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Foreword

Prediction is very difficult, especially about the future. — Niels Bohr

I know that in the study of material things number, order, and position are the
threefold clue to exact knowledge: and that these three, in the mathematician’s
hands, furnish the ‘first outlines for a sketch of the Universe’. — D’ Arcy Thomp-
son, On Growth and Form (1917)

The subject of differential equations has a long and storied history. At its founda-
tion is the fundamental nature of physical change. More than two centuries ago, dif-
ferential equations describing physical change were studied and applied with monu-
mental success. The subject has grown ever since with extraordinary productivity in
mathematical theory and scientific applications. The development of recent models
of dynamical processes offer ever-increasing mathematical challenge. At the core of
this mathematical challenge, there are fundamental ideas.

One of the most important fundamental ideas in models of physical change is the
assumption of determinism. The basic idea is that the present determines the future.
This idea is encompassed into differential equations of dynamical processes as a
known initial condition at a specified time 0. Newton’s second law states that the rate
of change of momentum of a body is directly proportional to the force applied: F' =
mdv/dt, where m is the mass and v is the velocity. If the initial velocity v(0) of the
body is known, then the future velocity is known for all time. This conceptualization
of deterministic behavior is a foundational mathematical description of scientific
phenomena.

An alternative view of determinism is that the past determines the future. This
idea encompasses into the differential equations of dynamical processes a require-
ment that the future forward from an initial time 0 is dependent on the history of the
process up to time 0. The initial condition of such a process must incorporate more
than the current state, but in addition, a past history of the current state.

The mathematical theory of the differential equations of history-determined pro-
cesses has a much more recent development. The subject is known as functional
differential equations. A key role in the development of functional differential equa-
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tions was played by Jack Hale. In his 1977 monograph (Theory of Functional Dif-
ferential Equations, Springer-Verlag), the theory of ordinary differential equations
in finite dimensional spaces was extended to functional differential equations in
a comprehensive treatment. Theoretical results about existence, uniqueness, initial
conditions, stability, periodicity, asymptotic behavior, and other basic ideas were
developed. One of the key ideas was the formulation of functional differential equa-
tions as abstract ordinary differential equations in infinite dimension spaces. This
idea is accomplished by utilizing the theory of semigroups of linear operators in
infinite dimensional spaces.

The theory of linear semigroups of operators has been developed extensively and
key roles were played by the monographs of E. Hille and R.S. Phillips (Functional
Analysis and Semi-Groups, Amer. Math. Soc.,1948; 1957), K. Yosida (Functional
Analysis, Springer-Verlag, 1965), T. Kato (Perturbation Theory of Linear Opera-
tors, Springer-Verlag, 1966), and A. Pazy (Semigroups of Linear Operator and Ap-
plications to Partial Differential Equations, Springer-Verlag, 1983). The basic idea
of a semigroup of operators is the idea of an exponential process. The solution of
the abstract differential equation dx(z)/dt = Ax(t), in an infinite dimensional space
X, with initial condition x(0) = xo, is x(¢) = e/ xo, where xo € X and e is the ex-
ponential of tA. If A is a bounded operator (matrix), then 4 is Yo ot"A"/nl If A is
an unbounded linear operator, then ¢4 = lim,,_o.(I —t/nA)™", where (I — AA)~! is
the resolvent of A. The operator A is called the infinitesimal generator of the semi-
group of linear operators T'(t) = e'4,¢ > 0. In classical linear semigroup theory, A is
densely defined in the state space X.

A linear semigroup of operators can be viewed as a generalized version of the ex-
ponential of the infinitesimal generator. Linear operator semigroup theory is called
abstract Cauchy theory. The theory of first-order nonlinear perturbations of under-
lying linear abstract Cauchy problems is called abstract semi-linear Cauchy theory.
A history dependent deterministic dynamical process can be viewed, in an appropri-
ate setting and an appropriate formulation, as an exponential process or a nonlinear
version of an exponential process. There are many applications of abstract Cauchy
problems, both linear and nonlinear.

In this monograph Pierre Magal and Shigui Ruan develop an extension of linear
operator semigroup theory to the case that the semigroup has an integrated form.
This case arises when the infinitesimal generator is not densely defined in the state
space of the operators. In this case the theoretical results for the classical case of
densely defined infinitesimal generators must be extended, and sometimes with very
elaborate theoretical extensions. The theory of integrated semigroups of operators
with non-densely defined infinitesimal generators reveals the power of the funda-
mental concept of exponential processes. Pierre Magal and Shigui Ruan have been
at the forefront of this development, in both its theoretical aspects and it applications
to scientific problems.

One of these applications is to functional differential equations with partial
derivative terms. These models have applications to problems involving spatial be-
havior, for example in models in which spatial diffusion plays a role. Another ap-
plication is to structured population models. These models track the evolution of a
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population in time, but also in the organization of their structure with respect to age,
size, or other individual variation. Age structure is very useful in describing many
biological species, such as humans in demographic contexts. The continuum version
of such models leads to an abstract Cauchy problem in a space of possible age den-
sities of the given population. Size structured populations are another version of a
useful way to organize population investigations. Size structure is sometimes more
appropriate for analyzing population behavior, for example in micro-species such
as cell populations. The evolution of a size structured population can be modeled as
an abstract Cauchy problem in an appropriate infinite dimensional space of possible
size densities. All the issues of population behavior, such as existence, uniqueness,
asymptotic behavior, stability, and periodicity, can be investigated using abstract
Cauchy theory and semi-linear abstract Cauchy theory.

There is a connection between structured population equations and functional
differential equations. For example, the evolution of age structure in a population
can be viewed as determined by the initial age structure of the population in an in-
finite dimensional space of age densities at initial time 0. It can also be viewed as
determined by a history-dependent age structure of the population before the initial
time O. If the age of all individuals in a population is known, then their birth dates are
known. Conversely, if the birth dates and the history of all individuals are known,
then their age is known at the present time. Structured population models and func-
tional differential equations models have great utility in scientific applications, and
their theoretical analysis is grounded in the development found in this monograph.

The subject of abstract Cauchy theory has developed rapidly in recent years,
with an expanding community of researchers. There is an important need for a com-
prehensive treatment of this expanding subject. This monograph provides such a
comprehensive treatment and has great value to researchers in this field, both theo-
reticians and applied scientists.

Nashville, USA Glenn Webb
July 2017






Preface

Although mathematics ranks last in the Six Arts (rites, music, archery, chariot
racing, calligraphy and mathematics), it is used in the most practical issues and
affairs. Maximally, it enables understanding of the underlying myths of things and
comprehension of their nature and developmental regularities. Minimally, it can be
used in dealing with small affairs and solving multiple trivial issues. — QIN Jiushao,
Preface to “Mathematical Treatise in Nine Sections” (1247)

Mathematics has a threefold purpose. It must provide an instrument for the study
of nature. But this is not all: it has a philosophical purpose, and, I daresay, an
aesthetic purpose. — Henri Poincaré

We first met in Nashville, Tennessee in the fall of 2001, when one of us (SR) was
on sabbatical at Vanderbilt University while the other one (PM) was visiting the
school. Both of us were working with Glenn Webb on various problems in math-
ematical biology, in particular age-structured biological models described by first
order hyperbolic partial differential equations.

There are different approaches to study age-structured population models. One
approach, using the theory of semigroups of operators since the late 1970s, became
very powerful and important, mainly due to the work by Glenn Webb. His mono-
graph, “Theory of Nonlinear Age-Dependent Dynamics” (Marcel Dekker, 1985),
remains the classical reference in treating age-structured models using functional
analytic techniques of nonlinear semigroups and evolution operators. The principle
of linearized stability, established in Webb’s monograph, says that a steady state is
exponentially stable if the spectrum of the infinitesimal generator of the linearized
semigroup lies entirely in the open left half-plane, whereas it is unstable if there is
at least one spectral value lying in the open right half-plane (i.e. with positive real
part). This not only provides a fundamental tool to study stability of age-structured
models, but also indicates that periodic solutions may exist in age-structured mod-
els via Hopf bifurcation when spectral values leave the left half-plane, cross the
purely imaginary axis, and enter the right half-plane as some parameter varies. The
existence of non-trivial periodic solutions in age-structured models was observed
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in some studies by Cushing [77] (1980), Levine [227] (1983), Priiss [294] (1983),
Diekmann et al. [103] (1986), Hastings [182] (1987), Swart [324] (1988) and so
on in the 1980s. Our original goal was to establish a Hopf bifurcation theorem for
general age-structured models. The project turned out to be much bigger than we
expected.
Consider a general age-structured model
av(t av(t
WD) D) pau(r,a) + M, D) (@), a2 0020,
v(1,0) = B(w,¥(t,.)) M
V(07 ) =vy €L ((07 +°°) aRn) )

where p € [1,+00), u € R is a parameter, D(.) = diag(d;(.),...,d(.)) € L*((0,+),
M, (R*)), M : RxL'((0,+o0),R") — L'((0,+o0), R") is the mortality function, and
B:RxL'((0,420),R") — R" is the birth function. Consider the Banach space

X =R x [P ((0,4+9) R").

the linear operator A : D(A) C X — X defined by

A(S)) B (?ofo(oﬁw) with D(4) = {0} x WP ((0, +<<))

and the function F : RxD(A) — X defined by
0 B(u,9) >
Flu, - .
(w(0)) = (i)

Setting u(t) = (v (? ) ) , we can rewrite the age-structured model as the following

5.

abstract Cauchy problem

du(r)

S Au(t) + F (u(r), 1), 12 0; u(0) = (V(l) ¢ DA). @)

Observe that A is non-densely defined since
D(A) = {0} x L” ((0,+2) ,R") # X

and A is a Hille-Yosida operator if and only if p = 1. Thus, problem (2) is a non-
densely defined Cauchy problem in which the operator A might not be a Hille-
Yosida operator. In fact, several other types of differential equations, such as func-
tional differential equations, transport equations, parabolic partial differential equa-
tions, and partial differential equations with delay, can be formulated as non-densely
defined Cauchy problems in the form of (2). Some fundamental theories for such
problems have been very well studied. For example, Da Prato and Sinestrari [85]
investigated the existence of different types of solutions for partial differential equa-
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tions of hyperbolic and ultraparabolic type as well as equations arising from stochas-
tic control theory that can be formulated as non-densely defined Cauchy problems.

When A is densely defined and is a Hille-Yosida operator, abstract Cauchy prob-
lems have been extensively studied (we refer to, among others, the monographs of
Cazenave and Haraux [58], Engel and Nagel [126], Henry [183], Pazy [281], Sell
and You [314], Temam [327], van Neerven [346], Yagi [376], and especially to the
books of Haragus and Iooss [179], Hassard et al. [181], Kielh&fer [213], and Wu
[374] regarding the nonlinear dynamics such as the local bifurcation, center mani-
fold theory and normal forms). When A is non-densely defined, the constant of vari-
ation formula may not be well-defined and one must integrate the equation twice
to recover the well-posedness (this is how integrated semigroups are introduced).
Using integrated semigroup theory to investigate non-densely defined Cauchy prob-
lems started by Arendt in the 1980s and has been followed by many researchers
(we refer to the monograph of Arendt et al. [22] for a systematic treatment of such
problems).

The purpose of this monograph is to provide a self-contained presentation of
the fundamental theory of nonlinear dynamics for non-densely defined semilinear
Cauchy problems (in which the operator A may or may not be a Hille-Yosida opera-
tor), including the existence of integrated solutions, positivity of solutions, Lipschitz
perturbation, differentiability of solutions with respect to the state variable, time
differentiability of solutions, stability of equilibria, center manifold theory, normal
form theory, Hopf bifurcation, and applications to age-structured models, functional
differential equations and parabolic equations. It assumes a basic knowledge of real,
complex and functional analyses, ordinary and partial differential equations at the
senior undergraduate level and the graduate level.

In Chapter 1 we start by introducing some fundamental properties of matrices,
such as the spectrum, spectral bound, spectral radius, growth bound (rate), resolvent,
resolvent set, Laurent’s expansion of the resolvent, and the integral resolvent for-
mula, which can be served as a preview of the corresponding concepts for operators
that will be introduced in the following chapters. Then we review some fundamen-
tal results on nonlinear dynamics, in particular the center manifold theory, Hopf
bifurcation theorem, and normal form theory for Ordinary Differential Equations
(ODEs) and Retarded Function Differential Equations (RFDEs). Finally we demon-
strate that several classes of equations, including RFDEs, age structured models,
parabolic equations, and reaction-diffusion equations with delay, can be formulated
as abstract semilinear Cauchy problems.

Chapters 2-4 provide fundamentals in semigroup theory, spectral theory and
Cauchy problems. Chapter 2 provides a review of the basic concepts and results
on semigroups, resolvents, infinitesimal generators for linear operators and presents
the Hille-Yosida theorem for strongly continuous semigroups. We also introduce
Arendt’s theorem which gives a Laplace transform characterization for the infinites-
imal generator of a strongly continuous semigroup of bounded linear operators. Ba-
sic results on nonhomogeneous Cauchy problems with dense domain are given.

In Chapter 3 the integrated semigroup theory developed by Arendt, Hieber,
Kellermann, Neubrander, Thieme and others is introduced, and the Arendt-Thieme
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theorem on the necessary and sufficient conditions for the existence of a non-
degenerate integrated semigroup and its generator is stated. Then integrated semi-
group theory is used to investigate the existence and uniqueness of integrated solu-
tions of nonhomogeneous Cauchy problems; namely the Kellermann-Hieber theo-
rem when A is a Hille-Yosida operator and our own results when A is not a Hille-
Yosida operator are presented. Next we apply the results in this chapter to a vector
valued age-structured model in L”.

Chapter 4 covers the spectral theory for linear operators. After listing some basic
properties for analytic mappings, fundamental results on the spectral theory, includ-
ing Fredholm alternative theorem and Nussbaum’s theorem on the radius of essential
spectrum, of bounded linear operators are presented. Then the growth and essential
growth bounds of linear operators are introduced and the main results are included
in Webb’s theorem on the relationship between the spectrum of semigroups and
the spectrum of their infinitesimal generators. Finally spectral decomposition of the
state space, the estimate of growth and essential growth bounds of linear operators
are given which will be used in the proof of the center manifold theorem.

Chapters 5-6 present the main theory in abstract semilinear equations. In Chap-
ter 5 we develop the fundamental theory for non-densely defined semilinear Cauchy
problems, including the existence of integrated solutions, positivity of solutions,
Lipschitz perturbation, differentiability of solutions with respect to the state vari-
able, time differentiability of solutions, and stability of equilibria.

In Chapter 6 we establish the center manifold theory, Hopf bifurcation theorem,
and normal form theory for abstract semilinear Cauchy problems with nondense
domain.

Chapters 7-9 deal with applications of the results developed in Chapters 5-6.
The goal of Chapter 7 is to apply the theories developed in Chapter 6 to functional
differential equations, including retarded functional differential equations, neutral
functional differential equations, and partial functional differential equations.

In Chapter 8 we treat age-structured models. Firstly we establish a Hopf bifurca-
tion theorem for the general age-structured systems. Then we consider a susceptible-
infectious epidemic model with age of infection, uniform persistence of the model
is established, local and global stability of the disease-free equilibrium is studied by
spectral analysis, and global stability of the unique endemic equilibrium is discussed
by constructing a Liapunov functional. Finally we focus on a scalar age-structured
model, detailed results on the existence of integrated solutions, local stability of
equilibria, Hopf bifurcation, and normal forms are presented.

In Chapter 9, we first consider linear abstract Cauchy problems with non-densely
defined and almost sectorial operators. Such problems naturally arise for parabolic
equations with nonhomogeneous boundary conditions. By using the integrated
semigroup theory, we then prove an existence and uniqueness result for integrated
solutions. We also study the linear perturbation problem. Finally we provide detailed
stability and bifurcation analyses for a scalar reaction-diffusion equation, namely, a
size-structured model.

All assumptions, corollaries, definitions, examples, lemmas, propositions, re-
marks, and theorems are enumerated consistently by three numbers, with the first
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representing the chapter, the second representing the section, and the third repre-
senting the number. For instance, Proposition 3.4.3 means in Chapter 3, Section 4,
property (Proposition) 4. All equations are enumerated in the same style. For exam-
ple, equation (3.4.5) represents equation 5 in Chapter 3, Section 3.

We would like to express our gratitude to our Ph.D. thesis supervisors, Ovide
Arino (PM) and Herbert I. Freedman' (SR), for their influence and inspiration which
are lifetime. We are very grateful to Glenn Webb for his continuous guidance and
support, not only as our mentor but also as our collaborator and friend, the writing
of this monograph is indeed encouraged by his classical monograph. We are in-
debted to Wolfgang Arendt, Horst R. Thieme and Andre Vanderbauwhede for their
mathematical work that inspired our studies on this subject. Special thanks are due
to our collaborators, Jixun Chu, Arnaud Ducrot, Zhihua Liu, and Kevin Prevost, as
it would have been impossible to complete this monograph without their contribu-
tions. Some parts of the book have been taught by us at Beijing Normal University,
Harbin Institute of Technology and the University of Miami, and we thank the stu-
dents for their feedbacks and comments. We thank the six anonymous reviewers of
the earlier versions of the manuscript for their helpful comments and suggestions.
Thanks are also due to our Springer editors, Donna Chernyk and Achi Dosanjh, for
their patience and professional assistance.

We acknowledge the financial support by the French Ministry of Foreign and
European Affairs program EGIDE (PFCC 20932UL), National Institutes of Health
(RO1GMO083607), National Natural Science Foundation of China (No. 11771168),
and National Science Foundation (DMS-0412047, DMS-0715772, DMS-1022728,
DMS-1412454) during the years we spent doing research related to this monograph.
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Chapter 1
Introduction

The goal of this chapter is to introduce some fundamental theories for Ordi-
nary Differential Equations (ODEs), Retarded Functional Differential Equations
(RFDEs), and Age-structured Models and to derive abstract semilinear Cauchy
problems from these equations. It serves two purposes: to present a brief review
of the basic results on the nonlinear dynamics of these three types of equations and
to give a quick preview about the types of results we will develop for the abstract
semilinear Cauchy problems in this monograph.

1.1 Ordinary Differential Equations

1.1.1 Spectral Properties of Matrices

Let M, (R) be the space of all n X n real matrices with the usual matrix norm.
Consider a matrix A € M, (R). Define a family of matrices {e*' } rer OY

A2 +°°Ak
eA::1+A+5+...:k:ZOH, (1.1.1)

where [ is the n x n identity matrix. Then
ATB — AB

whenever A and B commute (i.e., AB = BA). Then we know that {e*'},cg forms a
group (flow) under composition:

(i) 0 = 1I; (ii) &Y™ = AUH); (iii) eMe M =1, Vi, s € R.

One may also observe that the map t — ¢4’ is continuously differentiable from R
into M, (R) and
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%eA’ =AM = MA, Vi e R.

Let A, A2, -+, Ay € C (m < n) be the eigenvalues of A with algebraic multiplicity
ni,Mn2, ..., Ny, respectively, ny +ny + - - - +n,, = n. Then Jordan’s decomposition says
that there exists an invertible matrix P € M,, (C) such that

A=P P,

where J € M,,(RR) is a block diagonal matrix

T 01
0 J2
J= : :
-0
L0 - - 0 Jr%y:'—

in which the elementary Jordan blocks are defined by

JH =[] if =1

and i )
A 1 0 -0
0 lk 1 -
JH=1 o | €M (C)if > 1
S |
0 ------ 0 A |

Since J is a triangular matrix, its diagonal elements are the eigenvalues of A. The
spectrum of A is the set of all eigenvalues of A given by

c(A)={A1,..; Am}- (1.1.2)
Observe that for each k = 1, ...,m, one has
Ik = Ml + Ny,
where N, is nilpotent of order ny; that is,
Ny, 70, (N )> #0,..., (N )" 1 #0, and (N,,)™ = 0.

Now we have
% (}, 1 +J0 >t 0
ej"kt =e k ") = glkt eJ”kt

and
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(1 ¢ 22/20 -t /(g — 1)1 ]
01 ¢ :
L R Y
. t. t. t
[0~ -~ 0 1 ]

Therefore, by using the spectral theory of matrices, the asymptotic behavior of ¢!
is entirely determined by
A =P P vt >0.

The growth bound (rate) of A is defined as

In ( || .
a)(A) ‘= lim M

t—>+too t

€ (—o0,+00), (1.1.3)

where . (R") is the space of all linear operators on R” with the operator norm .||,

namely,
Ax
1Al ¢ gy = sup L (1.1.4)
rermo<llj<t X xemmj=1

Remark 1.1.1. In general

e @A) HeA’H — 400 ast — +oo.

A:[g(ﬂ

o(A) =0.

Indeed, for example, take

Then we have

By using the explicit formula for the elementary Jordan blocks we have
HeAtHX(R”) — fo0as t — +oo.
We have the following result.
Theorem 1.1.2. For the growth bound of a matrix A, one has
o(A)=sup{Re(A): L €0 (A)}. (1.1.5)

The right hand side of the above equality (1.1.5) is called the spectral bound of
A, denoted by s(A); namely,

s(A) =sup{Re(A): A € o(A)}. (1.1.6)

The spectral radius of A is defined as
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rA) = kETw”AkHI/k' (1.1.7)

For any given matrix it is usually more convenient to use the following characteri-
zation of the spectral radius

r(A) =max{|A|: A € o(A)}. (1.1.8)

150 Re(A)=s(A)

Fig. 1.1: The spectrum & (A), spectral radius r(A), and spectral bound s(A) of a matrix A.

If A ¢ o(A) (that is, A is not an eigenvalue of the matrix A), then the matrix
Al — A is invertible, so we can define a function

(A —A)"':C\6(A) = 2 (R,

which is called the resolvent of A. The set C\ 6(A) is called the resolvent set of A,
denoted by p(A); that is,

p(A)=C\o(A)={A € C: Al —Aisinvertible}. (1.1.9)
For each A € p (A4), J is invertible and
-1
(A=) 0 0

A=) = 0 (“‘J'%)_l 5 ,

0 0 (AL—Jhn)!
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where (note that J,%k’f = Md +Ny,)
AN -1
(M=a2) " = (=21 =Ny,)

= (-2 (1A N,)
n—1

1 ,
=AY ——N/ .
A YR

Hence
N

-1 o
(M-k) =Y -2 INg
=1
It follows that A — (A1 —A) ™! is analytic from p (A) into Z(R"). Since a given

eigenvalue A € 6(A) may appear in several Jordan’s blocks, we deduce that the
resolvent of A has the following Laurent’s expansion of resolvent (for matrices)

around A :
~+oo

AI—A)" = Y (l—i)an, (1.1.10)

where m := max{n; : k=1,...,m and A zi} and By, is given by

_ 1 -~ 7(”‘“) ~1
B"_zm'/sc(i,g)* (A-2) " -y taa

~ ~ N
for each € > 0, where S¢ (l,e) = {), eC: ‘l —l‘ = 8}, and Sc (l,s) is the
counter-clockwise oriented circumference (A — 1‘ = ¢ for sufficiently small € > 0

such that ’l — A| < € does not contain other point of the spectrum than A. A point of

the spectrum that is isolated and around which the resolvent has the above expansion
(i.e. (1.1.10)) is called a pole of the resolvent (Al —A) ™.

Remark 1.1.3. The expansion formula (1.1.10) is also interesting because the pro-
jector on the generalized eigenspace associated to A is B_1.

We can also establish a relationship between the resolvent (A1 —A) ™" and ™.

Theorem 1.1.4 (Integral Resolvent Formula (for Matrices)). Consider a matrix
A € My(R). For each A € C withRe (1) > @(A), Al — A is invertible and

1 e

(AI—A)~ :/ e MeMdr. (1.1.11D)
0

Proof. We have

+oo " too
(AI—A) / e M dp — / e MM d (AT — A)
0 0
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oo oo
= A/ eiA’eA’dt—/ e MAM dt
Jo 0
oo +oo d
= /'L/ eilteAtdt—/ e MM,
0 0 dt
By integrating by parts the last integral we obtain

oo +oo
(AI—A) / oMM dr — / e MMt (AT —A) =1,
0 0

The result follows. O

1.1.2 State Space Decomposition

Consider the linear Cauchy problem

ax(r)

o = Ax(t) fort > 0, x(0) = xo € R”, (1.1.12)

where A € M,,(R). Problem (1.1.12) has a unique solution given by
x(t) = eMxg for each 1 > 0.

In order to be more precise about the asymptotic behavior of the linear system, we
introduce some notation. Define

o;(A) ={A € 6(A): Re(1) < 0} (stable spectrum),
o.(A)={A €c(A): Re(1) =0} (central spectrum),
o,(A)={A € o(A): Re(A) > 0} (unstable spectrum).

By using Jordan’s theorem again, we have a state space decomposition
R" = X; & X & Xy,

where X, X, and X, are three linear subspaces of R" (with possibly X; = {0} for
some k = s, ¢, u) satisfying the following properties:

AXy C Xy, Vk=s,c,u,
and the spectrum of the linear map Ay : X — X is defined by
Akx = Ax,

and
o(Ar) = or(A), Yk =s,c,u.
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Remark 1.1.5. In this book, we will often use the notion of the part of a linear
operator in a subspace. Actually A; defined above is the part of A in X;. One may
observe that Ay, : X — Xj is a linear map on Xj such that

Apx = Ax, Vx € Xy,

The linear map Ay is not equal to A |x,, the restriction of A to X;, since A |y, goes
from X}, into R” and
A |Xk x=Ax, Vx € Xj.

Definition 1.1.6. The spaces X;, X, and X,, are called the linear stable, center, and
unstable subspaces, respectively.

Define the projections I, IT., IT, € M, (R) such that
I, (R") = X, and (I — IT,) (R") = X, & X,,
II. (R") =X, and (I — IT,) (R") = X; B Xy,
II,(R") =X, and (I — IT,) (R") = X; & X,..

By using the properties of the elementary Jordan blocks, one may observe that 7 > 0
can be chosen such that

®(Ag):= sup Re(A)<—-n<0<n< inf Re(d)=:0(—-A,).
AEoy(A) Aeoyu(A)

Since the inequalities are strict and 1 < min(— (Ay), @ (—A,)), we have

My 1= supe™ | IL| gy = supe™ (| ) < e, L)
Mui= supe™ [T ) = supe™ [l ) < oo ;

Remark 1.1.7. In general we have
JAIT]| g (mny 7 ANl 2(x,) -
But this property becomes true if we use the equivalent norm
x| = || T + || x| + || T,
By fixing a constant M > max (M;,M,,) > 1, we obtain
ML) < Me™™, |le V1L, || < Me™™, ¥t > 0.
Actually, the non-exponentially growing part is contained in the center part. It is

described by
et = AT,

which grows like a polynomial when 7 goes to =oo.
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1.1.3 Semilinear Systems

Consider the nonhomogeneous Cauchy problem

dx(t)
dt

=Ax(t)+ f(¢), t €[0,7]; x(0) =xp € R", (1.1.14)

where f € L' ((0,7),R").

Lemma 1.1.8. The solution of (1.1.14) is given by the so-called variation of con-
stants formula

x(t) = eAtonr/OteA('_s)f(s)ds, v € [0,1]. (1.1.15)

We should emphasize here that the variation of constants formula plays a crucial
role in analyzing the qualitative behavior of nonlinear differential equations locally
around an equilibrium.

Consider a semilinear ordinary differential system of the form

d);—(tt):Ax(t)+F(x(f))7fZO; x(0) =x0 €R", (1.1.16)

where A € M, (R) and F : R" — R" is a k-time (k > 1) continuously differentiable
function. The notion of a solution of system (1.1.16) must be understood as a con-
tinuous function x € C ([0, 7], R") satisfying

t
(1) = Pxo+ / AU E(x(s))ds for each 7 € [0,1]. (1.1.17)
0
In other words, x is a solution of the fixed point problem
x(t) =¥ (x)(t),vt € [0, 7],

where ¥ : C([0,7],R") — C([0,7],R") is a nonlinear operator defined by
t
W(x)(1) = Mg+ / A (x(s))ds.
0

Definition 1.1.9. The map F is said to be Lipschitz continuous if there exists a con-
stant k > 0 such that

1F(x) = F(y)ll < kllx—yll, vx,y e R",
and the Lipschitz norm of F is defined by

[F(x) —F)
1FllLip := sup :
x,yeR":x£y ||x—y||
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The map F is said to be Lipschitz continuous on bounded sets of R" if for each
constant M > 0 there exists k = k(M) > 0 such that

1F(x) = F(y)Il < kllx—=y[|, Vx,y € Br (0, M),
where Bgn (0, M) is the closed ball of radius M centered at 0; namely,
Brn(0,M) :={x e R": ||x]| < M}.
Remark 1.1.10. Assume that F is C'. Set
G(s) =F(sx+ (1—ys)y).
Then X
G(1) = G(0) = /0 G/ (5)ds.

Therefore, we obtain the fundamental formula of differential calculus (Lang [224])

1
Flx)—F(y) :/0 DF (sx+ (1 — 5)y)(x — y)ds.

From this formula, one deduces that every C! map on R” is Lipschitz continuous on
bounded sets. This property is only true in spaces with finite dimensions.

(a) Flows and semiflows. A very important concept in the context of dynamical
systems is the notion of a semiflow or a flow whenever the semiflow can be extended
in a unique manner for negative time.

Definition 1.1.11. Let (M,d) be a metric space. Let {U (¢) },~, (respectively {U (¢)},.r)
be a familly of continuous maps from M into itself. {U(t)},, is called a continuous
semiflow on M (respectively {U(t)},cp is a continuous flow on M) if the following
properties are satisfied:

i UO)=rL

) U@U(s)=U(t+s),Vt,s > 0 (respectively Vz,s € R);

(iii) The map (¢,x) — U(t)x is continuous from [0, +o0) X M into M (respectively
continuous from R x M into M).

Now we recall the classical Picard’s existence theorem for flows.

Theorem 1.1.12 (Picard’s Theorem). Assume that F is Lipschitz continuous. Then
equation (1.1.16) generates a unique flow {U (1) },cg on R"; that is, for each xo € R"
there exists a unique solution t — x(t) of system (1.1.16) on R. Moreover,

defines a flow on R".
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If F is only Lipschitz continuous on bounded sets, then blowup may occur. Thus,
we need to define the time of (eventual) blowup, 7 (xo) € (0, 0], as follows

7(x0) :=sup{7T > 0: equation (1.1.16) has a solution x € C ([0,7],R")}.

For simplicity, we only introduce the notion of a maximal semiflow. One can define
a maximal flow similarly, but would need to introduce two times of blowup for both
positive and negative times.

Definition 1.1.13. Let (M,d) be a metric space. Let T : M — (0,4o0] be a map.
Define
D :={(t,x):0<t<t(x)}.

Let U : D; — R" be a map. For convenience we denote
U(t)x:=U(t,x),¥(t,x) € Ds.

We say that U is a maximal semiflow if the following properties are satisfied:

i) t(U@)x)=1(x)—1,Y(t,x) € Dy;

() U(0)=I;

i) U@)U(s)x=U(t+s)x,¥(t,x) € Dg,¥(s,x) € Dy such that (t +s,x) € Dy;
(iv) If 7(x) < oo, then

lim U(t)x|| = 4oo.
dim U
Moreover, we say that U is a maximal continuous semiflow if it satisfies in addition
the following property:

(v) The set Dy is relatively open in [0,+e) X M and the map (z,x) — U(¢)x is
continuous from Dy into M.

When F is only Lipschitz continuous on bounded sets we have the following
theorem.

Theorem 1.1.14 (Existence and Uniqueness). Assume that F is Lipschitz continu-
ous on bounded sets. Then system (1.1.16) generates a unique maximal continuous
semiflow U on R". More precisely, there exists T : R" — (0,+-o0], which is lower
semi-continuous, such that for each xy € R" there exists a unique solution t — x(t)
of system (1.1.16) on [0,7(x0)) , and

defines a maximal semiflow on R".

In order to understand the notion of linearized equations around a given solution,
we introduce the following result.
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Theorem 1.1.15 (Linearized Semiflow). Assume that F is one-time continuously
differentiable. Then for each xy € R" and each t € [0,7(x0)), the map x — U (t)x is
well defined locally around xq (in other words, there is an € > 0 such that t* < T(x)
for each x € B(xy,€)). Moreover, the map x — U (t)x is differentiable, and if we set
V(t)y := U (t)(x0)y, then the map t — V (t)y is defined on [0,7(xq)) and satisfies
the following (nonautonomous and linear) ordinary differential equation

dv(t)y
dt

=AV(1)y+ o F(U(1)(x0)) (V(2)y), Vi €[0,7(x0)); V(0)y =Y.

Definition 1.1.16. We say that X € R" is an equilibrium (or equilibrium solution) of
system (1.1.16) if
x(r) =xforallt >0

is a constant solution of system (1.1.16), or equivalently if
AX + F(X) = Opn.

(b) Linearized equation around an equilibrium. Assume that X € R” is an
equilibrium of system (1.1.16). By applying Theorem 1.1.15 around U (t)x =X, V¢ >
0, we deduce that

KU (1) (%)y = €™,

where
B =A+0:F(X).

The linear system

d%f) = (A+AF@)y(r), 1> 0; y(0) =y

is called the linearized system of (1.1.16) at x.

Assumption 1.1.17. Assume that F' : R" — R" is continuously differentiable. As-
sume in addition that there exists an equilibrium X € R" of system (1.1.16) such
that

F()?) =0and DF(X) = OM,I(]R)'

Assumption 1.1.17 is equivalent to assuming that Ax is the only linearized part
of system (1.1.16).

Definition 1.1.18. The equilibrium X is said to be hyperbolic if and only if
Re(A)#0,VA € 0o (A).
Otherwise, it is nonhyperbolic.

For convenience, we assume that

=l
|
e
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Indeed, we can use the change of variables
Vit)x=U(t)(x+%) —X

and obtain that

av(t)x  dU(t)(x+X)
d dt

Therefore, V() is a semiflow generated by

dv(t)x
dt

= AV(1)x+ G(V (1)x)

and
G(x) = F(x+X) + AX.

The problem is unchanged since

DG(0) = DF ().

1 Introduction

=AU()(x+X)+F(U()(x+X)).

Theorem 1.1.19 (Exponential Stability). Let Assumption 1.1.17 be satisfied. As-
sume that the spectrum & (A) of the matrix A contains only complex numbers with
strictly negative real part. Then the equilibrium X of system (1.1.16) is exponentially

asymptotically stable; that is, there exist 1 > 0 and M > 0 such that

=% <m = |U@)x -3 < Me™™ |x—X]||, vt > 0.

Theorem 1.1.20 (Instability). Let Assumption 1.1.17 be satisfied. Assume that

there exists A € 6 (A) such that

Re(A) >0,

then the equilibrium X of system (1.1.16) is unstable. This means that there exist a
constant € > 0, a sequence {x,} — X, and a sequence {t,} — +oo, such that

U (t:)x, — || > €.

(c) Center Manifold Theorem. We return to the state space decomposition

R'=X,9X.¢X,.
Set

X, : = X; & X, (the hyperbolic subspace)
Xey o = X @ X, (the linear center-unstable subspace).

Before stating the main result about the local center manifold theorem,

explain the idea about the global center manifold theorem. Actually

we will first
this class of
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problems can be regarded as persistent results for manifolds. Consider first the linear
Cauchy problem (1.1.12). Then the linear center subspace X, is invariant under ¢*;
that is,

AX. =X, Vit eR.

Moreover, X, is a linear manifold. More precisely, we can find a map L. : X, — Xj,
such that
Xe = {xc+Le(xe) 1 xc € Xc )

and L. is defined by
L.x. =0, Vx. € X,..

So it is natural to ask if such an invariant set X, persists if one considers a “reason-
able” perturbation of the linear Cauchy problem (1.1.12). Consider the perturbed
system (1.1.16). Let n € (0,min(— (Ay),® (—A,))). For the linear problem we
have

X, := {x €R":supe |e"x|| < +°°} .
teR
Based on this observation, it becomes “natural” to define

M) = {x e R" :supe U (1)x]| < —i-OO},
teR

and the global center manifold theorem says that if [|F[[;;, is small enough, then
there exists a map ¥, : X, — X},, which is Lipschitz continuous, such that

M. = {x.+¥ (x.) : x. € X}
By the definition of M., one may realize that
U(t)M, =M., ¥Vt € R.
Let x € M, be given. Consider a solution u(z) = U (¢)x. Since
ut) e M., vt € R,

we have
u(t) = () + ¥ (ILou(1))

and u,(¢t) = ITLu(r) = II.U (¢)x satisfies the equation on X, :

duc(t)
dt

= Actte (1) + I F (ue(t) + e (uc(1))) -

The last equation is called the reduced system since the dimension of X, is smaller
than the dimension of the original phase space.

Theorem 1.1.21 (Global Center Manifold). Let Assumption 1.1.17 be satisfied.
Assume that
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=
I
o

and

o.(A) # 2.

Letn € (0,min(—o (A), 0 (—Ay))) . Then there exists a constant kK = x (1) > 0 s0
that if
1l < 5,

then there exists a map ¥, : X, — X, which is Lipschitz continuous and satisfies

such that
M = {x.+ ¥ (xc) 1 xc € X}

Proof. Recall that

BC™ (R,R") := {u e C(R,R") : supe M |Ju()|| < +°°}
teR

is a Banach space endowed with the norm
lull, = supe M juo)]].
teR

Assume that x € M. Then the map ¢ — u(¢) := U (¢)x belongs to BC" (R,R"), and
by using the variation of constants formula we have

u(t) = A u(s) +/t ACDE (u(l))dl, Ve > s. (1.1.18)
5

By projecting on X; we obtain

u(t) = &5 Iu(s) + / t MUDIIF (u(l)) dl
and by using the fact that u € BCT (R,R") , we deduce when s goes to —oo that

Mu(r) = /j MNUDILF (u(l))dl.

Similarly, by projecting on X,, we obtain

ITu(t) = ) ITu(s) + / l AMDILF (u(l)) dl.
Therefore,

ot
Mou(s) = e 5 Myu(r) / MU L (u(l)) di
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and when ¢ goes to +oo, we obtain
+o0
Mu(t) = — / e ML (u(1)) dl.
t

Thus, u must satisfy the following equality for eacht € R :

°t

u(t) = & Mx, + / ACDITLE (u(l))di
0

+ /j MO (u(l))dl — / +°°e—f‘u<l—f>m,F(u(z))azz.

t

We leave as an exercise on the converse implication; namely, if u € BC™ (R,R")
satisfies the above equality then u satisfies (1.1.18). One then observes that this
problem can be reformulated as a fixed point problem:

u=Kix.+ K> F (u), (1.1.19)
where K; : X, — BC" (R,R") is a bounded linear operator defined by
Ki(xe) == e IT,x.

and (by using (1.1.13)) K; : BC" (R,R") — BC" (R, R") is a bounded linear operator
defined by

K(f): = /0 CAn F(hdl + /j weAs“—”H‘, f()dl

—+oo
- / e MU= TT, (1)l
t

Assume that
1F I Lip 1Kzl & 8o mrmy) < 1
it follows that (1.1.19) has a unique fixed point

uy, = (I —K2F) "' Kix. € BC" (R,R").
Therefore, the first part of the theorem is proved by defining
Y. (x¢) := ITyuy, (0).
To prove that ¥, is Lipschitz continuous it is sufficient to observe that

. — tts, = Ky (¥ = %) + KoF (uy,) — Ko F (us,).

C

Therefore,

[Jux, =z, ||, < 1K1l x, mon ey e = Tell + IF Ly | K2l o gem ey e — ez ||,
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and we obtain

1K1 2 (x..Bn (m 7))

Uy, — Uz ||, < fo)/c\H
s =y < T, T 2 ey
The result follows since

1% (xe) = ¥ (Rl < NIl [foe, — s, |, -

This completes the proof. O

(d) Truncation method. Let {Ug(t)x}, be the semiflow generated by the trun-
cated problem
dU; (1)
dt

for € > 0 small enough. The map F; is a truncation of F’; namely,

= AU (t)x+ Fe (U (1) x)

Fe(x)=p (e 'x) F(x),

where p : R" — [0, +o0) is a CK map satisfying

1 if |x] < 1
plx) =4 €0,1] if 1 <|lx| <2
0 if [lx]| > 2,

where ||.|| is the Euclidean norm.
Since DF(0) = 0, one deduces that

[|Fellpip — Oas € = 0.

Moreover, U and Ug coincide in B (¥, €) . This means that for each x € Bgn (%, €)
andzr > 0,
Ue(s)x € Bgn (%,€) or U(s)x € Brn (%,€),Vs € [0,7]
implies that
Ue(1)x=U(1)x.

