
σ

2−σ − (λ +µ) = 0.

Observe that
Re(σ+)> 0 and Re(σ−)< 0.

Besides these, later on we will also use the following notation:

R0 :=
2αχ

1+
√

Λ0
, (9.2.8)

χ :=
∫ +∞

0
γ (x)exp(σ−0 x)dx, (9.2.9)

χ0 := lim
ε→0

χ =
∫ +∞

0
γ (x)exp(−µx)dx, (9.2.10)

and

η(ε,α) :=
1+
√

Λ0

2χ

(
1− ln

2αχ

1+
√

Λ0

)
=

α

R0
(1− lnR0) . (9.2.11)

If γ(x) ∈ L1
+(0,+∞) and α = cε with c > 0, set

lim
ε→+∞

R0 =
c
√

µ

∫ +∞

0
γ(x)dx := R∞

0 ,

lim
ε→+∞

η (ε,α)

ε
=

√
µ∫ +∞

0 γ (x)dx
(1− lnR∞

0 ) := η
∞.

To study the characteristic equation, for λ ∈Ω , define

∆(ε,α,λ ) := 1− 2η(ε,α)

1+
√

Λ

∫ +∞

0
γ(x)eσ−xdx.

Moreover, if we consider

∆̃(ε,α,λ ) :=
1+
√

Λ

2
∆(ε,α,λ ) =−ε

2
σ
−+1−η (ε,α)

∫ +∞

0
γ (x)eσ−xdx,

when ε tends to infinity, and take α = cε, then ∆̃(ε,α,λ )
ε

goes to
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∆̂(+∞,c,λ ) :=
√

λ +µ−
√

µ

(
1− ln

c
∫ +∞

0 γ (x)dx
√

µ

)
.

Let L : D(L) ⊂ X → X be a linear operator on a Banach space X . Denote by ρ(L)
the resolvent set of L. The spectrum of L is σ (L) =C\ρ (L) . The point spectrum of
L is the set

σP (L) := {λ ∈ C : N (λ I−L) 6= {0}} .

Let Y be a subspace of X . Then we denote by LY : D(LY )⊂ Y → Y the part of L on
Y , which is defined by

LY x = Lx,∀x ∈ D(LY ) := {x ∈ D(L)∩Y : Lx ∈ Y} .

In particular, we denote A0 the part of A in D(A). So

A0x = Ax for x ∈ D(A0) =
{

x ∈ D(A) : Ax ∈ D(A)
}
.

Consider the linear operator Â0 : D(Â0)⊂ L1 (0,+∞)→ L1 (0,+∞) defined by

Â0(ϕ) = ε
2
ϕ
′′ −ϕ

′ −µϕ

with
D(Â0) = {ϕ ∈W 2,1((0,+∞),R) : ε

2
ϕ
′(0)−ϕ(0) = 0}.

We have the following relationship between A0 and Â0 :

D(A0) = {0}×D(Â0)

and

A0

(
0
ϕ

)
=

(
0

Â0ϕ

)
.

First we have the following lemma about the representation of the resolvent of A.

Lemma 9.2.2. We have

Ω ⊂ ρ(Â0) = ρ(A0) = ρ(A),

and for each λ ∈Ω we obtain the following explicit formula for the resolvent of A:

(λ I−A)−1
(

α

ψ

)
=

(
0
ϕ

)
⇔

ϕ(x) = (λ I− Â0)
−1 (ψ)(x)+α

2exp(σ−x)

1+
√

Λ
, (9.2.12)

where (λ I− Â0)
−1 is defined by
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(λ I− Â0)
−1 (ψ)(x) =

1√
Λ

[∫ x

0
exp(σ−(x− t))ψ(t)dt +

∫ +∞

x
exp(σ+(x− t))ψ(t)dt

]
+

√
Λ −1

(
√

Λ +1)
√

Λ

[∫ +∞

0
exp(−σ

+t)ψ(t)dt
]

exp(σ−x).

Next we prove the following proposition.

Proposition 9.2.3. The following two assertions are satisfied:

(a) A0 the part of A in D(A) is the infinitesimal generator of an analytic semigroup
of bounded linear operators

{
TA0(t)

}
t≥0 on D(A);

(b) A is a Hille-Yosida operator on X .

Proof. It is well known that Â0 is the infinitesimal generator of an analytic semi-
group. In fact, we first consider the linear operator A1 : D(A1) ⊂ L1 (0,+∞) →
L1 (0,+∞) defined by A1(ϕ) = ε2ϕ

′′
and D(A1) = D(Â0). It is well known that A1

is the infinitesimal generator of an analytic semigroup (Engel and nagel [126], Lu-
nardi [240]). Consider the linear operator A2 : D(A2) ⊂ L1 (0,+∞)→ L1 (0,+∞) ,

A2(ϕ) = −ϕ
′ − µϕ with D(A2) = W 2,1((0,+∞),R). Define Â0 = A1 +A2. From

Pazy [281, Theorem 7.3.10], we deduce that Â0 is sectorial. Furthermore, for λ ∈R
we have ∥∥∥∥(λ I−A)−1

(
α

0

)∥∥∥∥ = |α|
2
∫ +∞

0 exp(σ−x)dx

1+
√

Λ

= |α| 2
1+
√

Λ
× 1
−σ−

= |α| 2
1+
√

Λ
× 2ε2

−1+
√

Λ

= |α| 4ε2

−1+Λ
= |α| 4ε2

4ε2(λ +µ)
,

so we obtain for λ ∈ R that∥∥∥∥(λ I−A)−1
(

α

0

)∥∥∥∥≤ |α|
λ +µ

,∀λ >−µ.

Finally, it is readily checked that (see the proof of Lemma 9.2.11)∥∥∥TÂ0
(t)
∥∥∥≤ e−µt ,

which implies that ∥∥∥(λ I− Â0)
−1
∥∥∥≤ 1

λ +µ
,∀λ >−µ.

So A is a Hille-Yosida operator. ut

Set
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X+ := R+×L1
+(0,+∞), X0+ := X0∩X+.

Lemma 9.2.4. For λ > 0 large enough, we have (λ I−A)−1X+ ⊂ X+.

Proof. This lemma follows directly from the explicit formula (9.2.12) of the resol-
vent of A. ut

By using the results in Section 5.2, we have the following theorem.

Theorem 9.2.5 (Existence). There exists a unique continuous semiflow {U(t)}t≥0
on X0+ such that ∀x ∈ X0+, t→U(t)x is the unique integrated solution of

dU(t)x
dt

= AU(t)x+H(U(t)x), U(0)x = x,

or equivalently,

U(t)x = x+A
∫ t

0
U(l)xdl +

∫ t

0
H (U(l)x)dl, ∀t ≥ 0.

9.2.1 The Semiflow and its Equilibria

Now we consider the positive equilibrium solutions of equation (9.2.3).

Lemma 9.2.6. (Equilibrium) There exists a unique positive equilibrium of system
(9.2.2) (or equation (9.2.3)) if and only if

R0 :=
2αχ

1+
√

Λ0
> 1, (9.2.13)

where χ and Λ0 are defined in (9.2.9) and (9.2.6), respectively. Moreover, when it

exists, the positive equilibrium v̄ =
(

0
u

)
is given by the following formula

u(x) = C̄ exp(σ−0 x), (9.2.14)

where
C̄ :=

1
ξ χ

ln
2αχ

1+
√

Λ0
=

1
ξ χ

lnR0.

Proof. We have

A
(

0
u

)
+H

(
0
u

)
= 0

⇔ (
0
u

)
= (−A)−1

(
αh(

∫ +∞

0 γ (x)u(x)dx)
0

)
.

According to the explicit formula of the resolvent of A, taking λ = 0, we have
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0
u

)
= (−A)−1

(
αh(

∫ +∞

0 γ (x)u(x)dx)
0

)
⇔

u(x) = αh(
∫ +∞

0
γ (x)u(x)dx)

2exp(σ−0 x)
1+
√

Λ0
. (9.2.15)

So

u 6= 0 iff
∫ +∞

0
γ (x)u(x)dx 6= 0.

Integrating both sides of equation (9.2.15) after multiplying γ (x) , we have∫ +∞

0
γ (x)u(x)dx = αh(

∫ +∞

0
γ (x)u(x)dx)

∫ +∞

0
γ (x)

2exp(σ−0 x)
1+
√

Λ0
dx.

In order to have u(x)> 0, we have

1 = α exp(−ξ

∫ +∞

0
γ (x)u(x)dx)

2
∫ +∞

0 γ (x)exp(σ−0 x)dx
1+
√

Λ0

= exp(−ξ

∫ +∞

0
γ (x)u(x)dx)R0

⇔ ∫ +∞

0
γ (x)u(x)dx =

1
ξ

lnR0, (9.2.16)

and the result follows. ut

9.2.2 Linearized Equation and Spectral Analysis

From now on, we set

v̄ =
(

0
ū

)
with ū(x) = C̄ exp(σ−0 x), ∀R0 > 1,

where C̄ = 1
ξ χ

lnR0. The linearized system of (9.2.3) around v̄ is

dv(t)
dt

= Av(t)+DH(v̄)v(t) for t ≥ 0, v(t) ∈ X0, (9.2.17)

where

DH(v̄)
(

0
ϕ

)
=

(
αh′(

∫ +∞

0 γ(x)ū(x)dx)
∫ +∞

0 γ(x)ϕ(x)dx
0

)
=

(
η(ε,α)

∫ +∞

0 γ(x)ϕ(x)dx
0

)
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with

η(ε,α) = αh′(
∫ +∞

0
γ(x)ū(x)dx)

and
h′(x) = e−ξ x(1−ξ x).

Using (9.2.16) we obtain

η(ε,α) =
α

R0
(1− lnR0)

=
1+
√

Λ0

2χ

(
1− ln

2αχ

1+
√

Λ0

)
.

The Cauchy problem (9.2.17) corresponds to the following linear parabolic differ-
ential equation

∂u(t,x)
∂ t

+
∂u(t,x)

∂x
= ε2 ∂ 2u(t,x)

∂x2 −µu(t,x), t ≥ 0,x≥ 0,

−ε2 ∂u(t,0)
∂x

+u(t,0) = η (ε,α)
∫ +∞

0 γ (x)u(t,x)dx,

u(0, .) = u0 ∈ L1 (0,+∞) .

(9.2.18)

Next we study the spectral properties of the linearized equation (9.2.17). To sim-
plify the notation, we define Bα : D(Bα)⊂ X → X as

Bα x = Ax+DH(v̄)x with D(Bα) = D(A), (9.2.19)

and denote by (Bα)0 the part of Bα on D(A).

Lemma 9.2.7. For each λ ∈Ω = {λ ∈ C : Re(λ )>−µ} , we have

Re(1+
√

Λ)> 1,

λ ∈ ρ (Bα)⇔ ∆(ε,α,λ ) 6= 0,

and the following explicit formula:

(λ I−Bα)
−1
(

β

ψ

)
=

(
0
ϕ

)
⇔

ϕ(x) = (λ I− Â0)
−1(ψ)(x)

+∆(ε,α,λ )−1
[

β +η(ε,α)
∫ +∞

0
γ(x)(λ − Â0)

−1 (ψ)(x)dx
]

2exp(σ−x)

1+
√

Λ
,

where

∆(ε,α,λ ) := 1− 2η(ε,α)

1+
√

Λ

∫ +∞

0
γ(x)eσ−xdx, (9.2.20)
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in which η(ε,α), Λ , and σ− are defined in equations (9.2.11), (9.2.4) and (9.2.5),
respectively.

Proof. Since λ ∈Ω , from Lemma 9.2.2, we know that λ I−A is invertible. Then

λ I−Bα is invertible⇔ I−DH(v̄)(λ I−A)−1 is invertible,

and
(λ I−Bα)

−1 = (λ I−A)−1
[
I−DH(v̄)(λ I−A)−1

]−1
.

We also know that
[
I−DH(v̄)(λ I−A)−1

](
β̂

ϕ

)
=

(
β

ψ

)
is equivalent to ϕ = ψ

and

β̂ − β̂η(ε,α)
∫ +∞

0
γ(x)

2exp(σ−x)

1+
√

Λ
dx

= β +η(ε,α)
∫ +∞

0
γ(x)(λ − Â0)

−1 (ϕ)(x)dx.

We deduce that I−DH(v̄)(λ I−A)−1 is invertible if and only if ∆(ε,α,λ ) 6= 0.
Moreover, [

I−DH(v̄)(λ I−A)−1
]−1
(

β

ψ

)
=

(
β̂

ϕ

)
is equivalent to ϕ = ψ and

β̂ = ∆(ε,α,λ )−1
[

β +η(ε,α)
∫ +∞

0
γ(x)(λ − Â0)

−1 (ψ)(x)dx
]
.

Therefore,

(λ I−Bα)
−1
(

β

ψ

)
= (λ I−A)−1

[
I−DH(v̄)(λ I−A)−1

]−1
(

β

ψ

)
= (λ I−A)−1

(
β̂

ϕ

)

= (λ I−A)−1
(

∆(ε,α,λ )−1
[
β +η(ε,α)

∫ +∞

0 γ(x)(λ − Â0)
−1 (ψ)(x)dx

]
ψ

)
.

Then by Lemma 9.2.2, the result follows. ut

Remark 9.2.8. Since by definition of
√
·, Re(

√
Λ) > 0, ∀λ ∈ Ω , we deduce that

Re(1+
√

Λ)> 1.

By using the above explicit formula (9.2.19) for the resolvent of Bα we obtain
the following lemma.
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Lemma 9.2.9. If λ0 ∈ σ(Bα)∩Ω , then λ0 is a simple eigenvalue of Bα if and only
if

d∆(ε,α,λ0)

dλ
6= 0.

Consider a linear operator (B̂α)0 : D((B̂α)0)⊂ L1 (0,+∞)→ L1 (0,+∞) defined
by (

B̂α

)
0
(ϕ) = ε

2
ϕ
′′ −ϕ

′ −µϕ

with

D
((

B̂α

)
0

)
= {ϕ ∈W 2,1((0,+∞),R) : ε

2
ϕ
′(0)−ϕ(0)+η(ε,α)

∫ +∞

0
γ(x)ϕ(x)dx= 0}.

Then we have the following lemma.

Lemma 9.2.10. For each ϕ ∈ L1(0,+∞) and each t ≥ 0, we have

d
dt

∫ +∞

0
T(B̂α)0

(t)ϕ(x)dx

=−µ

∫ +∞

0
T(B̂α)0

(t)(ϕ)(x)dx+η(ε,α)
∫ +∞

0
γ(x)T(B̂α)0

(t)(ϕ)(x)dx.

Lemma 9.2.11. Let Assumption 9.2.1 be satisfied. Then the linear operator Bα is a
Hille-Yosida operator and its part (Bα)0 in X0 satisfies

ω0,ess ((Bα)0)≤−µ. (9.2.21)

Proof. Since DH(v̄) is a bounded linear operator and A is a Hille-Yosida operator, it
follows that Bα is also a Hille-Yosida operator. By Lemma 9.2.10 with η(ε,α) = 0,
we have∥∥∥TÂ0

(t)ϕ
∥∥∥

L1(0,+∞)
=
∥∥∥∣∣∣TÂ0

(t)ϕ
∣∣∣∥∥∥

L1(0,+∞)
≤
∥∥∥TÂ0

(t) |ϕ|
∥∥∥

L1(0,+∞)

=
∫

∞

0
TÂ0

(t) |ϕ|(x)dx =
∫

∞

0
e−µt |ϕ|(x)dx = e−µt ‖ϕ‖L1(0,+∞) ,

then
ω0,ess

(
Â0

)
≤−µ.

By using the result in Theorem 4.7.3, we deduce that

ω0,ess

((
B̂α

)
0

)
≤ ω0,ess

(
Â0

)
≤−µ,

and the result follows. ut

Lemma 9.2.12. We have

σ((Bα)0)∩Ω = σp((Bα)0)∩Ω = {λ ∈Ω : ∆(ε,α,λ ) = 0} ,
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where

∆(ε,α,λ ) = 1− 2η(ε,α)

1+
√

Λ

∫ +∞

0
γ(x)eσ−xdx.

Proof. By Lemma 9.2.11, we have

σ((Bα)0)∩Ω = σp((Bα)0)∩Ω ,

and by Lemma 9.2.7, the result follows. ut

Later on, we will study the eigenvalues of the characteristic equation

1 =
2η(ε,α)

1+
√

Λ

∫ +∞

0
γ(x)eσ−xdx with λ ∈Ω , (9.2.22)

or equivalently, the following equation

−ε
2
σ
−+1 = η (ε,α)

∫ +∞

0
γ (x)eσ−xdx, (9.2.23)

where σ− is the solution of

ε
2
σ

2−σ = λ +µ, λ ∈Ω ,

with Re(σ−)< 0.

9.2.3 Local Stability

This subsection is devoted to the local stability of the positive steady state v.
Recall that this positive equilibrium exists and is unique if and only if R0 > 1.

Lemma 9.2.13. If R0 =
2αχ

1+
√

Λ0
> 1, then λ = 0 is not a root of the characteristic

equation ∆(ε,α,λ ) = 0, where ∆(ε,α,λ ) is explicitly defined in (9.2.20).

Proof. We have

∆(ε,α,0) = 1− 2η(ε,α)

1+
√

Λ0

∫
∞

0
γ(x)eσ

−
0 xdx

= 1− 2χ

1+
√

Λ0
η(ε,α)

= 1− R0

α
(

α

R0
(1− lnR0))

= lnR0.

Since R0 > 1, we obtain that
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∆(ε,α,0)> 0

and the result follows. ut

Lemma 9.2.14. If λ is a root of the characteristic equation and Re(λ ) ≥ 0. Then
we have

Re(σ−)< σ
−
0

and
Re(
√

Λ)>
√

Λ0 > 1.

Proof. Since σ− is the root of

ε
2
σ

2−σ − (µ +λ ) = 0

with
Re(σ−)< 0,

we have the following relationship between Re(σ−), Im(σ−), Re(λ ), and Im(λ ) :

ε
2Re(σ−)2−Re(σ−)−µ = Re(λ )+ ε

2Im(σ−)2, (9.2.24)

2ε
2Re(σ−)Im(σ−)− Im(σ−) = Im(λ ). (9.2.25)

If Re(λ ) = 0 and Im(σ−) = 0, then by using (9.2.25) we have Im(λ ) = 0. So λ = 0,
which is impossible by Lemma 9.2.13. Thus if Re(λ )≥ 0, we have

Re(λ )+ ε
2Im(σ−)2 > 0.