Since in general F is Lipschitz continuous, a local center manifold result is in order.
The main difficulty to prove the local center manifold theorem is the regularity part
(i.e., it is not an application of the implicit function theorem).

Theorem 1.1.22 (Local Center Manifold). Let Assumption 1.1.17 be satisfied. As-
sume that
x=0

and
o.(A) # 2.

Then there exists a one-time continuously differentiable map ¥, : X, — Xj, such that
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Y. (0) = 0 and D¥. (0) = 0.
The local center manifold (which is not uniquely determined)
M= {x.+ ¥ (x) : xc € Xc}

is locally invariant under U (t) in some neighbordhood of 0. More precisely, there
exists an € > 0 such that the following properties hold:

(i) If1 CRisaninterval and u. : I — X, is a solution of the ordinary differential
equation on X,

duc
(Reduced equatio"){ Mdt(t) = Acuc(t) + TIF (uc (1) + ¥ (uc(1))) fort € R,

u.(0) =x. € X,

satisfying
e (1) + W (1)) € B (0,6), Ve €1,

then x(t) := u.(t) + ¥ (uc (1)) is a solution of (1.1.16);
(ii) Ifx:R — R" is a solution of (1.1.16) such that

x(t) € Brn(0,€), Vt € R,

then
x(t) € M., Vt € R,

and u.(t) := I1.x(t) is a solution of the reduced equation;
(iii)  (Regularity) Let k > 1 be an integer. If F is k-time continuously differentiable
locally around 0, then ¥, is also k-time continuously differentiable.

(e) Normal form theory. To determine the qualitative behavior of a nonlin-
ear system in the neighborhood of a nonhyperbolic equilibrium point, the center
manifold theorem implies that it could be reduced to the problem of determining
the qualitative behavior of the nonlinear system restricted on the center manifold,
which reduces the dimension of a local bifurcation problem near the nonhyperbolic
equilibrium point. The normal form theory provides a way of finding a nonlinear
analytic transformation of coordinates in which the nonlinear system restricted to
the center manifold takes the “simplest” form, called normal form.

Assume that the reduced system takes the form

du(r)
dt

= Au(t) + Fy(u) + F3(u) + -+ Fp1(u) +O(|u|™), (1.1.20)
where Fj(u) contains the terms of precise order k. The idea is to choose a coordinate

transformation to simplify or eliminate the quadratic terms. Let u = x+ Ay (x), where
hy is a quadratic polynomial. Substituting into system (1.1.20) yields that

(1+Dh2(X))% =A(x+ha(x)) + Fa(x+ha(x)) + -+ Fno1 (x4 ha (x)) + O(|x[™).
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Note that
Fe(x4+hy(x)) = F(x) +O(|x[F), 2<k<m—1.

Thus we have

dx ~ _
(I—I—th(x))g =Ax+Ah(x)+FB(x)+FB(x) 4+ 4+ Fu_1(x) +0(\x|’”), (1.1.21)
where F (x) are the corresponding modified O(|x|¥) terms.
If |x| is sufficiently small, then I 4+ Dh(x) is invertible and

(I4+Dhy(x)) ™" =I—Dhy(x) + O(|x]*).
Substituting into system (1.1.21), we have

% = Ax — [Dhy(x)Ax — Ahy (x)] + Fa (x) + F5(x) + - - + Fp 1 (x) + O(|x|™).
(1.1.22)
Now introduce the notation of Lie bracket (Marsden and McCracken [257]) as fol-
lows:
[A,h](x) £ La(h(x)) = Dh(x)(Ax) — Ah(x).

One can see that the second term becomes [Ahy(x)) — Dhy(x)Ax] = —[A, hy](x).
Thus, if /1, (x) can be selected so that

[A, o] (x) = Fa(x), (1.1.23)

then the quadratic terms in system (1.1.22) can be eliminated. Note that a solution to
(1.1.23) is possible only when F;(x) belongs to the range of linear operator [A, /15].

Notice that restricting [A, ;] to second order polynomials transforms (1.1.23)
to a linear algebraic problem. Let {717727 e ,7,,} be a basis for R". A vector
monomial of degree k takes the form

my_mp My \— _
(X2 xm) e, mj =k,

™-

1

J

where m; > 0 are integers. The vector monomials of degree k form a basis for the
finite dimensional vector space Hy, of all vector-valued polynomials of degree k.

Take n = 2 and let 71 = ( (1)> and 72 = (?) denote the standard basis for
R2. Then

weman{ (3)(57)(5) (8)-(n)-(2))

For the linear map Ly = [A, -] : H, — H,, we can write

Hy =Ls(H)® Gy,



1.1 Ordinary Differential Equations 19
where G, is a complementary subspace of the range of L4 acting on H,. Now rewrite
Fz(x) ze’lr(x)—&—Fzr(x), anr ELA(Hz), Fzr € Gj.

Choosing £y so that Ly (h2(x)) = [A,h2](x) = F3"(x), we then obtain the following
theorem.

Theorem 1.1.23 (Poincaré Normal Form Theorem). Consider system (1.1.20)
and define a linear transmormation Ly : H, — H; by

La(h(x)) 2 [A, h)(x) = Dh(x)(Ax) — Ah(x).

Then by using the decomposition Hy = La (Hy ) ® Gy, there exists a sequence of trans-
mormations x — x+ h(x) (with ly € Hy) which transforms system (1.1.20) into the
normal form

d
£:M+w@+m+m4@+mwﬂ (1.1.24)

where
F € Gy, Vk=2,3,--- ;m—1.

Remark 1.1.24. Suppose that A = diag[A,,- -, A,] is a diagonal matrix. Let h(x) =
("1 x52 - xm) ¢ ; € Hy, where Y mj = k. Then

La(h(x)) = [A,h](x) = Dh(x)(Ax) — Ah(x) = [Zn:lmj),j - l,-] h(x).

Hence, Ly is also diagonal on Hy in the standard basis and is not invertible if zero
is an eigenvalue; that is, if ):;le m jlj — A; = 0 for some i. If the eigenvalues of
A satisfy a relation of this form where the m; are non-negative integers, then the
eigenvalues are in resonance of order };_, m;. For this reason, the terms F} (x) in
(1.1.24) are called resonance terms.

Remark 1.1.25. It is important to understand that the simplified system (1.1.24) is
strongly depending on the specific choice of the complementary spaces Gy. In other
words, changing the complementary spaces will change the form of the simplified
system (1.1.24) which is obtained by making a succession of changes of variables.

(f) Hopf bifurcation theorem. In order to explain the idea of Hopf bifurcation
theorem (see Hopf [191]), we first consider a system of two scalar ordinary differ-
ential equations

x’(t)) [a w} (x(t)) 2 ’ (x(t))

= + K (x(f)" +y(t s

(Vi) = Lo @] )+t nsen) ()

where the bifurcation parameter o varies from negative values to positive values,

and the parameters
w#0and x #0
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Fig. 1.2: When x < 0 we use [ := ¢t as a bifurcation parameter, and when u passes through 0 a stable periodic orbit is
appearing. The case k > 0 can be understood from the case x < 0 by going backward in time; that is, by considering
X(t) :=x(—t) and y(¢) := y(—t). When x > 0 we use [t := —¢ as a bifurcation parameter, when u passes through 0 an
unstable periodic orbit is appearing.

are fixed.
Embedding the system into the complex plan, namely, setting

A(t) = x(t) +iy(t) < x(t) := Re(A(t)) and y(t) = Im(A(t)),
we obtain the Poincaré normal form [291, 290]
A1) = (a+io) A1)+ x| A (0)]* A@). (1.1.25)

Therefore,
— —

SR =20 @)+ 10 20)

= (o +io) |2 ()P +x|2(0) A (1)
+(a—io) AP + &A@ 20

So by setting r(t) := |A(¢)|* we deduce that r(z) satisfies the logistic equation

dr(r)
dt

=2r(t) (o + xr(r)). (1.1.26)
By using this equation, we deduce that the curve

X0+ ==

is invariant by the flow as long as

o
—-—=>0.
K

Moreover, on this curve (i.e. when x(¢)% 4 y(t)> = 7), the Poincaré normal form
(1.1.25) becomes
A (1) =iwA(r),
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which gives '

A1) = VFe'.
Thus, this curve is a periodic orbit of period %” By using the logistic equation
(1.1.26) one may also analyze the stability of this periodic solution.

The Hopf bifurcation theorem is an extension of the above idea. Consider a
parametrized system of ordinary differential equations

dx(t)
dt

= Ax(t) +F (1,x(1)) for t > 0 with x(0) = xo € R”, (1.1.27)

where i € R is a parameter. In order to clarify the statement under the assumptions
for the Hopf bifurcation theorem, we first recall a definition.

Definition 1.1.26. An eigenvalue A € 6 (A) is said to be simple if one of the fol-
lowing equivalent conditions are satisfied:

(i) A is aroot of order 1 of the characteristic polynomial of A; namely, a root of
order 1 of the polynomial
A —det(AI—A);

(i) dim(ker (Aol —A)) = 1 and dim(ker (Aol —A)?) = 1.
We make the following assumption.

Assumption 1.1.27. Let & > 0and F € C¥((—¢,€) x Bgn (0,€);R") for some k >
4. Assume that the following conditions are satisfied:

(i) F(u,0)=0,Vu e (—¢,¢€),and dF (0,0)=0.
(ii) (Transversality condition) For each 1 € (—¢, €), there exists a pair of conju-

gated simple eigenvalues of (A + d,F (i,0))o, denoted by A (i) and A (), such
that

A (1) = a(u)+io(p),
the map u — A () is continuously differentiable,

®(0) >0, a(0) =0, djflo) £0,
and
o (A)NiR = {/1(0),@}. (1.1.28)

To prove the Hopf bifurcation theorem one may apply the center manifold theo-
rem to obtain a 3-dimensional reduced system for the system

du(r)

d
dx(t)
= = Ax() +F (p(0), (1))

Then by using the Hopf bifurcation theorem for the 2-dimensional parametrized
system, one may prove the following theorem (Hopf [191] and Hassard et al. [181]).



22 1 Introduction

Theorem 1.1.28 (Hopf Bifurcation). Let Assumption 1.1.27 be satisfied. Then
there exist a constant € > 0 and three C*~' maps, € — u(g) from (0,€*) into R,
€ — xg from (0,€") into R", and € — T (&) from (0,€*) into R, such that for each
€ € (0,€") there exists a T (€)-periodic function xg € C* (R™™)  which is a solution
of (1.1.27) with the parameter value | = [(€) and the initial value x¢(0) = xo. So
foreacht > 0, x. (1) satisfies

dxe(t)
dt

=Axe(t) + F (u(€),xe(r)) fort > 0 and x¢(0) = xo.

Moreover, we have the following properties:

(i) There exist a neighborhood N of 0 in R" and an open interval I in R containing
0, such that for U € I and any periodic solution 55( ) in N with minimal period T
close to 75 ()f (1.1.27) for the parameter value [1, there exists € € (0,€*) such

that x(¢) —xg(t—|—9) (for some 6 € [0,7(¢€))), u(e) =, and T (€) =T
(ii)  The map € — u(€) is a C*=' function and we have the Taylor expansion

2
n(e) =Y wne™+0(e""), ve e (0,e%),

where [ 2] is the integer part of
(iii)  The perlod T(€)oft = xe(t)isa C’"1 Sunction and

k
T
T(e)= Z 7,87+ 0(eh 1), Ve € (0,€"),

where (0) is the imaginary part of A(0) defined in Assumption 1.1.27;
(iv)  The nonzero Floquet exponent B(€) is a C*=! function satisfying B(€) — 0
as € — 0 and having the Taylor expansion

k
T
Z Ban€® +0(e7 1), Ve € (0,€).

The periodic solution x¢(t) is orbitally asymptotically stable with asymptotic
phase if B(€) < 0 and unstable if B(€) >0

Remark 1.1.29. In applications, we usually have the following approximations

2
®(0)

for alle € (0,&*). Therefore, the direction of the Hopf bifurcation, the stability and
period of the bifurcation periodic solutions are determined as follows: if t, > 0(<
0), then the bifurcating periodic solutions exist for 4 > 0(< 0) and the bifurcation
is called supercritical (subcritical); if B, < 0(> 0), then the bifurcating periodic

w(e) = me* +0(eh), T(e) = [1+ 1€+ 0(e"), B(e) = e+ O(e*)
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solutions are stable (unstable); if 7, > 0(< 0), then the period of the bifurcating
periodic solutions increases (decreases).

1.2 Retarded Functional Differential Equations

In this section we introduce some concepts in Retarded Functional Differen-
tial Equations (RFDEs), also called Delay Differential Equations (DDEs), and state
some very basic results on the subject. This part will be especially useful to read-
ers who are not familiar with delay differential equations. Our goal is to use delay
differential equations as a motivating example for the applications of the semigroup
theory. We refer to the monographs of Hale [170], Hale and Verduyn Lunel [175],
Diekmann et al. [106], Wu [374], and Arino et al. [27] for fundamental theories
and results on RFDEs. See also the books of Kuang [221] and the surveys of Ruan
[299, 300] for more examples of RFDEs in the context of population dynamics.

Let r > 0 be a fixed constant. The first prototype equation is the following delay
differential equation

dx(t
{d(t) = f(x(t 1)) for1 >0, (1.2.1)
x(8)=¢(0), V0 € [-r0],

where ¢ € C([—r,0],R), the space of all continuous functions from [—r,0] to R,
and f: R — R is a continuous function.

10
8, .
¢
x(t)
6 4
=
N N
2\/ ]
-4 -2 0] 2 4 6 8 10

Fig. 1.3: The solution of a RFDE depending on the initial value ¢(6),6 € [—r,0].

In such a problem the function ¢ is called the initial value of system (1.2.1).
Moreover, a solution of system (1.2.1) is understood as a continuous function x €
C([-r7),R) satisfying
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= {JO RS 20,y

We observe that in this case the solution can be constructed inductively. Indeed, for
eacht € [0,r], we have

(1) = ¢ (0) +/Otf(¢)(s—r))ds it >0.

Since ¢ is given, we know that x(¢) exists and is uniquely determined on [0, r| by
¢. Similarly, we deduce that for each n > 0, the solution x(¢) restricted to [n,n+r]
is entirely and uniquely determined by x(¢) on [n—r,n]. By using this inductive
procedure, we deduce that there exists a solution x € C([—r,+),R) of system
(1.2.1) which is uniquely determined by the initial value ¢.

Now we reformulate this example in a general form. Let T > 0 be a given constant
and let x € C([—r,7],R). For each r € [0, 7], define x; € C([—r,0],R) by

x(0)=x(t+86), V0 €[-r0].

Consider a map G : C([-r,0],R) — R defined by

Then the delay differential equation (1.2.1) can be rewritten as

dx(t)
{ o G(x;) fort >0, (1.2.3)

x(0)=9¢(0),V6 €[-r0],
and a solution of system (1.2.3) is understood as

[ 0(0)+ [5G(xs)ds if >0,
0= {¢(t) ' if —r<t<0. (1.2.4)

The second prototype delay differential equation is the following
{ d%f) — bx(t) + f(x(t — 7)) for £ > 0, (125)
x(60)=9¢(0), V0 €[-r0],
Again we define G : C([-r,0],R) — R as
G(9)=b9(0)+f(¢(-r)),
and as before we can rewrite the problem in the form (1.2.3).

Remark 1.2.1. In equation (1.2.5) the solution can also be computed step by step
by writing it as a continuous function satisfying
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A eb1‘¢(O)+f(;eb(f—s)f(x(s—r))ds ift >0,
x(t) = 0 (1) if —r<1<0.

Example 1.2.2 (Nicholson’s Blowflies Model). Let N(¢) denote the population of
sexually mature adult blowflies. Assume that the average per capita fecundity drops
exponentially with increasing population, then the following delay differential equa-
tion describes the total number of mature individuals (Gurney et al. [160])

dN _Ni=7)

— =PN(t—1)e ™M™ —6N(z), (1.2.6)
dt —_———— N ——
birth mortality

where P is the maximum per capita daily egg production rate, Ny is the size at which
the blowflies population reproduces at its maximum rate, 0 is the per capita daily
adult death rate, and 7 is the time units that all eggs take to develop into sexually
mature adults.

1.2.1 Existence and Uniqueness of Solutions

Letn > 1 be an integer. Consider ¢ := C ([—r,0],R"), the space of all continuous
functions from [—r,0] to R”, endowed with the usual supremum norm

[o]l= sup 9(8)].

0c[—r0]

In this section we consider the delay differential equation of the form

d
{ ’;(tt) = Bx(1) + G(x), 127
Xo=0 €T,

where G : € — R” is a continuous map and B € M, (R) is an n x n real matrix.
In the following definition we introduce some terminology commonly used for
delay differential equations.

Definition 1.2.3. The equation (1.2.7) is called a scalar delay differential equation
if n = 1. The delay differential equation (1.2.7) is called a discrete delay differential
equation if it can be written as the following special form

{ d);(tt) :Bx(t)+H(x(f_rl)a"'vx(t_rp))’
Xos g€ C([-r0] R,



26 1 Introduction

where ry,...,r, € [0,r],and H : R" x R" x ... x R" — R" is a continuous map. Other-
—_————

p times
wise, the delay differential equation (1.2.7) is called a distributed delay differential
equation.

Definition 1.2.4. For each 7 € (0, 40|, we say that x € C ([—r,7),R") is a solution
of (1.2.7) if it satisfies

_ [0 (0)+ g TIGx)ds if0<t <,
D =9100) if —r<1<0.

The first main result of this section is the following theorem in which we sum-
marize some basic results on delay differential equations (Hale and Verduyn Lunel
[175]).

Theorem 1.2.5. Assume that G : € — R" is Lipschitz continuous; that is, there ex-
ists some K > 0 such that

G(@)—G(W)| <Kl —vl,Vo,y 7.

Then for each ¢ € €, there exists a unique solution x4y € C ([—r,+o0) ,R"). More-
over, there exist two constants C > 0 and M > 1 such that

g (1) —xy (t)| < Me“ ||¢ — ||, ¥t > 0.V, y € F.

Furthermore, if we consider the family of operators {U(t)},-q from € into itself
defined by

U(t)(9) =xp. < U(t)(9)(0) =x4 (1 +6), V6 € [-r,0],

then {U (1)}, defines a continuous semiflow; that is,

(i) U@)oU(s)=U(t+s),Vt,s>0,and U (0) =1,
(i) (t,¢) = U(t)¢ is continuous from [0,+o0) X € into € .

Definition 1.2.6. An equilibrium solution of (1.2.7) is a solution which is constant

in time; that is
x(t) =%Vt > —r.

So
0=Bx+G (xl_0(.),

where [a,b]
1 ifx€la,b
Vap) (%) = {0 otherwise.

Remark 1.2.7. One may also observe that if ¥ is an equilibrium of the RFDE, then
X1_pq)(.) satisfies

U(t) (XI[fr,O](')) Zfl[,rﬁo](.), vt > 0.
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So X1|_.(.) an equilibrium of the semiflow {U(t)},>,. Thus, we also have an
interpretation in terms of semiflows.

Example 1.2.8 (Hutchinson’s Equation). Consider the equation (Hutchinson [194])

20 — i (1- 1) (128)

dt K
with ¢ € R, r > 0, and Kk > 0. Then the equilibria are
¥=0and X = k.

The second main result of this section is the following theorem on linearized
delay differential equations (Hale and Verduyn Lunel [175]).

Theorem 1.2.9 (Linearized Equation). Assume that G is Lipschitz continuous and
continuously differentiable. Then for each t > 0, the semiflow ¢ — U (t) (@) is con-
tinuously differentiable. Moreover, if for each v € € we set

V(1) = V(1) (y) = U (1) (9) (w),

then
v(t)(0) = yy (t+6),Y0 € [—r,0],

where yy (t) is the unique solution of

dyst(t) = Byy(1) +DyG (xp,) (yys) , Ve >0

yl]/,() = llla

in which xy, = U(t) (¢) is the solution of (1.2.7) with the initial value ¢.

1.2.2 Linearized Equation at an Equilibrium

If we consider the special case of an equilibrium solution x(r) =X, Vt > —r, then
the linearized equation of (1.2.7) is given by

dyy (t =
%() = Byy (1) + Do G (X1 [_0)(.)) (Vyur) , ¥ 20, (1.2.9)

Yy, 0 = S C([*I‘,O] 7Rn)'

By applying Theorem 1.2.5 to system (1.2.9) and by using the fact that v —
By(0) 4+ DyG (x1_0)(.)) () is a bounded linear operator from %" into R", we
deduce that if we set

T(0)(y) := U (1) (¥110)(-)) (W) =Yy,
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then {7'(¢)},- satisfies the following properties:

(i) Foreachr >0, T(t) is a bounded linear operator from ¥ into itself;

i) T@OT(s)=T(t+s),Vt,s>0,and T (0) =1,

(iii)  (z,¢) — T(¢)¢ is continuous from [0, 40) x € into €.

Such a family of linear operators {7'(¢)}, is called a strongly continuous semi-
group of bounded linear operators on %

Next we explain how to compute the linearized equation for a discrete delay
differential equation. Consider a delay differential equation

dx(r)
dt

=fx@—r1),...x(t—rp)), (1.2.10)

where 0 <ri <m <..<rp_1<rp=:rand f: R’ — Ris aCl-map satisfying

for some X € R. Then X is an equilibrium solution and we can rewrite (1.2.10) as

dx(t)
dt

=G(x)

with
G(9)=(foL1)9,
in which L; : C([—r,0],R) — R is the bounded linear operator defined by

¢ (—r1)
Li¢ = :
o (—rp)

By using the differentiation of composed maps we obtain

DyG (X1[_pg)(-)) (W) = Df (L1 (F11_p0)(-))) L1 (W) -

Thus,
v(—r1)
f (x,...x) df(x,...,x af (x,...,.x
DyG (*1_g)(.)) (W)=( f(axl )» f(axz ),.7 f(axp )> :
v(=rp)
P X, ..., X
:Zaf(a;cl 7 )V’(_rz)

So the linearized equation around X is given by

P X, ..., X
d};i(tt) =) af(a;i : )Y(t*”i)~

i=1
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Example 1.2.10. For the Hutchinson equation (1.2.8), the linearized equation atx =
0is (1)
y(t
{ U]

yl[/,() = WGC([*V,O],R),

which is an ordinary differential equation, and the linearized equation at X = K

{d):l(lt) :7(1))(2‘*7')7
Yy,0 = WGC([*F’OLR)

is a linear delay differential equation.

1.2.3 Characteristic Equations

Consider a linear delay differential equation

dx(r) -~
{ a = B0 +Lx) (1.2.11)
Xo=¢ €%,

where B € M, (R) and L € £ (%¢,R"), the space of all bounded linear operators
from € to R".

One may observe that we can apply Riesz’s representation theorem for the dual
of the space of continuous functions and deduce that

Lig)= [ dn(6)p(0)

—r

is a Stieltjes integral, where 1 : [—r,0] — M, (R) is a function with bounded varia-
tion. We recall that 17 has a bounded variation on [—r,0] if

V(1. [-n0]) = pz1 11 (Bes1) — 1 (89)] < +oo

where the supremum is taken over all subdivisions —r=0; < 8, < ... < 6, < 0,4 =
0. Then the Stieltjes integral has the following limit

" a0 (6) p(8) = tim ¥ [0 (6:11) — 1 (6)] 9(8).

—r A—=0

where

and
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6, [9,',9,'+1} NVi=1,...n.

Example 1.2.11. Consider ~
L(@)=Me(—r)

for some matrix M € M,, (R) and some r; € [—r,0]. If r; =0, take

M ife =0,
"(9):{0 if <0,

and if r; < 0, take

(M ife>r,
”(9){0 0 <r.

Then we obtain the desired property.

In order to describe the behavior of such a linear system one needs to study the
spectral properties of (1.2.11). An elementary approach to do that is to look for
solutions of (1.2.11) of the following form

x(1) =Mz, V> —r

with A € Cand z € C"\ {0} . Substituting x(¢) = ¢*z into (1.2.11), we obtain

Atz — d);(tt) _ BT (e*MH')z) _

Cancelling ¢*, we have
Az—Bz—L (e’l‘z) =0.

The characteristic function of (1.2.11) is defined by

AA) = Aen —B—Z(e—MCn) (12.12)
and the characteristic equation of (1.2.11) is defined by

det(A (1)) =0. (1.2.13)

The spectrum of the linear RFDE (1.2.11) is defined by

o={AeC:det(A (1)) =0}.

Definition 1.2.12. The equilibrium X of the RFDE (1.2.7) is exponentially asymp-
totically stable if there exist three constants € > 0 (sufficiently small), M > 1, and
o > 0, such that for each ¢ € €,

[0 =1 ()| <e= JU@) =1 g ()| <M |9 =10 ()|, V2 >0,
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or equivalently there exist three constants € > 0 (small enough), M > 1, and o > 0,
such that for each ¢ € €,

10 =10 (]| < &= lwo(0) —x| < Me™* [|¢ —F1 ()

, vVt > 0.

Theorem 1.2.13 (Exponential Asymptotic Stability). Let G : € — R" be a con-
tinuous map. Assume that & € R" is an equilibrium of the RFDE (1.2.7) and G is C'
locally around X1 (.). Then the equilibrium is (locally) exponentially asymptot-
ically stable if the spectrum of the linearized equation RFDE (1.2.9) at X contains
only complex numbers with strictly negative real part.

Example 1.2.14. As an example consider the linearized equation of the Hutchinson
equation (1.2.8) at the positive equilibrium X = «,

dy(t)
{d,:_“y(’_’) (1.2.14)
Yy, 0 = vy eC([-n0,R)

Looking for solutions of (1.2.14) of the form
y(t) = e,

we obtain the characteristic equation
A=—ae*, LeC. (1.2.15)

Assume that A = a+ib is a solution of the characteristic equation (1.2.15). Then by
taking the modulus on both sides we obtain

a2 +b2 — a26—2ar'

So
b2 — a26—2ar 7a2.

We must have

Cl2 S OCZefZar

b=+Va?e 2 —g2. (1.2.16)

Moreover, by taking the real and the imaginary parts, we have

and

a=—oe “cos(rb), b=ae “sin(rb). (1.2.17)

T
Proposition 1.2.15. If ra < 7 then all roots of characteristic equation (1.2.15)

have strictly negative real parts. Hence, the positive equilibrium X = K of the
Hutchinson equation (1.2.8) is exponentially asymptotically stable.

Proof. Indeed, assume by contradiction that there exists a solution of the character-
istic equation A = a + ib with a > 0. From (1.2.16) and the characteristic equation,
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we can assume that » > 0 and must have
b<a.
Now by using (1.2.17) we deduce that
0 < cos(rat) < cos(rb) <1,

a contradiction. This proves the claim. 0O

Hutchinson’s model o*r=1

Fig. 1.4: The exponential asymptotic stability of the positive equilibrium of the Hutchinson equation (1.2.8) with r =1
and o = 1.

1.2.4 Center Manifolds

Consider the linear RFDE

dx(t)
{ ar = B0 +L(x) (12.18)
Xo=¢¢ Cga

where B € M, (R) and L € . (¢, R") is a bounded linear operator.
The infinitesimal generator of the strongly continuous semigroup generated by
the linear RFDE (1.2.18) is defined by Ap : D(Ag) C € — € as

Ao := ¢



1.2 Retarded Functional Differential Equations 33
with domain
D(A0) = {9 € C'([=r,0}.B") : ¢/(0) = Bo(0) + L(p)}
The linear RFDE can be rewritten into the following abstract form
W' (t) = Agu(t) fort > 0 with u(0) =@ € 6. (1.2.19)

Since the strongly continuous semigroup generated by Ag is eventually compact,
the space ¥ can be decomposed accordingly to the spectral decomposition ¢ =
o, U o, U o5 in which o, 0., and o are the sets of eigenvalues with positive, zero,
and negative real parts, respectively. We can find three closed subspace of €

C=UBN®S,
which define three bounded linear projectors

€=U and (I—7y)E =NDS,
EN%:N and (177’[]\/)%: U@S,
ES%:S and (I—?Ts)chU@N.

It is well known that the dual space of % is the space of random measures
which is a space much bigger than C([0,r],(R")*). In order to compute the pro-
jectors on the eigenspaces, one can define a formal adjoint relationship between
€ = C([-r,0],R") and €* := C([0, r], (R")*) by using the following bilinear form

0 6
(v.0) =y (00~ [ ["w(E—0)an(0)(E)ds

for ¢ € ¢ and y € €*.

The subspace N C C([—r,0],R") is a direct sum of the generalized eigenspace
associated with eigenvalues with zero real part for the infinitesimal generator of the
linear RFDE (1.2.18) which can be rewritten as

dx(t

{ % =Bx(t) + [°.dn(0)x(t + ), >0,
x0=¢@ € C([-r,0],R").

The subspace N* C C([0,r],(R")*) is a direct sum of the generalized eigenspace

associated with eigenvalues with zero real part for the infinitesimal generator of the
linear RFDE

dizi(;) — —y(s)B— [° y(s—8)dn(8), s<0,
W yec(on, @),

Then N and N* have the same finite dimension. Moreover, let @ be a basis for N
and ¥ be a basis for N* with
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(®,¥) =1.

Assume that dimN = m > 1. One may observe that @ € D(Ap). Then one can rewrite
Ay in the basis @ which gives an m x m matrix B,,. Furthermore, by projecting
(1.2.19) on N (i.e. by applying my on both sides of (1.2.19) and expressing this into
the basis @), it follows that

& = B,, .

Let BC be the set of all functions from [—r,0] to R” that are uniformly continuous
on [—r,0) and may have a possible jump discontinuity at 0. Define Xy : [—r,0] —
M, (R") by

Iif6=0,
Xo(8) = {o if 6 € [~r,0).

Then
BC={¢+Xo&: 0 €C,E €R").

Clearly BC is a Banach space equipped with norm
10 +XoS [z = 0]+ [E]-
Consider an extension A : D(A) C € — BC of Ag to BC
Ay =y +Xo[By(0) + Ly — y(0)]

with domain
D(A) :=C' ([-r,0],R").

Remark 1.2.16. One may observe that A is the part of A in €; that is,
App ;=A@ for ¢ € D(A())

and
D(Ag) :={9¢ €D(A):Ap € ¢}

Now consider the functional differential equation
dx(t)
{dt = Bx(1) +L(x) + F(x) (1.2.20)
Xo=¢ €7,
where F : 4 — R”" is a k-time continuously differentiable map satisfying
F(O(g) = ORn and DF(O%) = Off(‘f,lR")'

By setting
u(t,0):=x(0)=x(t+0),

the RFDE (1.2.20) can be rewritten as an abstract Cauchy problem in the Banach
space € :
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du(r)
dt

= Au(t) + XoF (u(t)) fort > 0 with u(0) =@ € €. (1.2.21)
Remark 1.2.17. Of course this problem is not classical since the ranges of A and
XoF do not belong to %

Then consider a map 7y : BC — N defined as follows
N (9 +XoG) = P, ¢) +P(0)¢]

for ¢ € ¢ and & € R". One can observe that Ty extends the projector 7y and we
have
BC = N ®kery

with
S®U C kermy.

Next we can decompose the solution x; of (1.2.20) as
X = Pz(1) +y(1)
with
z(t) eR" and y(r) := (I — 7y )x, € ([ — 7IN)E
Then (1.2.20) is equivalent to
2(t) = Buz(t) + P (0)F (®Pz+y),

~ 1.2.22
=Byy+ (I — ) XoF (Pz+y), ( )

ay
dt

where By, is the part of B: D(B) C ¢ — €
B¢ = ¢’ and D(B) :=C"' ([-r,0],R")

in the hyperbolic space
X, := (I —7ty)BC;

that is,
B¢ = B = ¢’ for ¢ € D(B),)

and
D(Bh) = {(p € D(B) NX,:Bp Xh}.

Remark 1.2.18. The variable u(t) = ®z(r) + y(¢) satisfies the original equation
(1.2.21).

We have the following result.

Theorem 1.2.19 (Center Manifold). Assume that N # 0 and F is a k-time contin-
uously differentiable map satisfying

F(O%) = OR" and DF(O%) = O_,%’(‘KJR”) .
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Then there exist a map W € CK(R™ ker mty) with
W(0) =0 and D,W(0) =0,
and a neighborhoodV of 0 in € such that the center manifold
Wi (0) = {Pz+W(z): ze R"}

has the following properties

(i) W (0) is locally invariant with respect to (1.2.21); that is, if ¢ € WS (0)NV
and

u(t,9) =x(9) eV, vil(¢),
then
u(t, §) = x(9) € Wig.(0)
forallt € I(9) (the interval of existence);
(ii) W (0) contains all solutions of (1.2.21) remaining in'V for all t € R.

Note that W, (0) is a Ck-manifold of (1.2.21) parameterized by z € R™. Thus,
W (0) has the same dimension m, passes through 0, and is tangent to N at 0.

1.3 Age-structured Models

Let u(t,a) be the density of a population with age a at time ¢ > 0, so that for each

0 <a1 < az,
ay
/ u(t,a)da

ag
is the number of individuals with age a between a; and a, and the total number of

individuals at time ¢ is N
/ u(t,a)da.
0

Consider the following age-structured model

du(t,a) N du(t,a)

= — > >
P Y w(a)u(t,a) fort >0anda >0

morality (1.3.1)
u(t,0) = oth ( ﬁ(a)u(t,a)da) fort >0
0

birth

with the initial distribution

M(O, ) = ¢ € L1+((Ov +°°)3R)
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In (1.3.1) the function
1
e L+,loc((07+°°)7R)

is the mortality rate, o > 0 is the birth rate of mature individuals, and the function

B(.) € LE((0,+o),R)

is the probability for an individual with age a to be mature. Therefore,

~+oo
B(a)u(t,a)da
0
is the total number of mature individuals at time ¢.
The function h(x) describes the birth limitation whenever the size of the popu-
lation increases. A classical example for such a function is the Ricker’s function of
the form

h(x) = xe~ %%,

where 6 > 0, which was introduced by Ricker [297, 298] to describe cannibalism in
fish population. Ricker’s function can be derived by using a singular limit procedure.
We refer to Ducrot et al. [118] for more results about this topic.

1.3.1 Volterra formulation

We observe that if the map (¢,a) — u(t,a) is C' and

lim u(t+h,a+h)—ul(t,a) _ du(t,a) n 3u(t7cl)7
h—0 h ot da

then the first equation of (1.3.1) means that U (h) := u(t + h,a + h) satisfies an or-
dinary differential equation along the characteristic curve a =t + c¢. More precisely,
we have

U'(h) = u(a+h)U(h), (1.3.2)

or equivalently

U(0) = exp (— / ih ,u(s))ds) U(=h). (13.3)

Some characteristic curves a =t + ¢ are represented in Fig. 1.5. This figure shows

that we need to distinguish the case a > ¢ and the case a < ¢ in order to compute the

solution from the value of the distribution on the boundary of the domain (0, +o0)?.
Set

B(r) = /0 " Bla)u(t,a)da.

Then the first equation of (1.3.1) means that
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6
a=t+1

ST characteristics a=t i
4 |

3r a=t-1 |

©
2 | -
1 | -
0
1 ‘ ‘ ‘ ‘ ‘
-1 0 1 2 3 4 5 6
t
Fig. 1.5: Some characteristics curves a =t +c.
u(t.a) = exp(— [, u(s)ds)p(a—1) ifa>1,
’ exp(— Jo 1(s)ds)oh (B(t —a)) ifa<t,
or equivalently in a more condensed form
I(a) .
u(t,a) =4 Ta-n?@—" ifa>1 (1.3.4)
I(a)oh(B(t—a)) ifa<t,
where ;
IT(a) := exp(— / 1 (s)ds) (13.5)
0

is the probability for a newborn to survive to the age a. Now we have

B = [ Bla tadaf/B u(t.a)da+ | " Ba)ult,a)da.

So by using (1.3.4) we deduce that B(¢) must satisfy a nonlinear Volterra integral
equation

= [ Blam@an B —a)da+ F o), (136

where F(t) corresponds to the contribution of the initial distribution ¢(.) to the
number of mature individuals at time #; namely,

F(t) = /t+mﬁ(a)HI(—Ia(i)t)¢(a—t)da. (1.3.7)
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Set
K(a):=B(a)II(a). (1.3.8)

Then the nonlinear Volterra integral equation (1.3.6) can be rewritten as
B(t) := (K*xG(B))(t) + F(¢), (1.3.9)
which is also called the Lotka integral equation, where
G(x) := ah(x)

and the operator of convolution is defined by

(K*B)(1) := /OIK(a)B(t —a)da = /OIK(I —a)B(a)da. (1.3.10)

1.3.2 Age-structured Models without Birth

Assume first that the birth rate

Then the solution becomes

_qa H(Cl)
( fa,,u(s)ds) _ [ S
ut,a)=14°¢ o@—D=Fa_p

0 ifa<t.

dla—r) ifa>rt, (1.3.11)

The following theorem summarizes some known results about this special case.

Theorem 1.3.1. Under the above assumptions, the family of bounded linear opera-
tors {Tg0 () }1>0 on L' ((0,+0),R) defined by

e(*f:—rﬂ(s)ds)q)<a _ I) ifa >t,

00 = { ¢ ASAEYE

is a strongly continuous semigroup of bounded linear operators; that is,

(i) Ty ()T (s) = Ty (t+5),Vt,5 > 0, and T; (0) =1

(i) (t,9) — Ty (1) is continuous from [0, +00) x L' ((0,400),R) into L' ((0, +0), R).

Moreover, the linear operator Ay : D(Ag) C L'((0,+e0),R) — L'((0,40),R) de-
fined by R
Ao = ¢’
with domain R
D(Ao) = {9 € WH'((0,+), ) : $(0) = 0}
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is the infinitesimal generator of{TX0 (t)}r>0; that is,

lim (Tgo(h)¢ - ¢)

exists and is equal to X if and only if
¢ € D(Ag) and Ay(¢) = .
We also have the following result.

Lemma 1.3.2. Assume that there exist a constant [y > 0 and an age ag > 0 such
that
u(a) > po for almost every a > ay. (1.3.13)

Then there exists a constant M > 0 such that
T —Uot
HTAO (t)||$(Ll((o7+m)7R)) < Me , Vt>0.

Since the map ¢ — [,"™ B(a)¢ (a)da is a bounded linear functional on L! ((0, +o0), R)
and since

F = [ BT, 0)(9) @)da,

by applying Theorem 1.3.1, it follows that F(r) is a continuous map and by Lemma
1.3.2
[F(6)] < ||Bll=Me", vt 0.

1.3.3 Age-structured Models with Birth

Observe that with our assumptions on p(a) and (a) the map
K :=BIT € LT ((0,420),R).

Moreover, the map A(x) is Lipschitz continuous on [0,+oce). In order to prove the
existence of solutions we can apply the following fixed point procedure

B (1) = (K* G(B"))(t) +F(t), ¥t >0 (1.3.14)
in some convenient space of continuous functions. Namely, we consider

Cp([0,+e0),R) = {x € C([0,+20),R) : supe” V[ ()| < +oo},

t>0

which is a Banach space endowed with the norm
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[l == supe™"|x(1)].
>0
Theorem 1.3.3. Under the above assumptions, for each 1 > 0 such that
teo
/ MKl < 1,
0

there exists a unique function B € Cy([0,4),R) (for some n > 0 large enough)
satisfying the Volterra integral equation (1.3.6). Moreover,

B(t) >0, vVt > 0.

If, in addition, | satisfies the condition (1.3.13), then B(t) is bounded and

400
limsup B(t) S/ K(a)dasupG(x).
0

t—>+oo x>0
Proof. Let By and B, be two functions in Cy ([0, +c°),R). Then
(K G(B)) (1) — (K G(B) (1)
= e‘”’|/0 K(t —a)|G(B1)(a) — G(B2)(a)]dal

/O ' e M=K (t —a)e "[G(B))(a) — G(B,)(a)]da

t
< [ e 1K1~ a)dal Gllig 1B = Bal .

Thus,
(K * G(B)) — (K * G(B2)) |y < kn1B1 Bl

where .
ey 1= HG||Lip/ e MK(1)dl = 0 as 1 — +oo.
0

By applying the Banach fixed point procedure to (1.3.14), the first part of Theorem
1.3.3 follows.