By using (9.2.24) we deduce that

ε
2Re(σ−)2−Re(σ−)−µ > 0.

Since Re(σ−)< 0, if follows that

Re(σ−)<
1−
√

1+4ε2µ

2ε2 = σ
−
0 .

Now since σ− = 1−
√

Λ

2ε2 and σ
−
0 = 1−

√
Λ0

2ε2 , we deduce that Re(
√

Λ)>
√

Λ0. ut

Theorem 9.2.15. Let Assumption 9.2.1 be satisfied. If

1 < R0 ≤ e2,

then the positive equilibrium v̄ of system (9.2.2) is locally asymptotically stable.

Proof. Consider the characteristic equation

1− ε
2
σ
− = η(ε,α)

∫ +∞

0
γ(x)eσ−xdx. (9.2.26)
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By Lemma 9.2.14, if Re(λ )≥ 0, we must have

Re(σ−)< σ
−
0 .

Then we derive from equation (9.2.26) that

∣∣ε2
σ
−−1

∣∣ = ∣∣∣∣η(ε,α)
∫ +∞

0
γ(x)eσ−xdx

∣∣∣∣
≤ |η(ε,α)|

∫ +∞

0
γ(x)eRe(σ−)xdx

< |η(ε,α)|
∫ +∞

0
γ(x)eσ

−
0 xdx

= |η(ε,α)|χ.

On the other hand, if Re(λ )≥ 0, then by Lemma 9.2.14, we have

∣∣ε2
σ
−−1

∣∣= ∣∣∣∣∣1+
√

Λ

2

∣∣∣∣∣> Re(
1+
√

Λ

2
)>

1+
√

Λ0

2
.

So if

|η(ε,α)|χ ≤ 1+
√

Λ0

2
,

then there will be no roots of the characteristic equation with non-negative real part.
By (9.2.8) and (9.2.11), the above inequality is equivalent to

α

R0
|lnR0−1| ≤ α

R0
,

and the result follows. ut

Next let ε go to infinity, we study the characteristic equation

−ε
2
σ
−+1 = η (ε,α)

∫ +∞

0
γ (x)eσ−xdx,

where

σ
− =

1−
√

1+4ε2(λ +µ)

2ε2 ∼ O(
1
ε
) as ε →+∞.

In order to obtain the limit characteristic equation when ε tends to infinity, we
rewrite the characteristic equation as

−εσ
−+

1
ε
− η (ε,α)

ε

∫ +∞

0
γ (x)eσ−xdx = 0. (9.2.27)

To simplify the notation, we set

∆̃(ε,α,λ ) =−ε
2
σ
−+1−η (ε,α)

∫ +∞

0
γ (x)eσ−xdx.
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Then the rewritten equation (9.2.27) becomes

∆̃(ε,α,λ )

ε
= 0.

Note that
χ =

∫ +∞

0
γ (x)exp(σ−0 x)dx

and

σ
−
0 =

1−
√

1+4ε2µ

2ε2 → 0 as ε →+∞.

It is important to observe that to obtain a positive equilibrium, by Lemma 9.2.6 we
must have

R0 > 1,

or equivalently,

α >
1+
√

Λ0

2χ
, Λ0 = 1+4ε

2
µ.

We make the following assumption.

Assumption 9.2.16. Assume that

γ (x) ∈ L1
+(0,+∞), α = cε,

for some c > 0.

Under Assumption 9.2.16, we have

χ →
∫ +∞

0
γ (x)dx,

√
Λ0

α
=

√
1+4ε2µ

cε
→

2
√

µ

c
as ε →+∞,

so we obtain

R0→
c
√

µ

∫ +∞

0
γ(x)dx := R∞

0 as ε →+∞,

η (ε,cε)

ε
→

√
µ∫ +∞

0 γ (x)dx
(1− lnR∞

0 ) := η
∞ as ε →+∞.

Lemma 9.2.17. Let Assumptions 9.2.1 and 9.2.16 be satisfied. Then there exists ε̂ >
0 such that ∀ε > ε̂, if

λ ∈Ω and ∆̃(ε,α,λ ) = 0,

then
|λ |< µ +µ (1− lnR∞

0 )
2 +1.

Proof. If λ ∈Ω , ∆̃(ε,α,λ ) = 0, then
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−ε
2
σ
−+1 = η (ε,α)

∫ +∞

0
γ (x)eσ−xdx

with
Re(σ−)< 0.

So we have ∣∣ε2
σ
−−1

∣∣≤ |η (ε,α)|
∫ +∞

0
γ (x)dx,

thus ∣∣σ−∣∣≤ |η (ε,α)|
ε2

∫ +∞

0
γ (x)dx+

1
ε2 .

Observe that σ− satisfies

ε
2 (

σ
−)2−σ

− = λ +µ,

we have

|λ | ≤
∣∣σ−∣∣ ∣∣ε2

σ
−−1

∣∣+µ

≤
(
|η (ε,α)|

ε

∫ +∞

0
γ (x)dx

)2

+
|η (ε,α)|

∫ +∞

0 γ (x)dx
ε2 +µ. (9.2.28)

Since when ε tends to infinity, the right hand of the inequality (9.2.28) goes to

µ +µ (1− lnR∞
0 )

2 ,

and the result follows. ut

Lemma 9.2.18 (Convergence). Let Assumptions 9.2.1 and 9.2.16 be satisfied. Then
we have

lim
ε→+∞

lim
λ→λ̂

∆̃(ε,cε,λ )

ε
= ∆̂(+∞,c, λ̂ ),

where

∆̂(+∞,c, λ̂ ) :=
√

λ̂ +µ−
√

µ (1− lnR∞
0 ) .

Proof. We have

lim
ε→+∞

lim
λ→λ̂

εσ
− = lim

ε→+∞
lim

λ→λ̂

1−
√

1+4ε2 (λ +µ)

2ε
=−

√
λ̂ +µ,

lim
ε→+∞

lim
λ→λ̂

σ
− = lim

ε→+∞
lim

λ→λ̂

1−
√

1+4ε2 (λ +µ)

2ε2 = 0,

and we deduce for λ = 0 that

lim
ε→+∞

χ = lim
ε→+∞

∫ +∞

0
γ (x)eσ

−
0 xdx =

∫ +∞

0
γ (x)dx.
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Since

lim
ε→+∞

η (ε,cε)

ε
=

√
µ∫ +∞

0 γ (x)dx
(1− lnR∞

0 ) ,

we have

lim
ε→+∞

lim
λ→λ̂

∆̃(ε,cε,λ )

ε
= lim

ε→+∞
lim

λ→λ̂

(
−εσ

−+
1
ε
− η (ε,α)

ε

∫ +∞

0
γ (x)eσ−xdx

)
=

√
λ̂ +µ−

√
µ (1− lnR∞

0 ) .

This completes the proof of the lemma. ut

Remark 9.2.19. From Lemma 9.2.18, the limit equation of the characteristic equa-
tion when ε tends to infinity is√

λ +µ =
√

µ (1− lnR∞
0 ) , λ ∈Ω . (9.2.29)

Equation (9.2.29) has at most one real negative solution. Indeed, if q := 1− lnR∞
0 ∈

[0,1) , then √
λ +µ =

√
µq,

i.e.,
λ =−µ(1−q2)< 0;

and if q := 1− lnR∞
0 ∈ (−∞,0), then

√
λ +µ < 0. Since by construction we have

Re(
√

λ +µ)≥ 0, λ ∈Ω , so there is no solution.

Theorem 9.2.20. Let Assumptions 9.2.1 and 9.2.16 be satisfied. Assume that R∞
0 >

1. Then for each ε > 0 large enough the positive equilibrium v̄ of system (9.2.2) is
locally asymptotically stable.

Proof. We claim that if Assumption 9.2.16 is satisfied, then for ε positive and large
enough, there are no roots of the characteristic equation with non-negative real part.
Otherwise, we can find a sequence {εn}→+∞ and a sequence {λn} such that

Re(λn)≥ 0, ∆̃(εn,cεn,λn) = 0.

By using Lemma 9.2.17, we know that {λn} is bounded for each ε positive and
large enough. Thus we can find a subsequence of {λn} which converges to λ̂ . We
also denote this subsequence by {λn}. Obviously, we have

Re(λ̂ )≥ 0, ∆̃(εn,cεn,λn) = 0. (9.2.30)

Let n tend to infinity in equation (9.2.30). Then by Lemma 9.2.18, we have

∆̂(+∞,c, λ̂ ) = 0

with
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Re(λ̂ )≥ 0,

which leads to a contradiction with Remark 9.2.19, and the result follows. ut

Remark 9.2.21. In order to show that, under Assumptions 9.2.1 and 9.2.16, Theo-
rem 9.2.20 is more general than Theorem 9.2.15, we observe that

R0→ R∞
0 =

c
√

µ

∫ +∞

0
γ(x)dx, ε →+∞.

So when ε →+∞, the condition of Theorem 9.2.15 yields

1 < R∞
0 < e2.

9.2.4 Hopf Bifurcation

In this subsection we study the existence of Hopf bifurcation when α is regarded
as the bifurcation parameter of the system. By Theorem 9.2.15 we already knew that
the positive equilibrium v̄ of the system (9.2.2) is locally asymptotically stable if

1 < R0 ≤ e2, R0 =
2αχ

1+
√

Λ0
,

which corresponds to α ∈ (α̂0, α̂1] , where

α̂0 :=
1+
√

Λ0

2χ
and α̂1 :=

1+
√

Λ0

2χ
e2.

For a fixed value of ε > 0, we will study the existence of a bifurcation value α∗> α̂1.
Recall the characteristic equation ∆(ε,α,λ ) = 0, where

∆(ε,α,λ ) = 1− 2η(ε,α)

1+
√

Λ

∫ +∞

0
γ(x)eσ−xdx

= 1− η(ε,α)

1− ε2σ−

∫ +∞

0
γ(x)eσ−xdx,

in which

σ
− =

1−
√

Λ

2ε2

and
η(ε,α) =

α

R0
(1− lnR0)< 0 for α > α̂1.

(a) Existence of purely imaginary eigenvalues. We consider the characteristic
equation of σ− ∈ C: Re(σ−)< 0,
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ε
2
σ
−−1 =−η(ε,α)

∫ +∞

0
γ (x)eσ−xdx, (9.2.31)

ε
2 (

σ
−)2−σ

− = λ +µ (9.2.32)

with
Re(λ )>−µ.

Set
σ
− =−(a+ ib) .

Then a > 0, from equation (9.2.32) we have

ε
2 (a2−b2 +2abi

)
+a+ ib = λ +µ

i.e., {
ε2
(
a2−b2

)
+a = Re(λ )+µ

2ε2ab+b = Im(λ ) .
(9.2.33)

It follows that

b =
Im(λ )

2aε2 +1
. (9.2.34)

Thus, if we look for purely imaginary roots λ =±ωi with ω > 0, then from equation
(9.2.34) we have b > 0. Since a > 0, by the first equation in (9.2.33) we obtain

a =
−1+

√
1+4ε2 (µ + ε2b2)

2ε2 ,

and by the second equation in (9.2.33) we obtain

ω = b
(
2ε

2a+1
)
= b
√

1+4ε2 (µ + ε2b2).

On the other hand, from equation (9.2.31), we have

ε
2 (a+ ib)+1 = η(ε,α)

∫ +∞

0
γ (x)e−(a+ib)xdx.

The rest of this subsection is devoted to the existence of purely imaginary roots of
the characteristic equation when

γ (x) = (x− τ)n e−β (x−τ)1[τ,+∞)(x)

with τ > 0, β ≥ 0, and n ∈ N.
Since the function γ (x) must be bounded, we study the following two cases:

(i) β = 0 and n = 0.
(ii) β > 0 and n≥ 0.

Case (i). β = 0 and n = 0. We will make the following assumption.

Assumption 9.2.22. Assume that ε > 0 and γ (x) = 1[τ,+∞)(x) for some τ > 0.
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As we described in Section 9.2, when γ (x) = 1[τ,+∞)(x) the original system
(9.2.1) can be viewed as a stochastic perturbation (in the transport term) of a delay
differential equation. So we investigate the bifurcation properties of this problem in
terms of parameters α and ε.

Under Assumption 9.2.22, we have

∫ +∞

0
γ (x)eσ−xdx =−eσ−τ

σ−
,

and the characteristic equation becomes

Re
(
σ
−)< 0

and
ε

2 (
σ
−)2−σ

− = η(ε,α)eσ−τ ,

i.e.,
ε

2 [a2−b2 +2abi
]
+a+ ib = η(ε,α)e−aτ [cos(bτ)− isin(bτ)] .

If we look at the curve λ = ωi with ω > 0 and set

a :=
−1+

√
1+4ε2 (µ + ε2b2)

2ε2 ,

ω := ε
22ab+b = b

√
1+4ε2 (µ + ε2b2).

Then
ε

2 (a2−b2)+a = µ and a > 0,

and we obtain

µ + iω = η(ε,α)e−aτ e−ibτ = η(ε,α)e−aτ [cos(bτ)− isin(bτ)] .

Now fix

η(ε,α) =−ceaτ =−ce
−1+

√
1+4ε2(µ+ε2b2)

2ε2 τ

for some constant c > 0. We obtain

µ + iω = ce−ibτ =−c [cos(bτ)− isin(bτ)] .

We must have

c =
√

µ2 +ω2 =

√
µ2 +(2ε2ab+b)2

tan(bτ) =−ω

µ
=−ε22ab+b

µ
=−b

√
1+4ε2 (µ + ε2b2)

µ
,

and impose that
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sin(bτ) =
ω

c
> 0 and cos(bτ) =−µ

c
< 0.

From the above computations we obtain the following proposition.

Proposition 9.2.23. Let ε > 0, τ > 0 and µ > 0 be fixed. Then the characteristic
equation has a pair of purely imaginary solutions ±iω with ω > 0 if and only if
there exists b > 0 which is a solution of equation

tan(bτ) =−b
√

1+4ε2 (µ + ε2b2)

µ
(9.2.35)

with
sin(bτ)> 0 (9.2.36)

and
ω = b

√
1+4ε2 (µ + ε2b2), η(ε,α) = η̂(ε,a,b),

where
η̂(ε,a,b) :=−ceaτ ,

c =
√

µ2 +(2ε2ab+b)2, a =
−1+

√
1+4ε2 (µ + ε2b2)

2ε2 .

Moreover, for each k ∈ N, there exists a unique bk ∈
((

2k+ 1
2

) π

τ
,(2k+1)

π

τ

)
(which is a function of τ, µ and ε) satisfying (9.2.35) and (9.2.36).

Proof. Set b̂ = bτ. Then equation (9.2.35) becomes

tan
(

b̂
)
=−

(√
1+4ε2

(
µ +

(
ε

τ

)2 b̂2
))

b̂

µτ
. (9.2.37)

Observe that the right-hand side of (9.2.37) is a strictly monotone decreasing func-
tion of b̂, and note that the function tan(x) is increasing, we deduce that equation
(9.2.37) has a unique solution bm ∈

((
m− 1

2

)
π,mπ

)
for each m ≥ 1, m ∈ N. But

since we need to impose sin(bnτ)> 0, the result follows. ut

We obtain a sequence {bk} ⊂
((

2k+ 1
2

) π

τ
,(2k+1)

π

τ

)
satisfying (9.2.35) and

(9.2.36). Moreover, we have

η(ε,αk) = η̂(ε,ak,bk),

where
η̂(ε,ak,bk) =−ckeakτ ,

ck =

√
µ2 +(2ε2akbk +bk)

2, ak =
−1+

√
1+4ε2

(
µ + ε2b2

k

)
2ε2 ,
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and obtain the following bifurcation curves

αk
1

R0
(ln(R0)−1) = ckeakτ .

We can rewrite the bifurcation curves as

ln(R0) =
R0

αk
ckeakτ +1.

Thus

R0 = e
[
1+ckeakτ R0

αk

]
.

But R0 =
2αkχ

1+
√

Λ0
, so

αk =
1+
√

Λ0

2χ
exp
(

1+ ckeakτ 2χ

1+
√

Λ0

)
,

where

χ =
∫ +∞

0
γ (x)eσ

−
0 xdx =−eσ

−
0 τ

σ
−
0

, σ
−
0 =

1−
√

Λ0

2ε2 , Λ0 = 1+4ε
2
µ.

So

2χ

1+
√

Λ0
=

4ε2e

(
1−
√

1+4ε2µ

2ε2

)
τ

Λ0−1
=

e

(
1−
√

1+4ε2µ

2ε2

)
τ

µ
.

Hence, we obtain bifurcation curves

αk = µe
−

(
1−
√

1+4ε2µ

2ε2

)
τ

exp

ckeakτ e
1−
√

1+4ε2µ

2ε2 τ

µ
+1

 . (9.2.38)
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Fig. 9.1: A family of bifurcation curves given by (9.2.35), (9.2.36) and (9.2.38) in the (ε,α)-plane for τ = 2 and µ = 5.

Remark 9.2.24. Note that for any fixed ε > 0, α is a strictly increasing function
of b, and as for each k ∈ N, bk < bk+1, so the bifurcation curves cannot cross each
other.

In the special case ε = 0, we obtain a characteristic equation which corresponds
to a delay differential equation. Then the characteristic equation becomes

−σ
− = η(0,α)eσ−τ , (9.2.39)

where

η(0,α) =
1
χ0

(1− ln(αχ0)) with χ0 =
∫

∞

0
γ(x)e−µxdx =

e−µτ

µ
,

−σ
− = λ +µ.

Corresponding to Proposition 9.2.23, we have the following proposition.

Proposition 9.2.25. Let τ > 0 and µ > 0 be fixed. Then the characteristic equation
(9.2.39) has a pair of purely imaginary solutions ±iω with ω > 0 if and only if

tan(ωτ) =−ω

µ
, (9.2.40)

sin(ωτ)> 0, (9.2.41)

and
η(0,α) =−

√
µ2 +ω2eµτ .

Moreover, for each k ∈N, there exists a unique ωk ∈
((

2k+ 1
2

)
π

τ
,(2k+1) π

τ

)
which

satisfies equation (9.2.40) and (9.2.41) (and is a function of τ and µ).
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In this case, the bifurcation curves are given by

αk = µeµτ exp
(

1+
√

µ2 +ω2
k µ
−1
)
,

where ωk is described in Proposition 9.2.25, k ∈ N.
Case (ii). β > 0 and n≥ 0. In this subcase, we make the following assumption.

Assumption 9.2.26. Assume that ε > 0 and

γ (x) = (x− τ)n e−β (x−τ)1[τ,+∞)(x)

for some n≥ 0, τ > 0, and β > 0.