To prove the last part of Theorem 1.3.3 we use Lemma 1.3.2 and observe that
under the additional condition K € L' ((0,4-0),R). Therefore,

~+oo
limsupB(¢) < limsup K(t —a)G(B(a))da+F(t).
t—oo 1—r+teo JO
Hence e
limsup B(¢) < limsup K(t —a)dasup G(x)
t—r+oo t—+oo JO x>0

and the result follows. O

As a consequence we obtain the following theorem.
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Theorem 1.3.4. Under the above assumptions, there exists a unique continuous
semiflow {U (t) };>0 generated by the solutions integrated along the characteristics
for age-structured model (1.3.1). In other words, if for each ¢ € LL ((0,4o0),R) we
define U(t)(¢) as

U(0)(9)(@) = o t,a),

where ug (t,a) is given by
I(a)

wplta)=1{ Ma—n?@ D ¥a>t (1.3.15)
(a)G (By(t—a)) ifa<t

with By (t) being a solution of the nonlinear Volterra integral equation

B¢(t):/Otﬁ(a)H(a)G(B¢(tfa))da+F¢(t) (1.3.16)
and . (a)
Fy(t) = | ﬁ(a)mq)(a—t)da, (1.3.17)

then U is a continuous semiflow on ¢ € L! ((0,+0),R); that is,

(i) U@)oU(s)=U(t+s),Vt,s>0,and U (0) =1,
(i) (t,9) — U(t)¢ is continuous from [0, +0) x L' ((0,4o0),R) into L' (0, +<0),R).
1.3.4 Equilibria and Linearized Equations

A positive equilibrium solution for the age-structured model (1.3.1) satisfies u €
WHI((0,+0),R) (i.e. € L' ((0,40),R) and @ € L'((0,+0),R)) and

W (a) = —p(a)u(a) for a.e. a > 0,
{u<0> = G(Jy Blayu(a)da). (1319
Thus
u(a) = (a)u(0) foralla >0
and
u(0) = ru(0) exp(—«xu(0)),
where

oo r—+oo
ri= OC/ B(a)I(a)da and x := & B(a)II(a)da.
Jo Jo

Lemma 1.3.5. We have the following alternatives:

(i) Ifr <1, thentp(a) =0,Ya >0, is the unique equilibrium of the age-structured
model (1.3.1);
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In(r)

(ii) Ifr>1, thenup(a) = 0,Ya > 0, and %, (a) = I1(a)
positive equilibrium of the age-structured model (1.3.1).

,VYa > 0, is the only

The linearized equation around # is given by

adv(t,a) N dv(t,a)

=—u(a)v(t,a), t >0, a>0

at a (1.3.19)
v(1,0) = G'(Jy " Ba)u(a)da) [y~ B(a)v(t,a)da, t > 0.
But
G (x) = (1 —x8) exp(—bx).
It follows that
G (0) = a. (1.3.20)
For the positive equilibrium (when it exists) we have
T p@m@da= [ p@n@da™) - M Pl
0 0 K o
. _ 1-In(a [y B(a)II(a)da)
o (] pamiann) =
Assume for simplicity that
oo
[ B@n@da=1,
we obtain .
G/< A B(a)u (a)da) =1-In(a). (1.3.21)

By using (1.3.19) and (1.3.20), we deduce that the linearized equation around #p = 0
is given by

dv(t,a) ~dv(t,a)
= + i —u(a)v(t,a) forr >0anda >0

v(t,0) = [, " B(a)v(t,a)da fort >0,

(1.3.22)

and by using (1.3.19) and (1.3.21), we deduce that the linearized equation around
uj is given by

avgt,a) L ova) —u(a)v(t,a) fort >0and a >0

v(t,0) = (1 —In(a)) [, B(a)v(t,a)da for t > 0.

(1.3.23)

In order to derive the characteristic equation we look for (nontrivial) solution of the
form
v(t,a) = e*vo(a). (1.3.24)
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By substituting it into the linearized equation we obtain

Avo(a) +vi(a) = —p(a)vo(a) for alla > 0
{VO(O) = G/O( 6+°°ﬁ(a)g(a)da) J“’ﬁ(a)vo(a)da. (1.3.25)

By using the first equation of (1.3.25) we have

vo(a) = vo(0) I (a)e .

So by plugging this last expression into the second equation of (1.3.25), we obtain
the characteristic equation to find A € C :

e ( / B(a da) 0+w[3(a)n(a)e*1“da. (1.3.26)

1.3.5 Age-structured Models Reduce to DDEs and ODEs

We consider the age-structured model (1.3.1) in the following cases
(i) B(a) = e’ﬁ‘ll[rﬁm)(a), 1(0) = u, where B >0, T >0 and u > 0 are con-
stants. Let ii(t) = [3" e Peu(t,a)da. Then, we obtain a delay differential equation
di(r)

ar = oe MTh(a(r — 1)) — ( + B, > 7,
12([) =e M [ZePiyy(a—1t)da

e WP [= o= Bbyuy(b)db, 1 € [0, 1.

(1.3.27)

(ii) B(a) = ljp(a). Letii(t) = [; u(t,a)da. Then we obtain an ODE

& = ah(a(t)) — pa(r), t>0,
{ i(0) = i > 0. (1.3.28)

(iii) With juveniles and adults. Let

A(D) :/ u(t,a)da
T
denote the number of adults in the population at time ¢. Consider the boundary

condition 5
u(t,O)z/T BA())u(t,a)da

Then A(z) satisfies a delay differential equation

B(A(2)A().

dA
i u(t,7) — HA(t)

= B(A(t — T)A(t — T)e T — LA(r). (1.3.29)
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Let A
B(A) = Poe 0, 6=p.
Then equation (1.3.29) becomes

A(t—1)
dA

= Boe A - e N A, (1.3.30)

which is the Nicholson’s blowflies model (1.2.6) if we denote P = Bye 7.

1.4 Abstract Semilinear Formulation

In this section we formulate several types of equations, including functional dif-
ferential equations, age-structured models, parabolic equations, and partial func-
tional differential equations, as abstract Cauchy problems with nondense domain.

1.4.1 Functional Differential Equations

(a) From RFDE to PDE. Consider the retarded functional differential equations
of the form 4
{ % =Bx(t) +L(x;) +G(x;), Vt >0, (14.1)

xo=¢ € C([-r0],R"),
where B € M, (R) is an n x n real matrix, L : C ([—r,0],R") — R” is a bounded
linear operator, and G : C ([—r,0],R") — R” is a continuous map.

In order to study the RFDE (1.4.1) by using the integrated semigroup theory, we
need to consider RFDE (1.4.1) as an abstract non-densely defined Cauchy problem.
Firstly, we regard the RFDE (1.4.1) as a Partial Differential Equation (PDE). Define
v € C([0,4o0) x [-1,0],R") by

v(t,0)=x(t+6),Vt>0,V0 e [—r0].
Note that if x € C' ([—r,+e0),R"), then

ov(t,0)
dt

av(t,0)

:X/(t+6) == T

Hence, we must have

dv(t,8) dv(t,6)
ot 00

=0,Vt>0,V0 €[—r0].
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e N A

-3t characteristics b

0=—1-t 0=1-—t

Fig. 1.6: Some characteristics curves 0 = ¢ —1.

In Fig. 1.6 we take r = —4. The PDE avgt’e) - avgée) = 0 implies that the solution
v(t,0) must be constant along the characteristics 8 = ¢ —. So in order to define the
solutions of the PDE, we need an additional boundary condition at 8 = 0 for r > 0.

For 6 =0, we obtain

av(t,0)
L)

=x(t) = Bx(t) + L(x;) + G(x;) = Bv(£,0) + L(v(t,.)) + G(v(t,.)),Vt > 0.
Therefore, we deduce formally that v must satisfy a PDE

v(t,0) Iv(t,0)
5 Jar 96
WD) Bo(e,0) = E(v(r,) +GO0(1..), v 0,
v(0,.) = ¢ € C([-r,0],R").

=0, Vt >0,V € [-1,0],
(1.4.2)

The above PDE is a linear transport type equation with nonlinear Robin’s type
boundary condition. One may observe that the delay induces some nonlocal terms in
the boundary condition. Because of that the problem becomes difficult to study from
the PDE point of view, and the real question is how to define the solutions of such
a PDE problem. To do so, we rewrite the PDE (1.4.2) as an abstract non-densely
defined Cauchy problem.

We start by extending the state space to take into account the boundary condi-
tions. This can be accomplished by adopting the following state space

X =R"xC(|-r,0],R") =R" x ¢
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taken with the usual product norm

1(3)| = ot + o0

Define the linear operator A : D(A) C X — X by
Ope \ _ (—9'(0)+B¢(0) On
(%)= () v () cow.

D(A) = {Ogn} x C' ([-,0],R").

with

Note that A is non-densely defined because

D(A) = {Opn} X6 #X.

We also define L: D(A) — X by

and F : D(A) — X by

Set

Now we consider the RFDE (1.4.2) as the following non-densely defined Cauchy
problem
du(r)
dt

= Au(t) + L(u(t)) + F(u(t)), t >0, u(0) = (0§"> €D(A). (1.4.3)

The abstract Cauchy problem can be written as

dv(t,0) ~
d( 0\ _|[~gg TBEOFLIE))FGO(E,))
dt <V(f7-)> - dv(t,.) (1.4.4)
0

Unfortunately, depending on the initial value of the problem, such a solution
does not exist in general. In fact for a RFDE, if we take an initial value ¢ €
C! ([~r,0],R") satisfying the so called compatibility condition

¢'(0) = BY(0) +L(9) +G(9),
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then the solution x(t) of the RFDE belongs to C' ([—r,+),R") and u(t,.) = x,
satisfies (1.4.4).

But if we only assume that ¢ € C ([—r,0],R"), then we need to extend this notion
of solution by considering the so-called integrated solutions (or mild solutions); that
is,

/0 "u(l)dl € D(A)
and

u(t) = (03;”) +A/Otu(l)dl+'/(:L(u(l))—|—F(u(l))dl, (>0,

In fact, it is not difficult to prove that v(z,.) = x; satisfies the following properties

[ ar et (i-rol v,

< 0 );(OR”>+ (_%JFB) lo—o Jov(l,.)dl+ [{L(v(1,.))+ G (v(l,.))dl
v ¢ %fév(!,.)dl

(b) Linear RFDEs. Consider the linear RFDE

{ ax(t) = Bx(1) +L(x,), ¥t > 0,
Xo=0€%C.

As we saw, the linear RFDE can be formulated as the following PDE

dv(t,0) Iv(t,0)

t 00
‘9"8’0) —Bv(1,0) =L(v(t,.)),Vt >0,

v(0,.)=¢€%F.

=0, Vt >0,V € [-r,0],
(1.4.6)

The first way (see Webb [356, 357] and Travis and Webb [340, 341]) to give an
abstract formulation for this problem is to incorporate the boundary condition into
the definition of the domain. More precisely, consider the linear operator A : D(A) C
% — € defined by

Ap=9¢'
with the boundary condition incorporated into the domain
D(A) = {9 € C' ([-1,0],R") : ¢'(0) ~ Bo(0) = L(9) }.
Then the PDE (1.4.6) can be formulated as an abstract Cauchy problem

du(r)

- = Au(r) for t > 0 with u(0) = ¢ € €. (1.4.7)
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In order to define the solutions of (1.4.7), we use the theory of linear strongly con-
tinuous semigroups, and the solutions (1.4.7) satisfy

/l u(s)ds € D(A)
0

and
¢+A/ s)ds, Vt > 0.

In fact we will see that A is the infinitesimal generator of {?(t)} o’ a strongly
24
continuous semigroup of bounded linear operators. Of course one needs to establish
a relationship between {f(t)} . and the solutions of (1.4.5), and we will see that
>

x =T(1)¢, Vi >0.

In particular the spectrum defined in section 1.2.3 is the spectrum of the linear op-
erator A. But now, we can use the spectral theory of linear operators and can also
compute the projectors on the generalized eigenspaces. This part becomes important
when one needs to project on the eigenspace.

(c) Relationship between A and A+ L. Next we can observe that A is (A+L)pay (

the part of A+ L: D(A) C X — X in D(A). Indeed the linear operator (A + L)5—
defined by

)
D(a) '®

(A+L)p5 )x_(A+L)<g) v(g> eD((A+L)D—A))

and
D ((A—s—L)W) - {x eD(A): (A +L)xeM}.

So this is equivalent to

(A+L)><g) = <—¢/(0) +B$(0)+Z(¢)>

and

0) € {0} xC' ([-r,0],R") :

(6
D ((A—|—L)W> = <_¢’(0) -|-B¢;])l(0) +Z(¢)> € {0} x C([-r,0],R")

Therefore,

and
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D+ L) ={ (§ ) €101 % CH (=101 B ~¢'0)+ BoO) + L (0) =0}

o (2)-(2)

D ((A +L)M) — {0} x D(A).
(d) Nonlinear RFDE. Consider the nonlinear RFDE

Thus

and

dx(t) -~
{ "8 = Bx(1) +L(x) + Glx), Vi 20, (145
Xo=0¢¢€ €
As before we can consider the PDE associated to this problem
dv(t,0) Iv(t,0
v(ét ) _ v(gé ) 0. vt >0,v60 € [-r0],
‘”atéo) —Bu(1,0) = L(v(t,.) + G(v(t,.)), Vi >0, (1.4.9)
v(0,.)=¢€%.

In that case, the first attempt is to formalize this problem as an abstract Cauchy
problem which was done by Travis and Webb [340, 341], and the idea is again to
use the nonlinear semigroup theory. In order to do this, the idea is to incorporate the
boundary condition into the definition of the domain. More precisely, they showed
that the nonlinear semiflow (or nonlinear semigroup) {U (¢)},~, defined by

U(t)9 = xp
is generated by the nonlinear unbounded operator Ay: D(XN) C € — € defined by
Ano =9’
with
D(Ay) = {9 € C' ([-1,0],R") : ¢'(0) ~ B§(0) =L(6) + G(9) } .
As we have seen, if G is C', G(0) = 0 and DG(0) = 0, then
T(1)9 = U (1) (0)9.
This property can be sufficient to establish the stability or the unstability properties

of the equilibrium solution 0. We refer to Desch and Schappacher [94] for more
results about that. Unfortunately, this property does not seem to be sufficient to built



1.4 Abstract Semilinear Formulation 51

a complete bifurcation theory, in particular if we would like to compute the reduced
system.

1.4.2 Age-structured Models

We consider the age-structured model (1.3.1). Let X = R x L!(0,00) with the
usual product norm. Let A : D(A) C X — X be the linear operator on X defined by

A <g> - (—;’(p—(o,i(b) (1.4.10)

D(A) = {0} x W' (0, 22), D(A) = {0} x L' (0, ) = Xo £ X.

with

Define the map F : Xo — X by

F ((g)) _ <ah(f(§oﬁ(§fl)¢(a)da))‘ wa

v(t) = (u(?, .)> € Xo.

Then the age-structured model can be reformulated as the abstract Cauchy problem
with nondense domain

Denote

) o (1.4.12)

1.4.3 Size-structured Models

Consider the system

du(t,x) n du(t,x) 828 u(t X)

—pu(t,x), t>0,x>0,

aa t,0 ox
—&? ué ) —ah/ y(x)u(t,x)dx), (1.4.13)

u(0,-) = ¢€L1( s Fee),

where u(t,x) represents the population density of certain species at time ¢ with size
x,€>0,u>0,0>0,yeL}(0,+)\{0}, and #: R — R is defined by
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h(x) =xe %%, x € R.

Let
X =R x L'(0,+e0),

o
(5)| =t +101u10. 1
Define the operator A : D(A) C X — X by

- E80e)

D(A) = {0} x W>1(0, +o0).

with domain

Then we have
D(A) = Xo = {0} x L' (0,00) £ X.

Define the map F : Xo — X by

F (9) - (1 ey,

and denote

Then, we obtain system (1.4.12).

1.4.4 Partial Functional Differential Equations

Taking the interactions of spatial diffusion and time delay into account, a single
species population model can be described by a partial differential equation with
time delay as follows:

du(t,x) 7d82u(t,x)
dx2

=0, x=0,m,

u(0,) = uo € C([0,7],R),

. —au(t —rx)[1+u(t,x)], t >0, x€[0,7],
du(t,x

~—

(1.4.14)

where u(t,x) denotes the density of the species at time ¢ and location x, d > 0 is the
diffusion rate of the species, r > 0 is the time delay constant, and a > 0 is a constant.

Consider the Banach space Y = C ([0, 7],R) endowed with the usual supremum
norm. Define the operator B: D(B) CY — Y by

B =d¢”
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with
D(B) = {¢ € C*([0.7].R): ¢(0) = ¢ (1) =0} .
Denote

L(9) = —ap(—r), f(9)=—ad(0)¢(—r).

Equation (1.4.14) can be written as an abstract partial functional differential equa-
tions (PFDE) (see, for example, Travis and Webb [340, 341], Wu [374] and Faria
[133]):

dy(r) 7
{dt = By(1)+ L)+ f(), V1 >0, (14.15)
yo=¢ €C,

where

Cp:={9 €C([-r0l;Y): ¢(0)€D(B)},
yi € Cp satisfies y; (8) =y (t+6),0 € [-r,0],L: Cg — Y is a bounded linear opera-
tor, and f: R x Cp — Y is a continuous map. As in subsection 1.4.1, system (1.4.15)
can be formulated as an abstract Cauchy problem with nondense domain.

1.5 Remarks and Notes

(a) Ordinary Differential Equations. Fundamental theories of ordinary differ-
ential equations can be found in many classical textbooks, such as Hartman [180]
and Hale [171]. The classical center manifold theory was first established by Pliss
[289] and Kelley [208] and was developed and completed in Carr [56], Sijbrand
[319], Vanderbauwhede [343], etc. There are two classical methods to prove the
existence of center manifolds. The Hadamard (Hadamard[167]) method (the graph
transformation method) is a geometric approach which is based on the construction
of graphs over linearized spaces, see Hirsch et al. [188] and Chow et al. [65, 66].
The Liapunov-Perron (Liapunov [228], Perron [286]) method (the variation of con-
stants method) is more analytic in nature, which obtains the manifold as a fixed point
of a certain integral equation. The technique originated in Krylov and Bogoliubov
[220] and was further developed by Hale [169, 171], see also Ball [36], Chow and
Lu [67], Yi [378], etc. The smoothness of center manifolds can be proved by us-
ing the contraction mapping in a scale of Banach spaces (Vanderbauwhede and van
Gils [344]), the Fiber contraction mapping technique (Hirsch et al. [188]), the Henry
lemma (Henry [183], Chow and Lu [68]), among other methods (Chow et al. [64]).
For further results and references on center manifolds, we refer to the monographs
of Carr [56], Chow and Hale [62], Chow et al. [63], Sell and You [314], Wiggins
[373], and the survey papers of Bates and Jones [39], Vanderbauwhede [343] and
Vanderbauwhede and Iooss [345].

A normal form theorem was obtained first by Poincaré [291, 290] and later by
Siegel [317] for analytic differential equations. Simpler proofs of Poincaré’s theo-
rem and Siegel’s theorem were given in Arnold [32], Meyer [267], Moser [272], and
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Zehnder [382]. For more results about normal form theory and its applications see,
for example, the monographs by Arnold [32], Chow and Hale [62], Guckenheimer
and Holmes [155], Meyer and Hall [?], Siegel and Moser [318], Chow et al. [63],
Kuznetsov [223], and others.

The Hopf bifurcation theorem was proved by several researchers (see Andronov
et al. [18], Hopf [191], Friedrichs [145], Hale [171]) and has been used to study bi-
furcations in many applied subjects (see Marsden and McCraken [257] and Hassard
et al. [181]). Golubitsky and Rabinowitz [151] gave a nice commentary on Hopf
bifurcation theorem and provided more references.

(b) Functional Differential Equations. The fundamental theories can be found
in Hale and Verduyn Lunel [175] and Diekmann et al. [106]. The center man-
ifold theorem in functional differential equations has been studied in Diekmann
and van Gils [104, 105], Hupkes and Verduyn Lunel [193]), etc. Normal form the-
ory has been extended to functional differential equations in Faria and Magalhaes
[136, 137]. Hopf bifurcation theorem can be found in the monographs of Hale and
Verduyn Lunel [175], Hassard et al. [181], Diekmann et al. [106], Guo and Wu
[159].

(c) Age-Structured Models. The first linear age-structured model described by
a first-order hyperbolic equation was proposed by McKendrick [263] in 1926 to
study problems in medicine, namely various transitions in epidemology. In the fa-
mous series of three papers on mathematical epidemiology published from 1927
to 1933, Kermack and McKendrick [209, 210, 211] used systems of age-structured
equations to develop a general theory of infectious disease transmission. The first
nonlinear age-structured model in population dynamics was due to Gurtin and Mac-
Camy [162]. Since then, age-structued models have been studied extensively. We
refer to the monographs of Webb [362], Metz and Diekmann [266], Iannelli [195],
Busenberg and Cook [50], Cushing [79], Anita [19], and Inaba [199] on the theories
of age-sructured models. To investigate age-structured models, one can use the clas-
sical method, that is, to use solutions integrated along the characteristics and work
with nonlinear Volterra equations. We refer to Webb [362] and Iannelli [195] on this
method. A second approach is the variational method, we refer to Anita [19], Ain-
seba [8] and the references cited therein. One can also regard the problem as a semi-
linear problem with non-dense domain and use the integrated semigroups method.
We refer to Thieme [328, 330, 331], Magal [242], Thieme and Vrabie [339], Magal
and Thieme [251], Thieme and Vosseler [338] for more details on this approach.

(d) Abstract Semilinear Formulation. Various types of equations, such as func-
tional differential equations (Hale and Verduyn Lunel [175]), age-structured models
(Webb [362]), size-structured models (Webb [364]), parabolic partial differential
equations (Henry [183], Lunardi [240]), and partial functional differential equations
(Wu [374]) can be written as abstract semilinear equations in Banach spaces. Semi-
group theory then can be used to study such abstract semilinear equations (Arendt et
al. [22], Cazenave and Haraux [58], Chicone and Latushkin [60], Engel and Nagel
[126], Henry [183], Pazy [281], Tanabe [325], van Neerven [346], Yagi [376]).



Chapter 2
Semigroups and Hille-Yosida Theorem

The aim of this chapter is to introduce the basic concepts and results about semi-
groups, resolvents, infinitesimal generators for linear operators and to present the
Hille-Yosida theorem for strongly continuous semigroups.

2.1 Semigroups

Let (X, ||.|lx) and (¥, ]|.]ly) be two Banach spaces. Denote by .2 (X,Y) the space
of bounded linear operators from X into Y endowed with the usual norm

ILllgxyy=sup L&)y
xeX: x|y <1

and denote by .Z (X) = .Z (X,X) if X =Y. We will study the existence and unique-
ness of solutions for the Cauchy problem

%:Au(t),tZO; u(0) =x € D(A), 2.1.D)

where A : D(A) C X — X is a linear operator on a Banach space (X, ||.]|).
First, we introduce a basic definition.

Definition 2.1.1. A family {T'(t)},~o C £ (X) is a semigroup of bounded linear
operators on a Banach space X if the following properties are satisfied

T()T(s)=T(t+s), Vt,s>0, and T(0) =1.

55
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2.1.1 Bounded Case

When A is bounded (i.e. A € Z (X)) the solution of (2.1.1) is uniquely deter-
mined (in the sense that there exists a unique C!-function satisfying (2.1.1) for each
t > 0) and is given by

u(t) = eMx, vt >0,
where A
= At
r._
A=Y — , Vi >0.

n=0

The family of bounded linear operators {¢*'} _ = satisfies the semigroup properties

>0
M oet = AH) s >0, and 0 =1.

Definition 2.1.2. Let {T(¢)},., be a semigroup of bounded linear operators on a
Banach space X. Then {T'(¢)}, is said to be uniformly continuous (or operator
norm continuous) if the map r — T(¢) is continuous from [0, +<) into .Z (X) ; that
is,

1 — G - > .

lim [7(1) — 7(5) | ) = 0. Vs 2 0

Note that for each t > 0,

T i'A” 0" e ;.
So
||eA’feAS||$(X)%Oast%s.

It follows that the semigroup {e* }
verse is also true.

150 18 uniformly continuous. Actually the con-

Lemma 2.1.3. Let {T (t)},~ be a uniformly continuous semigroup of bounded lin-
ear operators on a Banach space X . Then there exists A € £ (X) such that

T(r) = e, Vr > 0.
Proof.  As {T(t)},> is uniformly continuous, we can find / > 0 (small enough)

such that

h
Hh‘ T(1)dl — <.
0

Hf(x)
So

is invertible. Set
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Then
(T(t)~D)Li = T(t)/OhT(l)dl—/ohT(l)dl
h h
:/ T(Z—H)dl—/ T()di
0 0
t+h h
_ /, T(1)dl — /O T(1)di
t+h t
_ /h T(1)dl — /0 T(1)di
:/OIT(l)dl(T(h)—I).
Hence,

t
T(1)—1 = / T(1)dIA, Vi > 0.
0
This implies that + — T'(¢) is operator norm differentiable and

dT (t)
dt

=T(t)A, vVt > 0.
Let ¢t > 0 be fixed. Consider

L(s) = T(s)e"™), Vs € 0,1].
Then

dL(s
ds

I
=
S

S

=

|

|
=
S

PSS

=

|

I

0.
So

This completes the proof. 0O

After Lemma 2.1.3, it becomes clear that when A is unbounded, the semigroup
{T(t)},~, must satisfy a weaker time continuity condition.

2.1.2 Unbounded Case

When A : D(A) C X — X is unbounded, the formula

(=~
Anght
eAt

|
n=0 "

makes no sense for 7 > 0. Also if {7'(r)},~ is an extension in someway of the notion
of the exponential of A, it is clear from Lemma 2.1.3 that we need a weaker notion of
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time continuity of the family {7'(¢)},-, . The appropriate notion of time continuity
is as follows.

Definition 2.1.4. Let J C R be an interval. Let X and Y be two Banach spaces.
A family {L(t)},c, C Z(X,Y) is strongly continuous if for each x € X the map
t — L(t)x is continuous from J into Y.

Definition 2.1.5. A family {7'(t)},., C £ (X) of bounded linear operators on X is
a strongly continuous semigroup of bounded linear operators on X (or for short a
linear Cy-semigroup on X) if the following assertions are satisfied:

() {T(t)},>¢ is a semigroup;
(ii) {T(t)},5 is strongly continuous.

The strong continuity can be expressed by saying that for every x € X the map
t—T(t)x
is continuous from R, to X.

Definition 2.1.6. A map f from [0, +<<) into a Banach space (X, ||.||) is said to be
exponentially bounded if there exist two constants, M > 0 and @>0, such that

1£(@)]] < Me®, ¥t > 0.

For a strongly continuous semigroup {7'(¢)},-, C -2 (X) of bounded linear oper-
ators on X, the orbit {7'(t)x: t € [0,#]} is the continuous image of a closed interval
[0,29]. Thus, it is bounded for each x € X. Uniform boundedness principle implies
that each strongly continuous semigroup is uniformly bounded on each closed in-
terval, which in turn implies exponential boundedness of the strongly continuous
semigroup in R .

Proposition 2.1.7. Let {T(t)},~ be a linear Co-semigroup on a Banach space X.
Then {T (t)},> is exponentially bounded and the map (t,x) — T (t)x is continuous
Sfrom [0,4o0) X X into X.

Proof. Since {T(t)}, is strongly continuous, we deduce that

sup ||T(t)x]| < 4oo, Vx € X.
t€[0,1]

So by the principle of uniform boundedness, we deduce that

M = sup [T (t)]| g x) < +oo.
t€(0,1]

Since T'(0) =1, we have M > 1. Set @ = In (M) > 0. Then we have

ITO)] 2x) < Me™, ¥t €[0,1],
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and for each integer n > 0 and each 7 € [n,n+ 1],
ITOl ) < ITE =)l 20 IT(DIx)
S Ml’lMe(l)(t—n) :Meﬂ)t'

We deduce that {T'(¢) },~ is exponentially bounded. The last part of the proposition
is now an immediate consequence of continuity of x — 7 (f)x uniform with respect
to ¢ in bounded sets of [0,+e). O

To further describe the relationship between {7'(t)},-, and A, we will see that
t — T(f)x turns to be a mild solution (or an integrated solution) of the Cauchy
problem (2.1.1); that is,

!
/ T(I)xdl € D(A), ¥t >0, Vx € X,
0

and .
T(t)x= x+A/ T(I)xdl, Vi > 0, Vx € X.
0

It is important to note that in general we have
T(t)x ¢ D(A)
when x ¢ D(A) and 7 > 0. Nevertheless, when x € D(A) we will see that
T(t)x € D(A), ¥t > 0,

the map + — AT (t)x is continuous from [0, 40) into X, the map ¢ — T'(¢)x is con-
tinuously differentiable, and
dT (t)x
dt

= AT (t)x, V¢ > 0.

So when x € D(A), the map ¢t — T (¢)x is the so-called classical solution of the
Cauchy problem (2.1.1).

2.2 Resolvents

Assume A is an n X n symmetric matrix. Then A has n real eigenvalues 11,15, ..., 4,
(counted with respect to algebraic multiplicity) and there is an orthonormal basis
{e1,e2,...,e,} for R" such that ¢; is an eigenvector corresponding to A;. To gener-
alize the eigenvalue problems of linear algebra to operators on Banach spaces, we
introduce the concept of resolvent.

Definition 2.2.1. Let A : D(A) C X — X be a linear operator on a K-Banach space
X with K =R or C. The resolvent set p (A) of A is the set of all points A € K such
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that A1 — A is a bijection from D(A) into X and the inverse (A1 —A) "' called the
resolvent of A, is a bounded linear operator from X into itself.

Definition 2.2.2. A linear operator A : D(A) C X — X on a Banach space X is closed
if and only if the graph

G(A) :={(x,Ax) :x € D(A)}
of A is a closed subspace of X x X endowed with the usual product norm.

Lemma 2.2.3. Let A : D(A) C X — X be a linear operator on a Banach space X. If
p(A) #0, then A is closed.

Proof. Consider two sequences {x,} C D(A) with x, — x and {y, } C X withy, —
y. Assume that
Yn = Ax,, Vn > 0.

Let A € p (A) be given. Then
Axp —yn = Axy —Axy, Vn >0 & (7L17A)_1 (Axp —yn) = Xu, Yn > 0.
Now since (A1 —A) ™" is bounded, when n goes to 4o we have
(AI—A) "' (Ax—y) =x.
SoxeD(A)andy=Ax. O

Let L: D(L) C X — Y be a linear operator from a Banach space X into a Banach
space Y. Define the null space (or kernel) of L by

N (L)y={xeD(L): Lx =0}
and the range of L by
(L) ={y €Y :3xe D(L) satisfying y = Lx}.

Lemma 2.2.4. Let A : D(A) C X — X be a closed linear operator on a Banach space
X.Then A ¢ p (A) if and only if /' (AT—A) #£ {0} or Z(AI —A) #X.

Proof. We first observe that if A4 (Al —A) # {0} or Z (Al —A) # X, then Al — A
is not a bijection from D(A) into X. So A ¢ p (A).

Conversely, assume that 4" (A1 —A) = {0} and # (Al —A) = X. We can con-
sider Al —A : D(A) C Xo — X as a linear operator from Xy = D(A) into X. Then
Al — A is closed and densely defined in Xy. Moreover, by the assumption that
N (A —A) = {0} and Z (A1 —A) is closed, Brezis [47, Theorem I1.20] implies
that there exists a constant C > 0 such that

Xl < CIl(A1=A)x]|, vx € D(A).
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Thus, setting y = (A1 — A) x and using the fact that Z (A —A) = X, we obtain
H(/qu)—lyH <clyl, wex.

Sodlep(A). O
From the definition of (A1 —A) ™' we have the resolvent formula.
Proposition 2.2.5 (Resolvent Formula). Whenever A, 11 € p (A), we have
A=A —(ul=A) "= (=M A=A (ur—A)"". (2.2.1)
Proof. By applying AI — A on both sides of equation (2.2.1) we obtain

T— (A= A) (= A) " = (= A) (I —A) "
ST (A=) +pul—A) (I —A) " = (u—2) (ul—A)"!
ST—(A—p)(ul—A) " —T=(u—2)(uI—A)".

The resolvent formula is proved. O

One may also observe from the resolvent formula that (A7 —A) ™" and (ul —A) ™!
commute; that is,

(A =A)" (uI=A) " = (uI=A) " (AT =A)"', VA, € p(A).
Another consequence of the resolvent formula is the following result.

Lemma 2.2.6. Let A : D(A) C X — X be a linear operator on a K-Banach space X
with K =R or C. Then the resolvent set p (A) is an open set. Moreover, if p (A) # 0,
U € p(A), and A € R lies in the interval (or A € C lies in the disk)

A -y < ——
Il (ur—A)7"
then N
A =4)" =Y (u—2)" (ur—A)" "+,
n=0

Proof. If p(A) =0, it is trivial. Assume that p (A) #0.Letu € p(A). Set
~+oo

Ly=Y (u—A)"(u—A) "
n=0

when |A — ||| (ul —A)""|| < 1. Then

Ly = |1=(m=2) (ur—A)" Cr-ay!
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= (1 =A)" 1= (u=2) (I~ 4) "]
and
A =A) (I =A) ' = —p) (I —A)  +T=T—(u—2) (uI—A)"".

It follows that
AM—A)Ljx=x,VxeX

and
L) (Al—A)x=ux, Vx € D(A).

The result follows. 0O

As an immediate consequence of the previous lemma one has the following re-
sult.

Lemma 2.2.7. Let A : D(A) C X — X be a linear operator on a real Banach space
X. Assume p (A) # 0. Then A — (Al —A) ™" belongs to C= (p (A),.% (X)) and
d}’l
dAr

A=A "= (—1)"nt (A —A) "D vaep(A).

We now turn to non-densely defined linear operators. We consider some easy
consequences for the part of a linear operator.

Definition 2.2.8. Let A : D(A) C X — X be a linear operator on a Banach space X
and let Y be a subspace of X. The part of A in Y is the linear operator Ay : D(Ay) C
Y — Y defined by

Ayx =Ax, Vx € D(Ay) :={x€D(A)NY :Ax€Y}.

Lemma 2.2.9. Let A : D(A) C X — X be a linear operator on a Banach space X
with p (A) # 0. Assume that

AI—-A)'ycy
for some A € p(A). Then A € p (Ay) and
D(Ay)=(AI—A)'Y, A —Ay) "= (A1—A)""|y.
Proof. 'We have

D(Ay): = {xeD(A)NY :Axec Y}
={xeDA)NY: (AI-A)xeY}
= {xeD@)nyixe A-a)"'v}
= (M-A)y.
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Moreover, if x € D(Ay) and y € Y, we have

(Al —Ay)x=yox=(A—A)"y.
The proof is completed. O

In the non-dense case, we consider a linear operator A : D(A) C X — X which
satisfies

Xo:=D(A) #X.

We will be especially interested in Ag := AW’ the part of A in D(A), which is
defined by
Aox = Ax, Vx € D(Ag) = {x €D(A):Ax e D(A)} .

From Lemma 2.2.9 we have A € p (A). Thus,

A € p (Ao),
D(Ag) = (A1 —A)~' D(A),
(A —40)" = (AT—=A)" |55 -
The following result shows that p (Ag) and p (A) are in fact equal when p (A) # 0.

Lemma 2.2.10. Ler (X,||.]|) be a K-Banach space (with K =R or C) and let A :
D(A) C X — X be a linear operator. Assume that p (A) # 0. Then

p(Ao)=p(A).
Moreover, we have the following:

(i) Foreach A € p(Ao)NKand each € p (A)NK,

(A=A = (= 2) (A —Ag) ™ (I —A) ™"+ (u1 —A)";
(ii) Foreach A € p(A)NK,

D(Ao) = (A —A) "X and (AI—Ag) ' = (A=A |y, .

Proof. Without loss of generality we can assume that X is a complex Banach space.
Assume that 1 € p (Ag), 4 € p (A)NK, and set

L= (=) (A —Ag) ™ (ul—A) "+ (u-a)~".
Then one can check that
LxeD(A), (AM—-A)Lx=x, Vx€X,

and
L(AI—A)x=x, V¥x € D(A).
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Thus, A1 — A is invertible and (A1 —A) ' = Lis bounded, so A € p (A). This implies
that (i) and p (Ag) C p (A) hold. To prove the converse inclusion, let A € p (4).
Since (A/—A)"'X C D(A), we can apply Lemma 2.2.9 with ¥ = D(A) and (ii)
follows, and we also deduce that p (A) C p (Ap). O

The following lemma basically provides necessary and sufficient conditions to
ensure that

D(Ag) = D(A).

Lemma 2.2.11. Let A : D(A) C X — X be a linear operator on a real Banach space
X. Assume that there exist two constants, ® € R and M > 0, such that (®,+) C
p (A) and

H;L (A —Ag)~! HﬂXO) - H;L (AL—A)" Hx(ﬁ)) <M, VA > o.

Then the following properties are equivalent:
(i) lim A(AM—A)'x=x, Vx e D(A);
A—oo
il li
(i) lim_

(i) D(Ao) =D(A).

(AI—A)'x=0,VxeX;

Proof. ()=-(ii). Let A, 4 > @ and x € D(A). Set y = (ul — A) x. Then by using the
resolvent formula, we have

_ _ 1 _ 1 _
(A1—A)"" (uI—A) ly:m(ﬂI—A) ly—m(AI_A) ',

SO
A A
AV = _ -1
AAI-A) x k—,ux l_u(ll A) .

It follows that

lim A(AI—A) 'x=x, Vxe D(A) & lim (AI—A)"'x=0, VxeX.
This equivalence first implies that (i)=-(ii).
(i1)=-(1). Conversely assume that (ii) holds. We have

;L(M_A)*‘_I} (ul—A)"! :ui/l A=A —(uI=A)"" | —(ur—A)"".

It implies that

lim A (AI—A)"'x=x, Vx € D(A).
A—>+oo

Let x € D(A) be fixed and let {x,},., C D(A) — x. Then we have for each n > 0
that -
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HA(M—A)”x—xH < HA(M—A)’I (x— )

n Hz AT—A) " %0 —x

+ [lx — x| -
It follows that

limsupHA(ﬂLI—A)_lx—xH < M +1]||x x|, Y >0,
A—+oo

and the result follows as n — +oo.
(i)=-(iii). Recall that

D(A¢) = (M —A) "' D(A), VA > w.

So it is clear that (i)=-(iii).
It remains to prove (iii)=-(i). By applying the same argument as above to Ay, we
have

lim A (AI—Ap) 'x=x, Vx € D(Ag) & lim (AI—Ag) 'x=0, Vxe D(A).

A—stoo A—r+oo

But by the assumption on Ay we have
Hx (AL —Ag) ™! Hﬂm) - Hx (AI—A)" Hy(m) <M, YA > o,

SO

lim A (AI—Ap) 'x=x, Vx € D(Ay).
A—roo

Let x € D(A). Now since D (Ag) = D(A), as in the proof of (ii)=-(i) we can find a
sequence {x, },~o C D(Ao) — x such that

1imsule (),I—A)flx—xH < M41]||x—x4], Vn > 0.
A—>+oo0

Since x, — x € D(A), (i) follows. O

For some applications the operator A is not explicitly known. Nevertheless, if we
know some pseudo-resolvent {J; }, ., , i.e. a family of bounded linear operators
satisfying the resolvent formula, then it becomes important to know that there exists
some linear operator A on X such that

(AI—A)""=J,, VA €A.

Definition 2.2.12. Let X be a K-Banach space with K=R or C. Let A C K. A
family of bounded linear operators {J) }, ., on X is called a pseudo-resolvent if the
following property is satisfied

D=y = (W —=2A) 3y, VA, L € A. (2.2.2)
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Lemma 2.2.13. Let {J; }, o5 be a pseudo-resolvent on a Banach space X . Then
IJy =Judy, VA, u € A, (2.2.3)

The null space N (J)) and the range % (J),) are independent of A € A. The sub-
space N (Jy) is closed.

Proof. Commutativity of J; and J; follows from (2.2.2). Rewritting (2.2.2) as
J=Ju[I+(u—2)1]. (2.2.4)
Lety € #(J)). Then y = J; x for some x € X and
y=Jule+(—=2) 0.
Soy € % (Ju), and we deduce that
R (1) C R (Ju) -

By symmetry we also have % (J,) C % (J;). Thus, Z (1) = Z (J;.).
Letx € A4 (J3). Then Jyx = 0, and by (2.2.4) we have

O=Jx=Jy[x+(u—A)Jpx] = Jyx.

So Jux =0 and A (J)) C A (Ju). Again by symmetry we obtain .4 (J;) =
AN (Ju). O

Proposition 2.2.14. Let ® € R and let {J; }) ¢y 1o0) be a pseudo-resolvent on a
Banach space X. Then J) is the resolvent of a unique closed linear operator A :

D(A) C X — X ifand only if ¥ (J)) ={0}.

Proof. 1t is clear that if J; is the resolvent of a linear operator A : D(A) C X — X,
then we must have .4 (J;) = {0}. Conversely, assume that .4 (J)) = {0}. The
map J; is one to one. Let Ay € (@, +o0). Define

Axi= (Aol = J3.!) x, Vx € D(A) =7 (Jy,). (2.2.5)
The operator A is linear and closed. From (2.2.5) we have
(Aol =A)pgx = J; \jox = x, Vx € X,

and
Jiy (Aol —A) x :J%Jzolx:x, Vx € D(A).

Therefore, J3, = (AOI—A)_l IfA € (w,4) and x € X,

(AI—A)Jyx = (A — Al + Al —A) Iy x
= (A = o) ax+ (Aol —A)p, [T+ (Ao —A) T ] x
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= (A =) px+ [+ (Ao —A)Jy]x

Similarly, if A € (@,+c) and x € D(A),

Ty = A)x = Jy (M — Aol + Aol — A) x
= (A —=Ao)ax+ [+ (Ao — A) Iy ] Tz, (Aol — A)x
= (A=) ax+ [+ (Ao —A)Ja]x

= X.

Therefore, J, = (lI—A)fl, VA € (w,+). O

Corollary 2.2.15. Let @ € R and let {J3 }) ¢ (¢ +o0) be a pseudo-resolvent on a Ba-
nach space X. Assume that there exists a closed subspace Xo of X such that

(a) AN (Jy)C Xoand % (J),) C Xo for some A € (@,+0);
(b)  There exists a sequence {A},~o C (@,400) such that A, — +o0 as n — +oo,
and -
lim A,J; x = x, Vx € Xo.
n——+oo

Then J),_ is the resolvent of a unique closed linear operator A : D(A) C X — X with
D(A) = Xo.

Proof. By (a), (b), and Lemma 2.2.13, it follows that .4 (J,) = {0}. The result
follows from Proposition 2.2.14. Moreover, by Lemma 2.2.13 and (b) it follows that
D(A)=%(J))isdensein Xp. O

Example 2.2.16 (Pseudo-resolvent for an age-structured model). Lett — A(z) be
continuous from [0, 1] into M, (R). Consider a family of matrices {U(#,5)} >0
which are the solutions of the nonautonomous differential equation

dU(t,s)
dt

=A)U(t,s), 1 >t>s, U(s,s)=1

for each s € [0,1]. Then U (¢, s) satisfies the properties of nonautonomous semiflows

U(t,r)U(r,s) =U(t,s) fort >r>s,
U(s,s)=1,
(t,s) = U(t,s) is continuous.

For each A € R, consider the linear operator J; on L' (0, 1) defined by

B(@) W = [ eHIUn5)0(5)ds.

We can check that the family {J, }, . is a pseudo-resolvent. Indeed,

(A=) (9) () = (A=) [ e HM0ws) [ e IU G0y (0)atds
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:(A—u)/x“e%@ﬂ%ﬂw4h4L0¢mdms
0
/'x (A — ) e B sely (x, 1) (1)d
1

_ / [l oAbl My (3, 1) (1)l
JO

- Xe’“(’“’l)U(x,l)(p(l)dl - / xe’“"’”U(x,l)(p(l)dl
0 0

= Ju (@) (¥) =2 (9) (x).

Remark 2.2.17. As an exercise, one can prove that Corollary 2.2.15 applies to the
family {J } g -

2.3 Infinitesimal Generators

By Lemma 2.1.3 we know that every uniformly continuous semigroup {7 (¢) };>0
on a Banach space can be characterized as an exponential T'(t) = ¢’ for a linear
operator A and all # > 0. Now we define the analogue of A for strongly continuous
semigroups, called the generator of a semigroup.

Definition 2.3.1. Let {7 () },-, be a linear Cp-semigroup on a Banach space X. The
infinitesimal generator of {T (1)}, is a linear operator A : D(A) C X — X satisfying
the following properties

T —
D(A) = {x €X: lim y exists}

t—0t+

and .
l‘ —
Ax = lim M, Vx € D(A).
t—0+ t
Lemma 2.3.2. Let {T(t)},~( be a linear Cy-semigroup on a Banach space X. A
linear operator A : D(A) C X — X is the infinitesimal generator of {T (t)},~ if and
only if the following properties are satisfied:

(i) [y T(s)xds € D(A), Vt > 0,Vx € X;

(ii) T(t)x=x+A[yT(s)xds, Vt >0,Vx € X;

(iii) A [y T(s)xds = [§ T (s)Axds, Vt >0, Vx € D(A);
(iv) As closed.

Proof. Letx € X be fixed. For each & > 0, we have by using the semigroup property
that

(T(h) —1) /0 T (s)xds = /0 ()T (s)xds — /0 "T(s)xds
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t
—/ h—l—s)xds—/ T (s)xds

:/0 xds—/ T(s xds—/T )xds.
(T(h)—1) /OZT(s)deZ/tl+hT(s)xds—/()hT(s)xds

and we deduce that

So

%{%W /Ot T(s)xds =T (t)x—

By the definition of D(A), we have
t
/ T (s)xds € D(A), Vt > 0,
0
and
A/ $)xds =T (t)x—x, Vt > 0.

Let x € D(A) be fixed. Then for each &2 > 0 we have

—I)/OtT(s)xds:/OtT(s) (T(h) 1) xds

Dividing by &, we obtain (iii) as & \, 0.
Let {x,},~9 C D(A) be a sequence such that x, — x and y, = Ax, — y. Using (ii)
and (iii), we have

!
T(t)x, = x, —|—/ T(s)ynds, Vt > 0,¥n > 0.
0
When n — 40, we obtain
t
T(t)x =x—|—/ T(s)yds, ¥t > 0.
0

Thus
T(t)x—
fim 10X =X _
[AN(] t

By using the definition of the infinitesimal generator, we deduce that
x € D(A) and y = Ax.

It follows that A is closed.
Conversely, assume that (i)-(iv) are satisfied. Let B: D(B) C X — X be the in-
finitesimal generator of {7'(¢)},- - Let x € D(B) be fixed. Then by using (i) and (ii),
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we have N
T(h)x— 1
M:A 7/ T(s)xds |, Vh>0,Vx € X.
h hJo
Notice that A is closed, since the limit
lim T(h)x—=x
N0 h

exists, we have x € D(A) and Bx = Ax. It follows that Graph(B) C Graph(A).
Let x € D(A) be fixed. By using (ii) and (iii), we deduce for each x € D(A) that

lim T(h)x—x

= Ax.
N0 h .

Now by the definition of B, we have x € D(B) and Bx = Ax. So Graph(A) C
Graph(B) and the proof is completed. O

Lemma 2.3.3. Let {T(t)},.q be a linear Cy-semigroup on a Banach space X and
let A:D(A) C X — X be its infinitesimal generator. Then D(A) is dense in X.

Proof. From (i) in Lemma 2.3.2, we know that
1 h
Z/ T(s)xds € D(A), Vh > 0,Vx € X.
0
But since # — T'(¢)x is continuous, we have

1 rh
lim— [ T(s)xds=x.
hl\r([(l)h A (s)xds = x
SoD(A)isdensein X. O

The following result provides another characterization for the infinitesimal gener-
ator. This definition is closely related to the definition of the generator for integrated
semigroups introduced by Thieme [328].

Proposition 2.3.4. Let {T (t)}, be a linear Co-semigroup on a Banach space X . A
linear operator A : D(A) C X — X is the infinitesimal generator of {T (t)}, if and
only if
ot
xe€DA)andy=Ax&T(t)x= x+/ T(s)yds, ¥t > 0. (2.3.1)
0

Proof. Assume first that A : D(A) C X — X is the infinitesimal generator of
{T(t)},50- Then by Lemma 2.3.2, we have for each x € D(A) that

t
T(1)x = x+ / T(s)yds, Vi >0, 232)
0
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with y = Ax. Conversely, assume that (2.3.2) is satisfied for some x,y € X. Then

lim ——— =y.
t—0+ t Y
Sox € D(A) and y = Ax.
Now assume that (2.3.1) is satisfied. Let B : D(B) C X — X be the infinitesimal
generator of {T'(¢)},>. Let x € D(A). Then (2.3.1) implies that

T _
Jim L)X =%
t—0t t

= Ax.

So x € D(B) and Ax = Bx. We deduce that Graph(A) C Graph(B).
Let x € D(B) be fixed. Then by Lemma 2.3.2, we have

!
T(t)x = x+/ T (s)yds,vt >0,
0

with y = Bx. So by using (2.3.1), we deduce that x € D(A),y = Ax, and Graph(B) C
Graph(A). So we conclude that A =B. O

Corollary 2.3.5. Let {T (t)},> be a linear Co-semigroup on a Banach space X and
let A:D(A) C X — X be its infinitesimal generator. Then for each x € D(A), the
map t — T (t)x is continuously differentiable, T (t)x € D(A),Vt > 0, and

d
ET(I)X =AT (t)x =T (t)Ax, Vt > 0.
Proof. Letx € D(A). Using (ii) and (iii) of Lemma 2.3.2, we have
1
T(t)x=x+ / T (s)Axds.
0

So  — T(t)x is continuously differentiable and

%T(l)x =T(t)Ax, Vt > 0.

Moreover, by (ii) of Lemma 2.3.2, we have

T(t+h)x—T(t)x (1 [t+h
— =A (h T(s)xds) .

t

Since A is closed, taking the limit when / \, 0 on both sides, it follows that 7'(¢)x €
D(A),¥t >0, and

%T(r)x = AT (t)x,¥t > 0.

This completes the proof. O
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In the following we will show that if a Co-semigroup {7 (¢)}, is exponentially
bounded, then the resolvent of its generator has a very nice integral representation.

Proposition 2.3.6 (Integral Resolvent Formula (for Operators)). Let {T (1)},
be a Cy-semigroup on a Banach space (X, ||.||) . Assume that there are two constants,
o e Rand M > 1, such that

||T(t)||$(x) < Me®', vt > 0.

Then (®,+o0) C p (A) and

—+oo
(AI—A)'x= / e MT (s)xds, YA > 0,Vx € X.
0

Proof. Foreach A > o, set
oo
Lyx= / e T (s)xds, Vx € X.
0
Let A > o be fixed. Then we have

t t
/ T()Lyxdl = L, / T(1)xdl, Vit >0,
0 0

and
¢ Foo ¢

) / T(s)Lyxds = A / o s / T ()T (s)xdlds
0 0 0

oo s+t
—2 / o / T(1)xdlds
0 K

A s+t Fee o0 2
_ |:—e s / T(l)xdl} + / e [Tt + 5)x— T(s)x] ds.
N 0 JO
So . .
2 / T(s)Lyxds = / T(1)xdl +T(1)Lyx — Lyx.
0 0
Thus, for each > 0,

T =Ly _! [l /tT(s)L;Lxds—/tT(l)xdl] .
t t 0 0
Therefore, when ¢ ™\, 0 we obtain
LyxeD(A),Vx e X,
AM—A)Ljx=xVxeX,

and
Ly (Al —A)x=x,VYx € D(A).
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It follows that A — A is invertible and (Al —A) "' =L,. O

Suggested by the above result we turn to the Laplace transform. Let (X, ||.||) be
a Banach space. Let f : [0,4+00) — X be a continuous map. Set

o(f):= inf{a) eR:supe | f(1)] < +°°} .
>0

Notice that @ (f) can be regarded as the growth bound of the map f and @ (f) = —oo
may occur. If @ (f) < +eo, we can define the Laplace transform of f by

~

~+oo

) = / e f(s)ds, VA > o (f).
0
Recall that the Gamma function is defined as
+o0
I'(x) :/ rledr, Yx > 0.
0

Then

I'(x+1) =xI'(x), ¥x >0,

S
I'(n+1)=n!,VvneN.

We have the Stirling’s formula

xote (x/e) \/2mx

We now state a version of the Post-Widder theorem and refer to Arendt et al. [22,
Theorem 1.7.7, p. 43] for a more general version of this result.

Theorem 2.3.7 (Post-Widder). Let (X, ||.||) be a Banach space. Let f : [0,+o0) —
X be an exponentially bounded and continuous map. Then

70 = tim S 0 (1) v

n—+e  pl t
where f(”) is the nth derivative of f

Proof. Lett > 0 be fixed. We have for each integer n > 0 and each A > @ (f) that
teo
FO @) = (1) [ e fs)as,
0
Consider an integer ng > max (0,7 (f)) . We have for each n > ng that

(-" (g)"“f(n) (E) = 0+°°pn (s) f(s)ds,

n! t t
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where o s
o (5)
So -
+oopn (s)ds = N l’:'e dal _ F(r;;kl) 1
and

EXE™ 50 () = [ ) - r)as.

n! t
It is sufficient to consider

nn+1

+°° n
I = /0 (re")" [ (1) — £(0)) dr (2.33)

n!
Given € > 0, we choose 0 < a < 1 < b < +oo such that
lf(rt) — f(t)|| < € when r € [a,D].
Then we break the integral on the right-hand side of (2.3.3) into three integrals I,%
12, and I? on the intervals [0,a], [a,b], and [b, +oo), respectively. Notice that re™"

is monotonely non-decreasing on [0, 1] and monotonely non-increasing on [1,+40)
we have

B < " ae)” [ f0n) ~ p0)

|12|<£—/ rer dr<e,

8l < ol [ e ) ey ar
b

for some constants C > 0 and @ > 0. Note that ae™ < e~ !. Set § =
deduce by using Stirling’s formula that

limsu < lim / rt) dr
n~>+°°p|| H n—-+oo \/2nnte " A€ ®ll
1/2 n
= Jim "2 / L£(r) = £(©)lldr =0

and L
n o
||13 H < ZCHT/b ekor (refr)ndr7

where ko is an integer such that ky > wf. We have

+oo oo
/ ek()r (refr)ndr _ / rnef(nfk())rdr
b b
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n+1 oo
_ n+1 /‘jL lnef(VH*])ldl
n—ko b

n+1 ntl 4o . o\
< .
< <nk0> /b elal (be)

1 n+1 1 1 n+1
lim (2 ~ g (EYPNT L el ko,
n—+eo \ n — ky n—+e \ 1 —ko/n

be™®
e 1

Since

alsobe ? <e !, § = < 1, we obtain

) 3 ) n’1+167"3” oo B
hmsupHISH <e! kOhmsupZCi/ eldl=o0.
n——oo n—s-too n! b

From the above estimates we deduce that

(—1)" (ﬁ)nﬂf(") (E) )

n! t t

<e.

limsup
n—+oo

Since € > 0 is chosen arbitrarily, the result follows. 0O

Corollary 2.3.8 (Uniqueness of Laplace Transform). Let (X,||.||) be a Banach
space. Let f : [0,4o0) — X and g : [0,4+00) — X be two exponentially bounded con-
tinuous maps. Assume that there exists Ay > max (@ (f),® (g)) such that

/+me_}”sf(s)ds = /+°° e Mg(s)ds, VA > Ag.
0 0

Then g = f.

The following theorem is due to Arendt [20], which provides a Laplace transform
characterization for the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators.

Theorem 2.3.9 (Arendt). Let {T(t)},-, be an exponentially bounded and strongly
continuous family of bounded linear operators on a Banach space X and let A :
D(A) C X — X be a linear operator. Then {T (t)},~ is a Co-semigroup and A is its
infinitesimal generator if and only if there exists ® € R such that

supe” ' [|T(1) | ) < +oo,
t>0

(,+%0) Cp(A),
and .
AI—A)'x= / e MT (s)xds, YA > o, Vx € X.
0

Proof. For u > A > o, we have
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1 e
= A=Al — A xdt — ——
A e ( )" x A e

+oo o0 Foo !
= [ ey / e T (s)xdsdi — / elh=Hr / ¢ T (s)xdsdt
0 0 0 0

A=w)t =2 (1) xdt

~+oo
= e(l_“)t/ e T (s)xdsdt
0 '

oo ~+o0
:/ ef‘”/ e MOT (5)xdsdt
Jo t

teo
e_‘”/ e MT(1+1t)xdldt.
0 0

On the other hand,

1 1 tee e
(WI—A)" (AI—-A)" x:/ ef‘”/ e MT ()T (s)xdsd.
0 Jo

So by the uniqueness of the Laplace transform (first for it and next for 1) we deduce
that
T(s+1t)=T()T(s), Vs,t > 0.

From the semigroup property we deduce that 7(0) is a projection. Moreover, if
T(0)x =0, then T (¢)x =T ()T (0)x = 0,V¢ >0, 50 (Al —A) ' x=0,YA > . Thus
x = 0. It implies that 7'(0) = Id. We deduce that {T ()}, is a Cp-semigroup. De-
note its generator by B. Then N

+o0
(AI—B)"! :/ BT (s)ds = (AT —A)"' VA > 0.
0

Hence A = B. This proves one implication. The other implication follows from
Proposition 2.3.6. O

As an immediate consequence of Theorem 2.3.9 we have the following result.

Corollary 2.3.10. Let A : D(A) C X — X be the infinitesimal generator of a linear
Co-semigroup {T (t)},~o on a Banach space X. Then for each o € R, A+ ol is the
infinitesimal generator of the Co-semigroup {e™T (1)},

Combining the Post-Widder theorem and the Arendt theorem, we obtain the fol-
lowing exponential formula for the strongly continuous semigroup.

Corollary 2.3.11 (Exponential Formula). Let A : D(A) C X — X be the infinites-

imal generator of a linear Cy-semigroup {T(t)}t20 on a Banach space X . Then

lim (ﬁ)n (?I—A)inx: T(t)x, vVt >0, VxeX.

n—+o \
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Proof. First it is easy to see that
—1 oo A
A (AI—A) x:A/ e MT(1)xdt = x as A — oo,
0

Moreover, we have

d" (Al —A)"! (1
— = ()"t (A - 4) (n+1)
Applying the Post-Widder theorem to the resolvent, we deduce that Vr > 0,

(?) ey (?I—A)_(nﬂ)x — T(t)x as n — oo

Note that
DRSS ORI
<@ o) - @) sy
an(tg) e () Goa) s

The result follows. O

—0asn— +oo.

]

2.4 Hille-Yosida Theorem

The goal of this section is to prove the Hille-Yosida theorem which provides the
relationship between a strongly continuous semigroup and its generator. First, we
introduce the notion of a Hille-Yosida operator.

Definition 2.4.1. A linear operator A : D(A) C X — X on a Banach space (X, ||.||)
(densely defined or not) is called a Hille-Yosida operator if there exist two constants,
o € Rand M > 1, such that

(@,420) Cp(A)

and

M
<—, VA>w0,Vn>1.

H(AI_A)HLHZ(X) )

Proposition 2.4.2. Let A : D(A) C X — X be the infinitesimal generator of a lin-
ear Co-semigroup {T (t)},~ on a Banach space (X,||.||). Then A is a Hille-Yosida
operator and there exists a norm |.| on X, which is equivalent to ||.|| , such that

VA > o.

‘(M_A)_l‘z(x) 1=’
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Proof. Let @ > 0 be given such that

IT (0l 2(x) < Me™, Vi > 0.
Then the map |.| : X — Ry

|x| =supe” || T(t)x|, ¥x € X
>0

defines a norm on X. Moreover,

[lxll < |l < Ml

and
|T(t)x| <e®|x|, vVt >0,Vx € X,
So :
A —A *“ < VA
‘( ) X)) A—0’ > @
and

IAT=2)"]] ) < MIAT=A)7"] 1,

= M‘(MiA)_ll;(x)

ﬁ,vx>w.

<
This completes the proof. O
Before stating and proving the Hille-Yosida theorem, we give two lemmas.

Lemma 2.4.3. Let A: D(A) C X — X be a Hille-Yosida operator (densely defined
or not). Then there exists a norm |.| on X such that

‘(M—A)*lx‘ < N VA > @,VxEX,

“A-w

and
[lx]l < x| < M|x]|, vx € X,

where M is introduced in Definition 2.4.1.

Proof. Replacing A by A — @I, we can always assume that @ = 0. For each u > 0,
set

o, = sup||" (el —4)"]].
n>0

Then
[l < lxll, < Mlx]|, vVx € X,

and
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H“ (/.LI—A)’le“ < ||, Vx € X.
Moreover, if 4 > A > 0 and x € X, we have by the resolvent formula that
(AL =A) ™ = (I =AY+ (= 2) (I —A) " (AT —A)
So

H(;LI—A)*‘XH” < H(m—A)*‘xH” F(L—2) H(uz—A)*‘ (M-A)*IXH”

and

Jar-ara], < Bl v (1-2) ar-ays] .

I
It follows that

Xl

1 ,Vu>2A>0,vxeX

H(M—A)”xH” <

and

A" (A —4) ]| < H)L (M-A)*le < [lxll, s Vit = A > 0,Yx € X, ¥n > 0.
u

Therefore,
Ixll, < llxll,» Yo > 2 >0,¥x € X.

Setting
o = fim [, vx e X,

the result follows. O

Lemma 2.4.4. Let A: D(A) C X — X be a Hille-Yosida operator with dense domain.
Then

lim A(AI—A) 'x=x, VxeX.
A—>+oo

Proof. This lemma follows from the fact that D(A) = X and Lemma 2.2.9. O

Theorem 2.4.5 (Hille-Yosida). A linear operator A : D(A) C X — X is the infinites-
imal generator of a Co-semigroup {T (t)},~ if and only if A is a Hille-Yosida op-

erator with dense domain (i.e. D(A) = X ). Moreover, if M and ® are the constants
introduced in Definition 2.4.1, we must have

T ()] <Me®, vt >0.

Proof. From Lemma 2.3.3 and Proposition 2.4.2 we already know that the condi-
tion is necessary. So it remains to prove the sufficient part of the theorem.

First, assume that A : D(A) C X — X is a densely defined linear operator such
that (0,+c0) C p (A) and
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H)L()LI-A)”H <1,Y1>0.

Set
Ay =AA(MI—A)"".
We have
Ay =AA=AM+A) A —A) ' =22(A1—A) " = AL

So ) » . §

At — e[x (M=A)""=ad)r _ oM AT A=At
Thus 1 1

HeAﬂH < e—lt eAZ(Al—A)‘ t < e_l’eHlZ(M*AY H’,

which implies that
[|e*]| < 1, vt > 0.

Set
H(s) =174 s e R,

Then the map H is continuously differentiable from R into . (X). Since A, and
Ay commute, we have

e — e = H(1)—H(0)
1
= / H'(s)ds
0
1
= /0 1(Ay —Ay) ¢! (1=9)u g
Hence
e — e < tflan —Au]l-
Let x € D(A). We have
e ] g — A < [JAre—Ax] + fax - A] ).
But Lemma 2.4.4 implies that

lim Ajx= lim A (AI—A)'Ax=Ax.
A—r+oo A—+oo

It follows that t — e x converges, as A — +oo, uniformly in # on bounded intervals
of [0,4e0). Since D(A) is dense in X and HeAl’H < 1,Vr > 0, it follows for each
x € X that

lim e*'x=T(r)x,
A—roo
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where the limit is uniform on bounded intervals of [0, +co). Therefore, {T'(¢)},,
is a strongly continuous semigroup of bounded linear operators on X and ||7(¢)|| <
1,vt > 0.

Next we prove that A is the generator of {7'(¢)},. First, note that for each
x € D(A) and each ¢ > 0, we have

T(t)x—x= lim ¢M'x—x= lim eA”Akde—/ T(s)Axds.

A—r+oo A—r+oo

So
i
T(t)x—x= / T (s)Axds, Vx € D(A), Vt > 0. (2.4.1)
0

Since (ul —A)~" commutes with ¢+, we also deduce that
(Wl —A) ' T(x=T() (uI—A) " "x, Vx € X,Vt >0,V > 0. (2.4.2)

We now apply Proposition 2.3.4. Assume first that x € D(A) and y = Ax. Then from
(2.4.1) it follows that

T(t)x—x= /t T(s)yds, ¥t > 0. (2.4.3)
0

Assume now that (2.4.3) is satisfied for some x and y in X. Let y > 0 be fixed. Then
from (2.4.2) and (2.4.3), we have for each ¢ > 0 that

t
(uz_A)*IT(t)x_(uz_A)*lx:/ T(s) (ul —A) " yds.
0
By (2.4.1) and (2.4.2), we have

(1l —A) " T(0)x— (ul—A) " x = T(0) (ul —A) "~ (i~ A)'x
_/T (ul —A) " xds.

So we deduce that
/(:T(S)A(MI—A)*lxdsz/OIT(s) (ul —A)"'yds, ¥t > 0.
It follows that
T(HA(uI—A) 'x=T(t) (uI—A) "'y, Vt >0,
and for r = 0 we obtain
A(uI—A) ' x=(uI—A)"y.

Since
Al —A) 'x=p(ul—A)"'x—x,
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it follows that
-1
x= (I —A) " fux—y],

sox € D(A) and
Ax =y.

Therefore,
1
xe€D(A)andAx=y < T(t)x= x+/ T(s)yds,vt > 0.
0

By applying Proposition 2.3.4, we conclude that A is the infinitesimal generator of

{T(t)};>0 and
IT@)| <1,vt>0.

To complete the proof, it is sufficient to note that by Lemma 2.4.3, we can find a
norm |.| on X such that

|(A1—A)x] < 5 L wiso,

7(1)7
and
]l < |x] < M ||x||, ¥x € X.

So when X is endowed with the norm |.|, the linear operator A — w/ satisfies the
assumptions of the first part of the proof, the result follows from Corollary 2.3.10.
O

When the domain of A of is not dense in X, the following result will be useful.

Corollary 2.4.6. Let A : D(A) C X — X be a linear operator on a Banach space

X. The part AW of A in D(A) is the infinitesimal generator of a Co-semigroup

{TAW(I)} 20" D(A) if and only if the following two conditions are satisfied:
>

(@) (AI—A)'x—0as A — +oo, VxeX;
(b) There exist @ € R and M > 0 such that

M
<———,VA>0,YVn>1.

1(A7 —40)™ 2(0W) = (1~ a)

=||(A1-A)""

2(D@))

Proof. This corollary is an immediate consequence of the Hille-Yosida theorem
and Lemmas 2.2.10-2.2.11. O
2.5 Nonhomogeneous Cauchy problem

Let A: D(A) C X — X be a linear operator on a Banach space (X,||.||). Let
I C [0, +<0) be an interval. Define
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_[eeC(,X):9(t) e D(A), Vt €1, and the map
C(I,D(A)) = { t — A@(t) is continuous from 7 into X

and
Lo (I,X)={¢:1—X:Vabelwitha<b, ¢ ;cL' ((a,b),X)}.
In this section we consider the nonhomogeneous Cauchy problem

du(t)
- =AU+ f(0), e 0,7),

u(0) =x € D(A),

2.5.1)

where 7 € (0,40 and f € L} . ([0,7),X).
The Cauchy problem (2.5.1) is said to be densely defined if

D(A) =X,
and non-densely defined otherwise.

Definition 2.5.1. (a)  Assume that f € C([0,7),X). Then a functionu € C ([0, 7),X)
is called a classical solution of (2.5.1) if u € C' ([0,7),X)NC([0,7),D(A)), and

satisfies
du(r)

dt

(b) Assume that f € L} . ([0,7),X). A function u € C([0,7),X) is called an in-
tegrated solution (or a mild solution) of (2.5.1) if

=Au(t)+ f(2),vr €[0,7); u(0) =x.

/0 "u(s)ds € D(A), Vi € [0,7)
and . .
u(r) :x+A/0 u(s)ds+/0 f(s)ds, Vt €[0,7).

The following result describes the relationships between classical and integrated
solutions.

Lemma 2.5.2. Assume that A is closed and f € C([0,7),X).If u is a classical so-
lution of (2.5.1) then u is an integrated solution of (2.5.1). Conversely, if u is an
integrated solution of (2.5.1) and u € C' ([0,7),X) oru € C([0,7),D(A)), then

ue ' ([0,7),X)nC([0,7),D(A))
and u is a classical solution of (2.5.1).

Proof. Assume first that u is classical solution. Then by integrating (2.5.1) we obtain

u(t) = x+ /0 Au(s)ds + /0 " (s)ds, Vi € [0,7).
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Moreover, since A is closed, we have

/Oru(s)ds € D(A) and ./OtAu(s)ds :A/Otu(s)ds,Vt €[0,7).

It follows that « is an integrated solution of (2.5.1).
Assume that u is an integrated solution of (2.5.1). Suppose first thatu € C' ([0,7),X),
then

t+h 1 gtth
Ay [ uds = G lutem a5 [ sy
By using the fact that A is closed, we deduce when & \ 0 that
u(t) € D(A), Vt € 10,7), and Au(t) = u'(t) — £(t),Vt € [0,7).

Sou e C'([0,7),X)NC([0,7),D(A)) and u is a classical solution.
Assume that u € C([0,7),D(A)). Since u is an integrated solution and A is
closed, we deduce that

u(t) = x+ /0 " Au(s)ds+ /0 " f(s)ds, ¥t €[0,7).

Sou € C'([0,7),X) and the result follows. O

Lemma 2.5.3 (Uniqueness). Let A : D(A) C X — X be the infinitesimal generator
of a linear Cy-semigroup {T(t)}~, on a Banach space X. Let u : [0,7) — X be
continuous such that

/ "u(s)ds € D(A)
0

and
A/ s)ds, ¥t €[0,7).

Then
u(t)=0,vr€0,7).

Proof. Lett € [0,7) be fixed. We have for each r € [0,¢] that

Ci(T(t—r)/Oru()d> t—rA/ $)ds+T(t = r)u(r) =0.

So by integrating this equation from 0 to ¢, we obtain

/0[ u(s)ds = 0.

By differentiating we obtain u = 0.

As an immediate consequence of the previous lemma we obtain the following
theorem.
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Theorem 2.5.4. A strongly continuous semigroup of bounded linear operators is
uniquely determined by its infinitesimal generator.

Theorem 2.5.5. Let A : D(A) C X — X be the infinitesimal generator of a linear
Co-semigroup {T (t)},~o on a Banach space X. Then for each f € L. ([0,7),X)
and for each x € X, there exists at most one integrated solution u € C([0,7),X) of
(2.5.1). Moreover,

x+/ (t—s)f(s)ds, Vt €]0,7).

Furthermore, u is a classical solution of (2.5.1) if
ueC'([0,7),X) orucC([0,7),D(A)).

In particular if x € D(A) and either f € C([0,7),D(A)) or f € C'([0,7),X), then
u is a classical solution of (2.5.1).

Proof. The uniqueness follows from Lemma 2.5.3. To prove the existence it is suf-
ficient to prove that

x+/ (t—s)f(s)ds, Vt €]0,7),
is an integrated solution. Set
v(t) = T(t)x and w(t /ths s)ds, ¥Vt € [0,7).
We already know that
—x—l-A/ s)ds, Vt € [0,7).
So it is sufficient to prove that w satisfies

—A / s)ds + / F(s)ds, Vi € [0,7). 252)

Indeed, we have

/ Nl = // (1— ) f(s)dsdl
*//Tlfs dlds

[S
_// s)dlds,

so [yw(l)dl € D(A) and
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/ Nl = / /’ “T()f(s)dlds
:/0 T(tfs)f(s)dsf/otf(s)ds

Hence, w satisfies (2.5.2) and it is follows that u(t) = T (t) x+ [3 T (t —s) f(s)ds is an
integrated solution of (2.5.1). By using Lemma 2.5.2 it follows that u is a classical
solution whenever u € C' ([0,7),X) oru € C([0,7),D(A)). Finally, if x € D(A) and
f€cC([0,7),D(A)), we have

u(t) = (A—A)fl [T(t)(l —A)x—i—/OtT(t—s) (A—=A) f(s)ds| ,Vt€[0,7),

sou € C([0,7),D(A)). Ifx € D(A) and f € C' ([0,7),X), we have

x—|—/T (t—s)d

Thus, u € C' ([0,7),X), and
u'(t) =AT(t)x+T(t) +/T '(t —s)ds,¥t €]0,7).

By using Lemma 2.5.2 the result follows. O

Combining the Hille-Yosida Theorem (Theorem 2.4.5) and Theorem 2.5.5, we
know that the nonhomogeneous Cauchy problem (2.5.1) is well-posed with respect
to the integrated or mild solution whenever the linear operator A is a densely defined
Hille-Yosida operator. In practice the following result can be useful in obtaining
integrated solutions of a Cauchy problem.

Lemma 2.5.6. Let A : D(A) C X — X be a linear operator on a Banach space X .
Assume that p(A)NR # 0 and f € C([0,7),X). Then u € C([0,7),X) is an inte-
grated solution solution of (2.5.1) if and only if there exists A € p (A) NR such that

= (M—A)""ueC(0,7),X) and uy, satisfies the following ordinary differen-
tial equation

du:}t(t) = Aup (1) —u(t) + (A —A) "' (1), Vi €[0,7),
1y (0) = (A1 —A)"!

(2.5.3)

Proof. Assume first that u is an integrated solution of (2.5.1). Then

(1) = (/IIfA)_lirA(MfA)‘l/Otu(s)der/Ot (AL —A)"" £(s)ds,Vr € [0, 7).
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Since A (Al —A) ' = —I+A (AI —A) ™" is bounded, we deduce that u;, € C' ([0,7),X).
By differentiation,

duy (1)
dt

=AM —=A)""u@t)+AI-A) " f(1), Ve € ]0,7),

and it follows that u, satisfies (2.5.3).
Conversely, assume that u; satisfies (2.5.3). By integrating (2.5.3) from O to ¢,
we obtain for each Vr € [0, 7) that

AL—=A) " u(t) = M —A) " x+AAI—A) " [Ju(s)ds

+ (M —=A)"" [E £ (s)ds. @254)

Since A(A —A)"' = —I+A (A —A)"", we obtain

/otu(s)ds —(A—a)" [x—u(t)—I—l/otu(s)ds—k/otf(s)ds} Ve [0,7),

SO
/0 "u(s)ds € D(A), Vi € [0,7).

By using (2.5.4), we obtain
(A —A) " u(t) = AT —A)"" [x+A/ru(s)ds+/tf(s)ds} rel0,7),
0 0

and since (A1 —A) ™! is injective, we deduce that « is an integrated solution. [

2.6 Examples

Roughly speaking, the Hille-Yosida theorem says that a linear operator A is the
infinitesimal generator of a strongly continuous semigroup {T(t)}tzo on a Banach
space X if and only if the following conditions are satisfied:

(a) Ais densely defined, i.e. D(A) = X;

(b) AisaHille-Yosida operator; that is, there exist two constants M > 1 and ® € R
such that for each A > @, AI —A is a bijection from D(A) into X, (Al —A) " is
bounded (for short A € p (A) where p (A) is the resolvent set of A), and

M

an(X) < (),_7(1))"’ VA > o.

(A1 —4)"

In this section we give some examples to show how to use the Hille-Yosida theorem.

Example 2.6.1. Let X = L' ((0,1),R) be the space of integrable maps from (0, 1)
into R endowed with the usual norm
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1
19l onz = | 106)]d

Consider the Cauchy problem

E%QZXM”JZO’WW=¢€LW®J%R% 2.6.1)

where y € C([0,1),R), and assume that

li — oo,
X%Z@

Set

X := sup x(x) < +oo.
x€(0,1)

Here the linear operator A : D(A) C X — X is defined by
A(@) (x) = x(x)¢ (x) for almost every x € (0,1)
with
D(A)={9eL'((0.,1).R): xp €L' ((0,1),R)}.

A natural formula for the semigroup solution of (2.6.1) is
(1) (@) (x) = XM g(x), Vi > 0.

Clearly, the family {7 (¢)}, defines a semigroup of bounded linear operators on
X.

We prove that {T (¢)},~ is strongly continuous. Let s > 0 and ¢ € L' ((0,1),R)
be fixed. Since C, ((0,1),R) (the space of continuous functions with compact sup-
portin (0,1))is dense in L' ((0,1),RR), given a sequence ¢, € C.((0,1),R) — ¢ in
L' ((0,1),R), we have for each n > 0 that

W ([T (1)@ =T (5) @all 11(0.1) ) = O-

t—s

Let € > 0 be fixed. Then we can find ng > 0 such that

max(¥,0)(s+1

€
¢ )H(P_(Pn||L1((()71)7R) <§,Vn2n0,

Then for each 7 € 0,5+ 1] and each n > ng, we have

IT(#) =T (s) @llL1((0.1)m)
<T@ [@ = @alllr(0.1)m)
FIT (@)@ =T (5) @ull 1 (0,1).2) T 1T () [@ = @ulll L1 (0,1) )
<e+|T)Pn—T (5) Pullpr(0.1)m) -
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Thus,
liffl_fup IT@)@ =T (5)@llL1(0,1) ) < &

It follows that {7 (¢)},~, is a strongly continuous semigroup of bounded linear op-
erators on X. -

We now turn to the linear operator A. It is easy to prove that D(A) endowed with
the norm

lella=llelli o).z +1X@lL01)r)
is a Banach space. So A is closed. Moreover, D(A) is dense in X since

Cc((0,+e0),R) C D(A) C L' ((0,1),R),

and for each A > 7,

M-A)p=y e (A—xx)ox) =V (x) = @x) ="~

and
1 1

< < =.

A=x(x) = A-X
So for each A > ¥, the linear operator A7 — A is one-to-one and onto from D(A) into
X. Moreover, the resolvent (A1 —A) ™" : X — X defined by

0

A=A () () = - Y

is a bounded linear operator and

It follows that

- = (-
<Jor-a

1
(A=%)

So A satisfies the conditions of the Hille-Yosida theorem. Furthermore, A is the
infinitesimal generator of a Co-semigroup {7 ()}, that is,
T(t)p —
D(A) = {(p eX: limM exists}
[AN] t

and



90 2 Semigroups and Hille-Yosida Theorem

T(t)

Ap= lim#,wp e D(A).

t™NO

Example 2.6.2. Let X = BC([0,1),R) be the space of bounded and continuous
maps from [0, 1) into R endowed with the supremum norm

HWKZSWJWﬂL

x€[0,1

Then it is well known that (X, ||.||..) is a Banach space. As an exercise, one can
prove the following statements:

(@) {T(t)},5q defined by
T(t)(9) (x) = o (x), ¥t > 0,

is a semigroup of bounded linear operators on X;
(b)  {T (t)},5¢ is not strongly continuous (Hint: Consider ¢(x) = 1,Vx € [0, 1));
(c) Define

Xo = {(p €y ([0,1),R) : lim @(x) = o} .
x,
Consider the family of bounded linear operators {Tp (¢) },~ on Xo defined by
To(t) :=T(1) |x,, Yt > 0.

Then {7¢ (1)}, is a strongly continuous semigroup on Xy (Hint: Observe that
C.([0,1),R) is dense in Xp).

Example 2.6.3. Let X = C([—1,0],R) be the space of continuous maps from
[—1,0] into R endowed with the usual supremum norm

l¢ll.= sup [@(6)].
0e[—1,0]

Consider the partial differential equation

du(t,0) Ju(t,0)

=0,r>0,0¢€(-1,0)

t 00
8143’0) =0,t>0
0
u(0,x) =p eX.

Consider the linear operator A : D(A) C X — X defined by
Ap=¢', Yo eD(A)

with
D(A) = {9 € C' ([-1,0],R) : ¢/(0) = 0}.

Then for each A > 0,
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Ap—Ap=vand o e D(A) & Ao —¢' =y and ¢ € D(A)

& 0(0) =00 p(8) — 2 MOy (s)ds, V0,0 € [~1,0] with 6 > 6
andﬂupu v(0)

& 9(8) = Mp(0) + [2 O )y(s)ds, V8 € [~1,0] and 2¢ (0) = y(0)

= 0(0) = “"”( + [2H0) y(s)ds, V6 € [-1,0).

So for each A > 0, the linear operator A —A : D(A) — X is one to one and onto.
Moreover, the resolvent (A1 —A) ™' : X — X is defined by

(AI—=A)""(y)(8) = A0YO) | /Oel(‘?ﬂ) w(s)ds, V0 € [—1,0].

A e
Note that
|- < s i / as| 1.
[~1,0)
sup 7+ [ ar| vl
e[-1,0] 6
vl
A’ b
SO
H()LI—A)’ H /1’ YA > 0.
It follows that
[AT=4)"]] 4 <0 ,V7L>0 Vn > 1.

Consider now a family of bounded linear operators {7 (¢)},-, on X defined by

_fo(0) ifr+6>0,
T(f)(@)(e)—{¢(;+e) if 146 <0.