When ε = 0, this problem corresponds to the example treated in Chapter 8, where
the existence of purely imaginary solutions was obtained implicitly. Here we extend
this study to the case when ε > 0 and specify the bifurcation diagram when ε = 0.
Under Assumption 9.2.26, we have∫ +∞

0
γ (x)eσ−xdx = eβτ

∫ +∞

τ

(x− τ)n e(σ−−β)xdx

= eβτ

∫ +∞

0
sne(σ−−β)(s+τ)ds

= −eβτ e(σ−−β)τ

∫ 0

−∞

(
l

(σ−−β )

)n

el 1
(σ−−β )

dl

=
−eσ−τ

(σ−−β )n+1

∫ +∞

0
(−1)n xne−xdx

=
(−1)n+1 eσ−τ n!

(σ−−β )n+1

=
n!eσ−τ

(β −σ−)n+1 .

So the characteristic equation becomes ∆(ε,α,λ ) = 0, where

∆(ε,α,λ ) = 1− η(ε,α)

1− ε2σ−

∫ +∞

0
γ(x)eσ−xdx = 1− η(ε,α)n!eσ−τ

(1− ε2σ−)× (−σ−+β )n+1 .

First we give the following lemma to show that under Assumption 9.2.26, for any
given ε > 0 and α > 0, there exists at most one pair of purely imaginary solutions
of the characteristic equation.

Lemma 9.2.27. Let Assumptions 9.2.1 and 9.2.26 be satisfied. Then for each real
number δ1, there exists at most one δ2 ∈ (0,+∞) such that if

λ ∈Ω , Re(λ ) = δ1 and ∆(ε,α,λ ) = 0,
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then
Im(λ ) =±δ2.

Proof. Since ∆(ε,α,λ ) = 0, we obtain

1− η(ε,α)n!eσ−τ

(1− ε2σ−)× (−σ−+β )n+1 = 0, (9.2.42)

where σ− is the solution of

ε
2
σ

2−σ = λ +µ, λ ∈Ω , (9.2.43)

with Re(σ−)< 0.
From (9.2.43) we have

Im(σ−)2 = Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2 ≥ 0, (9.2.44)

Im(λ ) = 2ε
2Re(σ−)Im(σ−)− Im(σ−), (9.2.45)

and by (9.2.42) we have∣∣1− ε
2
σ
−∣∣× ∣∣∣(−σ

−+β
)n+1

∣∣∣= ∣∣∣η(ε,α)n!eσ−τ

∣∣∣ ,
i.e.,((

1− ε
2Re(σ−)

)2
+
(
ε

2Im(σ−)
)2
)
×
((
−Re(σ−)+β

)2
+
(
Im(σ−)

)2
)n+1

= |η(ε,α)n!|2 e2Re(σ−)τ .

By using (9.2.45), we have( (
1− ε2Re(σ−)

)2
+

ε4
(

Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2

))×( (−Re(σ−)+β )
2
+

Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2

)n+1

= |η(ε,α)n!|2 e2Re(σ−)τ .

Now set

f (Re(σ−)) =

( (
1− ε2Re(σ−)

)2
+

ε4
(

Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2

))×( (−Re(σ−)+β )
2
+

Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2

)n+1

−|η(ε,α)n!|2 e2Re(σ−)τ ,

then

d f
dRe(σ−)

(
Re(σ−)

)
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=
(
−2ε

2 (1− ε
2Re(σ−)

)
+2ε

4Re(σ−)− ε
2)

×
((
−Re(σ−)+β

)2
+Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2

)n+1

+(n+1)×
((

1− ε
2Re(σ−)

)2
+ ε

4
(

Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2

))
×
((
−Re(σ−)+β

)2
+Re(σ−)2− Re(σ−)+Re(λ )+µ

ε2

)n

×
(
−2
(
−Re(σ−)+β

)
+2Re(σ−)− 1

ε2

)
−2τ |η(ε,α)n!|2 e2Re(σ−)τ .

By using (9.2.44) and the above equation we deduce that

Re(σ−)< 0⇒ d f
dRe(σ−)

(Re(σ−))< 0.

Thus, for any fixed Re(λ ), we can find at most one Re(σ−) satisfying the charac-
teristic equation (9.2.42). Using (9.2.44) and (9.2.45), we obtain the result. ut

Now we consider the characteristic equation as system (9.2.31) and (9.2.32) with
Re(λ )≥−µ and Re(σ−)< 0. Under Assumption 9.2.26, the characteristic equation
(9.2.31) is equivalent to

(
ε

2
σ
−−1

)
=−n!η(ε,α)

eσ−τ

(β −σ−)n+1 . (9.2.46)

We look for purely imaginary roots λ = ωi with ω > 0. As before, we set

σ
− :=−a− ib, ω := 2ε

2ab+b, a :=
−1+

√
1+4ε2 (µ + ε2b2)

2ε2

with b > 0, then equation (9.2.32) is satisfied. Now it remains to find b such that it
satisfies equation (9.2.46), or equivalently,

σ
−×

(
ε

2
σ
−−1

)
= iω +µ =−σ

−×n!η(ε,α)
eσ−τ

(β −σ−)n+1 .

Now we have
σ
− =−a− ib =

√
a2 +b2eiθ ,

β −σ
− = a+β + ib =

√
(a+β )2 +b2eiθ̂ ,

where

θ := arctan
(

b
a

)
+π, θ̂ := arctan

(
b

a+β

)
.
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Then we obtain

µ + iω =−η(ε,α)
n!
√

a2 +b2e−aτ(√
(a+β )2 +b2

)n+1 ei(θ−(n+1)θ̂−τb).

Now fix

η(ε,α) =−c

(√
(a+β )2 +b2

)n+1

n!
√

a2 +b2
eaτ

with c > 0, then we have

µ + iω = µ + i
(
2ε

2ab+b
)
= cei(θ−(n+1)θ̂−τb)

and

c =
√

µ2 +ω2 =

√
µ2 +(2ε2ab+b)2,(

2ε2ab+b
)

µ
= tan

(
θ − (n+1) θ̂ − τb

)
.

We must impose that

sin
(

θ − (n+1) θ̂ − τb
)
=

2ε2ab+b
c

> 0.

From the above computations we obtain the following proposition.

Proposition 9.2.28. Let ε > 0, τ > 0, µ > 0, β > 0, and n ∈ N be fixed. Then the
characteristic equation has a pair of purely imaginary solutions ±iω with ω > 0 if
and only if there exists b > 0 which is a solution of equation(

2ε2ab+b
)

µ
=− tanΘ(b) (9.2.47)

with
sin(Θ(b))< 0, (9.2.48)

and we have

ω = b
√

1+4ε2 (µ + ε2b2), η(ε,α) = η̃(ε,a,b),

where

Θ(b) =−θ +(n+1) θ̂ + τb, η̃(ε,a,b) :=−c

(√
(a+β )2 +b2

)n+1

n!
√

a2 +b2
eaτ ,
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θ = arctan
(

b
a

)
+π, θ̂ = arctan

(
b

a+β

)
,

c =
√

µ2 +(2ε2ab+b)2, a =
−1+

√
1+4ε2 (µ + ε2b2)

2ε2 .

Moreover, there exists a sequence {bk}→+∞ as k→+∞, k∈N (which is a function
of ε, τ, µ, β , and n) satisfying (9.2.47) and (9.2.48). In particular, for each k large
enough, there exists a unique bk ∈

(
Θ−1

(
2kπ− π

2

)
,Θ−1 (2kπ)

)
satisfying (9.2.47)

and (9.2.48), where Θ−1 is the inverse function of Θ(b) on
[
b̂,+∞

)
for b̂ large

enough.

Proof. Note that for b > 0,(
2ε2ab+b

)
µ

=− tanΘ(b)> 0,

we have
tanΘ(b)< 0,

so
Θ(b) ∈

(
mπ− π

2
,mπ

)
, m ∈ Z.

Moreover, in order to ensure
sinΘ(b)< 0,

we must take m = 2k, k ∈ Z. Now since Θ(b) is a continuous function of b,

Θ(0) =−π, Θ(+∞) = +∞,

so for any k∈N, there exist b̂k1, b̂k2 > 0 such that Θ(bk1)= 2kπ− π

2 ,Θ(bk2)= 2kπ.
Observe that the left-hand side of equation (9.2.47) is a strictly monotone increasing
function of b, and since the function tan(Θ(b)) can take any value from −∞ to
+∞ when b ∈

(
b̂k1, b̂k2

)
or b ∈

(
b̂k2, b̂k1

)
, we deduce that equation (9.2.47) has a

solution bk ∈
(

b̂k1, b̂k2

)
or bk ∈

(
b̂k2, b̂k1

)
. Thus, there exists a sequence of {bk}→

+∞ satisfying (9.2.47) and (9.2.48). We denote the derivative of function f with
respect to b by f ′. Then

Θ
′(b) : =

d
db

Θ(b) =−
[

arctan
(

b
a

)
+π

]′
+(n+1)

[
arctan

(
b

a+β

)]′
+ τ

= −
( b

a

)′
1+
( b

a

)2 +(n+1)

(
b

a+β

)′
1+
(

b
a+β

)2 + τ

= −
a−ba′

a2

1+
( b

a

)2 +(n+1)

a+β−ba′

(a+β )2

1+
(

b
a+β

)2 + τ
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= −
a−ba′

b2( a
b

)2
+1

+(n+1)
a+β−ba′

b2(
a+β

b

)2
+1

+ τ,

where

a′ :=
d

db

(
−1+

√
1+4ε2 (µ + ε2b2)

2ε2

)
=

2ε2b√
1+4ε2 (µ + ε2b2)

.

Since

a′ =
2ε2b√

1+4ε2 (µ + ε2b2)
→ 1 as b→+∞,

a
b
=
−1+

√
1+4ε2 (µ + ε2b2)

2ε2b
→ 1 as b→+∞,

a+β

b
→ 1 as b→+∞,

we obtain
Θ
′(b)→ τ as b→+∞.

That is, when b is large enough, Θ(b) is a strictly monotone increasing function
of b. Denote by Θ−1 the inverse function of Θ(b) on

[
b̂,+∞

)
for b̂ large enough.

So for k large enough we have b̂k1 = Θ−1
(
2kπ− π

2

)
, b̂k2 = Θ−1 (2kπ) , and the

function tan(Θ(b)) is increasing when b ∈
(

b̂k1, b̂k2

)
. Thus there exists a unique

bk ∈
(
Θ−1

(
2kπ− π

2

)
,Θ−1 (2kπ)

)
satisfying (9.2.47) and (9.2.48), and the result

follows. ut

We find a sequence {bk} going to +∞ and satisfying (9.2.47) and (9.2.48). By
using a similar procedure as before, we can derive a bifurcation diagram. Using our
construction, we have

η(ε,αk) = η̃(ε,ak,bk).

But
η(ε,α) = α

1
R0

(1− ln(R0)) ,

so we obtain the bifurcation curves

αk
1

R0
(1− ln(R0)) = η̃(ε,ak,bk).

Since
ln(R0) = 1− R0

αk
η̃(ε,ak,bk),

it follows that

R0 = e
[
1−η̃(ε,ak,bk)

R0
αk

]
.
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Notice that we also have
R0 =

2αkχ

1+
√

Λ0
,

so

αk =
1+
√

Λ0

2χ
exp
(

1− η̃(ε,ak,bk)
2χ

1+
√

Λ0

)
.

Now since

χ =
∫ +∞

0
γ (x)eσ

−
0 xdx =

n!eσ
−
0 τ(

β −σ
−
0

)n+1 ,

σ
−
0 =

1−
√

Λ0

2ε2 , Λ0 = 1+4ε
2
µ,

we obtain
2χ

1+
√

Λ0
=

2n!eσ
−
0 τ(

1+
√

Λ0
)(

β −σ
−
0

)n+1 .

Thus we obtain the bifurcation curves

αk =

(
1+
√

Λ0
)(

β −σ
−
0

)n+1

2n!eσ
−
0 τ

exp

(
1− η̃(ε,ak,bk)

2n!eσ
−
0 τ(

1+
√

Λ0
)(

β −σ
−
0

)n+1

)
,

(9.2.49)
where

η̃(ε,ak,bk) =−ck

(√
(ak +β )2 +b2

k

)n+1

n!
√

a2
k +b2

k

eakτ ,

ck =

√
µ2 +(2ε2akbk +bk)

2, ak =
−1+

√
1+4ε2

(
µ + ε2b2

k

)
2ε2 .

Similarly, the special case ε = 0 corresponds to the characteristic equation stud-
ied in Section 8.3. Here we improve the description by specifying the bifurcation
curves. When ε = 0, the characteristic equation becomes

1 = n!η(0,α)
eσ−τ

(β −σ−)n+1 (9.2.50)

with
−σ

− = λ +µ,

η(0,α) =
1
χ0

(1− ln(αχ0)), χ0 =
∫

∞

0
γ(x)e−µxdx =

n!e−µτ

(β +µ)n+1 .

If we now look for λ = ±ωi with ω > 0 and set σ− = −a− ib with a > 0,b > 0,
then

a = µ, ω = b,
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and b must satisfy

1 = n!η(0,α)
e(−µ−ib)τ

(β +µ + ib)n+1 ,

i.e.,

1 = n!η(0,α)
e−µτ(√

(β +µ)2 +b2
)n+1 e−i

(
bτ+(n+1)arctan b

β+µ

)
.

Since η(0,α)< 0 for α > α̂1, we have

η(0,α) =−

(√
(µ +β )2 +b2

)n+1

n!
eµτ

and

−
(

bτ +(n+1)arctan(
b

β +µ
)

)
= π−2kπ

for some k ∈ Z.

Proposition 9.2.29. Let τ > 0, µ > 0, β > 0, and n ∈ N be fixed. Then the charac-
teristic equation (9.2.50) has a pair of purely imaginary solutions ±iω with ω > 0
if and only if there exists k ∈ Z such that ω is a solution of equation

−
(

ωτ +(n+1)arctan
ω

β +µ

)
= π−2kπ (9.2.51)

and
η(0,α) = η̃(0,µ,ω),

where

η̃(0,µ,ω) :=−

(√
(µ +β )2 +ω2

)n+1

n!
eµτ .

Moreover, for each k ∈ N+, there exists a unique ωk (which is a function of τ , µ , β ,
and n) satisfing equation (9.2.51).

In this case, the bifurcation curves are

αk =
(β +µ)n+1

n!e−µτ
exp

(
1− η̃(0,µ,ωk)

n!e−µτ

(β +µ)n+1

)
, k ∈ N+,

where

η̃(0,µ,ωk) =−

(√
(µ +β )2 +ω2

k

)n+1

n!
eµτ ,

and ωk is described in Proposition 9.2.29.
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(b) Transversality condition. The aim of this part is to prove a transversality
condition for the model with Assumption 9.2.22 or Assumption 9.2.26. Since As-
sumption 9.2.22 is a special case of Assumption 9.2.26, we start to investigate the
transversality condition under Assumption 9.2.26.

Lemma 9.2.30. For fixed ε > 0, if α > α̂1, λ ∈Ω and ∆(ε,α,λ ) = 0, then

∂∆(ε,α,λ )

∂α
< 0.

Proof. Since

∆(ε,α,λ ) = 1− 2η(ε,α)

1+
√

Λ

∫ +∞

0
γ(x)eσ−xdx,

∂∆(ε,α,λ )

∂α
=−

2 ∂η(ε,α)
∂α

1+
√

Λ

∫ +∞

0
γ(x)eσ−xdx,

and

η(ε,α) =
1+
√

Λ0

2χ

(
1− ln

(
α

2χ

1+
√

Λ0

))
,

where 1+
√

Λ0
2χ

is independent of α, we have

∂η(ε,α)

∂α
=−1+

√
Λ0

2αχ
.

But ∆(ε,α,λ ) = 0, we obtain

∂∆(ε,α,λ )

∂α
=−

∂η(ε,α)
∂α

η(ε,α)
=

1

α

(
1− ln

2αχ

1+
√

Λ0

) .

Moreover, if α > α̂1, then ∂∆(ε,α,λ )
∂α

< 0. ut

Lemma 9.2.31. Let Assumption 9.2.1 and Assumption 9.2.26 be satisfied. For fixed
ε > 0, if α > α̂1, λ ∈Ω and ∆(ε,α,λ ) = 0, then

∂∆(ε,α,λ )

∂λ
=

2ε2
√

Λ

(
1

1+
√

Λ
+

τ

2ε2 +
1+n

(2ε2β −1)+
√

Λ

)
6= 0.

Proof. Under Assumption 9.2.26 we have

∆(ε,α,λ ) = 1− η(ε,α)n!eσ−τ

(1− ε2σ−)× (−σ−+β )n+1

and

∂∆(ε,α,λ )

∂λ
=

∂∆(ε,α,λ )

∂σ−
∂σ−

∂λ
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= −η(ε,α)n!
∂

∂σ−

(
eσ−τ

(1− ε2σ−)× (−σ−+β )n+1

)
∂σ−

∂λ

= − η(ε,α)n!eσ−τ

(1− ε2σ−)× (−σ−+β )n+1

(
τ +

ε2

1− ε2σ−
+

n+1
−σ−+β

)
∂σ−

∂λ

= (∆(ε,α,λ )−1)×
(

τ +
2ε2

1+
√

Λ
+

n+1
−σ−+β

)
∂σ−

∂λ
.

Since

∂σ−

∂λ
=

∂

∂λ

(
1−
√

1+4ε2(λ +µ)

2ε2

)
=− 1√

1+4ε2(λ +µ)
=− 1√

Λ
,

we obtain

∂∆(ε,α,λ )

∂λ
=−∆(ε,α,λ )−1√

Λ

(
2ε2

1+
√

Λ
+ τ +

n+1
−σ−+β

)
.

So if ∆(ε,α,λ ) = 0, then

∂∆(ε,α,λ )

∂λ
=

2ε2
√

Λ

(
1

1+
√

Λ
+

τ

2ε2 +
1+n

(2ε2β −1)+
√

Λ

)
. (9.2.52)

Now note that ∂∆(ε,α,λ )
∂λ

= 0 if and only if

τ

2ε2 Λ +(2+n+ τβ )
√

Λ +
τ

2ε2

(
2ε

2
β −1

)
+n+2ε

2
β = 0. (9.2.53)

As η(ε,α)< 0 for α > α̂1, we have for λ ∈ R and λ >−µ that

∆(ε,α,λ ) = 1− η(ε,α)n!eσ−τ

(1− ε2σ−)× (−σ−+β )n+1 > 0.