Then it can be checked that {7 (t)}, is a linear Cp-semigroup on X. Moreover, A
is the infinitesimal generator of {7 (¢)},-

Example 2.6.4. Note that here we incorporate the boundary condition into the def-
inition of the domain (i.e. ¢(0) = 0 in the definition of D(A)). It is also possible to
proceed differently. Consider the space

X=RxC([-1,0],R)

endowed with the usual product norm. Consider

(-5
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with
D(4) = {0} x C'([~1,0],R)

and A, the part of A in D(A) = {0} x C([-1,0],R), that is,
Agx = Ax, Vx € D(Ay),
where

mez{xepmyAxéTE}
_ {(g) € {0} xC! ([-1,0],R) : (‘ (,;'(0)> € {0} xC([_l,O],R)}.

Thus,
D0 ={(§) € 0% (-1.0.2): ¢'0) =0}

()= (v)

One can prove that Ag is the infinitesimal generator of the linear Cy-semigroup
{Th, (1) },5, on D(A). Actually, Ty, (¢) is defined by

TAOU)(S)) :(?Ao(()t)q))’

. 0) ifr+6>0,
HMGWN%Z{zszié+GSO

Example 2.6.5. Consider X = L' ((0,+),R) endowed with the usual norm and
consider the PDE

and

where

du(t,x) n du(t,x)

ot ox
u(t,0) =0, 1 >0,

u(0,.) = ¢ € L'((0, 40 ,R).

=0,t>0, x>0,

Let A: D(A) C X — X be the linear operator defined by

Ap=—¢
with
D(A)={p e W' ((0,+%),R): ¢(0) =0}
The space W!! ((0,+),R) can be identified to the space of absolutely continuous

maps, which turns to be differentiable almost everywhere (see Rudin [303]).
The above PDE can be reformulated as the following abstract Cauchy problem
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du

% =Au(t),t>0; u(0)=¢cX.

By using similar computations as before, we obtain for each A > 0 that
(A-A)p=y
< A0(x) + ¢'(x) = y(x) for almost every x > 0 and @(0) =0
X
< ox) = / e M=)y (s)ds for almost every x > 0.
0

So for A > 0, the map A — A is one-to-one and onto from D(A) into X, and

(A=A w =g o) = [ e FIy(s)ds
0

It follows that !
H(M—A)’IH < VA0,

So A satisfies the conditions of the Hille-Yosida theorem. Thus A is the infinitesimal
generator of the linear Co-semigroup {7 ()}, on X. Moreover, T (¢) is defined by

o(t—x) ift >x,

T(f)(‘P)(X){O ift <x.

Example 2.6.6. One can consider the same problem in L.

Example 2.6.7. Consider X = UBC(R,R) the space of uniformly continuous and
bounded maps endowed with the usual supremum norm

¢l = sup|e (x)]
xeR

Then UBC(R,R) is a Banach space. Consider now the diffusion equation in this
space:
du(t 92
u(t,x) = u(t’x), t>0,xeR,
ot X2
u(0,.) = ¢ € UBC(R,R).

Let A: D(A) C X — X be defined by

Ap=¢

with
D(A)={¢ e C(R,R)NUBC(R,R): ¢, 9" € UBC(R,R)}.
As before we can rewrite the above PDE as an abstract Cauchy problem

du

Z = Au(t), t > 0; u(0) = ¢ € UBC(R,R).
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It is well known that D(A) is dense in X. Let A > 0. Then

AM-A)p=y=Llo—¢" =y
Set ¢ = ¢'. Then
AM—-A)p=y ¢ =0andd =Ap—y
VAQ'+ = VA (Vip+8) - v
=

\/Igo’—ﬁ’z—\/z(\/ﬂp—(ﬁ)er.

Define
w= (ﬁ¢+$) and w = (\/I(p—(ﬁ)

We obtain
w=vVaiw—y
W= —VAW+y.

The first equation of system (2.6.2) is equivalent to

AM-A)p=v & { (2.6.2)

ef‘/zxw(x) = e*‘/zyw(y) —/ ef‘/zllll(l)dl, Vx > .
y
So when x — 40 we obtain (since w is bounded)

o0 +o0
w(y) = VRO Dy (1)dl = /0 e VA y(s+y)dl.
y

Similarly, the second equation of system (2.6.2) is equivalent to
B0 = e VA0 + / e VA Dyl Ya > y.
y
So when y — —eo we obtain
W) = /7 VA y(1)dl = /70 My (s 4 x)dl.

Since
w4+ =2V

and

oo Foo *
/ e*ﬁ‘slll/(s—i-x)ds:/ eﬂ(xfl>‘l/(l)dl+/ eV Dy (1)l

—oo

we have for each A > 0 that

—A)"! X L +me_\/ms‘ s+x)ds
(=2 W) ) = [ eyt
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1 [t
= ﬁ Lw eiﬁ\x*l‘W(l)dl.
One may observe that (A/ —A) ™' (y) is defined by a convolution operator and it

follows that
(AI—A)"'BC(R,R) C UBC(R,R)

where BC(R,RR) is the space of bounded and continuous maps from R into itself.
But UBC(RR,R) is not dense in BC(R,R). So in order to obtain D(A) = X we need
to use the space UBC.

In summary we deduce that for each A > 0, the linear operator A/ — A is one-to-
one and onto from D(A) into X, and

_ 1
(AT —A) l(l[/)(x):m/_ VAl y(s 4 x)ds.
Moreover,
_ 1
|ar-a)" v < 5 il va>o.

It follows that A is the infinitesimal generator of a Co-semigroup {7 (t)},- . Fur-
thermore, by using Fourier transform, one can prove that A is the infinitesimal gen-
erator of
2
(x—)

Le o0
R

1
Vant

Example 2.6.8. As an exercise one can consider the same problem in L (R,R).

(1) (@) (x) =

2.7 Remarks and Notes

Linear semigroup theory started with Hille-Yosida generation theorem in 1948
(see Hille [186] and Yosida [380]). Since then, there have been many monographs
presenting various aspects of this theory, we refer to Hille and Phillips [187], Davies
[87], Yosida [381], Pazy [281], Goldstein [150], Engel and Nagel [126, 128], and
Arendt [22] for more results on semigroup theory. In this chapter we discussed the
notions of strongly continuous semigroups, resolvents, and pseudo-resolvents, as
well as the Hille-Yosida theorem. All these results of this chapter are well-known.
Section 2.3 perhaps is the most original part with respect to the literature in which
we discussed various equivalent relationships between mild solutions and the in-
finitesimal generator. The main idea of the part is to prepare for the chapter devoted
to integrated semigroup theory where similar ideas will be used.

There are several important concepts and results in semigroup theory that we
would like to briefly mention here.

(a) Lumer-Phillips Theorem. One can find a complete description of the Lumer-
Phillips theorem for example in the book of Pazy [281].
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Definition 2.7.1. Let A : D(A) C X — X be a linear operator on a Banach space X.
Then A is said to be dissipative if

(AT —A)x[| > A[|x]|, Vx € D(A),VA > 0.

Definition 2.7.2. A strongly continuous semigroup {7 (¢) };>¢ of bounded linear op-
erators on a Banach space X is a semigroup of contractions if and only if

IT(0)l 2x) <1, ¥t > 0.

Theorem 2.7.3 (Lumer-Phillips [239]). Let A : D(A) C X — X be a linear operator
on Banach space X. Then A generates a semigroup of contractions if and only if

D(A) is dense in X;

A is closed;

A is dissipative;

AL — A is surjective for some A > 0.

(b) Sectorial Linear Operators. For parabolic equations, it is not convenient
to use the Hille-Yosida condition, but it is possible to use the notion of sectorial
operators instead. We refer for instance to Friedman [146], Tanabe [325], Henry
[183], Pazy [281], Temam [327], Lunardi [240], Cholewa and Dlotko [61], Engel
and Nagel [126] for more results on the subject.

Definition 2.7.4. Let L : D(L) C X — X a linear operator on a Banach space X. L is
said to be a sectorial operator if there are constants ® € R, 0 € |7/2,x[,and M > 0
such that

() (L) Seo={AEC:A#d.[arg(h—)| <6},
M
.. ~1

(i) H()LI—L) H < e T ESea

Definition 2.7.5. A strongly continuous semigroup {7 (¢) };>¢ of bounded linear op-
erators on a Banach space X is said to be an analytic semigroup if the function
t — T(t) is analytic in (0,+oo| with values in .Z(X) (ie. T(t) = L% (t —10)" Ly
for |t — to| small enough).

Theorem 2.7.6 (Sectorial Linear Operator Theorem). Assume that L : D(L) C
X — X is a linear operator on a Banach space X and is sectorial. Then L is the
infinitesimal generator of an analytic semigroup {T (t) };>0 of bounded linear oper-
ators on X. Moreover,

1 n

Ti(t) = — / (AI—L)"'eMdA, t >0, and Ty (0)x = x, Vx € X,
270 J o+,

where r > 0,1 € (1/2,0), and Y,y is the curve {A € C:|arg(A)| =n,|A| > r}u
{A € C:larg(A)| <n,|A| =r} oriented counterclockwise.
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One may realize that both Lumer-Phillips Theorem and the above Sectorial Lin-
ear Operator Theorem provide an alternative method to prove the existence of a
strongly continuous semigroup of bounded linear operators without using the Hille-
Yosida condition.

(c) Linear Perturbations. The following theorem is proved for example in Pazy
[281].

Theorem 2.7.7 (Perturbation Theorem). Let A : D(A) C X — X be a Hille-Yosida
operator on a Banach space X. Let B € £ (X) be a bounded linear operator on X.
Then A+ B : D(A) C X — X is a Hille-Yosida operator. Let {Ty(t) }+>0 (respectively
{Ta+B(t) }s>0 ) be the semigroup generated by A (respectively generated by A +
B), then for each x € X, the map t — Ty, p(t)x is the unique continuous function
satisfying (the fixed point problem)

t
Tprp(H)x = TA(t)x—i—/ Ta(t — )BTy (s)xds, ¥Vt > 0.
0

Theorem 3.5.1 in Chapter 3 is a generalization of this perturbation theorem in
the non-densely defined case. We refer to Desch-Schappacher [95] for a perturba-
tion theorem with B unbounded. When A is sectorial, we refer to Pazy [281] for a
perturbation theorem whenever B is unbounded and composed with some fractional
power of the resolvent of A being bounded (we will present the notion of fractional
power in Chapter 9).






Chapter 3

Integrated Semigroups and Cauchy Problems
with Non-dense Domain

The goal of this chapter is to introduce the integrated semigroup theory and use
it to investigate the existence and uniqueness of integrated (mild) solutions of the
nonhomogeneous Cauchy problems when the domain of the linear operator A is not
dense in the state space and A is not a Hille-Yosida operator.

3.1 Preliminaries

Let A: D(A) C X — X be a linear operator on a Banach space X. Consider the
nonhomogeneous Cauchy problem
du —
E:Au(tﬂ—f(t) fort > 0and u(0) =x € D(A), (3.1.1)

where f € L] _((0,7),X) for some 7 > 0. Recall that u € C([0,7],X) is an inte-

Loc
grated solution (or a mild solution) of (3.1.1) if u satisfies

/Otu(s)ds e D(A), Vi €10,1],

and . .
u(t) = x+A /O u(s)ds + /0 F(s)ds, Vi €[0,1].

From the results in Sections 2.4 and 2.5 we know that when the domain of A is dense
in X and A is a Hille-Yosida operator, the integrated solution of (3.1.1) is given by

u(t) = Ta(1)x+ /O "Ta(t— ) (s)ds,

where {T4(¢) };>0 is the linear Cy-semigroup generated by A.
When D(A) # X, in order to define such an integrated solution we start by con-
sidering the special case

99
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d
(71; = Aul(t) +x for t > 0 and u(0) = 0, (3.12)

where x € X. Define
X() = D(A)

Assume that A, the part of A in Xp, is the infinitesimal generator of a strongly con-
tinuous semigroup {74, () };>o of bounded linear operators on X and the resolvent
set p(A) of A is nonempty. We will see that the unique integrated solution of (3.1.2)
is given by

u(t) = Sa(t)x,
where {S4(t)};>0 is a strongly continuous family of bounded linear operators on X,
which is the integrated semigroup generated by A, and

Sa(£)x = (AT —Ao) /0 "L (s)ds(AT— A)~'x,

in which 4 € p(A).
We will study the relationship between {S4(¢)}:>0, A and p(A) as well as the
relationship between {S4 (¢) };>0 and the integrated solution of (3.1.2); that is,

t
SA(t)sz/ Sa(Dxdl +1x, ¥t >0, Vx € X,
0

with .
/ Sa(1)xdl € D(A).
0

We will see that the integrated solution of (3.1.1) (when it exists) is given by
d t
u(t) =Ty, (t)x+ o /0 Sa(t—s)f(s)ds

whenever the map t — (Sy* f) (t) := J3Sa(t — s)f(s)ds is continuously differ-
entiable. Then we will study the properties of A+ B when B : D(A) — X is a
bounded linear operator from D(A) into X. Finally, we will derive some estimates
on % JoSa(t —s)f(s)ds based on some growth rate estimation on the semigroup

{Tao (1) 10
In Section 3.8 we will consider the following example.

Example 3.1.1 (Abstract Age-structured Model in LP). Let p,q € [1,+). Con-
sider the PDE associated to this problem

0 da
(e:0) = 1), G.13)

where
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heL9((0,7);R).

Assume that
M€ LT(0,400).

Usually, when the solution exists, it is given by
"a

exp —/ ,u(s)ds) ola—t) ifa—t>0
a—t

U (- [ uas)ia-a) ita-r <o

This suggests that in order to obtain the existence of solutions in L? (in some sense
which still need to be specified) we will need to assume that g > p.
Consider the Banach space

X :=RxLP((0,+e);R)

endowed with the usual product norm

a
1(5)][ =1t 1

and the linear operator A : D(A) C X — X defined by
- /
¢ —¢—ue

D(A) = {0} x WP ((0,4c0);R).

with domain

The domain of A is not dense in X and one can show that A is a Hille-Yosida operator
if and only if p = 1. By identifying

=, )

the PDE (3.1.3) can be rewritten as an abstract nonhomogeneous Cauchy problem

du

wAwmfmmnzmmmm—<%>e(m,

£0) = (’5(;))

where
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3.2 Integrated Semigroups

In this section we first give the definition of an integrated semigroup.

Definition 3.2.1. Let {S(¢)},., be a family of bounded linear operators on a Ba-
nach space (X, ||.||). We say that {S(t)},- is an integrated semigroup on X if the
following properties are satisfied:

(i 8(0)=0;
(ii) t— S(¢)x is continuous from [0, +o0) into X for each x € X;
(iii)  S(r) satisfies

S()S(s) = /0 1S(r+5) — S(r)]dr, ¥t,5 € [0, +o0) . 32.1)

Remark 3.2.2. (i) Let {T'(7) };>0 be a strongly continuous semigroup on a Banach
space (X, ||.||). Define

S(t) = /0 "T(s)ds.

Then {S(¢)};>0 is an integrated semigroup on X x X. In other words, the integration
of a strongly continuous semigroup is an integrated semigroup.
(ii) We have

/ " S(ryr - / S(r)dr— / S(r)dr = / '[S(r5) — S(r)ldr
Therefore, by using (3.2.1) it follows that
S()S(s) = S(s)S(¢), Vt,s € [0,400). (3.2.2)

Set
X = {x € X : S(.)x € C ([0, +o0) 7X)} VE> 1.

It is clear that X is a subspace of X, and we have the following properties.

Lemma 3.2.3. Let {S(t)},- be an integrated semigroup on a Banach space (X, ||.|).
The following properties are satisfied

(i) S@HX cCX,vt>0;

(ii)  S'(2)S(s)x =S(t +s5)x—S(t)x,Vt,s > 0,Vx € X;
(iii)  S'(£)S(s)x = S(s)S' (t)x,Vt,5 > 0,Vx € X1;

(iv) S'(6)Xi C X1,V > 0;

(v) S(s)S(t)x=5(t+s)x,Vt,s > 0,Vx € X;.

Proof. (i) and (ii) are immediate consequences of (3.2.1). (iii) follows from (3.2.2),
the property (i) and the fact that S(s) is bounded. To prove (iv) and (v), it is sufficient
to note that

S(s)S'(t)x = S(t +5)x — S(t)x,Vx € X1,Vt,s > 0.
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Since the second member of the above equation is differentiable with respect to s,
we obtain (iv) and (v). O

Definition 3.2.4. An integrated semigroup {S(¢)}, is non-degenerate if
S(t)x=0,vt >0=x=0.

Lemma 3.2.5. Let {S()},.o be a non-degenerate integrated semigroup on a Ba-
nach space (X, ||.||). Then §'(0) = Ix,

Proof. We have
S()S'(t)x = S(t + s)x — S(t)x,Vt,s > 0,Vx € X;.
So for t = 0, we obtain
S(s) [$'(0)x—x] =0,Vs > 0,Vx € X;.
Since {S(¢)},~ is non-degenerate, it follows that §'(0) = Iy,. O

Definition 3.2.6. Let {S(t)},-, be a non-degenerate integrated semigroup on a Ba-
nach space (X,||.]|). A linear operator A : D(A) C X — X is said to be the generator
of {S(#)},> if and only if

t
xeD(A)andy =Ax & S(t)x = tx+/ S(s)yds,¥t >0,
0
or equivalently
t
Graph(A) = {(x,y) EXxX:S(t)x= tx+/ S(s)yds,Vt > 0}. (3.2.3)
0
It can be readily checked that
t
G= {(x,y) EXXX:S(t)x= tx+/ S(s)yds,Nt > O}
0

is a closed subspace of X x X. Moreover, if {S(¢)}, is non-degenerate, then G is
the graph of a linear operator A. Indeed, we define

D(A) ={xe X :(x,y) € Gforsomey€c X}.
Assume that x € D(A) and there exist y € X and z € X such that
(x,y) € Gand (x,z) €G.

Then . .
S(t)x = x+/ S(s)yds = x+/ S(s)zds, ¥t >0,
0 0
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SO
S(t)(y—z) =0,V > 0.

Since {S()},- is non-degenerate, we deduce that
y=z

Thus, G is the graph of a map A from D(A) into X. Moreover, since G is a closed
linear subspace of X x X, it follows that A : D(A) C X — X is a closed linear operator
onX.

From the above observation we have the following lemma.

Lemma 3.2.7. The generator of a non-degenerate integrated semigroup {S(t)},>
on a Banach space (X, ||.||) is uniquely determined.

We also remark that
Graph(A) = {(x,y) € X; x X : §'(t)x =x+S(t)y,vt > 0} . (3.2.4)

Lemma 3.2.8. Let {S(t)},( be a non-degenerate integrated semigroup on a Ba-
nach space (X, ||.||) and let A be its generator. Then A is a closed linear operator.

Proof. Assume that (x,,y,) € Graph(A) — (x,y). Then for each n € N and each
t > 0, we have

t
S(t)xn = tx, —|—/ S(s)ynds.
0
Taking the limit when n goes to 4o (for ¢ fixed), we obtain that

1
S(t)xztx—i—/ S(s)yds, vt > 0.
0

Therefore, (x,y) € Graph(4). O

Lemma 3.2.9. Let {S()},.o be a non-degenerate integrated semigroup on a Ba-
nach space (X,||.||) and let A be its generator. For each x € X and each t > 0, we
have

! t
/ S(s)xds € D(A) and S(t)x :A/ S(s)xds+tx.
0 0
Proof. By using (3.2.1), we obtain
S S S !
S(1) / S(o)xdo = / S(1)S(0)xdo = / / S(r+ ) — S(r)|xdrdo
0 Jo Jo Jo
and by Fubini’s theorem we obtain
S 1 S
S(1) / S(0)xdo = / / IS(r+ 6) — S(r)| xdadr.
0 0 Jo

Hence, [ S(0)xdo € X;, and
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Sit)/osg(g) / (t+0)—S(t)]xdo

/ (t+0)— xdG—|—/S )xdo — sS(t)x
= X — §X +/ o)xdo.

Setting X = [; S(0)xdo and y = S(s)x — sx, we obtain
S'(t)x—x=S(t)y, vt >0,

and integrating the last equation yields that
1
S(F— 1% = / S(o)gda, Vi > 0.
0

Thus,
t
£= / S(I)xdl € D(A) and = AX.
0

It remains to observe that
)
T AT S(s)x—st—A / S(0)xdo.
0

This completes the proof. 0O

Lemma 3.2.10. Let {S()},.( be a non-degenerate integrated semigroup on a Ba-
nach space (X, ||.||) and let A be its generator. We have the following properties
(i) D(A) CX;
(ii) S(t)X, C D(A),Vr >0, and S'(t)x —x = AS(t)x,Vt > 0,Vx € X;;
(iii)  AS(t)x = S(t)Ax, ¥t > 0,¥x € D(A).
Proof. (i) Assume that x € D(A). By the definition of D(A), we can find y € X such
that
!
S(t)x—tx = / S(1)ydl, Vi > 0.
0

Now by taking the derivative of the last expression and by using the fact that y = Ax,
we have
S'(t)x = x+S(t)Ax,Vt > 0, Vx € D(A). (3.2.5)

Let x € X be fixed. Then from Lemma 3.2.9 we have
r
S(t)x—ix=A / S()xdl, ¥t > 0,
0

0 IS(t+h) —
h

Since A is closed, we deduce when £ 0 that

S 1 [t+h
(t)]x _x:AE/ S(I)xdl, ¥t >0,Yh > 0.
t
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S(t)x € D(A) and S'(t)x —x = AS(t)x, Vt > 0. (3.2.6)
(i1) and (iii) follow from (3.2.5) and (3.2.6). O

The following lemma provides the uniqueness of mild solutions whenever A gen-
erates an integrated semigroup.

Theorem 3.2.11 (Uniqueness). Let {S(t)},~ be a non-degenerate integrated semi-
group on a Banach space (X, ||.||) and let A be its generator. Let T € (0,40]. As-
sume that u : [0,7) — X is continuous such that

t
/ u(6)do € D(A),Vi € [0,7),
0
and .
u(t) :A/ u(o)do vt €10,7).
JO
Then u(r) =0,Vt €[0,7).
Proof. Since D(A) C X;, we have [ju(c)do € X;,Vs € [0,7). By Lemma 3.2.10

we have

% (S(t—s) fyu(o)do) = —S'(t —s) [y u(c)do + S(t — s)u(s)

and by using (3.2.5) we obtain
% (S(t—s) [yu(o)do) = — [yu(c)do —S(t —s)A [fu(c)do + S(t — s)u(s).

By using the fact that u is a mild solution we deduce that

d

2 (S(t=5) [3u(0)do) = — [3u(0)do.

d
Integrating the map s — p (S(r—s) fyu(c)do) from O to 7 and noting that S(0) =

0, we obtain
t N
0= —/ / u(G)dods, Vi € [0,7).
0 J0
Differentiating twice we obtainu =0. 0O

As an immediate consequence of Lemma 3.2.9 and Theorem 3.2.11 we obtain
the following theorem.

Theorem 3.2.12. A non-degenerate integrated semigroup is uniquely determined by
its generator.

Proof. Assume that A generates two non-degenerates integrated semigroups, {S(f) },~

and {g(t)} o Then by Lemma 3.2.9 we have
1>
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AT&Q—§@”mﬁeDQﬂmﬂ[ﬂﬂ—f@ﬂx:Aéwﬂ@—§®ﬂmm
Applying Theorem 3.2.11, we deduce that
St)=58(),vt > 0.
This proves the theorem. 0O

Another consequence of Theorem 3.2.11 is the uniqueness of mild (or integrated)
solutions of the Cauchy problem (3.1.1).

Theorem 3.2.13. Let A : D(A) C X — X be a linear operator on a Banach space X .
Assume that A generates a non-degenerate integrated semigroup {Sa(t)},~ . Then
the Cauchy problem (3.1.1) has at most one integrated solution; that is, there exists
at most one continuous function u : [0,7) — X such that

AE@@eD@%Wem@,

and

anm%éﬁwm+4}@mgw6pw.

Theorem 3.2.14. Let {S(1)},~ be a strongly continuous family of bounded linear
operators on a Banach space X and let A : D(A) C X — X be a closed linear opera-
tor. Then {S(t)},~ is a non-degenerate integrated semigroup and A is its generator
if and only if the following two conditions are satisfied:

(i) Forallxe D(A)andt>0,S(t)x € D(A) and AS(t)x = S(t)Ax;
(ii) Forallx € X andt >0, [;S(s)xds € D(A) and A [ S(s)xds = S(t)x —tx.

Proof. The “only if” part follows from Lemma 3.2.9 and Lemma 3.2.10. Assume
now that conditions (i) and (ii) are satisfied. Then {S(¢)},-, is a non-degenerate
family. Indeed, assume that N

S(t)x=0,vr > 0.

Then from (ii) we have
0=A0=—rx,Vt > 0.

So
x=0.

To prove that {S (t)}t20 is an integrated semigroup, we note that (ii) implies
S(0) =0. (3.2.7)

Moreover, by combining (i) and (ii) and the closeness of A, we deduce that for all
x € D(A) the map 7 — S(¢)x is continuously differentiable, and

S'(t)x = x+AS(t)x = x+ S(t)Ax, vt > 0.
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By using this fact and the same argument as in the proof of Theorem 3.2.11, we
deduce that for each 7 € (0,+o0], if u € C ([0, 7),X) and satisfies

t
/u(l)dleD( ) and u(t A/ 1l Vi € [0,7).
0

Then u = 0.
It remains to prove that

v1(t) := S(1)S(r)x and va (7) := /0 S0 £1) — S()] xdl
are equal. To prove this we will show that
i) =A /0 ()l 4+ 1S(r)x for £ > O.and j = 1,2. (32.8)
Then u(r) = v (t) — va(¢) satisfies
/Otu(l)dleD(A,andu A/ D)dl, ¥t € [0, +o0)

which implies that u = 0.
To prove (3.2.8), we have

/V1 )dl = /S r)xdl € D(A)
/v] )dl = A/S r)xdl

= S@)S(r)x—1S(r)x =vi(t) —1S(r)x.

and

We also have

ct+r 't r

v (t) = / S(1)xdl — / S(1)xdi — / S(1)xdl € D(A),
0 Jo 0
Avy (1) = S(t+r)x— S(t)x — S(r)x,
and, since A is closed,
A/ (D)l = / S+ r)x — S(I)xdl — 1S(r)x
= Vz —IS( )

It follows that {S()},~ is a non-degenerate integrated semigroup.
It remains to prove that A is the generator of {S(¢)},-o- Let B: D(B) C X — X
be the generator of {S(¢)},-,. We have
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Graph(B) = {(x,y) EXXX:S(t)x= tx+/0tS(s)yds,Vt > 0} .
By using (i) and (ii), and the fact that A is closed, we have
S(t)x=tx+ /OtS(s)Axds,Vt >0,Vx € D(A).

It follows that Graph(A) C Graph(B).
Conversely, let x € D(B). We have

t t
A/ S(Hxdl =S(t)x—tx = / S(s)Bxds,
0 0
)
1 rtth 1 t+h
A~ / S(1)xdl = ~ / S(1)Bxdl.
hJ: h Ji
Now since A is closed, we deduce when £ ™\, 0 that
S(t)x € D(A) and AS(f)x = S(t)Bx. (3.2.9)

Hence .

tx= S(t)x—/o S(s)Bxds € D(A)

and
!
tAx = AS(t)x—A/ S(s)Bxds
0
= AS(t)x—S(t)Bx+tBx.

By using (3.2.9) we obtain
Ax = Bx.

So Graph(B) C Graph(A) and the proof is complete. O

3.3 Exponentially Bounded Integrated Semigroups

Definition 3.3.1. An integrated semigroup {S(t)},. is exponentially bounded if
and only if there exist two constants, M > 0 and @ > 0, such that

ISl ) < Me®™, vt > 0.

Proposition 3.3.2. Let A be the generator of an exponentially bounded non-degenerate
integrated semigroup {S(t)},~. Then for > @, Al — A is invertible and
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—1 too A
AI—A) 'x= ),/ e MS(t)xdt,Vx € X.
0

Proof. Set
+oo
Ryx = l/ e MS(t)xdr Vx € X.
0

We first show that Ry X C D(A) and (Al —A)R; = I. By integrating by parts we
have

+oo t
R;Lx:lz/ e_)”/ S(l)xdldt,Vx e X.
0 0
Observe that

13
A / S(1)xdl = S(t)x — tx,¥x € X,
0

hence the map t — [; S(/)xdl belongs to C([0,+oc0),D(A)). Since A is closed, it
follows that
RyxeD(A),Vxe X,

and
+oo ¢
ARy x = 12/ eiA’A/ S(l)xdldt
Jo 0
oo +oo
= )Lz/ e M S(t)xdt — lz/ te M xdi
0 0
= ARy x—x,
S0

(AI—A)Ryx=x,Yx € X.
Now letx € D(A). As S(¢) commutes with A by Lemma 3.2.10, we have

to teo
RyAx= A / e MS(t)Axdt = l/ e MAS(t)xdt.
Jo 0

Since A is closed, we deduce that
RAA)C = ARA)C.

Hence
Ry (AI—A)x=x,Vx € D(A),
and the result follows. O
Recall that the dual space X* of X consists of the bounded linear forms x* : X —
K (with K=Ror K=C)
X(x) =" x)atxeX,

where (.,.) is the scalar product for the duality X*,X. We introduce the following
definition.
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Definition 3.3.3. Let A : D(A) C X — Y. Define
G (A) ={("x") eY" x X" : (", Ax) = (x",x) ,Vx € D(A)}.
Lemma 3.3.4. Let A : D(A) C X — Y be a closed linear operator. Then
(x,y) € Graph(4) & (y*,y) = (¥, %),V (y",x") € G* (A).

Proof. The implication (=) is an immediate consequence of the definition of
G* (A). To prove (<), assume that

(x,y) ¢ Graph(A).

Since Graph(A) is a closed subspace by the Hahn-Banach theorem, we can find a
bounded linear functional f on X x Y such that

f (%) #0and f(x,y) =0,V (x,y) € Graph(A).

Setting x*(x) = f(x,0) and y*(y) = —f(0,y), then we have

<y*,)7> # <X*755>7 and <y*,y> = <X*vx> ;¥ (x,y) € Graph(A).

So we obtain
(y*,3) # (x*,x) and (y*,x*) € G*(A).
This completes the proof. O

When we restrict ourselves to the class of non-degenerate exponentially bounded
integrated semigroups, Thieme’s notion of generator [329] is equivalent to the one
introduced by Arendt [21]. More precisely, combining Theorem 3.1 in Arendt [21]
and Proposition 3.10 in Thieme [329], one has the following result.

Theorem 3.3.5 (Arendt-Thieme). Ler {S(t)},-, be an exponentially bounded and
strongly continuous family of bounded linear operators on a Banach space (X, ||.||).
LetA:D(A) C X — X be a linear operator on X . Then {S(t)}, is a non-degenerate
integrated semigroup and A is its generator if and only if there exist two constants
® > 0 and M > 0 such that

(0,40) C p(A),
IS ) < Me®™, ¥t >0,
and

(AI—A)'x=2 /w eS8 (s)xds, VA > o.
Jo

Proof. 'We apply Theorem 3.2.14. To verify assertion (i) of Theorem 3.2.14 it is
sufficient to show that (y*,S(¢)Ax) = (x*,S(¢t)x),V (y*,x*) € G*(A). Letx € D(A).
We have for each A > w and each (y*,x*) € G* (A) that

/0+°°e—/lt (x*,8(t)x)dt = <x*7/0+°°e—m5(t)xdt> _ <X*,i(7LIA)_1x>
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* 1 —1 * 1 -1
=(y A=A —-A) x)=(y", = (AI—-A)" Ax
A A
teo
= / e M {(y*,S(t)Ax)dt.
0
By the uniqueness properties of the Laplace transform, we deduce that
(", 8()x) = (", S(1)Ax) .Vt = 0,V (y*,x") € G* (A).
So by Lemma 3.3.4 we have that
S(t)x € D(A)and AS(t)x = S(¢)Ax, ¥Vt > 0.

We now prove assertion (ii) of Theorem 3.2.14. By using Lemma 3.3.4 it is sufficient
to prove that

<x*,/0tS(l)xdl> — (5, S(1)x—1x) V1 > 0,¥ (", x) € G*(A).
In fact,
/0 =t <x*, /0 tS(l)xdl>dt = % /0 =t (x*,8(1)x) dt
- % <x*,(M—A)*'x> - % <y*,A(M—A)*‘x>
- —% 0%, %) + % (v, (1=a)"'x)

oo teo
:/ e ’(y*,ftx>dt+/ e M {y*,S(t)x)dt.
0 0

too t oo
/ e ’<x*,/ S(l)xdl>dt:/ e My, S(t)x —tx)dt.
0 0 0

Once again by the uniqueness of the Laplace transform, we obtain

Thus,

t
<x*,/ S(l)xdl> =", S(t)x—1x),Vt > 0,V (y",x*) € G* (A).
0
By Lemma 3.3.4 it follows that
t t
/ S()xdl € D(A) and A / S(1)xdl = S(t)x —tx,¥t > 0,
0 0

This completes the proof. O

Corollary 3.3.6. Let {Sa(t)},-q be an exponentially bounded non-degenerate inte-
grated semigroup on a Banach space X with generator A : D(A) C X — X. Then for
each U € R, A+ ul generates an exponentially bounded non-degenerate integrated



3.4 Existence of Mild Solutions

semigroup {SAJFHI(I)}QO and
t
Suept(t) = M Sa(t) — / S, (dl.
0
Proof. We have
-1 _ e —At P
(AI—A) f,x/ e HMSu(1)dt, VA > .
0

So foreach A > @+ U,

~+oo

M= (A+uD) " =((A-wi-4)"" =@ —H)/O e MIS, (t)dt,

oo +oo
M —(A+pl) ™ =2 / MM, (1)di — / e MM, (1)d.
0 0

By integrating by parts the last integral, we obtain

(A= (A+uD) ™' =2 /0 e {emSA (1) —n /0 t e“’SA(l)dl] dr.

The result follows from Theorem 3.3.5. O
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Let (X,]|.]lx) be a Banach space. Let A : D(A) C X — X be a linear operator. In
this section we study the Cauchy problem (3.1.1) with f € L' ((0,7),X). From here

on, set
Xo=D(A).

We denote by Ay the part of A in Xy. Recall that Ay : D(Ag) C Xo — Xy is the linear

operator on Xy defined by

Aox =Ax, Vx € D(Ag) = {y € D(A) : Ay € Xo} .

Assume that (@4, +e) C p(A). Then from Lemma 2.2.9 we know that for each

A >0,
D(Ag) = (AI—A) 'Xgand (AT —Ag) ' = (A —A)"" Iy, .
Moreover, from Lemma 2.2.10, we know that

p(A) # 0= p(A) = p(Ao).
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Motivated by some examples (see the example considered in Section 3.1 when p >
1) we do not assume that A is a Hille-Yosida operator. Instead, we first make the
following assumption.

Assumption 3.4.1. Let A : D(A) C X — X be a linear operator on a Banach space
X satisfying the following properties:

(a) There exist two constants, W4 € R and My > 1, such that (@4, 4) C p(A)
and VA > wu, Vn > 1,

M,
< A

(21— Il ewm) < G o

)_an(W) = ||(M_A)_

(b) limy_, o (AI—A) 'x=0VxeX.

Note that Assumption 3.4.1-(b) is equivalent to

D(Ao) =D(A).
So by using the Hille-Yosida theorem we obtain the following lemma.

Lemma 3.4.2. Assumption 3.4.1 is satisfied if and only if p(A) # 0, and Ay is the
infinitesimal generator of a strongly continuous semigroup {TAO (t)} of bounded
linear operators on Xo with

>0

HTAO (I)HX(X’O) < MAewAt, vt > 0.
Proposition 3.4.3. Let Assumption 3.4.1 be satisfied. Then A generates a uniquely

determined non-degenerate exponentially bounded integrated semigroup {Sa(t)},~ -
Moreover, for each x € X, eacht > 0, and each L > @4, Sa(t) is given by

$1(0) = (01— A0) [ Tag(5)ds (wr—4)", (G4.1)

or equivalently

!
Sa(t)x=p /0 Ty (s) (I — A) ' xds+ [T - Tay ()] (uI—A)'x.  (342)
Furthermore, for each y > max (0, @y ) , there exists My > 0 such that
[1Sa(t)|| < Mye” ¥t > 0. (3.4.3)

Finally, the map t — Sa(t)x is continuously differentiable if and only if x € Xo and

dSy (t)x
dt

= Ty (1)x, Vt >0, Vx € Xo. (3.4.4)

Proof. Since
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ot
Ao /0 TAO (s)ds = TAO (t) -1,

it is clear that (3.4.1) is equivalent to (3.4.2). Moreover, from (3.4.2) we deduce that
for each y > max (0, wy) , there exists M, > 0 such that

1S4 (1)|| < Mye, ¥t > 0.

Furthermore, the map

t—Sa(t)x=p /Ot Tao(s) (I —A) ™ xds+ [I— Ty, (t)] (I —A) "' x
is differentiable if and only if the map
1= Ty (1) (WI—A) ' x
is differentiable. This is equivalent to say that
(ul —A) 'x e D(Ay) & x e D(A).

In order to prove that {Sa(¢)},>o defined by (3.4.1) is the integrated semigroup
generated by A, we apply Theorem 3.3.5. Let A > max (0, @, ) and let i > w4. Set

S4(0) 5= (1 —A0) [ Tay ()ds (w1 —A) "

Since ul — Ay is closed, we have

oo oo 1 .
) / e M8, (1)dt = (ul — Ag) A / oM / Ty (s)ds (I —A)~"dr.
0 JO 0

By integrating by parts

tee —At Feo —At -1
)L/O e S”(t)dt:(uI—Ao)/O eI () (] —A) " d

= (Ul —Ao) (AT —Ag) ' (uI—A)"
= (Wl —Ao) (uI—Ag) ' (AT —A) ",

we have .
A=A =2 /0 ¢ M8, (£)d1, YA > max (0, @)

From Theorem 3.3.5 it follows that {S u(t) } />0 1s anon-degenerate integrated semi-
group and A is its generator. Moreover, by Theorem 3.2.12, since an integrated semi-
group is uniquely determined by its generator, it follows that S, () is independent
ofu. 0O

Now since
Sa(t)x € Xo, Vt >0,Vx € X,
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from (iii) in Definition 3.2.1 which is
t
SAOSA(s) = | Salr+9) = Sa(r)dr, V.5 € [0.+9),
0

we obtain that
TAO (I)SA (S) = Sa (Z +S) —Sa ([), Vt,s > 0. (3.4.5)

From (3.4.1) or (3.4.2), we know that S4 () commutes with (A1 —A)~"; that is,
Sa(t) (A —A) " = (AT —A) "' S4(2),Vt > 0,VA > @y, (3.4.6)

and .
Sa(t)x= / Ty (Dxdl, ¥t > 0, ¥x € Xo.
0

Hence, Vx € X, Vt > 0, VU € (@a,+0),
t
(,uI—A)_lSA(t)x:SA(t)(,uI—A)_lx:/ Ty (5) (11 —A) ™" xds.
0

We have the following result.

Lemma 3.4.4. Let Assumption 3.4.1 be satisfied and let 19 > 0 be fixed. For each
fec'(0,%],X), set

(Saxf)( /SA f(t—s)ds, ¥t € [0, 10].

Then we have the following:

(i) Themapt — (Sa+ f)(t) is continuously differentiable on [0, 7|, and

5(SA*f)() +/SA "(t—s)d

(ii)  (Saxf)(t) € D(A )VIE[OTO];
(i) Ifwe setu(t) = & (Sy+ f) (1), then
—A / s)ds + / F(s)ds, Vr € [0,70]; (3.4.7)
(iv) Foreach A € (®,+o0) and each t € [0, 7], we have
(M —A)" j(SA* ) / Tt —s) AT —A)" f(s)ds.  (3.48)

Proof. Let f € C'([0,7],X). Then

d7( dl‘/SA l‘*SdS—SA Jr/SA l‘*S
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Indeed, by using Fubini’s theorem we have

//SA s—rdrds-//SA s—rdsdr
—// Sa(r)f'(Ddldr

t—r
:/SA r/ F(Ddrdl

—/SA F(t—r) — £(0))drdL.

t—1
(Sa* f) (¢ /SA ds+// Sa(r)f (1)drdl.