So solutions of the characteristic equation in Ω cannot be real numbers. When λ ∈
C\R, we have

√
Λ =

√
1+4ε2 (λ +µ) ∈C\R with Re(

√
Λ)> 0. By noting that

the sign of the imaginary part of Λ is the same as the sign of the imaginary part
of
√

Λ and by noticing that τ

2ε2 > 0 and 2+ n+ τβ > 0, we deduce that equation
(9.2.53) cannot be satisfied. ut

Theorem 9.2.32. Let Assumption 9.2.1 and Assumption 9.2.26 be satisfied and let
ε > 0 be given. For each k ≥ 0 large enough, let λk = iωk be the purely imagi-
nary root of the characteristic equation associated to αk > 0 (defined in Proposition
9.2.28), then there exists ρk > 0 (small enough) and a C1-map λ̂k : (αk−ρk,αk +
ρk)→ C such that

λ̂k(αk) = iωk, ∆(ε,α, λ̂k(α)) = 0, ∀α ∈ (αk−ρk,αk +ρk)
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satisfying the transversality condition

Re

(
dλ̂k(αk)

dα

)
> 0.

Proof. By Lemma 9.2.31 we can use the implicit function theorem around each
(αk, iωk) provided by Proposition 9.2.28, and obtain that there exist ρk > 0 and a
C1-map λ̂k : (αk−ρk,αk +ρk)→ C such that

λ̂k(αk) = iωk, ∆(ε,α, λ̂k(α)) = 0, ∀α ∈ (αk−ρk,αk +ρk).

Moreover, we have

∂∆

(
ε,α, λ̂k(α)

)
∂α

+
∂∆

(
ε,α, λ̂k(α)

)
∂λ

dλ̂k(α)

dα
= 0, ∀α ∈ (αk−ρk,αk +ρk) .

So

dλ̂k(α)

dα
=− 1

∂∆

(
ε,α,λ̂k(α))

)
∂λ

∂∆

(
ε,α, λ̂k(α)

)
∂α

, ∀α ∈ (αk−ρk,αk +ρk) .

By using Lemma 9.2.30, we deduce ∀α ∈ (αk−ρk,αk +ρk) that

Re
(

d
dα

λ̂k(α)

)
> 0 ⇔ Re

∂∆

(
ε,α, λ̂k (α)

)
∂λ

> 0.

In particular, we have

Re
(

d
dα

λ̂k(αk)

)
> 0 ⇔ Re

(
∂∆ (ε,αk, iωk)

∂λ

)
> 0.

Using the notation of Proposition 9.2.28, we have
√

Λ = 1−2ε
2
σ
− = 1+2ε

2(ak + ibk) := γk + iδk,

where γk and δk are positive and γ2
k −δ 2

k = 1+4ε2µ .
Therefore, we have

∂∆ (ε,αk, iωk)

∂λ
=

2ε2
√

Λ

(
1

1+
√

Λ
+

τ

2ε2 +
1+n

(2ε2β −1)+
√

Λ

)
=

2ε2

γk + iδk

(
1+ γk− iδk

(1+ γk)
2 +δ 2

k

+
τ

2ε2 +(n+1)
2ε2β −1+ γk− iδk

(2ε2β −1+ γk)
2 +δ 2

k

)
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=
2ε2

γ2
k +δ 2

k
(γk− iδk)

(
1+ γk− iδk

(1+ γk)
2 +δ 2

k

+
τ

2ε2 +(n+1)
2ε2β −1+ γk− iδk

(2ε2β −1+ γk)
2 +δ 2

k

)

and

Re
(

∂∆ (ε,αk, iωk)

∂λ

)
=

2ε2

γ2
k +δ 2

k

(
γk (1+ γk)−δ 2

k

(1+ γk)
2 +δ 2

k

+
γkτ

2ε2 +(n+1)
γk
(
2ε2β −1+ γk

)
−δ 2

k

(2ε2β −1+ γk)
2 +δ 2

k

)

=
2ε2

γ2
k +δ 2

k

(
γk + γ2

k −δ 2
k

(1+ γk)
2 +δ 2

k

+
γkτ

2ε2 +(n+1)
γk
(
2ε2β −1

)
+ γ2

k −δ 2
k

(2ε2β −1+ γk)
2 +δ 2

k

)

=
2ε2

γ2
k +δ 2

k
Ak,

where

Ak =

(
γk +1+4ε2µ

(1+ γk)
2 +δ 2

k

+
γkτ

2ε2 +(n+1)
γk
(
2ε2β −1

)
+1+4ε2µ

(2ε2β −1+ γk)
2 +δ 2

k

)
.

By Proposition 9.2.28 we have

ak =
−1+

√
1+4ε2

(
µ + ε2b2

k

)
2ε2 , bk→+∞ as k→+∞.

Then we obtain

γk = 1+2ε
2ak =

√
1+4ε2

(
µ + ε2b2

k

)
→+∞ as k→+∞,

δk = 2ε
2bk→+∞ as k→+∞,

and

lim
k→+∞

Ak

γk
= lim

k→+∞

 1+ 1+4ε2µ

γk

(1+ γk)
2 +δ 2

k

+
τ

2ε2 +(n+1)

(
2ε2β −1

)
+ 1+4ε2µ

γk

(2ε2β −1+ γk)
2 +δ 2

k


=

τ

2ε2 > 0.

We deduce that Ak > 0 for k large enough and Re
(

∂∆(ε,αk,iωk)
∂λ

)
> 0. So Re

(
dλ̂k(αk)

dα

)
>

0 and the result follows. ut

In case (a) we have a full description of the problem in terms of the transversality
condition and the following result.
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Theorem 9.2.33. Let Assumption 9.2.1 and Assumption 9.2.22 be satisfied and let
ε > 0 be given. For each k ≥ 0, let λk = iωk be the purely imaginary root of the
characteristic equation associated to αk > 0 (defined in Proposition 9.2.23), then
there exist ρk > 0 (small enough) and a C1-map λ̂k : (αk−ρk,αk +ρk)→ C such
that

λ̂k(αk) = iωk, ∆(ε,α, λ̂k(α)) = 0, ∀α ∈ (αk−ρk,αk +ρk)

satisfying the transversality condition

Re

(
dλ̂k(αk)

dα

)
> 0.

Proof. According to the proof of Theorem 9.2.32, we have

Re
(

d
dα

λ̂k(αk)

)
> 0 ⇔ Re

(
∂∆ (ε,αk, iωk)

∂λ

)
> 0.

Taking n = 0,β = 0 in (9.2.52), we have for each k ≥ 0 that

∂∆(ε,αk, iωk)

∂λ
=

2ε2
√

Λ

(
1

1+
√

Λ
+

τ

2ε2 +
1

−1+
√

Λ

)
=

2ε2
√

Λ

(
2
√

Λ

4ε2 (λ +µ)
+

τ

2ε2

)

=
1

iωk +µ
+

τ√
Λ
.

Since
Re(
√

Λ)> 0,

we obtain for each k ≥ 0 that

Re
(

∂∆ (ε,αk, iωk)

∂λ

)
> 0,

so the result follows. ut

(c) Hopf bifurcations. By combining the results on the essential growth rate of
the linearized equations (equation (9.2.21), the simplicity of the imaginary eigen-
values (Lemma 9.2.9 and Lemma 9.2.31), the existence of purely imaginary eigen-
values (Proposition 9.2.28 or Proposition 9.2.23), and the transversality condition
(Theorem 9.2.32 or Theorem 9.2.33), and applying the Hopf Bifurcation Theorem
6.2.7, we have the following Hopf bifurcation results.

In the Case (i), we obtain the following result.

Theorem 9.2.34 (Hopf Bifurcation in Case (i)). Let Assumptions 9.2.1 and 9.2.22
be satisfied. Then for any given ε > 0 and any k ∈ N, the number αk (defined in



512 9 Parabolic Equations

Proposition 9.2.23) is an Hopf bifurcation point for system (9.2.2) parametrized by
α , and around the positive equilibrium point v̄ given in (9.2.14).

For the Case (ii), the result is only partial with respect to k.

Theorem 9.2.35 (Hopf Bifurcation in Case (ii)). Let Assumptions 9.2.1 and 9.2.26
be satisfied. Then for any given ε > 0, there exists k0 ∈ N (large enough) such that
for each k≥ k0, the number αk (defined in Proposition 9.2.28) is a Hopf bifurcation
point for system (9.2.2) parametrized by α, around the equilibrium point v̄ given in
(9.2.14).

(d) Numerical simulations. We first summarize the main results of this section.
There are essentially divided into three parts: (a) the existence of a positive equilib-
rium; (b) the local stability of this equilibrium; and (c) the Hopf bifurcation at this
equilibrium. To be more precise we obtain the following results:

(i) There exists a unique positive equilibrium if and only if

R0 :=
2αχ

1+
√

Λ0
> 1;

(ii) The positive equilibrium is locally asymptotic stable:

(ii-a) if 1 < R0 ≤ e2,
or

(ii-b) if ε > 0 is large enough when we fix α = cε with γ ∈ L1
+(0,+∞), and

c >
√

µ∫+∞

0 γ(x)dx
;.

(iii) Consider the following special case for γ(x):

γ(x) =
{
(x− τ)n exp(−β (x− τ)) if x≥ τ

0 if 0≤ x < τ

for some integer n≥ 0, τ > 0, and β > 0. There is a Hopf bifurcation around the
positive equilibrium for any fixed ε > 0. For each ε > 0 there exists an infinite
number of bifurcating branches ε → αk(ε).