By using the above formula and Lemma 3.2.9, we have that

So

t t
/ Sa(s)xds € D(A) and S4(t)x = A/ Sa(s)xds+tx.
0 0
By using the fact that A is closed, we deduce that
1
/ Sa(t —s)f(s)ds € D(A), Vi € [0,], Vx € X
Jo

and

t t t—1
A / St —s)f(s)ds = A / Sa(s)£(0)ds +A / / Sa(r)f'(1)drdl
0 0
t t—1
:A/ Sa(s)f ds+/ / Sa(r)f'(1)drdl
0

117

— S4(1)£(0) —1£(0) + / [Salt —1)f' (1) — (1= 1) f (D)al

/SAt—l Dl —1£(0) /Ot(t—l)f’(l)dl

:E/OSAH dlf/of(l)dl

Therefore,

& ssa-nswa=a ['sia-ngwar+ [ jwar, vie o).

Moreover, we have for A € (®,+<o) that

(AT —A) " (Sa % f) (¢ /SAt ) (A —A) " f(s)ds
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_ / ’ / L () (A= A) " £(s)dlds,
0 JO

which implies that

d _ ! -
S A=A (a5 ) (1) = /0 Tyo(t —5) (AL — A) " £(s)ds.
This completes the proof. 0O

The following lemma can be used to obtain explicit solutions.

Lemma 3.4.5. Let Assumption 3.4.1 be satisfied. Let v € C ([0, 7], Xo0), f € L' ([0, %], X),
and A € (Wy,+oo). Assume that

(i) (AM—A)"'veWw" ' ([0,1)],X) and for almost every t € [0, 7],

4

T A=A ") = A AL =A) " v(t) —v(t) + (A —A) "' f(1);

(ii) t— (Saxf)(¢t) is continuously differentiable on [0, Ty).

Then v is an integrated solution of (3.1.1) and

v(t) =Ty, (1)v(0) + % (Saxf) (), Vi €[0,70].

Proof. We have for almost every ¢ € [0, 7p] that

d _
- (A1-4) ()

= A A=A ""v(t) = (AT —A) (M —A) 'v(t) + (A —A) " f(r)
=Ag (A —A) (@) + AL —-A) " £ ().

So
(AL —=A) " o(t) = Tay (1) (AT — A) ' 0(0) + /0 t Tay (t —5) (AL —A) " f(s)ds.
By (ii), we have
A=) L (sae 1) (1) = S a—a) " (5200) ()
- /0 Ty (1 —5) (AL —A) " £(s)ds,

so we have for all 7 € [0, 79| that

(A1=)4(0) = A=) [T 09(0)+ 5 (51 0)].
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Since (A1 —A) ! is injective, the result follows. O

In order to obtain the existence of mild (or integrated) solutions, we make the
following assumption.

Assumption 3.4.6. Let 7y > 0 be fixed. Let Z C L' ((0,7),X) be a Banach space
endowed with some norm ||.||, . Assume that C! ([0, %], X)NZ is dense in (Z, ]| )
and the embedding from (Z,|.||;) into (L' ((0,7),X),][.|[,1) is continuous. Also
assume that there exists a continuous map I" : [0, %] X Z — [0, +o0) such that

(a) I'(+,0)=0,Vr€][0,1)],and the map f — I'(¢, f) is continuous at 0 uniformly
int €[0,7);
(b) Vte[0,%], Vf<C([0,7],X)NZ, we have that
d
|5 seen

We now state and prove the main result in this section.

Theorem 3.4.7. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Then for each f €
Z the map t — (Sa* f) (t) is continuously differentiable, (Sp* f)(t) € D(A),Vt €
[0, 0], and if we denote u(t) = & (Sy* f) (t), then

u(t) :A/(:u(s)ds—i—/(:f(s)ds, vt € [0, 1]
and
lu(®)| <T(2, f), Yt €[0,7]. (3.4.9)

Moreover, for each A € (®,+o0), we have

1
(A1—A)"! % (Sax f) (1) :/ Tay (t —5) (AL — A) ™" f(s)ds. (3.4.10)
0
Proof. Consider the linear operator

Loy (€ ([0,%] X)NZ.]1 ) = (€ ([0, %] %), ooy

defined by

d
Lay(£)(1) = - (Sa* £)(0), V1 € [0, %], ¥ € C' ([0, ], X)NZ.
Then
sup ||Lg, (£)(1)[| < sup I'(r,f).
t€[0,79] t€[0,7]
Since C! ([0, %], X)NZ is dense in Z, using assumptions (a) and (b), we know that
Lz, has a unique extension Lg, on Z and
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By construction, Lg, : (Z,|.||,) — (C([O, 70],X), ||~Hoo,[0¢0]) is continuous.

Let f € Z and let {f,},-, be a sequence in C' ([0,7],X) NZ, such that f, — f
in Z. We have for each n > 0 and each ¢ € [0, 7p] that

Lo(NO)| <T.f). v e 0.%), vf e 2.

[ Ta s = [ La(m)ds = [ s=s)p(s)ds

Since the embedding from (Z,]|.||,) into (L' ((0,7),X),||./[.1) is continuous, we
have that f, — fin L' ((0,7),X) and when 1 — o0,

/ Loy (f)(s)ds = / Salt —s)f(s)ds, Vr € [0, 7).

Thus, the map ¢ — (S4 * f)(¢) is continuously differentiable and

LT0 dt/ Sa(t—s)f(s)ds, ¥Vt €[0,1].

Finally, by Lemma 3.4.4, we have for each n > 0 and each ¢ € [0, 7] that

Loy ()t A/Lrofn ds+/fn

the result follows from the fact that A is closed. O

In the proof of Theorem 3.4.7, we basically followed the same method as Keller-
mann and Hieber [207] used to prove the result of Da Prato and Sinestrari [85] (see
also Arendt et al. [22, Theorem 4.5.2, p.145]) for Hille-Yosida operators and with
Z=L"((0,1%),X).

As a consequence of (3.4.10) we obtain the following approximation formula.

Proposition 3.4.8 (Approximation formula). Let Assumptions 3.4.1 and 3.4.6 be
satisfied. Let f € Z. For each t € [0,7] we have that

- L (s ) (t):/ll_iglw/o Tag (1 — DA (AT —A) " £(1)dl. (3.4.11)

Proof. Let f € Zandt € [0, 7] be fixed. Since
4 (Sa*f)(t) € X
dt A 05
we have

lim 2 (A=A 5 (500) () = & (5001) (1)

A—+oo

But by using formula (3.4.10), we have for each A > 0 large enough that
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A (d—A)"! % (S ) (1) = (/0' Tay (6 — )2 (A1 —A) " f(s)ds

and the result follows. O
From this approximation formulation, we deduce the following result.

Corollary 3.4.9. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Let f € Z. For each
t,s € [0,7] with s <t we have
d
dt

4

(S45)(0) = Tay (1 =) &

(Sa# 1) (5) 4 0 (Sax f(4) 1 —s). G412
Proof. Indeed by using the approximation formula we have
LSy f) (1) =limy oo f§ Tao (1 — DA (A —A) ™ f(1)dl
=limy sy [ [ Tag (1= DA (AT —4)™" f(1)dl
4 1Ty (= DA (AT —A)7! f(l)dz}
=limy_, ... {TAO (t—5) 3 Tag (s — DA (AL —A) " £(1)dl
5 Tagle—s = DAAI=A) " f(1+ s)al]

the result follows. 0O

By Lemma 3.4.2 and Theorem 3.4.7, we obtain the following result.

Corollary 3.4.10. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Then for each x €
Xo and each f € Z, the Cauchy problem (3.1.1) has a unique mild solution u €
C([0,1],Xo) given by

u(t) =Ty, (1)x+ % (Sa*f) (), vt €[0,70]. (3.4.13)

Moreover, we have

u(t)|] < Mae®" ||x|| + (¢, f), V¢ € [0, 7). (3.4.14)

3.5 Bounded Perturbation

In this section we investigate the properties of A+ L : D(A) C X — X, where L is
a bounded linear operator from Xy into X. If A is a Hille-Yosida operator, it is well
known that A 4 L is also a Hille-Yosida operator (see Arendt et al. [22, Theorem
3.5.5D.

The following theorem is closely related to Desch and Schappacher’s theorem
(see [95] or Engel and Nagel [126, Theorem 4.1, p. 183]). This is in fact an inte-
grated semigroup formulation of this result.
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Theorem 3.5.1. Let Assumptions 3.4.1 and 3.4.6 be satisfied. Assume in addition
that C ([0, 7] ,X) C Z and there exists a constant 8 > 0 such that

I'(t,f)<é Sl[lop] £, Vf € C([0,%],X), Vt € [0,70].
s€(0,¢

Let L € £ (Xo,X) and assume that
LI 2 (xpx) 6 < 1.

Then A+L:D(A) C X — X satisfies Assumptions 3.4.1 and 3.4.6. More precisely,
if we denote by {Sp1(t)}, the integrated semigroup generated by A + L, then
VfeCl([0,%],X), we have

Proof. 'We first prove that there exists @ € R such that (®,+o) C p (A+L). We
have for x € D(A) and y € X that

%(SH 1)) sup T(s, ), Vi€ [0,5].  (35.1)

1= ILl 2 (x,.x) O sefou]

AM—-A+L)x=y< M -A)x=y+Lx
sx=M-A)"y+AI-A)"Lx.

So Al — (A+L) is invertible if H (AT—A)" LH Sx < 1. Since {Sa(f)},~( 18 ex-
. >

ponentially bounded, by Proposition 3.3.2, we have for all A > @ that
(AI—A)"' =1 / e M8, (t)xdt, Vx € X.
We obtain that
-1 o 0o
(AI—A) ' Lx=2 / M8, (1) Lxdt + A / M8, (1) Lxd.
() 0
Since S4(t)y = % Jo Sa(t —s)yds,¥y € X, from the assumption we have

1Sa(@)yll < 8lyll, vt € [0,7], ¥y € X.

Thus,
To
H;L / e M S, (1) Lxdi
0

To
<A [ e ML i, 6 ]

and
L) ayp
l/ e Mdt=1—e"0 3 1as A — +oo.
0

Moreover
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—0as A — Foo.

teo
H/I / M S, (1) Ldi
T

So we obtain

limsu H AI—A ‘1LH <Ll §<1.
/1—>+£ ( ) 2(%X) | Hj(xo,x)

We know that there exists @ € R such that

- 1L (0, x) 0 + 1

1 ~
H(M A) LHx<x0,X> : | VA € (@, +).
Hence, for all A € (@, +o0), Al — (A+L) is invertible,
+oo k
A —(A+L)"'y=Y [(M-A)”L} (AI—A)""y
k=0

and for each y € X,

1
—1
[CYECRR ) LTS sk

H(),I—A)flyH —0as A — oo
1- 2

To prove Assumption 3.4.1 it remains to show that (A + L), the part of A+ L in X,
is a Hille-Yosida operator. Let x € Xg. Define IT,'% : C ([0, %], Xo) — C ([0, 0] , Xo)
for each v € C([0, 7] ,Xp) by

K)(1) = %(SA*LV) (1) and W,(v)() = T, (£)x+ IT(v)(2), ¥t € [0, 7).

Then from the assumptions it is clear that ¥ is an [|L|| &y, x) 6 —contraction. It
implies that ¥, has a unique fixed point given by

oo

Ut)x= Y IT* (Tp, (.)x) (1), Vt € [0, 7).
k=0

In particular,

1

Ut)x|| <
U (0)x] 1= Ll 2 x,.x) 0

Mpe®" ||x||, Vi €[0,70].

Thus, we obtain {U(#)}y<,<,  a family of bounded linear operators on Xp, such
that for each x € Xy, r — U (t)x is the unique solution of

1 1
U(t)x= x+A/ U(s)xds+/ LU (s)xds, Vt € [0,7] .
0 0

Therefore,



124 3 Integrated Semigroups and Cauchy Problems with Non-dense Domain
U(0)=TandU(t+s)=U(t)U(s), Vt,s € [0,70] witht+s < 1p.
We can define for each integer k > 0 and each 7 € [kTp, (k+ 1) 7o) that
U(t) =U(t—kw)U (%),

which yields a Cy-semigroup of Xy and
! !
U(t)x = x+A/ U (s)xds +/ LU (s)xds, ¥t > 0.
0 0

It remains to show that (A + L), is the generator of {U ()}, . Let B: D(B) C Xo —
X be the generator of {U(t)},- - Since U (t)x is the unique solution of

!
U(t)x:x+(A+L)/ U (s)xds, ¥Vt > 0,Vx € Xy,
0

we know that (A1 — (A+L))"" and U(r) commute, in particular (A — (A+ L))"
and (Al — B)fl commute. On the other hand, we also have

t t
B/ U(s)x= (A—|—L)/ U(s)xds, ¥t > 0,Vx € Xy.
0 0
Now since (A1 — (A+L)) " and (A1 —B) ™" are commuting we deduce that

(A —(A+L))"! /(:U(s)x — (A1—B)! /OtU(s)xd& Vi > 0,Vx € Xo.

By computing the derivative of the last expression at # = 0, we obtain for sufficiently
large A € R that

(Al —(A+L)) 'x=(AI—B) 'x, Vx € X,.

Therefore, B = (A+ L), and A + L satisfies Assumption 3.4.1.
Now by using Proposition 3.4.3 we know that A 4 L generates an integrated semi-

group {Sa+. ()}, and
t t
Suip(t)x = (A+L) / Sasr()x+ / xds, Vit >0, Vx € X.
0 0

So
d
Sarr(t)x=Sa(t)x+ 7 (Sa*LSa+r()x) (1), Vi €[0,7], Vx€X

and for each f € L' ([0, 7], X),Vt € [0,7], Vx € X,

/0 Sain(t —9)f(s)ds = /0 "Sa(t —$)f(s)ds + /0 "Wt — ) f(s)ds,
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where W (¢)x := % (Sa *xLSa+p(.)x) (2).
Also notice that

/OZ/OIW(Z—S)f(s)dsdl = /OI/SIW(Z—S)f(s)dlds

— /Ot/OHW(z)f(s)dzds
_ /0 (Sa % LSar()F(5)) (t —5)ds
- /0 t /0 T Sa (= s — DLSa.r () (s)dlds
_ /t /'t Sa(t — DLSass (I —5)f(s)dlds
JO Js
t ol
_ /0 /0 Sa(t — DLSasr(l—s)f(s)dsdl

t ol
_ / Salt—1) / LSpsr(l— ) f(s)dsdl,
0 0

we then have

[ Wie=s)56)ds = £ SaxLSaa N ) 00

Thus,

(Sas2#£) () = (S )0) + 0 (Sa# L (Sxrn /) () (1), ¥ €[0.3).
Let f € C'(]0,7],X). The map t — L(Sa1z * f) (.) is continuously differentiable
and

LS N )0 = SHOL 10 N0+ (S15 L1120 ()) 0

SO
d

S 0= N0+ 5 (L5 SN 0) 0

Therefore, for each ¢ € [0, Tp] , we have

% s MATIRTID

<T(t.f)+ Ll #(x,,x) O sup

s€[0,1] dr
and
sup d (Sa+Lxf) (9] < —1 sup I'(s, f)
— (Sa+L < ).
selor ldt T 1= [Ll] 2 (xy.x) 6 sefo

This completes the proof. 0O
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By Theorem 3.5.1, we can make an alternative for Assumption 3.4.6.

Assumption 3.5.2. Assume that there exist a real number t* > 0 and a non-
decreasing map & : [0, 7] — [0, +oo) such that for each f € C'([0,7*],X),

d
|50 <80 swp 170 w1 € 0.7,
s€[0,1]
and
lim 8(r) =

t—0t

One may observe that the inequality in Assumption 3.5.2 plays a crutial role in
obtaining some estimations for the solutions (see Magal and Ruan [247, Proposi-
tion 2.14]). Moreover, by using the results of Thieme [335], Assumption 3.5.2 is
equivalent to the fact that there exists 7 > 0 such that

V=(84,0,7) < 4o0,¥VT >0, and lim V>(S4,0,7) =0,

t(>0)—0

where V*=(S,,0, 7) is the semi-variation of {S4(#)},-, on [0, 7] defined by

V=(84,0,7) := sup{’

Z Sa(ti) —Sa(ti-1))xi
-

}<+%

in which the supremum is taken over all partitions 0 =#y < .. < #, = 7 of the interval
[a,b] and over any (x1,..,x,) € X" with ||x;|[x <1, Vi=1,..,n.

Thus, under the Assumptions 3.4.1 and 3.5.2, the conclusions of Theorem 3.4.7
hold with (3.4.9) replaced by

lu(®)| < 8() sup [[f(s)Il, vt € [0,7] (3.5.2)

s€[0,1]

and that of Theorem 3.5.1 hold with (3.5.1) replaced by

5(1)
sup |[£($)], (3.5.3)
D o o M

| nennll < =

forall 7 € [0, 7z], where 77, > O is fixed such that

S () (1Ll 0 x) < 1-

In the following it will be convenient to use the following notation. For each T > 0
and each f € C([0,7],X), set

4 (Saxf) (1), Vt€0,7].

(Sa0f)(1):=

The following proposition is one of the main tools in studying semilinear problems.
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Proposition 3.5.3. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Let € > 0 be fixed.
Then for each y > @y, there exists C(€,7y) > 0, such that for each f € C(R4,X) and
1>0,
e "|[(Sao f) (1)l < Cle,y) sup e[| f(s)]]. (3.54)
s€[0,1]
More precisely, for each € > 0, if T > 0 is such that My 0 (7 ) < €, then the inequal-
ity (3.5.4) holds with

2emax (1,e77%)
C(e,y) = @ Yy > .
Proof. Lete >0, f € C(Ry,X), and ¥ > wy be fixed. Let 7 = 7¢ (€) € (0,7] be
such that M4 6(7,) < €. By Assumption 3.5.2, we have

[(Saof) (D)l <& sup [If(s)l], Ve € [0, 7]. (3.5.5)

s€[0,1]

Let Y > w4 be fixed. Set
g =emax (1,e7%).

Letk € Nandt € [kte, (k+ 1) 7] be fixed. First, notice that if y > 0, we have

e sup [[f(s)| =€ sup e™e " [|f(s)]

s€lkte 1] s€ (ke 1]

<ee sup e | f(s)]
s€kTe 1]

=& sup e | f(s)]
s€[kTe t]

Moreover, if ¥ < 0, we have

e sup [[f(s)[l =€ sup ePe T f(s)]

s€[kTe t] s€[kTe t]

< ee™® sup e | f(s)l]
s€ ke 1]
= eele e sup e f(5)]
s€[kTe 1]
= eMee 1K) sup e P f(s)]
s€kTe 1]
<elee "™ sup e | f(s)]
s€kTe t]

=e"e sup e | f(s)]].
s€ ke 1]

Therefore, for each k € N, each ¢ € [kT¢, (k+ 1) T¢], and each y € R, we obtain

e sup [[f(s)]| <e’e sup e P f(s)]- (3.5.6)

s€[kte 1] s€ ke 1]
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It follows from (3.5.5) and (3.5.6) that for all 7 € [0, T¢],

1(Saof) (1) <& sup [[f(s)]| =e"er sup e ™[ f(s)]. (3.5.7)

s€(0.,1] s€(0,1]

Using (3.4.12) with s = 1, we have for all 1 € [1,,27,] that

(Saof)(t)=To(t—7Te) (Sao f) (Te) + (Sao f(Te +.)) (t — Te).

Using (3.5.5)-(3.5.7), we have

1(Sa 0 f) (@)l < e™ ™ [(Sao f) (Te)| +[(Sao f (Te+.)) (1 — Te))|

< eCOA(’*Te)eVTEgl sup eiyst(S)H +& sup [[f(s)]l
5€[0,7¢] SE[Te 1]

< o@All=Te) 1T g sup e || f(s)]|
s€[0,7¢]

+e'e sup e | f(s)]

SE[Te 1]

< ere? (el 1) sup P £(s)]).
s€(0,7]

Similarly, for all 7 € [27¢,37],
(Sao f)(t) = Ta, (t —27) (Sa o f) (27e) + (Sa o f (2T +.)) (t — 27¢)
and

[(Sa0f) ()] < Mgy (el 1) sup e |f(s)]

5€[0,27¢]
+e sup [|f(s)ll
SE[27¢ 1]
< o0u(1-2%) g 12T (e<wA*Y>fe+1) sup e || f(s)]
5€[0,27¢]
+ere” sup e P f(s)l
SE[27¢ 1]
< eren [elon 16250 (elon-1% 4 1) 1] sup &P 1051,

s€[0,1]

By induction, we obtain Vk € N with k > 1,Vr € [kte, (k+ 1) 7¢], and for each y >
wy that

k—1
[(Saof)(@)]| < ere” sup e[| £(s)]] le“"”)“’“ Y (eloa ey 4y
s€[0,1] n=0

(e(wA*Y)TS>n +11.

< e sup e | f(s) [i

s€[0,1] n=0
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Since y > @y, we have for each r > 0 that

T (Sa0 ) ()] < e (S0 ) ()] < —id = sup e [ f ()]

1 —el@a=77% s€[0,]

This completes the proof. O
We have the following lemma.

Lemma 3.5.4. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Then t — Sx(t) is op-
erator norm continuous from [0, +o0) into £ (X) and

Jm H(M_A)il H;ﬁ(x) =0

Proof. By Theorem 3.3.5 , we have for each A > max (0, wy) that
1 o
A—A) " x= z/ M S (1)xdt.
0
Note that
d t
Sa(t)x= —/ Sa(t —s)xds,
dt Jo
so by Assumption 3.5.2, we have
[1Sa(£)x]| < V=(S4,0,1) |lx][, ¥z > 0.

But
SA(l-i-h) —SA(I) = TAO(t)SA(h),

it follows that t — S4 () is operator norm continuous. Let € > 0 be fixed and let
Te > 0 be such that V=°(S,4,0,7¢) < €. Choose ¥ > max(0, wy) and My > 0 such that

1S4 (0)x]] < Mye™ ¥t > 0.

Then we have for each A > 7 that
1 Feo 2 Te 2
H(AI—A) xH <A My/ 7= )fdt+e/ e Mdt| ||«
Te 0

Thus,

limsu H Al—A 71” <e
7L—>+°<I>) ( ) ZX)

This proves the lemma. 0O

Let J C [0,+oc0) be an interval. Set s := infJ > 0. For each y > 0, define

BCY(J,Y) := {(p eC(J,Y) :supe "= o)y < +oo}
leJ



130 3 Integrated Semigroups and Cauchy Problems with Non-dense Domain

and
19llscrisy) = supe " lo(D)]]y -
leJ

It is well known that BC?(J,Y) endowed with the norm ||.[|5cy (s y) is @ Banach
space.
By using Proposition 3.5.3 we obtain the following result.

Lemma 3.5.5. Let Assumptions 3.4.1 and 3.5.2 be satisfied. For each s > 0 and
each © € (s,+o0|, define a linear operator %5 : C([s,0),X) — C([s,0),X0) by

Zi(@) (1) = (Sao@(.+s))(t—3), Vte[s,0), Yo eC([s,0),X).

Then for each ¥ > @4, % is a bounded linear operator from BCY ([s,0),X) into
BCY([s,0),Xo) . Moreover, for each € > 0 and each te > 0 such that My 0 (1¢) < €,

1% (9) ||ff(BCY([s,G),X),BCY([S,G),XO)) <C(&7).

Proof. Let ¢ € BCY([s,0),X) be fixed. By using Proposition 3.5.3, we have for
t € [s,0) that

eI [(Saop(.+9)) 1 —5)| <Cle,y) sup e " [@(l+9)]

1€[0,—s]

= C(e,) sup e 7 [|o(r)]
res,t]

< Cle,y) sup e lo(r)]|
refs,o)

and the result follows. O

3.6 The Hille-Yosida Case

In this section we assume that A is a Hille-Yosida operator. This assumption
corresponds to the case where Assumption 3.4.1 is verified in the L'-space. Hence,
we fix

Z=1'((0,%),X) and [ (1, f) = M H oAl=) f(. H
((0.2).X) and T (o.f) = Mg [ s ) -
in Assumption 3.4.6.
Recall that A is a Hille-Yosida operator if the following hold.

Assumption 3.6.1. Let A : D(A) C X — X be a linear operator on a Banach space
X, so that there exist two constants, wy € R and M4 > 1, such that

(@4, +o0) C p(A)

and



3.6 The Hille-Yosida Case 131

SL]& YA > wn, VE>1;
2(X) (A —y)

The following result is due to Kellermann and Hieber [207].

=27

Theorem 3.6.2 (Kellermann-Hieber). Let Assumption 3.6.1 be satisfied. Let 1y >
0. Then for each f € L' ((0,7)),X) the map t — (Sa * f) (t) is continuously dif-
ferentiable, (Sx = f) (t) € D(A),¥t € [0,70], and if we denote u(t) = % (Sa = f) (1),
then

u(t) = A /O "u(s)ds+ /0 " (s)ds, Vi € [0, %]

and .
) < M [ €6 |5) s, Vi € [0,).
0

Moreover, for each A € (@a,~+o0), we have

1 d ! -
(=2)" LS 0 = [ Tt =) A1-2)" (s
Proof. First it is clear that Assumption 3.4.1 is satisfied whenever A is a Hille-
Yosida operator. So it remains to prove that Assumption 3.4.6 is satisfied with

It ) = Ma HewA(H)f(') LI((0.).X)

Now note that by Lemma 2.4.3, we can find a norm |.| on X, such that

’(M—A)_l‘ VA > o,

< -
“A—wy

and
x| < [x] < Ma ]|, Vx € X. (3.6.1)

It follows that for each r > 0 and each & > 0,
t+h
|[Sa(t+h) —Sa(t)] x| = lim

A—+oo0

1 t+h
Tag (DA (AL —A)~ xdl‘ < / gl |x].
Jt

Jt

So
t+h
1S40+ h) — S (0)] g/ e®uldl, i,k > 0.
t

Let 7p > 0 and let f € C' ([0, 7], X) be fixed. We have
d
— (S t
L (502110

:/%i\l‘%h—l |:/Ot+hSA(t+h—s)f(s)ds—/OtSA(t—s)f(s)dS:|

t+h t
~ fim ! {/f SA(t+h—s)f(s)ds+/0 [SA(t+hs)SA(ts)]f(s)ds].
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Thus,
4 (sax f) (1)

dt

t+h pt+h—s t  rt+h—s

< limh™! [ / / eldl | f(s)|ds + / / el a1 | f(s)|ds
N0 : Jo 0 Ji—s

t
< [ e s as.
0

Now by using (3.6.1) we obtain

d t
|G e ] < [ e )

and the results follows from Theorem 3.4.7. O

Consider the nonhomogeneous Cauchy problem (3.1.1). As an immediate conse-
quence of Corollary 3.4.10, we have the following result.

Corollary 3.6.3. Let Assumption 3.6.1 be satisfied. Let 7y > 0. Then for each x € Xy
and each f € L' ((0,70),X), the Cauchy problem (3.1.1) has a unique integrated
solution u € C([0,7)],Xo) given by

d
u(t) = Tag (x4 = (Sa f) (1), V1 € [0, %]
Moreover, we have

t
[u(®)]| < Mae™" [|x]| + Ma /0 e[ f ()l ds, Vi € [0, 7).

3.7 The Non-Hille-Yosida Case

In this section we investigate the case when

Z=L"((0,7),X) and I'(, f) = MHea)(li.)f(')HLM(Oﬁ X

where p € [1,400), M >0, @ € R, and (X, ||.|)) is a Banach space. From now on,
for any Banach space (Y,].||;) we denote by Y* the space of continuous linear
functionals on Y. We recall a result which will be used in the following (see Diestel
and Uhl [107, p.97-98]).

Proposition 3.7.1. Let Z be a Banach space and J C R be a non-empty open inter-
val. Assume p,q € [1,+oo| with1/p+1/q=1.

(i) Foreach q € [1,+0o0| and each y € L (J,Z*)NC (J,Z*),
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Wiy = s [ wis)(o
peC(
lollLez) <1

(ii) For each p € [1,+e0) and for each ¢ € LP (J,Z),

Ioluz = s [ v (o@)ds
yecr(J,zt) I
[Wlla(z)*<1

Before proving Proposition 3.7.1, we make some comments about the main point
in Proposition 3.7.1. We will use C° (I,Y*) instead of L” ((0,c),Y)" because if
L?((0,c),Y)" is used, we would need a representation theorem for L” ((0,c),Y)"
with 1 < p < oo. But we know (see Diestel and Uhl [107], Theorem 1 on p.98) that
L? ((0,¢),Y)" =L1((0,c),Y*) (with p € [1,+o0) and 1/p+1/g = 1) if and only if
Y* has the Radon-Nikodym property. Recall that a Banach space Z has the Radon-
Nikodym property if and only if every absolutely continuous function F : Ry — Y
is differentiable almost everywhere (see Arendt et al. [22, p.19]). When Y is re-
flexive, Y* has the Radon-Nikodym property. In practice if we take for example
Y =L'((0,1),R), then Y* = L= ((0,1),R), but L ((0,1),R) does not have the
Radon-Nikodym property (see Arendt et al. [22, Example 1.2.8 b) p.20]).

Proof. (i) Let y € C?(J,Z*) be fixed. By Holder inequality, we have

Wz = sup /llf(e)(q)(e))de < MWllogzey -
I6llpyz)=177

If g = +oo, then there exists fo € J such that || W[ 7+ = | (t0)| 7+ - Let {en},50 C
Z be a sequence such that |le,|| = 1,Vn >0, and y (t0) (ex) — ||y (t0)|| - as n —
+oo. Let {py},~0 C C (R,R) be a mollifiers (i.e., support(p,) C [—1/n,+1/n],
Jg Pn(s)ds =1, and p, > 0). If we set

() = palto —s)en, Vs €J,Vn >0,

then || @, || 1(,z) = 1 for all n > 0 large enough, and
/1[/ $)@u(s dsf/pn to—s)y(s)ends — || (t0)]| 4+ as n — oo,
If g € [1,+e0), let a,b € J be fixed such that @ < b and support(y) C [a,b]. Set
b—
=a+k—- o ,Vn>0,Yk=0,...n+1

and
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We have
W a2y = 1Wllags z+) s n—> +oo

and
1V oz = Wl z)r asm— oo
So it is sufficient to show that
||‘V"||Lq(1,z*) = ||‘I/nHM(J,Z)*a Vn > 0.
Letn > 0 be fixed. For all ¢ € L? (J,Z) : || @||1p(; z) < 1, we have

n
/! Tkt 1

J v @e)ds=Y vie) [ os)as

n

k=0 e
For each k = Oa ey 11y let {ei}l>0 C Z such that
w(t/?)ei - ||W(t]?)||z* as | — +oo.

We can assume that y" # 0 and set

k=0 Ttk
Y240
o'(s) = "7 ifg =1
Y (o, —t"
= (k+1 )
y(t)#0
and
n l n q—l
kEO e [wE][7: Ve ) (5)
y(1])#£0 .
o'(s) = : 7 if g€ (1,4o0).
& n  __4n | (@—1) p
k)::o (41 tk)(”‘/’(’k) z )
v(r)#0
Then
!
=1,Vi>0
H(P Lr(1.2) vz
and

/]‘I/"(S) ((pl(s)> ds — |Wllaze) 51— +oo.

(ii) Let ¢ € LP (J,Z) be fixed. By using (i), it is sufficient to prove that
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Ioluz = s [ ) (0)ds=:1ol,.
vecr .z N
lvllzagz )<t

Using Holder inequality, it is clear that

0, < l@llryz). Vo €LV (].Z)

and

o1, ~181,| <10 =81, <9 = Bllryzy V9.8 € L7 (1,2)
because |¢ + |, < |¢[,+|9],,Yp, ¢ € L (J,Z). Since p € [1,+) , we know that
CY(J,Z) is dense in L” (J,Z) , and it is sufficient to prove that for each ¢ € C? (J,Z),
101072 = @1,

Let ¢ € C%(J,Z) be fixed. Let a,b € J with a < b, such that support (¢) C [a,b]. Set

i =a+k?4 vk=0,.,n+1,and

n

9"() = Y 0y y(6)

k=0

Then ||¢ — ¢"[|p(;z) — 0 as n — +eo. So it is sufficient to prove for ¢(s) =

ZZ:OYkl[zlg,ng) (s) with y, € Z,Vk =0,...,n, that
I9llzrz) =10l
But
" 1/p n » 1/p
n n n n 1
19l 2p(2) = (Z (1 —12) ||J’kp> = (Z ((fk+1 ~) /pHka) )
k=0 k=0

and for each y € C (J,Z%),
LI/
Jvro@as=Y [ wisnds
J k=0""%

Let x(s) = Zzzozkl[ 1)(s) with z; € Z,Vk =0, ...,n. We have

i
n | g 1/q
||X||Lq(1,z*) = <Z ((tl?Jrl —tZZ) /qHZk”Z*) )

k=0

and
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/J%(S)q? = L (- a0 =1 o —1) 2 (=) ")
k=0

Applying the Hahn-Banach theorem in E = Y"*! endowed with the norm ||y|| p=
(Zig (Iul2)")""  and £7 = (v*)"* ! endowed with the norm [z], = (L (lztllz+)*)'"*

we can find x(s) = Y}_ozl [t]?’t]izrl)(s) with ([ %[ 4(s z+) = 1, such that

901 = [ 2(5)0(5)ds

On the other hand, if we set
—+oo
sz/ Pul(s =)l ) (0)dt, Vs €7

where {Pn}nzo is a mollifiers, then for all n > 0 large enough, x" € C* (J,Z*),
||X" _x||LP(J7Z*) —0asn— +oo

and
[ 2@0wds = [ 26)06)ds = 19llp(r 7) asn -+

Hence, we have ¢" = x" for all n > 0 large enough and

HX"HU’(./,Z*)

9 ©0(6)ds = 19l a5 =+
The result follows. O
From now on, denote
abs (f) == inf{a >0:e () € L' ((0,+o0) ,x)} < oo

and define the Laplace transform of f by

20 =[P s

when A > abs(f). We first give a necessary condition for the L” case when p €
[1,+e0].

Lemma 3.7.2. Let Assumption 3.4.1 be satisfied and let p,q € [1,4o0| with % + % =
1. Assume that there exist M > 0 and ® € R, so that ¥t > 0, Vf € C! ([0,1],X),

IS0 )0l < #||e® = f() (3.7.1)

LP((04),X)
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Then there exists a subspace E C X, for each x* € E there exists Vi« € L1 ([0,4-c0) , X*)N
C ([0, 4e0),X*) such that

* ~r\—1 e —1s
x ((Mf (A—®I)) x) - / e MV, (5)xds, (3.7.2)
0
when A > 0 is sufficiently large,
t
x* (S(A*Eﬂ) (t)x) = /0 Vi (8)xds, Vt >0, (3.7.3)

sup (Vi [l (o, oo o) < M, V2 >0,
XrEE: |t lx <1

and
[|x|| < sup x*(x),Vx € Xo, (3.7.4)
X*EEiHX*ng <My

where My > 0 is the constant introduced in Assumption 3.4.1.

Proof. Set

B= {(A —0)y o (Al Ag) 21y €XG. |y llg; <1, and A4 > w}.
From Assumption 3.6.1, we obtain sup{||x*\|x5 Xt e B} <M and

lim (A —)* (Al —Ag) *x=x,Vx € Xy.
A—roo

Using the Hahn-Banach Theorem, we have

[lx[| < sup x* (x).
x*eB

Let E be the subspace of X generated by B. Then

Il < supx™(x) < sup  x7(x)
x*€B x* EE:HX*HXS <M

and (3.7.4) is satisfied.
Let y* € X be fixed such that ||y*HX5 < 1landlet u > . Set

¥ i (- 0)y o (ul— Ag) 2.
Then for A > @ + max (0, @), we have for each x € X that

(M= (A—=®I) %)
= (= 0)y" (1 —A40) " (A= (Ao — @) (uI—4)"' )
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— (u—0Py' ((uonrl / T etang, () (ulA)‘lxdz> .

¥ (M= (A—a1) " x) = /0 e MV (1)xdt
with

Ver(t) = e @ (1 — @)y o ( — Ag) ' o Ty, (1) o (uI —A) " ¥ > 0.
Since

t
Tpg (1) = x+Ag / Tpo (1)xdl
0

and Ag (1 —Ag) " is bounded, it follows that r — (I —Ag) ™" Ty, (1) is continuous
from [0, 4-o0) into .Z(Xp) and is exponentially bounded. Thus t — V,+(¢) is Bochner
measurable from [0, +o0) into X* and belongs to L] ([0, ~+e0),X*). Moreover, for
each f € C' ([0,1],X), we have

X" ((Sao f)(1))
— (- “’)2./0 o (Ul —Ag) " o T, (1 —s) o (I —A) " (F(s))ds

= / t Vi (1 — 5)e®0) £(s)ds. (3.7.5)
0

Since E is the set of all finite linear combinations of elements of B, it follows that
(3.7.2), (3.7.3) and (3.7.5) are satisfied for each x* € E. Let x* € E with ||x* HXS <l.

We have from (3.7.1) that

LP((0,1),X)

/ot Ver (= )e® ) f(s)ds = x* (S0 £)(1)) < M|[e® ) £ ()

Using Proposition 3.7.1-(i), we have
([Vae HLq((O,r),X*) <M,vt > 0.

This completes the proof. O

Theorem 3.7.3. Let Assumption 3.4.1 be satisfied. Let B : D(A) — Y be a bounded
linear operator from D(A) into a Banach space (Y,||.||y) and x : (0,4+e) - R a
non-negative measurable function with abs () < +oo. Then the following assertions
are equivalent:

(i) IB(Saef) (O] < fox(t=9)|£(s)]ds, ¥t > 0,9f € C' ([0, +0) ,X);
(ii) |[BAI=A)"(| yxy) < g Jo 5" e My (s5)ds, VA > 8, Vn > 1;
(iii)  ||B[Sa(t+h) = Sa(O)ll pxy) < i 2 (s)ds, ¥t,h > 0.

Moreover, if one of the above three conditions is satisfied, y € L{ ([0, +e),R) for

Loc

some q € [1,+o0| and p € [1,+o0) satisfies % + é =1, then for each © > 0 and each
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fe€LP((0,7),X), the map t — B (Sa x f) (t) is continuously differentiable and

&8s

t
< [ 2a=9)76)ds. ¥ € 0.7,
Proof. (1)=-(ii). Let x € X be fixed. From the formula
1 e
A—A)"x=2 / e M, (xdl, VA > &
0

one deduces that

n _ -1 —+oo
nl (AL —A)" 0Dy = (—1)" % = / (AL — i1 e M8y (1)xdl.
0

We also remark that
—/’z"e*“sA(z)xdz _ /tSA(l)f(t,t—l)dl — Sak F () (1),
0 0

where
f(t,s)=h(t—s)xwithh(l) = —I"e ™.

It follows that

e HSA(1) = 2 [(Sax £ (1,0 (0] = (a0 £ (1)) (1) + (SA * afa(?')> ©.

so for all A > 0 large enough

t—foo t—>o0

lim (Sao f(1,.)) () = — lim <SA*afa(§")) ().

But

(SA*afa(;")) (t):/OtSA (K (t—(t—l))dl:/ot (AL —ni" ] e A S, (1) xdl,
so we have

nt(AI—A)~ "D = fim (sA*af(t")> (t) = — Lim (Saof(1,.)) (2).

[——+oo ot [—>+o0

Now by using (i), it follows that
Bz —a) V] = tim B (Swer (1)) ()]

< lim ;x(l)llf(t,t—l)lldl

Tt
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_/ e 1 711 )lexH

and (ii) follows.
(ii)=(i). Let f € C' ([0, +0),X) be fixed. Without loss of generality we assume
that f is exponentially bounded. Note that

A=A 2(f)(A) = A / M, (1l / Ml
- /1/ M (S, f) (1)l

Integrating by parts we obtain that

T — (a7 AL
| e sionWar=a1-ay" 2 (H ().

Then
dn [t (AdTRALI—A)T gk
il M senmi=Ya LA ()
and
n r+oo
Hd‘in/ e HMB(Syof) (l)le

<ZC"

=Y CE(n—k)! B —a) 40| -1y
k=0

d"*BAI—A)" d* 2 (f) (M)
din— k dlk

2 (IF) ()
dAk '

Now using (ii) it follows that

H ' / T MBS0 f) (l)le

dA" Jo
d" kiﬂ( )( )d*Z (1) (L)
ch Ak

:<—1>”£ﬂ [ s war

and by the Post-Widder Theorem (see Arendt et al. [22]) we obtain

1B(Saof) (O < (A1) (1), ve = 0.

So we obtain (i) for all the maps f in C! ([0, +o0),X).
(iii)=-(ii). First assume that n = 1. We have
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-1 e

B(AI-A) x= k/ e “*BS(s)xds.
0

Using (iii), we obtain

1 s [

HB(M—A)_ HS)L/ e / x (1) dids
0 0

and by integrating by parts (ii) follows. Next assume that n > 2. We have

B(AI—A) ™" =B(AI—Ag) "V Ar—4)~"
(

_1\n—2 n—2 _ —1 too
_ 1) B (d (dljn72A0) > / E_A’SSA(S)dS
: 0

—+o0 +oo
= B/ s”’ze*’l“'TAo(s)ds/ e S, (s)ds
' Jo 0

T -2 B/O+°° e /OS (s = )" Tny (s = 1)Sa(D)dlds.

But TAO(S—Z)SA<I) = SA(S) —SA(S—D7 SO

BAI—A)" = mfz)v /0 et /0 (s —1)""2 [BS(s) — BSa(s — )] dids.

From (iii), we obtain

A oo 2 s 2 s
< N _ n .
20 = o2) /0 e /0 (s—1) /sle(r) drdlds

oo s 5 S
/ eils/ (s—0)" / x (r)drdlds
0 0 s—I1
~+o0 S N
= / e / "2 / x (r)drdlds
0 0 1
o0 s [r
:/ e‘“/ / 1" 2dly (r)drds
0 0 Jo

1 oo s
= / e’“/ r"*lx (r)drds,
0 0

n—1,

|B(AT—A)"

Notice that

integrating by parts, we have

~+oo s s +oo
A 6_7”/0 (Si l)n_l /S_ll (r) drdlds = ﬁ_/o Sn_lx (S) e_lsds.

It follows that
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1t
1BAT=4)"] <m/0 sy (s) e M.

(i)=-(iii). Let &~ > 0 and ¢ > h be fixed. We have

d d [

pr (Sa* Lo (-)x) (1) = E/ Sa(t —s)1jo ) (s)xds
= 7 / Sa(t —s)xds = / Sa(s)xds
= Sa(t)x—Sa(t —h)x.

Let {¢,},0 C C' (R+,R) be a sequence of non-increasing functions such that
=1 ifr €[0,A],
0a(1) €1[0,h] ift € [h, h+n+l]

=0 ift >h+ n+1

We can always assume that ¢, < ¢,,,Vrn > 0. Then we have
d d [!
560 (00) = L [ 54(5)0u(1 —)xds
— Sa(1) 9 (0)x + / " Sa ()00 (¢ — )xds
0
— Sa(t)x+ / Sa(t — 5)0, (s)xds
0

ht iy ,
— Su()x+ /O Sa(t — )9, (s)xds.

By the continuity of t — S (¢)x, it follows that

im L (4% 0n()x) (1) = Sa(t)x— Sa(t — h)x.

n—+oo dt

On the other hand, we have x [jo,€ L' ((0,¢),R), and s — x(t — 5)@,(s) is a non-
increasing sequence in L' ((0,¢),R). So by the Beppo-Levi (Monotone Conver-
gence) Theorem, we obtain

t t h
Jdim [ =900u5)s = [ 20-910n(s)ds = [ x(0-s)ds

— /, ih x()di

and (iii) follows from (i). The proof of the last part of the theorem is similar to the
proof of Theorem 3.4.7. 0O

Remark 3.7.4. When B =1 and X| = X, the previous theorem provides an extension
of the Hille-Yosida case. Unfortunately, this kind property is not satisfied in the con-
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text of age-structured models. Because if the property (iii) were satisfied for some
function x € L{ _([0,4c),R), this implies that 7 — Sa(¢) is locally of bounded
L?-variation from [0, +o0) into .Z(X).

Following Bochner and Taylor [44], we now consider functions of bounded L”-

variation. Let J be an interval in R with interior J. Let H : / — X be a map. If
p € [l,+00), set

VLP(J,H)=  sup (n ||H(,,.)_H(ti1)|p>1/p |

-1
10<t] <...<tn =1 |t —ti—1 |p
o
tieJ Yi=1,...n

o]
where the supremum is taken over all finite strictly increasing sequences in J. If

p = +oo, set
|H<r>—H<s>||}.

VL™(J,H) = sup{ =]

t,seJ

We say that H is of bounded LP-variation on J if VLP (J,H) < 0.
Let (Y,||.|ly) be a Banach space. Let H:J — Z(X,Y) and f:J - X. If Tis a

o
finite sequence 7y <1 < ... <f, inJ and s; € [f;_1,4] (i = 1,...,n), we denote by

S(H.f.1) = Y (H (1)~ H (61)) £ (5).
i=1
S(H.df.7) = Y H (s [F (6) — £ (1),
i=1
|m| = _max lti —ti—1].

We say that f is Riemann-Stieltjes integrable with respect to H if
b
dH(t)f(t) := lim S(dH, f, ) exists
a || —=0,00—a,ty—b
and H is Riemann-Stieltjes integrable with respect to f if
b
/ H@O)df(6) =  lim  S(H,df,7) exists.

|| —0,t0—a,tn—b

We say that f is Riemann integrable on [a,b] if f is Riemann-Stieltjes integrable
with respect to H(t) = tldy, and we write

b b
/a F()di = / dH()f()=  lim  S(dH,f,7).

|| —=0,00—aty—b

Note that
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D=

S(dH, f,m) = ) (H(t:) —H (ti-1)) f (si)

(tn) —H (tn—1)) f (sn) + .. + (H (t1) — H (1)) f (51)
(tn) f(tn) — H(t0) f (t0)

H (tn) (f(tn) = f (sn)) + H (tn—1) (f (50) = f (50-1)) + ...
.+ H(to) [f (s1) — f (t0)]

1

1
T RT

S(dH, f,m) = H(t,) f12) — H(10) f(10) — S(H.df ) (3.7.6)

with 7T = {l(),S],SQ, ...,sn,tn}.
By using (3.7.6) we immediately deduce the following result.

Lemma 3.7.5. Let f : [a,b] — X and H : [a,b] — £ (X,Y) be two maps. Then the
following assertions are equivalent:

(a) f is Riemann-Stieltjes integrable with respect to H;
(b) H is Riemann-Stieltjes integrable with respect to f.

Moreover, if (a) or (b) is satisfied, we have

b b
| a0 = B 0) - H@f(@ - [ HOdfw).

We have the following result (see Section 1.9 in Arendt et al. [22] and Section
II1.4.3 in Hille and Phillips [187] for more details).

Lemma 3.7.6. Assume p,q € [1,+eo] such that o+ = 1. Let f € C' ([a,b],X).
Let H : [a,b] — £ (X,Y) be a bounded and strongly continuous map. Then f is
Riemann-Stieltjes integrable with respect to H and

b b
| aro0 = HE) ) ~H@s@ - [ HEO 0,
where the last integral is a Riemann integral.

Proof. Since H is bounded and strongly continuous, the map ¢ — H(¢) (f'(¢)) is
continuous, so the integral

/bH(t)f’(t)dt

is well defined as a Riemann integral. It remains to prove that

[S(d(t1dy) H(.)f'(.),m) = S(H(.),df(.),m)] =0.

m
|| —=0,00—a,tn—b

We have

S(d (t1dy) H()f'(.), ) = S(H(.),df(.), )
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— i 1) ZH f(li—l)}

I
0=
—

o

I
1=
=
=
i)
g
—
=~

i—tio1) f (si) — ! f’(l)dl] :

i1

Il
=

Let € > 0 be fixed. Set C:= sup [|[H(t)|| & (x y)- Since f’ is continuous, f is uni-
t€la,b) '
formly continuous on [a, b], there exists 1 > O such that | —s| <n = || /" (t) — f'(s)|| <

€T —a)» @nd we obtain that

nl <n = [|S(d(eldy) H()f'(),m) = S(H(.),df (), m)]| <e.
This completes the proof. O

Lemma 3.7.7. Let p,q € [1,+ee] with £ +1=1. Let f € C'([a,b],X). Let H :
[a,b] = £ (X,Y) be a bounded and strongly continuous map. Assume in addition
that H is of bounded L-variation on [a,b)]. Then

/dH

Proof. Assume for simplicity that g € (1,+e0), the case ¢ = 1 or ¢ = 4o is similar.
We have

< VLY([a, b, H) || f || o (a) x)

n

IS(@H, f,7)] < ZHH(h) H (ti-1)l 2 (x 1 (si)l

| H (t;) — H (t;- 1)||$ XY 1
- D=t |7 |If (50)]

1
i=1 lti—t;i 4]

n ||H () — H (ti-1) 1%« Va sy 1/p
= (Z PPN = ;Vi—fifl\ﬂf(sz')”p :

i=1

=

So we obtain

l/p
IS(dH, f,m)|| < VLi([a,b], (Zlh—tl 1|f(s,)||”>

and the result follows when |z| — 0. O
Motivated by Lemma 3.7.2, we introduce the following definition.

Definition 3.7.8. Let (,||.|,) be a Banach space. Let E be a subspace of Y*. E is
called a norming space of Y if the map |.|; : Y — Ry defined by

lg= sup ¥y'(y),Vyey
y*eE
[y [ly=<1



146 3 Integrated Semigroups and Cauchy Problems with Non-dense Domain

is a norm equivalent to ||.| .
The main result of this section is the following theorem.

Theorem 3.7.9. Let Assumption 3.6.1 be satisfied. Let p,q € [1,+o0] with % —1—5 =1
and @ € R. Then the following properties are equivalent:

(i) There exists M > 0, such that for each 79 > 0, Vf € C' ([0, 7] ,X),

UIf()

. .
. vt €[0,7)];

1(Sa o f) (@) <M

(ii) There exists a norming space E of Xy, such that for each x* € E the map t —
x* 0 Sa+ei(t) is of bounded Li-variation from [0,+o0) into X* and

sup lim VLI([0,#],x* 0 S4_g;(.)) < 4oo; 3.7.7)

x€E: s <iioFee
(iii) There exists a norming space E of Xy, such that for each x* € E there exists
Xv € Li ((07 +°°) aR) 3
t-+h

lx* 0 Ss_ar(t+h) —x 0S4 _g,(t)|y < X (8)ds, Ve,h >0 (3.7.8)
t

and
sup 12 | o (0,00 1) < o0 (3.7.9)

x*EE:IIx*nggl

Proof. (i)=-(iii) is an immediate consequence of Lemma 3.7.2. (iii)=>(ii) is an im-
mediate consequence of the fact that (iii) implies

VL([0,2],x" 0 Sp_ a1 (-)) < 12+ | a(0.) ) » V2 = 0

So it remains to prove (ii)=(i). Let x* € E and f € C' ((0,7),X) be fixed. By
Lemma 3.4.4, we have for each 7 € [0, 7] that

I (Saxf)(t)= +/ Sa(s)f'(t—s) dsf/dSA Vf(t—s)ds.
Thus,
< s — dim A(A—A0) L (s
Z( axf)(t) = Jim ( 0) d*( ax f)(t)
= lim 2 / Ty (£ — ) (M —A) ™" £(s)ds
=Ag13mx [ Tag-a1=9) (A1=4)7 20 p(s)as

=7 (SA arxe ol ')f(-)) (t)
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t ~
= / dSa_51(s)e®) (1 —s)ds.
0
By using the last part of Lemma 3.7.7, we have
d ! Bli—s
¢ (G60n0) = [[a0 051 0 (e st
0

< VLI([0,1], (x* 0 S4_a1) () |[¢® ) F()

Ll’((O,t),Xl)

Hence, Vt € [0, 19| we have

x* (jt (Saxf) (t)) < VLI([0,+e0), (x* 0S4 a1) (1) H@(p.)f

LP((0,4),X)
and the result follows from the fact that £ is a norming space. O

Remark 3.7.10. (a) We can use Theorem 3.7.3 to replace (iii) by the equivalent
condition

Xo(A—(A-wI))™"

1 ol -
7)‘/ ST e x (8)ds, YA > 6,Vn > 1.
- J0

<
x*~ (n—1
(3.7.10)
(b) We know that

o0
(AT—A)"x =2 / e M58, (s)xds
0

for A > 0 sufficiently large. So we can also apply the results of Weis [370] to verify
assertion (iii) of Theorem 3.7.9.

(c) In the Hille-Yosida case, assertions (ii) and (iii) of Theorem 3.7.9 are satisfied
for g = +oo, E = X{J, and v (s) = M,Vs > 0.

(d) In the context of age-structured models in L? spaces the property (iii) holds.
But in some cases we have

t+h 1/p
ISs-arlt+) = S1-ar0lL = ([ er@lar) ", e zo
t

Sot — Sa—ei (t) is not of bounded L?-variation. Nevertheless, we will see that asser-
tion (iii) in Theorem 3.7.9 is satisfied. This shows that a dual approach is necessary
in general.

3.8 Applications to a Vector Valued Age-Structured Model in L”

Let p € [1,4e0) and ag € (0, o] be fixed. We are now interested in solutions
v e C([0,7],LP ((0,a9),Y)) of the following problem:
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v dv
5 + 3 =A(a)v(t,a)+g(t,a), a € (0,a0),

v(t,0) = h(t), (3.8.1)
V(O") = II/ELP((O,G()),Y),

where
heL?((0,1),Y) and g € L ((0,79),L7 ((0,a9),Y)).

In order to apply the results obtained in Sections 3.2-3.7 to study the age struc-
tured problem (3.8.1) in L?, as in Thieme [330, 331], we assume that the family of
linear operators {A(a) },<,, generates an exponentially bounded evolution family
{U(a,5) }o<sean a- We refer to Kato and Tanabe [206], Acquistapace and Terreni
[2], Acquistapace [1], and the monograph of Chicone and Latushkin [60] for further
information on evolution families. Then we introduce a closed bounded operator
B based on {U(a,5) }g<s<qcq, - Next we rewrite system (3.8.1) as a Cauchy prob-
lem with the linear operator B and show that B generates an integrated semigroup
{SB(#)}+>0. Now the results in the previous sections can be applied to the problem.

Definition 3.8.1. A family of bounded linear operators {U(a,s) }g<y<yeq, On Y is
called an exponentially bounded evolution family if the following conditions are
satisfied:

() U(a,a)=1Idy if 0 <a < ao;

() Ula,r)U(r,s) =U(a,s)if0<s<r<a<ap;

(¢c) ForeachyeY,the map (a,s) — U(a,s)yis continuous from {(a,s) : 0 < s <a <ap}
intoY;

(d) There exist two constants, M > 1 and @ € R, such that |U (a,s)|| < Me®@~*)
if0<s<a<ap.

Remark 3.8.2. In the Example 3.1.1 we have Y = R and A(a) := u(a). So we can
just use

Ula,s) = exp(/au(r)dr),Va >s5>0.
For an n-dimension system we can assume that
A(a) :=—M(a)+N(a),
where
a— M(a) == diag(t1 (a), 42(a), ... Hn(a)) € Lige 1 ((0,20) ,Ma (R))

and
a— N(a) € LT ((0,a0) ,M, (R)).

Let s € [0,a0) be fixed. Then we define a — U (a, s) as the fixed point solution of

Ula,s) :=V(a,s) —i—[aV(a,r)N(r)U(r,s)dr,Va € [s,a0),
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where . .
V(a,s):= diag(exp(f/S ui(r)dr), ...,exp(f/S Un(r)dr))
whenever a > s > 0.
From now on, set
X =Y xL?((0,a9),Y) and Xy = {0y } x L? ((0,a0),Y)

endowed with the product norm

13| =1t + 1o

Define for each A > @ a linear operator J), : X — X by

a(y)= (%)=
0(a) = e U (a,0)y+ /0 " e M) (a,5)w(s)ds, a € (0,a0).

Lemma 3.8.3. Assume that {A(a)}<,<,, generates an exponentially bounded evo-
lution family {U(a,s)}o<s<qcq, - Then there exists a unique closed linear opera-
tor B: D(B) C X — X such that (@, +) C p(B), J, = (Al —B) "' YA > o, and
D(B) = Xo.

Proof. 1Ttis readily to check that J, is a pseudo resolvent on (@, +o0) (i.e. J; —Jy =
(M —A) 3y, VA, 1 € (0, +20)). By construction we have Z (J ) C Xo. Moreover,

y

letx = € X and assume that Jyx = 0. Then, for a € (0,ay)

1 [
Ia::f/
a.Jjo

e’léU(é,O)y—F/Oé e MEU(E, s)yw(s)ds||dE =0

and
lim I, = .
Pyt a ||y||

So y =0 and A4 (J)) C Xo. Moreover, using Young’s inequality, we have for all
A > o that

5(y) H < | (¢ WO O] o

< MHe(wa).

Ll((O,ao),]R) H WHLP((O»“()).,Y) ,

SO

0 M
I, v < 7o Wl 0.a0)1)-
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Moreover, we can prove that Yy € C? ((0,a9),Y),

im s, ()= (3 )-
A—foo v y
By the density of C? ((0,a9),Y) in L” ((0,a0),Y ), we obtain that

lim AJyx=x,Vx € Xp.
A—rtoo

By using Corollary 2.2.13, the result follows. O
Consider equation (3.8.1) as the following Cauchy problem

du

o =Bu)+f(1), 120, u(0)=xeXo (3.8.2)

with
fer?((0,1),X).

Lemma 3.8.4. Assume that {A(a)},<,, generates an exponentially bounded evo-
lution family {U (a,s) }o<y<q<q, - Then B satisfies Assumption 3.4.1

Proof. One can check that

_ M
lar-57(3)] < bl e

Using the Young inequality we have

H(M B) ( )H k||<p||m () YA > @, k> 1.

This completes the proof. 0O

Now we can claim that By (the part of B in Xy) generates a Cp-semigroup
{Ts,(1)},-, and B generates an integrated semigroup {Sp(f) };>o.

Lemma 3.8.5. Assume that {A(a)}o<,< ay generates an exponentially bounded evo-
lution family {U (a,s) }o<;<a<q, - Then {T3,(1) }t>0 , the Cy-semigroup generated by
By (the part of B in Xy), is defined by N

o1 (27) B (TBO(()r)w)

@)= {?f(a,a—t)fp(a—t) Z‘C Z;E(?’t]’

Moreover, {SB(t)}tZO, the integrated semigroup generated by B, is defined by

with



3.8 Applications to a Vector Valued Age-Structured Model in L? 151

Sp(t) <(¥,) - (W(t)y—i—f(?fBo(S)‘Pds)

with
wo o ={ g Fess

Proof. If T, (t) and Sg(¢) are defined by the above formulas, then it is readily to
check that

%(AI—B)’I Tgy (1)x = A (Al — B) ™" T, (t)x — T, (1)x

and

%(AI—B)_ISB(I)JC =AM —B) ' Sg(1)x—Sg(t)x+ (Al —B) ',

and the result follows. O

Define P: X — X by
Yy_(vy
o(e) ()

X =Y x {OLP((O,ao),Y)} :

We obtain the following theorem.

and set

Theorem 3.8.6. Assume that {A(a)}y<,<,, generates an exponentially bounded
evolution family {U (a,s) }o< < ,<q, - Then for each f € LP ((0,70) , X1) ®L' ((0,7),Xo)

and each x € D(B), there exists u € C([0, %], D(B)), a unique integrated solution of
the Cauchy problem

du(t)
dt

= Bu(t)+ f(1), t €[0,7], u(0) = x, (3.8.3)

given by
d

dr

which satisfies for a certain M>0 independent of Ty that

u(t) = T, (t)x + — (Sp* ) (1), ¥t € [0, 0], (3.8.4)

1/p

o) 7 ! o(r—s) p
) < wte 81 [ (e 1ps6)1) " as )
M [ |1 P) £(5) s, i € [0,
0

Moreover,

u(t) = T, (£)x + < (()t)) , Vi € 10,1 (3.8.5)

w
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with

w)@) = U(a,0)Pf(t —a)+ (fé?o(z—s)(l —P) f(s)ds) (@) ifa<t,
(fé To(t—s)(I fP)f(s)ds) (a) Fast.

Proof. Let y € CZ((0,a0),Y™) be fixed. Define x* € X} by

v (9)= [ voreeas

Letx = (();)) € X be given. We have

X" ((M—B)’Uc) —x ((/II—B)’IPx) ot ((AI—B)’l (I—P)x)
and
XM =B '(I-P)x= /0 7 Ao (e Ty, (1) (I — P)x) dt,

and for each A > o that

X ((}LI—B)IP(é)) - /Oa”e*law(a) (U(a,0)y) da

o0
B /0 AT (1) (v) di

with o .
W (1) () = {8 vOuon ii?;;j “
X ((ll—B)"P(é)) = ((;1_)1)!1;;_11);* ((M—B)‘P(i)))
B ﬁ /0+°°t AN (1) (y) .
So
x* ((M—B)"P (é))’ < (nll)!'/:wt”'e’“xx* @)t lylly .
where

_ [ Mly(@)lly- ift € (0,a0)
e (1) = {0 otherwise.

The result follows by applying Theorem 3.7.9. O
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3.9 Remarks and Notes

In Section 3.2 we recalled some results on integrated semigroup theory which
were taken from Thieme [329]. The representation Theorem 3.3.5 was taken from
combines Theorem 3.1 in Arendt [21] and Proposition 3.10 in Thieme [329]. More
results can be found in Weis [370]. In Section 3.4 we discussed the existence of
mild when A is not necessarily a Hille-Yosida operator. In Section 3.5 we proved a
bounded linear perturbation result. The results of Sections 3.4 and 3.5 were taken
from Magal and Ruan [245]. The Section 3.6 was devoted to the existence of mild
solutions in the Hille-Yosida case which was proved by Kellermann and Hieber
[207]. For the Hille-Yosida case we also refer to the book of Arendt et al. [22]
for more results. Section 3.7 focused to the existence of mild solutions in the non-
Hille-Yosida case which was taken from Magal and Ruan [245]. This problem was
reconsidered by Thieme [335].

(a) Commutative Sum of Operators. For the commutative sum of operators (Da
Prato and Gisvard [82], Favini and Yagi [138]), an integrated semigroup approach
has been developed by Thieme [331, 335]. This problem has been reconsidered
more recently in Ducrot and Magal [114].

Assumption 3.9.1. Let A : D(A) C X — X be a linear operator satisfying Assump-
tions 3.4.1 and 3.5.2 and let B : D(B) C X — X be the infinitesimal generator of
a strongly continuous semigroup {75 (¢)},~, on X. We assume in addition that the
linear operators A and B commute in the sense that one has

(A1 —A)"" (uI—B) ™ = (uI=B)" (A —A)"" VA, € p(A)Np (B).

Theorem 3.9.2. Let Assumptions 3.9.1 be satisfied. Then the linear operator A+B :
D(A)ND(B) — X is closable, and its closure A+B : D(A+B) C X — X satisfies
Assumptions 3.4.1 and 3.5.2. More precisely the following properties hold:

(i) The linear operator (A+B),, : D((A+B),) C D(A) — D(A) defined as the
part of A+ B in Xy := D(A) is the infinitesimal generator of a Cy—semigroup
Tiaep) (0} onX
{ (A+B)O(t) 0 on Xy and

T(m) (t)x = TB(I‘)TAO (t)xNx € Xp, Vvt > 0.
0
In addition one has

oy ((A+B),) < wy(Ag)+wy (B).

(ii)  The linear operator A + B generates an exponentially bounded (non-degenerate)

integrated semigroup {Sm(t) } 09 bounded linear operators on X, given by

Sirg(t)x = (SaoTg(t —.)x) (1), ¥x € X,Vt >0,

and
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V= (S555,0,1) < sup || T(s)||V=(S4,0,),Vt > 0.
s€[0,1]

(iii)  The following inclusions hold

(iv)  The equality
—(A+B)x=yandx € D(A+B)

holds if and only if
(=B + (=) x= (=B (A=) [+ (A4

for some A € p(A) and L € p (B).

Remark 3.9.3. In the above theorem the fact that B is densely defined is necessary
(see for example the following item).

(b) Abstract Cauchy Problems as a Commutative Sum of Operators. Let
A:D(A) C X — X be a linear operator satisfying Assumption 3.4.1. Reconsider the
abstract Cauchy problem

% = Au(t) + f(¢) for t > 0 and u(0) = x € D(A), (3.9.1)

where f € L'((0,7),X). Let
2 =X xL'((0,7),X)

be the Banach space endowed with the usual product norm. Let o7 : D(&/) C 2" —
Z be the linear operator defined by

(50))= (40)

D(</) = D(A) x L' (0,7;D(A)).
Let #:D(#B) C Z — Z be the linear operator defined by

(2)-(9)

D(%B) = {0x} x W"(0,7;X).

with

and
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Da Prato and Sinestrari [85] reformulated the Cauchy problem (3.9.1) as the com-
mutative sum of operators

() (3)- ()0

In order to verify that ./ and % are commutative, we observe that the resolvent of
&/ is defined for each A > wy by

_ AL—A)"ly
- ()= (50
M= o) = \aa—ao0)
so .of satisfies the same assumption as A. The resolvent of Z is defined for each
A >0by

ar-at ()= (%) @ v =Pyt [0

It is clear that the two resolvents commute. But since both <7 and & are not densely
defined we cannot apply Theorem 3.9.2. We refer to Da Prato and Sinestrarie [85]
for more results about this subject. In their work they investigated several notions of
solutions for such problems.

(¢) Nonautonomous Cauchy Problems. Let fy,tnx € R with g < fnax. Let
{A(t) }etg.mex) D€ @ time parameterized family of linear operators on X. Consider
the nonhomogeneous Cauchy problem

% = A(t)u(t) + f(1) for t € [to, tmax], and u(t) = x € D(A), (3.9.2)

where f belongs to a subspace of L' ((t9, fmax) , X).

Assumption 3.9.4. Let X be a Banach space with a norm ||.||. Let D C X be a sub-
space of X which is a Banach space endowed with the norm |[.|[p. Let {A(f) }se 1 tmax]
be a time parameterized family of linear operators on X with domain D. Assume that

i)  There exists a constant ¢o > 0
co Ixllp < llxll + [A(0)x]] < collx]l, Vo, fmax], Vx € X;

i) A() €C(0,7],.2(D,E));
iii)  There exist two constants M4 > 1 and @y € R such that
JAL= A1) (AL = Aty1) ™" o (R = A)) | < oA
= A=)
whenever 0 <t <t... <t; <tmax and A > 4.

Assuming that f is continuous, one may consider the implicit approximation
scheme
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u(tivr) —u(t;)
u(0) =x,

=A(tig1)utivr) + f(tis1),Vi=0,...,N,

1
where At = N and t; = iAt,Vi=0,...,N. The above assumption means that when-

ever At is small enough we can solve the implicit approximation scheme which
becomes equivalent to

{ugti;]) = (I—AtA(ti1)) "V u(t;) + Atf(ti41)],Vi=0,...,.N—1,
u(0) = x.

We refer to DaPrato and Sinestrari [86], Pazy [281], Kobayashi et al. [214, 215]
and references therein for more results about this topic. The above approximation
scheme has also been successfully used in the context of nonlinear semigroups (see
Barbu [38], Goldstein [150], Pavel [282]).

(d) Approximation Formula for a Nonautonomous Bounded Linear Pertur-
bation. Let A : D(A) C X — X be a linear operator satisfying Assumptions 3.4.1 and
3.5.2andlet {B(?) };er C-Z(D(A),X) is a locally bounded and strongly continuous
family of bounded linear operators. Consider

% = Au(t) +B(t)u(t) + f(t) for t > ty, and u(rg) = x € D(A), (3.9.3)

where f € C(R,X).

Assumption 3.9.5. Let {B(t) };er C -Z(D(A),X). Assume that ¢ — B(t) is strongly
continuous from R into .Z(Xy,X); that is, for each x € X the map r — B(r)x is
continuous from R into X. Assume that for each integer n > 1

sup ||B(1)|l 2 (xy.x) < +o°.
te[—n,n]

Define
A:={(t,s) eR*:1 >s},

and recall the notion of an evolution family.

Definition 3.9.6. Let (Z, || -||) be a Banach space. A two-parameter family of bounded
linear operators on Z, {U(t,s) }; s)ca 18 an evolution family if

(i) Foreacht,r,se Rwitht>r>s
U(t,t) =1y and U(t,r)U(rs) =U(t,s);

(ii) For each x € Z, the map (¢,s) — U (¢, s)x is continuous from A into Z.

If in addition there exist two constants M > 1 and @ € R such that

|U(#,8)]l.2(z) < Me® =) Y(1,5) € A,
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we say that {U(t,5)} . s)ca is an exponentially bounded evolution family.
Consider the following homogeneous equation for each 7y € R

d’;(tt) = (A+B(t))u(r) for 1 > 19 and u(9) = x € D(A). (3.9.4)

By using Theorem 5.2.7 and Proposition 5.4.1 we obtain the following Proposition.

Proposition 3.9.7. Let Assumptions 3.4.1, 3.5.2 and 3.9.5 be satisfied. Then the ho-
mogeneous Cauchy problem (3.9.4) generates a unique evolution family {Ug(t, 5)}(t.,s)eA -
Z(D(A)). Moreover, Ug(-,19)x0 € C([to,+o°),D(A)) is the unique solution of the
fixed point problem

t

d
Ug(t,10)x0 = Ta, (t —10)x0 + 7 Sa(t —s)B(s)Ug(s,10)xods, ¥t > 19.
fo

If we assume in addition that

sup || B(1)[] 2 (xp.x) < +ee,
teR

then the evolution family {Ug(t,s)}  s)ca is exponentially bounded.

The following theorem provides an approximation formula of the solutions of
equation (3.9.3). This is the first main result.

Theorem 3.9.8 (Approximation Formula). Let Assumptions 3.4.1, 3.5.2 and 3.9.5
be satisfied. Then for each ty € R, each xo € Xo, and each f € C([tg,+0],X), the
unique integrated solution uy € C([ty,+o0],D(A)) of (3.9.3) is given by

1
up(t) = Up(t,t0)x0 + lim | Ug(t,s)A(AL—A) "' f(s)ds, Vt > 1o, (3.9.5)

—+tooJry
where the limit exists in D(A). Moreover, the convergence in (3.9.5) is uniform with
respect to t,ty € I for each compact interval I C R.

Remark 3.9.9. Under Assumptions 3.4.1 and 3.5.2 we may have

limsup [|A (A1 —A) 71| = +-oo.
A—+oo

Theorem 3.9.8 was proved first by Guhring and Rabiger [156] when A is a Hille-
Yosida operator by using the extrapolation method to define the mild solutions. The-
orem 3.9.8 was proved in Magal and Seydi [250].

(e) Extrapolation Method. Let A : D(A) C X — X be a linear operator satisfying
Assumption 3.4.1. The extrapolation theory has been developped for Hille-Yosida
operators only. We now adapt some ideas from the Hille-Yosida case in Da Prato
and Grisvard [82], Amann [12], Thieme [329] and Nagel and Sinestrari [275] to the
non-Hille-Yosida case. Consider the norm on X
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. -1
[l == I(AT—A)" ]|
for A > wj,.

Lemma 3.9.10. Let Assumption 3.4.1 be satisfied. Then the following properties are
satisfied:

(i) Foreach A,l > a, the norms |||, and ||.||x are equivalent;
(ii)  For each A > @y there exists a constant ¢ > 0 such that

llxlla < cllx]|,Vx € X;
(iii)  For each U > wy and each x € X

lim [[A(A—A) 'x—x||, =0.
Jim [[A( ) x =l

Proof. We have

Ixlla = (A1 —A)~ x|
<AL= A)~ x— (= A) ]|+ [Jx]|
= [ (= 2A) (AL —Ag) ™" (I — A)~ || + [|x]|

and (i) follows. Moreover, from the above inequality we have

u—A|

<
Il < (3=

1[Il = A) " ) lx]
and (ii) follows. Next we observe that

IAAL=A) " x = x|y = || (ul = A) A (AL = A) "L —x]|
= |AAL = Ao) ™" (ul = A)"x— (uI = A) x|

and since (I —A)~'x € D(A) the property (iii) follows. O

In the following we introduce the completion space. For completeness we now
recall how the space is constructed.

Completion space of (X, ||.]|la). Let L > @x be fixed. Recall some results from
Lang [224, Section 4 p. 71]. Consider the collection C(X) of all Cauchy sequences
of X endowed with the norm ||.||;,. Define the relation ~ on C(X) by

{xn}nEN ~ {yn}nEN < lim Hxn _yn”)L =0.
n——+oo
Then ~ is an equivalence relation on C(X). Define X_; the completion space of

(X,]].]]5) as the space of equivalent classes for ~. That is, X_; is the space composed
by elements
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{jcn\}neN = {{¥n}nen € C(X) : {Xn}nen ~ {¥n}nen}-

Define the norm on X_; by
|G benl1 1= lim [l (3.96)

for each element {x/n\}neN € X_i.
Observe that the limit exists in (3.9.6) since I, := ||x,]|,, is a Cauchy sequence.
Indeed, we have for each n, p € N that

|1n _ln+p| = [|Ixalla = [xml2] < (1% —xml[2

and by construction {x;, },cn is a Cauchy sequence, so is {I, },en. Hence, the limit
exists in (3.9.6).
To show that this norm is well defined, we consider two sequences {x, } ,ciy and

—

{¥n}nen in the class {x,},cr. We have by definition of the class that
iy yalls = 0

and
enlla = llyallal < [l —ull2-

Therefore,
Jm el = lim [yl

and the norm is well defined.
Next define the map J : X — X_ for each x € X by

J(x) = (hen

where the second member of this equality is the class of the constant sequence with
all elements being equal to x.

Lemma 3.9.11. The map J is isometric from (X, ||.||5) into (X_1,||-||-1). Moreover,
J(X) is dense in X_;.

Proof. The fact that J is isometric is clear. So let us prove that J(X) is dense in

X_. Let {x/n\}neN € X_ and € > 0 be fixed. Since {x, },en is a Cauchy sequence,
we can find ny € N such that

Hxn —anH)L < S,Vn > ng.

Hence -
HJ(an) - {xﬂ}nENH—l <e&.

This completes the proof. O

Lemma 3.9.12. (X_y, ||.||-1) is a Banach space.
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Proof. 1t is sufficient to prove that every Cauchy sequence in J(X) converges in
(X_1,]I-ll=1)- Let {x}nen € X be a sequence such that {J(x,)},en is a Cauchy
sequence in X_i. Since J is isometric, we deduce that {x, },cn is a Cauchy sequence
in (X,||-||la)- Consider

—

X:={Xn}en

Since {x }nen is a Cauchy sequence in (X, ||.||5), it follows that

lim ||/ (x,) — %1 = 0.

n——+oo
This proves the claim. O

As a consequence of the properties (ii) and (iii) of Lemma 3.9.10, we deduce the
following lemma.

Lemma 3.9.13. The map J is a continuous embedding from (X, ||.||) into (X_1,]|.||-1)-

Moreover, J(D(A)) is dense into (X_1, ||.||-1)

Next we can define a family of linear operators {7 (¢) };>0 on J(X) as follows

T(1)J(x) = J(Tsy (1)2), ¥x € D(A),
or in other words, T (¢)J(x) is the equivalent class of the constant sequence
{Ta, ()X, Ty, (1)x, ... }.

Since J is isometric from (X, ||.||,) into (X_1,]||.||-1), we deduce that for each x €
D(4)

IT()d ()| -1 = [|Ta (1)l = [[(AT —A) " T, (0)x]|
= [|Tay (1) (AT = A) ™ x| < Mpe®|| (A1 —A) x|

Thus, by using the fact that J is isometric we have

(7 ()(x)]| =1 < Mae®"||J(x)]|-1-

By using the fact that J(D(A)) is dense in X_j, it follows that 7'(r) admits a unique
extension 7_ (¢) to the whole space X_;. Moreover, we have the following theorem.

Theorem 3.9.14. {T_,(¢)};>0 is a strongly continuous semigroup on (X_1,|.]|-1)
and

1T 1 (D2x_y) = 1Ta ()| 2(xy)-

Proof. Since J(D(A)) is dense in X_ it follows that

171 (). 2x_,) = sup{IT-1 ()] -1 : X € X—y and [|x[|-; < 1}
= sup {71 (0 (]| -1 : x € D(A) and [ ()] -1 < 1}
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Now by using the definitions of the norm ||.||—, the embedding J(x) and T_ (¢), we
obtain

1710l 1) = sup { ITaq (e)x] : x € DAY and ], <1

= sup { ||Tx, (1)yl| : y € D(Ag) and |[y|| < 1}
= [|Tao ()|l 2(xp)-

The strong continuity of {7_;(#)},;>0 is straightforward. O

The following theorem is an analogue of the theorem proved for Hille-Yosida
operators by Kellermann and Hiber [207]. This theorem has been proved by Nagel
and Sinestrari [275, Proposition 2.1].

Theorem 3.9.15 (Nagel-Sinestrari). Assume that A : D(A) C X — X is a Hille-
Yosida linear operator. For f € L'((0,4e0),X) and t > 0

(T () 0= [ Toale =)0 ))ds

Then the following properties are satisfied.:

(i) Foreacht>0
(To1 %I (f)) (1) € J(Xo):

(ii)  For each r > 0, there exists a constant My = M, (r) > 0 (independent of f)
such that for each t € [0, 1],

1T O] <My [ 1765l

One may find more information about this topic in Da Prato and Grisvard [82],
Amann [11, 12, 14], Thieme [329], Nagel and Sinestrari [275], Sinestrari [321],
Nagel [274], Engel and Nagel [126, 127, 128], Arendt et al. [23], DiBlasio [97],
Maniar and Rhandi [253], Amir and Maniar [15] and references therein. As far as
we know no extrapolation method has been developed for the non-Hille-Yosida case.

(f) Parabolic Problems with Nonhomogeneous Boundary Conditions. Parabolic
equations with nonhomogeneous boundary conditions have been studied by using
other approaches in the literature. One of the first references on the subject is the
book of Lions and Magenes [231]. More recently, another powerful approach has
been developed in Denk et al. [92, 93], Meyries and Schnaubelt [269]. See also Both
and Priiss [45] for an application to Navier-Stokes equations.






Chapter 4
Spectral Theory for Linear Operators

This chapter covers fundamental results on the spectral theory, including Fred-
holm alternative theorem and Nussbaum’s theorem on the radius of essential spec-
trum for bounded linear operators; growth bound and essential growth bound of
linear operators; the relationship between the spectrum of semigroups and the spec-
trum of their infinitesimal generators; spectral decomposition of the state space;
and asynchronous exponential growth of linear operators. The estimates of growth
bound and essential growth bound of linear operators will be used in proving the
center manifold theorem in Chapter 6.

4.1 Basic Properties of Analytic Maps

Let (X,]|.]|) be a complex Banach space; that is, X is a C-vector space and ||.|| is
anorm on X satisfying

] =0 < x=0,
[Ax]| = [A[llx]|, ¥Vx € X, VA € C,
x4yl < el +lIyll, Vx,y € X,

and (X, ||.]|]) is complete.

When X is a C-Banach space, the dual space X* is the space of all bounded linear
maps x* from X into C. Of course, if X is a C-Banach space, then X is also a R-
Banach space. When X is a R-Banach space, we denote by Xy the space of bounded
linear functionals from X into R.

Let x* € X* be given. Then

x*(x) =Re (x"(x)) +idm (x* (x)), Vx € X.

It can be seen that
Re (x*(.)) € Xg, Im(x*(.)) € Xg,

163
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and by using the fact that x* is C-linear (i.e. x* (ix) = ix*(x), Vx € X), we have
Re (x"(x)) =Im(x"(ix)), Vx € X,

or equivalently
Re (x*(ix)) = —Im (x*(x)), Vx € X.

Conversely, if
X (x) =y (ix) +iy" (x), Vx € X7,

where y* € Xg, then x* € X*. It follows that
X =0 )+ () :y eXpt ={()—iz"(i.) : " € Xg } .

In particular, from this representation of the dual space X*, it becomes clear that
most consequences of the Hahn-Banach theorem for real Banach spaces hold for
complex Banach spaces. Based on this fact, one may extend the results on holomor-
phic maps from C into C to maps from C into a Banach space X.

Now we recall some basic facts about analytic vector valued functions (see Taylor
and Lay [326, p.264-272] for more details).

Definition 4.1.1. Let f : 2 C C — X be a map from an open subset 2 C C into a
complex Banach space X. We say that f is holomorphic on Q if for each Ay € Q

the limit f()L) f(?to)
P T

exists. We say that f is analytic on Q if for each Ay € Q, there exists a sequence
{an} s = {an*}uz0 C X, such that

0 :=limsup {/||ax|| >0

n—y+oo

and
+o0

fA)=Y) (A—20)"an

n=0
whenever [A —Ag| <R:=1/8.