The result in (ii-a) is not really surprising since after the first bifurcation (i.e. the
bifurcation of the null equilibrium) one may apply the result in Section 5.7 to prove
the global asymptotic stability of this equilibrium. Nevertheless the result allows us
to specify a set of the parameters for which the local stability holds.

The local stability result (ii-b) along the line α = cε is more surprising since
there is no more local effect (with respect to the parameters), and this result can
be summarized by saying that the diffusion part gains when ε > 0 is large enough
and α is proportional to ε . So in order to obtain a Hopf bifurcation the parameter α

needs to increase faster than any linear map of ε .
Concerning the existence of Hopf bifurcation, the case ε > 0 small corresponds

to a small perturbation of an age-structured model which was discussed in Section
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8.3. Here we have obtained a more precise result by showing the existence of an
infinite number of Hopf bifurcating branches. The case ε > 0 is new and was not
expected at first.

We now provide some numerical simulations in order to illustrate the Hopf bi-
furcation for system (9.2.1). These numerical simulations are fulfilled with the fol-
lowing parameters:

β = 0.5, µ = 0.05 and γ(x) = 1[7,20](x). (9.2.54)

Here we observe that increasing the diffusion coefficient ε2 with a fixed α tends
to stabilize the positive equilibrium (see Figure 9.2(a)). On the other hand, when
ε is fixed, increasing α tends to destabilize the positive equilibrium and leads to
undamped oscillating solutions (see Figure 9.2(b)).

In Fig. 9.3, we look at the surface solutions for a fixed value of α and for different
values of ε . We observe that the diffusion in the size variable disperses through the
size variable. When we increase the diffusion coefficient, we also increase the dis-
persion process. This dispersion, when it becomes sufficiently high, is responsible
for the breaking of the self-sustained oscillations of the solutions. As a consequence,
the diffusion will reduce the temporal oscillations and then will stabilize the positive
equilibrium.

0 20 40 60 80 100 120 140 160 180 200
14

16

18

20

22

24

26

Time t

L1 
nor

m o
f th

e s
olu

tion

alpha=2 

alpha=4 

alpha=10 

Fig. 9.2: Graphs of the evolution of the L1-norm of the solution in terms of time. (a) Fix α = 10 and ε varies in
{1.5,2,3}. (b) Fix ε = 2 and α varies in {2,4,10}.



514 9 Parabolic Equations

0

5

10

15

20

0

50

100

150

0.5

1

1.5

2

2.5

3

size x

time t

sol
utio

n u
(t,x

)

0

5

10

15

20

0

50

100

150

0.5

1

1.5

2

2.5

3

3.5

size x
time t

sol
utio

n u
(t,x

)

Fig. 9.3: The surface solutions for (a) α = 15 and ε2 = 2; (b) α = 15 and ε2 = 2.5.

Note that our results depend on the assumption on the function h(x) : when h
is monotone decreasing near the positive equilibrium and the slope decreases, then
Hopf bifurcation occurs at the positive equilibrium. The periodic solutions induced
by the Hopf bifurcation indicate that the population density exhibits temporal oscil-
latory patterns. We expect that the results can be generalized to different and more
general types of functions.

As a conclusion, we can say that the effect of the stochastic fluctuations in the size
structured model (9.2.1), modelled by a simple diffusion term, acts in favor of the
stabilization of the populations. Small fluctuations remain in a small perturbation
of the classical case ε = 0, but by increasing the value of α the positive steady
state can be destabilized. When the stochastic fluctuations are large (i.e. ε is large),
then it turns to be very difficult to destabilize the positive equilibrium, because the
threshold value of α increases exponentially with respect to ε .

9.3 Remarks and Notes

Section 9.1 dealt with abstract non-densely defined parabolic equations and was
taken from Ducrot, Magal and Prevost [115]. It was based in the existence of the
fractional of a resolvent operator. Another approach has been used by Periago and
Straub [284]. In section 9.1.5 a linear perturbation result is proved. In Section 9.2
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we presented detailed analyses on the stability and bifurcation analyses in a size-
structured model described by a scalar reaction-diffussion eqation,

We would like to mention that Amann [13], Crandall and Rabinowitz [76], Da
Prato and Lunardi [83], Guidotti and Merino [157], Koch and Antman [216], Sand-
stede and Scheel [307], and Simonett [320] investigated Hopf bifurcation in vari-
ous partial differential equations including advection-reaction-diffusion equations.
However, their results and techniques do not apply to model (9.2.1) as there is a
nonlinear and nonlocal boundary condition. Instead, we expect that our techniques
might be used to study Hopf bifurcation in the viscous conservation law (Sandstede
and Scheel [307]) and other reaction-diffusion equations (for example, Cantrell and
Cosner [55]).

Using the results in Section 6.3, we can also discuss the normal forms, the direc-
tion of Hopf bifurcation, and the stability of the bifurcated periodic solutions in the
size structured model (9.2.1).

We refer to Arino [25], Arino and Sanchez [29], Calsina and Farkas [53], Calsina
and Ripoll [54], Webb [364] and references cited therein for studies on size struc-
tured models in the context of ecology and cell population dynamics. It will be
interesting to study the nonlinear dynamics such as Hopf bifurcation in these size-
structured models, see for example, Chu et al. [75] and Chu and Magal [74].
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292. K. Prevost, Modèles épidémiologiques de type paraboliques: Application à l’étude de la
propagation de Salmonelles en élevage industriel, PhD thesis, University of Le Havre, 2008.

293. J. Prüss, Equilibrium solutions of age-specific population dynamics of several species, J.
Math. Biol. 11 (1981), 65-84.

294. J. Prüss, On the qualitative behavior of populations with age-specific interactions, Comput.
Math. Appl. 9 (1983), 327-339.

295. J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc. 284 (1984), 847-857.
296. A. Rhandi, Extrapolated methods to solve non-autonomous retarded partial differential equa-

tions, Studia Math. 126 (1997), 219-233.
297. W. E. Ricker, Stock and recruitment, J. Fish. Res. Board Can. 11 (1954), 559-623.
298. W. E. Ricker, Computation and Interpretation of Biological Statistics of Fish Populations,

Bull. Fish. Res. Board Can. 191, Environment Canada, Ottawa, 1975.
299. S. Ruan, Delay Differential Equations in Single Species Dynamics, in “Delay Differential

Equations with Applications”, O. Arino, M. Hbid and E. Ait Dads (eds.), NATO Science
Series II: Mathematics, Physics and Chemistry 205, Springer, Berlin, 2006, pp. 477-517.

300. S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model.
Nat. Phenom. 4 (2009) (2), 140-188.

301. S. Ruan, J. Wei and J. Wu, Bifurcation from a homoclinic orbit in partial functional differen-
tial equations, Discrete Contin. Dynam. Syst. 9 (2003), 1293-1322.

302. S. Ruan and W. Zhang, Exponential dichotomies, the Fredholm alternative, and transverse
homoclinic orbits in partial functional differential equations, J. Dynamics Differential Equa-
tions 17 (2005), 759-777.

303. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
304. W. M. Ruess, Existence and stability of solutions to partial functional differential equations

with delay, Adv. Differential Equations 4 (1999), 843-867.
305. W. M. Ruess, Linearized stability for nonlinear evolution equations, J. Evol. Equ. 3 (2003),

361-373.
306. B. Sandstede, Center manifolds for homoclinic solutions, J. Dynam. Differential Equations

12 (2000), 449-510.
307. B. Sandstede and A. Scheel, Hopf bifurcation from viscous shock waves, SIAM J. Math.

Anal. 39 (2008), 2033-2052.
308. D. H. Sattinger, Bifurcation of periodic solutions of the Navier-Stokes equations, Arch. Ra-

tional Mech. Anal. 41 (1971), 66-80.
309. B. Scarpellini, Center manifolds of infinite dimensions I: Main results and applications, Z.

Angew. Math. Phys. 42 (1991), 1-32.
310. H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974.
311. M. Schechter, Principles of Functional Analysis, Academic Press, Nw York, 1971.
312. A. Scheel, Radially symmetric patterns of reaction-diffusion systems, Mem. Amer. Math. Soc.

165 (2003), No. 786.
313. I. E. Segal, Nonlinear semigroups, Ann. Math. 78 (1963), 339-364.
314. G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York,

2002.
315. F. R. Sharpe and A. J. Lotka, A problem in age-distribution, Philosophical Magzine 21

(1911), 435-438.
316. J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl.

Math. 38 (1985), 685-696.
317. C. L. Siegel, Ober die Normalform analytischer Differentialgleichungen in der Nahe einer

Gleichgewichtslosung, Nachr. Akad. Wiss. Gottingen, Math.-Phys. (1952), 21-30.



528 9 Parabolic Equations

318. C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics, Springer-Verlag, New York,
1971.

319. J. Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc. 289 (1985), 431-469.
320. G. Simonett, Hopf bifurcation and stability for a quasilinear reaction-diffusion system, in

“Evolution Equations,” G. Ferreyra, G. Goldstein and F. Neubrander (eds.), Lect. Notes Pure
Appl. Math. 168, Dekker, New York, 1995, pp. 407-418.

321. E. Sinestrari, Interpolation and extrapolation spaces in evolution equations. In “Partial Dif-
ferential Equations and Functional Analysis”, Birkhäuser, Boston, 1996, pp. 235-254.
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