The proofs of the following results are based on the Hahn-Banach theorem ap-
plied in complex Banach spaces, by observing that if f: Q2 C C — X is analytic,
then for each x* € X* the map A — x* (f (1)) is analytic from C into itself.

Theorem 4.1.2. Let f: Q C C — X be a map from an open subset Q C C into a
complex Banach space X . Then f is holomorphic if and only if f is analytic on .
Moreover, for each Ay € Q,

400 . n
roy=y A

n=0

7 (20)

n!
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whenever |A — A| is small enough and

(%) 1

n!  2mi

A—20)" " £ (A)dA
[ 220 )

for each € > 0 small enough, Sc (A,€) = {1 € C:|A —Ao| =€}, and Sc (Ao, €) "
is the counterclockwise oriented circumference |A — Ao| = €.

Theorem 4.1.3 (Laurent Expansion). Let f : Q C C — X be a map from an open
subset  C C into a complex Banach space X. Assume that f is analytic on an
annulus 0 < ry < |A — Ay| < ry, then f has a unique Laurent expansion

where

1
A—20)" " £ (A)dA
/SCW)J Ao) "V F(R)

ay, = —
" 2mi

for each € € (r1,r2), where Sc (Ao,€) = {A € C: |A — | = €}, and Sc (Ao, €)" is
the counterclockwise oriented circumference | — Ag| = €.

Note that the above integral is a Steiltjes integral of the form

_
T 2mi

s /QEZ(@)’("“)J”(Z(G) + )7/ (6)de,

T omi Jo

an

[0 1 (0) + 20)ax(0)

where '
2(0) = ee'®.
The following lemma is well known (see Dolbeault [108, Theorem 2.1.2, p. 43]).
Proposition 4.1.4. Let f : Q — X be an analytic map from an open connected sub-

set  C C into a Banach space X. Let zog € Q. Then the following assertions are
equivalent

(i) f=00nQ;
(ii)  f is null in a neighborhood of zy;
(iii)  For each k € N, f) (z9) = 0.

Proof. (1)=-(i)=-(iii) is trivial. We prove (iii)=-(i). Since €2 is connected, it is suf-
ficient to show that the subset

A={zeQ: () =0 vken}

is non-empty, and both open and closed. Clearly A is non-empty since it contains zo.
Moreover, A is closed since it is the intersection of the closed subsets
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Ay = {ZE.Q :f(k)(z)ZO}

for k > 0. Furthermore, if 7; €A = {z cQ: f(k) (z) =0,Vk € N} , since

—+o0

@)=Y =) f" (z)

n=0

whenever |z — z; | is small enough, it follows that

f(z)=0

whenever |z —z;| is small enough. So A contains some neighborhood of z;. Hence,
A non-empty, open, and closed in 2,s0A=Q. O

4.2 Spectra and Resolvents of Linear Operators

Let A: D(A) C X — X be a linear operator on complex Banach space X. Recall
that the resolvent set p (A) of A is the set of all points A € C, such that A/ —A is a
bijection from D(A) into X and the inverse (A1 —A) ™" is a bounded linear operator
from X into itself.

Definition 4.2.1. Let A : D(A) C X — X be a linear operator on a complex Banach
space X. The spectrum of the operator A is defined as the complement of the resol-
vent set

G (A)=C\p(A).
Consider the following three conditions:

(1) (A1 —A)~! exists;
(2) (A1 —A)~!is bounded;
(3) the domain of (A1 —A)~! is dense in X.

The spectrum 6 (A) can be further decomposed into three disjoint subsets.
(a) The point spectrum is the set

6,(A) 1= {A € 6 (A): N (AI—A) # {0}}.

Elements of the point spectrum o), (A) are called eigenvalues. If A € 6, (A), ele-
ments x € A (Al — A) are called eigenvectors or eigenfunctions. The dimension
of A (Al —A) is the multiplicity of A.

(b) The continuous spectrum is the set

o.(A):={A €0c(A): (1)and (3) hold but (2) does not}.

(c) The residual spectrum is the set
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o,(A) :={A €0 (A): (1) holds but (3) does not}
- {,1 € 6 (A): (AI—A)~" exists but Z(A1—A) ¢x}}.

We have the following spectrum decomposition
o(A)=o0,(A)Uc.(A)Uo-(A).

Example 4.2.2 (Point spectrum). Let X be a Banach space with finite dimension
and A : X — X be a linear operator. Since

dim(Z (AL - A)) +dim(A (Al —A)) = dimX,

it follows that A7 — A is one-to-one if and only if Z(AI —A) = X, so the residual
spectrum is an empty set, 6,(A) = 0. If AI — A is one-to-one and (Al —A)~! exists,
since linear operators in a finite dimensional space are countinuous, it follows that
the continuous spectrum is also an empty set, 6,(A) = 0. Therefore, a finite dimen-
sional space only has point spectrum, 6(A) = 6,(A). If we identify A to its matrix
A = (a;;) into a given basis, then we have

6(A) = 6,(4) = {A € C: det(Al —A) = 0}.

Example 4.2.3 (Continuous spectrum). Let X = L?>(R). Define A : X — X as fol-
lows:
Ax(t) =tx(r), Vi € R
with
D(A) = {x(t) € L*(R) : 1x(t) € L*(R)}.

Consider (A1 —A)x = 0, that is, (A —t)x(t) = 0. We have x(r) = 0 for almost every
t # A, so AI — A is one-to-one and the point spectrum is an empty set, 6,(A) = 0.
Moreover, the range

A1) = (o) e 2®): 2 e 2wy

is dense in L?>(R). So the residual spectrum is an empty set, 6,(A) = 0. Finally,
from (A —1)x(t) = y(t) we can see that if A € C and Im(1) # 0, then (A1 —A)~ ! is
bounded. Thus,

p(A)={A € C:Im(1) #£0}.

If € R, then (A —A)~! is unbounded,
0(A) = 6.(A) = {A : ImA = 0} = (—oo, +o0).

Example 4.2.4 (An operator with a spectral value that is not an eigenvalue).
Let X = ¢2(N,R) the space of real value sequences x = {x, },cn with
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2 2
||x||g2(N,R> = Z x|~ < oo
n>0

Consider the right-shift operator A : £2(N,R) — ¢>(N,R) defined by
Az (xp,x0,--) = (0,x1,X2,--), Vx = (x1,x2,---) € (N, R).
Notice that

(=~
1Ax]|? = Y bal® = [|x]1%,
i=1

we have
Al = 1.

Since Ax = 0 implies x = 0, it follows that 0 is not an eigenvalue. But the range
#(A) ={y={n} €y =0}
is not dense in £>(N,R), which means that
0€ o (A).

That is, 0 belongs to the residual spectrum of A but is not an eigenvalue of A.
The following definition was introduced by Browder [49].

Definition 4.2.5. The essential spectrum Oess (A) of A is the set of A € 6 (A) such
that at least one of the following holds:

(i) Z(AI—A) is not closed;
(ii) A is alimit point of ¢ (A);

+o0
(iii) U A ((AI—A)") is infinite dimensional.
k=1
The discrete spectrum is the set 6, (A) = 6(A) \ Oess (A).
So we have another spectrum decomposition
0(A) =04 (A)UCess (A).

Definition 4.2.6. Let A : D(A) C X — X be a linear operator on a complex Banach
space X. If A € 6(A), then the generalized eigenspace of A with respect to A is
defined by

N (A) 1= U,/V (W—A)k).
k=1

Lemma 4.2.7. The resolvent set p (A) is an open subset of C. Moreover, if Ay €
p (A), then

A=) = ol -4 Y (o— A (ol - A)" @2.1)
n=0
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whenever |A — A| || (Al —A) ™! lzx) <1
Proof. Set

Ly = (o~ A Y (o= A) (hol —A) ™,
n=0

which is well defined whenever [Ag—A||| (Al —A) ™" | #(x) < 1. Then one may
easily prove that
AI-A)L)x=x,VxeX

and
L) (Al —A)x=x, Vx € D(A),
and the result follows. O

Corollary 4.2.8. The spectrum o (A) C C of a bounded linear operator A is a com-
pact set.

The power series representation (4.2.1) of the resolvent (17 —A)7l enables us
to employ the techniques and results on analytic functions of complex variables to
analytic functions with values in a Banach space. From the formula (4.2.1) one may
observe that for each A9 € p (A),

i A=A = (o=

_ A2

where the limit is taken in the norm of operators. It follows that A — (A1 —A) ™"

from p (A) into .Z(X) is analytic. So if Ay € 6 (A) is isolated in ¢ (A), the resolvent
has a Laurent’s expansion:

AI-A)"'= Y (A—2) By, (4.2.2)
k=—o0
where B € Z(X) is given by
1
=_— A—20) D ar—a)""aa 423
$= 5 o e B0 ) 423)

for each € > 0, where Sc (Ao,€) = {4 € C: |1 —Ag| = €} and Sc (Ao,€)™ is the
counterclockwise oriented circumference |4 — Ag| = € for sufficiently small € > 0
so that |A — Ag| < & does not contain any other point of the spectrum than Ag.

Definition 4.2.9. A point of the spectrum Ay € ¢ (A) is a pole of the resolvent
(AI—A)"" if X is an isolated point of the spectrum (i.e. there exists € > 0 such
that {1 € C: |1 —A| < €} N o (A) = 0) and there exists an integer m > 1 such that

B.w#0, B.y=0, Vk>m+1.

The integer m is then called the order of the pole Ag.
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The following theorem is proved in Yosida [381, Theorems 1 and 2, p.228-229].

Theorem 4.2.10. Assume that Ay is a pole of order m of the resolvent (AI —A)71 .
Then we have the following properties

BBy =0(k>0m<—1),
B,=(-1)"Bi' (n>1),
B_p g1 =B_,B_4(p,g>1),

By = (A—2ol) Bysi (n>0), (424
(A=2D)B_y=B_ (1) =(A—XoI)"B_1 (n>1),
(A—2l)By=B_, —1.
Moreover,
(A—21)" ™ B_; =0,Vk > 0. (4.2.5)

Note that from the third equation of (4.2.4), we have for each p > 1 that
B_pB 1 =B p1+1=B,
so B_ is a projector on X. Since
(A—20)B_1 =B,

it follows that
AB_| = MB_1+B_;.

So A restricted to Z(B_1 ) is a bounded linear operator. We also have for each p > 1
that

AB_,=AB_|\B_,=MB_1B_,+B_2B_,=XB_,+B_,_. (4.2.6)
Moreover, from (4.2.3) it is clear that B_; commutes with (17 —A) ™! for each A €
p(A). Thus,

—1 —1
(Mol =Als ) = ol =A) " |5 x)
Recall that B_; (X) contains the generalized eigenspace associated to Ay. Therefore
the operator Ao/ —A is invertible from D(A)N (I —B_;)(X) into (I —B_;)(X). More-
over, by using the last equation of (4.2.4), we deduce that Ay ¢ o (A li-B_, )(X)) and
-1
(Mol =Alu-5_yx)  =Bolu—s_)wx) -
The following result is proved in Yosida [381, Theorem 3, p.229].

Theorem 4.2.11 (Yosida). Let A : D(A) C X — X be a closed linear operator in the
complex Banach space X and let Ay be a pole of (Al —A) ™" of order m > 1. Then
Ao is an eigenvalue of A, and

K (B_1)=N (I —A)"), Z(I—B_1)=%((AI—A)"), Yn>m,
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=N (Ml =A)") ©Z (2l —A)"), Yn>m.

We already knew that A | | (x) is bounded. Moreover, if A is a pole of (11 —A)"!
of order m > 1, we have from the above theorem that

(Aol =Alp_,x)" =0.
From (4.2.6) for p = m, we obtain
AB_, =AB_,.

Since B, # 0, we have {Ag} C 0 (A | ,(x)). To prove the converse inclusion
we use the same argument as in the proof of Kato [205, Theorem 6.17, p.178]. For
A €Cande < |A— A, set

1 A1-A)7"
Ll — ﬁ‘/sc(lo7£)+ 7}{ _)ﬂ/ dl .

Then we have

1 Ar-a"

(M—A)L, = E/ -4
_ L Lo # ’
= 5= [ ,11 A) dA + S Ail,d/l
_L Laar| —
=5 [ L (A1-A)" da} =

Similarly, we have
Ly (AI—A)x=B_ix,Yx € D(A).

It follows that for each A € C\{Ao}, Al —A g, (x) is invertible and
-1
(AI=Alp00) " =Lals )

It implies that

c (A \B,l(x)) ={4o}-

Furthermore, since Ao ¢ & (A |;_p_,)(x)) , We have

o (Alu-s_)x) =0 (A)\ {2}

Assume that A, and A, are two distinct poles of (A1 —A)~". Set for each i = 1,2

that 1
B:—_/ (AT—4)""da,
27 Jsc (2"

where € > 0 is small enough. It is clear that P| commutes with P, and
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PP =PP =0.

Indeed, let x € Z (P;) be fixed. Since P, commutes with (A1 —A) ™" for each A €
p (A), we have

1 —1 1 —1
= 0 Jsegey M AN A= o scaz.,eﬁ( Inon) ¥

Furthermore, since & (A |p, (x)) = {A1}, it follows from Lemma 2.2.6 that

- | . ., _qn+l
sz—ﬁ/sm,ew,;)(l_l” (ot =) | sk

1 =)

_ g n _qn+l

=0.

Hence,
Px=0, Vx GR(Pl).

Assumption 4.2.12. Let (X, ||.||) be a complex Banach space and let A : D(A) C
X — X be a linear operator satisfying Assumption 3.4.1. Assume that there exists
N € R such that

X, =0 (A)N{A €C:Re(A) >n}

is non-empty, finite, and contains only poles of (A1 —Ag) ™" .
By using Lemma 2.2.10 we know that
o(Ag) = o(A),

S0
Iy =0(A)N{A €C:Re(A) >n},

and for each A9 € Xy, we set

1
B = —/ — ) A1 —A4)7! 7, x € X,
Aok i Sc(Ag.€)" (A = 20) (A 0) xdA,Vk€Z, x€Xo
and
1 —k—1 -1
B = — A— Al—A dA,VkeZ Xo.
Aok 27i ~/S[C(AO!8>+ ( 10) ( ) Xan, € 4, X € X9

The previous Yosida Theorem holds only for densely defined linear operators. Now
we extend the projectors Bgo | € Z(Xp) to the all space X.

Lemma 4.2.13. Let Assumption 4.2.12 be satisfied. If Ay € Xy is a pole of (A1 —Ag) !
of order m, then Ay is a pole of order m of (Al —A)71 and
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o 0 ~1
BAOJX_#EIE&B%,I“(‘“I_A) x, VxeX.
Proof. Letx € X and k € Z be fixed. We have B, ;x € Xo, so
By x = li I1—A)""By ix.
Ag kX H_IJEDON(H )" Bjgux
Thus,

1
w(uE =) By = o (I —A)”! / (A —20) (A1 —4) " xd

JSc(Ro.€)"
1

= St ooy 20 A= 0) = 4) v
C )

= Jlim B) o (ul—A)"x,

and the result follows. O

From now on, for any isolated pole of the resolvent Ay € 6 (4), we denote

I, :=B_, :/ Al—A)"tdr
Yo sctaey LA

whenever € > 0 is small enougth. From the above result, we see that HAO is a pro-
jector. In fact, I is the projector on the generalized eigenspace of A. Moreover, A
is a bounded linear operator on IT) (X) because A is closed (since its spectrum is
non-empty) and

AT, = AAL—A) " dr = T+ A AI—A) 4.
= Jsger A MY sctigyt T AA AN

Furthermore, we have the following result which extends Yosida Theorem for
densely defined linear operators to non-densely defined linear operators.

Proposition 4.2.14 (Generalized Yosida). Let A : D(A) C X — X be a linear oper-
ator on a Banach space X. Assume that Ay is a pole of the resolvent of A. Then

I, (A —A)"" = (A —A) "', VA € p (4).

Moreover, AmO (x) and A(’*HAO)(’Q are the parts of A in ITy (X ) and (1 — HAO) (X),
respectively, and satisfy

0 (Am ) = {20} and @ (4, 1) =0 )\ (Ao}
Proof. By Theorem 4.2.10, IT,, is a projector, and by construction we have

(M —A)"' I, =, (A —A)"", VA € p (A). (4.2.7)
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By assumption A is a pole of order m > 1 of the resolvent. Thus, by using (4.2.5)
we deduce that
(A= Aol)" ™ 1T, = 0, Vk > 0. (4.2.8)

In particular it follows that
R () C A (Aol —A)").

Consider the splitting
X=In, (X)& (I-1I),) (X).

Since Iy, commutes with the resolvent of A, we have

-1
(M*AHAO(XO =@I-A)"! |HAO(X)a

,1__ - »
(1A i) =

By using the first equality in equation (4.2.4), we observe that for each x € ITy, (X)
and each A € C\ {Ao} close enough

—1

(),I—AHA()(X))_I)C —(M-A)"'Box= Y (A—20) Bex.

k=—m

Let f: p(AHzO (x)) = £ (X) be the map defined by

F0) = (2= A0)" (M ~Ag 1))

and let g : C — £ (X) be the map defined by

—1

gA):= Y, (A—2)""Byx.

k=—m
For each r > 0, denote
Be(Ao,r)={AeC:|A -l <r}.
Set
ro = sup {r >0: B¢ (o,r)\{0} Cp (AH%(XO } .

Assume that ry < +-eo. Since G(AHA0 (x)) is closed, we can find 4, € G(AHAO(X>)’
such that

Ml — )\0‘ =r.
Then f and g are defined on B¢ (A9, 70) \{0} and coincide in some neighborhood of
Ao. Since B¢ (Ao,70) \{0} is open and connected, by applying Proposition 4.1.4 to
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f — g, we deduce that
F(A)=g(A), VA € B¢ (Ao, r0)\{0}.

But since g is analytic and defined on C, it follows for each sequence {4,} C
Bc (Ro,70) \{0} — A, that

f(n) = g (M) = g(A1).

Now since A is closed (because its resolvent set is not empty), we have

(}»11 _AHAO(X)) §M) = (M —20)" (111 _AH;LO(X)) (lnl —Anlﬂ<x)) o
= o= 20)" |1 =) (1l A ) 1
= (M=) g (M) + (An — A0)"I
or equivalently
(M =Am, (0))8(An) = (M1 = An)g(An) + (An — 20)"I.

Since A is closed and g is analytic on C, we obtain (when A, — A;) that

(llI_AHzO(X)) g(A) = (M1 —20)"1.

Similarly we have

g (M) (AII_AHAO(X)) = (M1 = 20)" I, (x)-
It follows that 4| € p(AHzO (x)) and

-1

g(h) = (M —20)" (lll—Anlo(x)) ;
a contradiction, which implies that r) = +oo. So G(AHAO x)) = {4} and
1 —1
(M_A%(X)) x= k; (A — o) B, VA € C\ {40} .
Now we compute the Laurent’s expansion of (A1 —A_ HAO)(X))il around Ag. For

k>O0andxe (I—II,) (X), we have

1 kD) (4 -
= (I —I,)B_gx=(I—B_1)B_4x
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= (A — A{)I) BQB,kx =0.

It follows that

o0

-1
(“—A<z—%><x>> = LA Bal

n=0

S0 Ap ¢ G(A(I—U).O)(X)) and the result follows. O

4.3 Spectral Theory of Bounded Linear Operators

Let T € .2 (X) be a bounded linear operator. From now on denote
T =ToT", Yn>0,and TO = 1.

Definition 4.3.1. Let T € .2 (X). Then the essential semi-norm ||T ||, of T is de-
fined by

||T||ess =& (T (Bx(0,1))),
where By (0,1) = {x € X : ||x||y <1}, and for each bounded set B C X,

K (B) =inf{€ > 0: B can be covered by a finite number of balls of radius < €}

is the Kuratovsky measure of non-compactness.

In the rest of this section, we use some properties of the measure of non-
compactness on Banach spaces. For various properties of the Kuratowskis measure
of non-compactness, we refer to Deimling [89], Martin [258], and Sell and You
[314, Lemma 22.2].

Lemma 4.3.2. Let (X,|.||) be a Banach space and k(.) the measure of non-
compactness defined as above. Then for any bounded subsets B and B of X, we
have the following properties:

(a) «k(B)=0ifand only if B is compact;
(b)) k(B)=kK(B);

(¢) IfBCBthenx(B) <« (E) :
(d) K(B+§) < K(B)+1<(§) where B+ B — {x+y:xeB,ye§}.

Proposition 4.3.3. For each pair of bounded linear operators T,f € Z(X), we
have the following properties:

(a) ||T|os =0 ifand onlyif T is compact;
(b) AT |less < IA[[IT[less VA € C;
@ |re7 < imt+ 7]

S SS
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|r7)|_<im
(@) Tlless < 1Tl 5,

ess H ’
€ess

Lemma 4.3.4. Let T € % (X). Then the limits lim \|T"||;?X) and lim |T7/"
n—-+oo n——4o0

ess
exist.

Proof. We use standard arguments (see Yosida [381, p.212]). Assume that {an}nzo
is a sequence of non-negative real numbers such that

(amsp)" " < (am)" (ap)”, ¥m,p > 1.

Then
m m(p—1)
amp < (@m) ™ (am(pfl) "
(p-2) e

m m m mp

< (am)7 ((am(pz))m(P 1) (am)m(Pl))
ﬂ (p=2)

< (am)™ ((am(p-2))) "™

< ap.

Setr= lirr;ilnfan. Let € > 0 be fixed. Let m > 0 be an integer satisfying
n>

an, <r—+Ee.

Then for any integer n > 0 by using the Euclidian division, we can find an integer
p > 0 and a remainder 0 < g < m — 1 such that n = pm+ g. We have

mp g mp 4q
n n

amp+q < (amp) " (aq)

and
lim pm/n=1and l1m q/n—

n—y+oo

Therefore, it follows that
limsupa, <r+e.
n—y—+oo

This completes the proof. O

Definition 4.3.5. Let T € .Z (X) . The spectral radius r (T) of T is defined by
r(T):= hm HT"||1/"
and the essential spectral radius ress (T) of T is defined by

Fess (T) := lim ||T"]|1/"

n—>+-o0 ess
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Observe that for any integer n > 0 we have ||T"||Blé'<’x) < |IT||.#(x)- By using

Definition 4.3.5 it follows that

r(T) <|IT| 2x)-

In fact, the spectral radius describes the range of the spectrum and we have the
following result.

Lemma 4.3.6. For each T € £ (X), we have
r(T)>sup{|A|: A €0c(T)}.
Proof. Let y> r(T) be given. Set

|
|x| = sup .

n>0 ,}/n

Then by the definition of the spectral radius, there exists M > 1 such that

x| < || < M ||

and
|Tx| < v|x|.

It follows that for any A € C such that |A| > ¥, the map A — T is invertible (since
_ +oo

A'T| < Dand AI—T) ' =41 (1=2"'7)" =41 ¥ (A"'T)". It follows
k=0

that
sup{|A|: 2 ec(T)} <r(T).

This completes the proof. O
Theorem 4.3.7. For each T € £ (X), we have
r(T)=sup{|A]|: A € a(T)}.

Proof. Denote
. nnl/n . n n
pi=sup{[i|: A€ a(T)}, q:=r(T)=int{| 1" L)} = lim |I7"]%y).

By Lemma 4.3.6 we have p < g. Let us prove the converse inequality. Let € > 0
and let A € p(T) with |A| = p+&. Since the resolvent (A1 — T)~! is analytic in the
resolvent set p(7') and since the resolvent set contains the annulus

O<r1§\l|§r2

forany p <r; < p+¢€ <max(p+¢€,q) < rz, by Lemma 4.3.6, when |1| > g we
have
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1 T

—1 oo n oo

1 T
AM-T)'=—(1--) == =) =Y Ak,
w-r=3(-7) =g (7) - L
By Theorem 4.1.3 the resolvent operator has a unique Laurent expansion
~+oo
AI-T)""'=Y A4,

N——o0

where
1

S AN Ty dA.
2mi /sC(o,eJ+ ( )

By comparing (4.3.1) and (4.3.2) we deduce that

a0 ifn>0
T T fp < 0.

By using (4.3.3) and the fact that the resolvent is bounded on the circle A = rye'®,

we obtain for each n > 1 that

A, = i,/ A~ (AL —T) LA
270 Jsc(0.r1)"

L2 e 1)i6 i0 1 i0
= 2”./ r el (r1e”I1—T) " xire®do
1Jo

1 2 n _ni@ i0 1
= — I1-T) 'def.
271:/() rie"" (rie )
Therefore, we can find a constant C > 0 such that
1T = [|Apya || < Cr

It follows that
lim |[A7"T"||=0

n—+oo

whenever [A| = p+¢€ > ry, and for all n sufficiently large that
1T < A" = (p+€)",
which implies that
g= lim 7] 4}y, <p+e.
Since € > 0 has been chosen arbitrarily, we have ¢ < p. O
Lemma 4.3.8. For each T € £ (X), we have

(a) Fess (T) < F(T);
(b)  Tess (T) < ”T”ess;
(c) r(T)<|T|.
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4.3.1)

(4.3.2)

(4.3.3)

0
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Proof. From Proposition 4.3.3(e), we have

1T less < NT"[| 2xy> ¥Vn = 1,
and (a) follows. From Proposition 4.3.3(d), we have

1T lless < 1T [legs » ¥ > 1,

ess’?

and (b) follows. The assertion (c) follows from the fact that
17" 200) < 1T g > 1.

This completes the proof. O

Example 4.3.9. In the case ress (T) = (T') , the spectrum can take various forms and
the situation does not seem to be very clear in general. To illustrate this situation,
consider the shift operator 7' : BC ([0, +o0),C) — BC ([0, +e0),C) defined by

T(f)(t)=f(t+1),Ve>0.
Then the spectrum of 7 is equal to

o(T)={reC: 1| <1}
and

Fess (T) =r(T) = 1.

Lemma 4.3.10 (Riesz’s Lemma). Let E be a normed vector space and let F be a
closed subspace of E such that
E #£F.

Then for each € € (0,1), there exists X € E, such that |x|| = 1 and d (x,F) > 1 —¢.

Proof. Let x € E\F and € € (0,1) be fixed. Since F is closed, we have d :=
d(x,F) > 0. Fix yp € F such that

d
d<|lx— < —.
<lx yoH_l P

Then
X—=Y0
[l = ol

satisfies the requirement. Indeed, if y € F, we have

=)

-y
[lx = yoll

=~ AP
5=l =| H
since yo+ ||x —yolly € F. O

As an immediate consequence of the Riesz’s lemma we have the following theo-
rem.
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Theorem 4.3.11 (Riesz’s Theorem). Let E be a normed vector space. If Bg (0,1)
is compact, then dim (E) < oo.

Definition 4.3.12. Let L : D(L) C E — F be a densely defined linear operator from
a Banach space E into a Banach space F. Then the adjoint linear operator L* :
D(L*) C F* — E* of L is defined by

L*x*(x) =x* (Lx), Vx € D(L),
where
D(L*) = {x* € F*: x"oL|p() has a bounded extension to the whole space E }

or equivalently

D(L") = {x* c€F*: sup  JxF(Lx)| < +°°}.
xeD(L):||x||<1

Note that in order for L* to define a map we need L*x* to be uniquely determined.
So we need to assure that x*o L | p(1) has a unique extension to the whole space E.
Thus in the above definition we need D(L) to be dense in E. We also remark that

G (L):={("x") eY"x X" :y" (Lx) =x" (x),Vx € D(L)}
is Graph(L*), the graph of L*. Thus, from Lemma 3.3.4 we have
(x0,y0) € Graph(L) < (y*,y0) = (x",x0) , ¥ (y",x") € Graph (L).
By using a similar argument we have
(x0,¥0) € Graph(L®) < (y5,y) = (x0,%), V (x,y) € Graph(L).

Let L: E — F be a bounded linear operator from a Banach space E into a Banach
space F. Then L* : F* — E* is simply defined by

L*x* =x"oL.

Lemma 4.3.13. Let T € £ (X) be a bounded linear operator on a Banach space X .
Then we have the following

(@) | T"|les <2|T]|
(B) [T less < 2T [lass’

(c)  Fess (T*) = Tess (T) .

Proof. (a) Let € > ||T||, - Then by the definition of ||T'||
N > 1 and yy,..,yy € X, such that

ess?

oss We can find an integer

N
T(Bx(o, 1)) C UBX (yi,&').

i=1
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Let 1 > 0 be given. Assume that
| T" || > 2€+7M.
Let x; € Bx+ (0, 1) be fixed. Since ||T*|| ., > 2€ + 1N, we have
T* (Bx- (0,1)) € By- (T*x}, 26 +1).
So we can find x| € Bx+ (0,1) such that
T'x; ¢ By (T3, 26 1),

and since ||T%|| . > 2€ + 1N, we have
T*(Bx+ (0,1)) UBXx (T*x;,2e+1).

By induction, we can find a sequence {x;},- in Bx+ (0, 1) such that
1T = T e > 26+ 1, Vi m.
Let x € Bx (0, 1) be fixed. We have

(T"x, = Tx,) () = (o3 —2,) (T (x))

N
and T (x) € J Bx (y;,€) that

i=1

[(T7x, = T7x,) ()] < sup [(x, —x,) (Vi +2)]
z€Bx (0,€)
i=1,...N

< sup |(x, —x5,) ()] +2€.
i=1,..N

So we obtain
2e+n < sup |(x, —x;,) (vi)| +2¢€,Yn # m,

i=1,...,.N
hence
n< sup |06 —x,) Gl ¥ 7 m.

x5 (y1)
But since x}; € Bx+ (0,1), Vn > 0, the sequence : is bounded. So

X:; (yN) n>0

XZ,, )

we can extract a converging subsequence : such that

X, (ON) n>0
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(w5, =5, ) O9)

sup

2€Bx (Vi,€)
=1, N

— 0as p — +oo,

and we obtain a contradiction. Therefore,

1T ess < 2€, Ve > ||T|

ess *

(b) Let € > ||T%||. be given. By the definition of ||7|
N >1andyg,..,yy € X*, such that

ess » We can find an integer

N
T* (Bx+(0,1)) € (U Bx- (v ,€).
i=1

Let 1 > 0 be a given constant. Assume that

IT]|oss > 26+ 7.

ess

By induction, we can find a sequence {x, },~¢ in By (0, 1) such that

|Txy — Txml|ly >2€+M, Vn#m.

By the Hahn-Banach theorem we can find x;, , € X* with Hx,*nn] «+ = 1 such that

X;,n (Txp —Txm) = ||Txn — Txm||x > 2 +1.
Notice that

x:mn (Txn —Txpm) = x:z,n (Txn —Txm) = T*x:nﬁn (Xn) — T*x;kn,n (Xm)

and
T*x;‘mn € By (y:fo,s)
for some iy € {1,...,N}. So
T*xjpz,n = y;'k() +2"
for some z* € By- (0,¢€). It follows that
x;:z,n (Txn —Txm) = yi‘o (Xn —%m) +2° (Xn —Xm) »
so we obtain

26+ < || Txw —Txullx < sup |y} (xn —xm)| +2€.

i=l,...,

The result follows by using the same argument as in part (a) of the proof.
(c) We have

1
FIT less < NT"llegs < 2T less, ¥ 2 1,
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SO

1 1/n
() 17"l < 771 < 2" |7l v > 1,

2 €ess — €ss ess
and (c) follows when n — 4. 0O

The following theorem is a direct consequence of the open mapping theorem (see
Brezis [48, Corollary 2.7 p. 35] for a proof).

Theorem 4.3.14. Let E and F be two Banach spaces and let T be a bounded linear
operator from E into F that is bijective; i.e. injective (one-to-one) and surjective
(onto). Then T~ is bounded from F into E.

Let Y be a Banach space and Y* be the space of continuous linear forms on Y. Let
E be a subspace Y and F be a subspace of Y*. Denote the orthogonal complements
of E and F by
L={x"er* :x*(x)=0,Vx € E},
L={xev:x*(x)=0,Vx* € F}.
We refer to Brezis [47, Corollary I1.17 and Theorem II.18] for a proof of the follow-
ing lemma.

Lemma 4.3.15. Let L : D(L) C E — F be a closed and densely defined linear op-
erator from a Banach space E into a Banach space F. Then we have the following
properties

(@) N(L)=Z (L)

)_

(b) N(L)=Z(L)":
(c) NN =% (L)< Z(L) is closed;
(d) N(L)r =% (L") < Z (L") is closed.

The first main result of this section is the following theorem.

Theorem 4.3.16. Let T € £ (X) be a bounded linear operator on a Banach space
X and assume that
ress (T) < 1.

Then there exists an integer kg > 0 such that

(a) N((I-T)Y0) = (I-T)"™), vn>1;
(b)  dim(A ((I—T) ) < +oo;
(c) Foreachk>1,Z((I—T)") is closed, and

% ((1— T)k) = ((1— T*)k)l.
(d) Foreachk>1,Z((I—T*)") is closed, and

% ((I—T*)k) - ((17 T)k>L.
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Proof. (a) Set
E,:= A4 (I-T)"),Yn>0.

Then we have
En C En+1, Vn 2 O7

and
(I-T)(Eyt1) CE,, Vn> 1.

It follows that
(I-T)(E,) C(I—-T)(Ey+1) CEy, Yn>0,

hence
T(E,) CE,, Vn>1.

Assume that E, # E,y1,Vn > 1. By applying the Riesz’s lemma, we can find a
sequence {uy },~ , such that

Up € Ey, un|| =1, and d (up,En—1) > 1/2, ¥n > 1.

Setting
Vp = (1— T) u, € E,_1,
we have
Tu, = u, —v,.
Thus,

T?uy =T (y) — T (V) = tty — vy — T (v)

and we obtain by induction that

k=1
T (up) = up — ZT’ (vn), Vk > 1.
=0

Since T (E,—1) C E,—1, Vn > 1, it follows that
k=1
& =Y T'(va) € Eper,¥n > 1,Vk > 1.
=0
Since ||u,|| = 1, we have
Uy — 25 =T (u,) € T* (Bx (0,1)).
Since ress (T) < 1, it follows that
K (Tk (Bx (0, 1))) 5 0as k — +oo.

Let ko > 1 be given such that
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1 3
K(Tko (BX(O,I))) < (2) .

U {un—z’,;O} c T (B (0,1)),

n>0

Since
we can find a subsequence {uy, — zf,(l’, }p>0 and X € X, such that

IARS
u,,p—zﬁ(;eBX <x, <2) ),szl.

ki
n(l),_l )

Then

] <

k
u”p - Zn(l), - (unp—l —Z

1\2
k - k

Without loss of generality we can assume that n, | < n,,Vp > 0. We have
np—1 < np— lva > Oa

and

ko
unp—l - an,1 € E"p—l

- Enp—h
SO

ko ko
an + (u"p—l - an_l) € E”p71 :

1 2
d(un,,vEn,,fl) < <2> )

which gives a contradiction to the fact that d (unp,Enp,l) > 1/2. From this contra-
diction it follows that there exists an integer ky > 1 such that

It follows that

V% ((1_ T)kO) - ((1 - T)k0+’") ,¥m > 1.
(b) We prove dim (Eko) < +o0 by induction. Clearly Ey = {0}. Thus,
dim(Ey) = 0.

Assume that dim (Ej) < +oo. Letu € Bg,,, (0,1), then from part (a) of the proof we
know that there exists v € Ej such that

Tu=u—v.

We have
vl <(A+(T])) =: 6
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and

k=1

T8 (u) = u— ZTZ(V).

=0
Hence
K (Bg,,, (0,1)) <k (Tk (Bx (0,1)) + Bg, (0,8) + TBg, (0,8)+...+ T By (0, 5))
and, since dim (Ej) < +oo, we obtain

K (B, (0,1)) < x (T" (Bx (0, 1))) L VE> 1.

When k goes to +oo, since regs (T) < 1, it follows that k (7% (Bx (0,1))) — 0. Thus,

K (BEk+1 (07 1)) =0.
It implies that B, (0,1) is compact. But (1 — T)**! is bounded, we deduce that
Epy1 = A ((I—=T)" Y is closed, so is Bg, ., (0,1). Hence, Bg,,, (0,1) is compact.
Now by applying the Riesz’s theorem we obtain that dim (Ej) < +oe.
(c) We prove the result by induction. Set

X, =% ((I-T)"X),VYn>0.

We have Xy = X. Assume that X is closed. Consider a sequence {f,} = {u, —
Tu,} — f, where u,, € X;. We want to prove that f € Z ((I — T) Xy). Since

dim (1 (=) 1)) < 4=
we can find v, € A4 (((I—T) |x,)) such that
[t = vall = d (1, A ((I=T) Ix,))-

Then we have
Sa=U—=T)(uy,—vy), Vn>0.

Assume that {u, —v,},>( is unbounded. By extracting a subsequence that we de-

note with the same index, we have ||u, — v, || — +oo. Set w;, := H We have
Up — Vy
. Up — Vy
d(Wn,z/V(((I—T) |Xk))) = inf - X
xeN((1=1)lx, ) Il 1tn = vl
i [ nt) ’
xeN((I-T)lx,) [t — vl
e L ’
yEN((IfT)|Xk) Hun _Vn”
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So
d (up, ¥V ((I=T) |x,))
d(wa, NV ((I-T) Ix,)) = TE— L2 =1
Set g, := ”unff”w“ — 0, we have
m
wy,=gn+Tw, = Z Tkgn+Tm+l(Wn), Vm > 0.
k=0
Denote

€= J{s}u{o}.

n>0

Then C is compact and

K (U {w,,}) <k(C+TC+...+T"C+T"""'Bx (0,1)),

n>0

K (U {wn}> < Kk (T™"'Bx (0,1)) = 0, m — +oo.

n>0

We deduce that |J {w,} is relatively compact, so we can extract a subsequence
n>0

{wnp} — w. Since X}, is closed, we have

w e X;.
Note that
8np, = (I-T) Wnys
we obtain
(I-T)w=0,
SO

WEJV(((I—T) \Xk)).

Since the map x — d (x,.# (((I—T) |x,))) is continuous, we obtain

d (w A (((I=T) %)) =1,

a contraction. So the sequence {u, — v, },~ is bounded.
Now by noting that
Up —Vn :fn+T(un_Vn)

and by using the same arguments as above, we can extract a converging subsequence
{unp —Vn,, }p>0 — W € X, and obtain

f=-T)w.
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Hence, X1 is closed. Assertion (c) follows by induction because Xi 1 = Z((I —T) |x,
). Since Z((I —T)* X) is closed, it follows from Lemma 4.3.15 (c) that

% ((1— T)kX> = ((1— T*)")l \Vk > 0.

Finally to prove (d) it is sufficient to observe that ress(T*) = ress(T) < 1. There-
fore, we can apply property (c) to T* to claim that Z((I — T*)*X) is closed. By
using Lemma 4.3.15 (d) the result follows. This completes the proof. 0O

Lemma 4.3.17 (Fredholm Alternative). Let T € . (X) be a bounded linear oper-
ator on a Banach space X and assume that

Fess (T) < L.

Then
N ((I-T)={0}=2((I-T))=X.

Proof. = Assume that
N (1-T)) ={0}.

Assume by contradiction that
E\:=%(1-T)#X.

By Theorem 4.3.16, E| is a closed subspace of X, therefore E; is a Banach space
endowed with the norm of X and we have

T(E)=TI-T)X)={I-T)(T(X)) cU-T)X)=E

and
(I=T)(E)) = (I~T)(I~T)(X) C (I~T)(X) =Ex.

Since by assumption / — T is one-to-one, by induction and by setting Ej = (I — T)k (Ev)
for all k > 1, we obtain a decreasing sequence of subspaces {E, },>1, such that
E,11 # E,, ¥Yn > 0. Moreover, since T (E|) C Ej, we have

TE,=T(I-T)"(E\)=({—T)"(TE\) C (I-T)"(E|) = E,,

that is,
TE, C E,.

By applying the Riesz’s lemma we can find a sequence {x, } C E,, such that ||x,|| =1
and d(metH-l) > %
Moreover, since regs (T) < 1, we have k (T*(B(0,1))) — 0 as k — oo, there

exists ky > 1 such that
1
K(Tko (B(0, 1))) <z

Hence, we can find a subsequence {xy,, } ;>0 such that
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1
7 o)<

We have
T*x,, = (I=T)Xp, + T (I = T) Xy, +T* (I —T) Xy, + ...

+TR (1= T) 3, —

P

ko—1
= Y T'(I=T)xy, — %0,
1=0
It follows that
ko—1 ko—1

THx,, —T%%, . = Y T'UI=T)x0,— Y, T'(I=T)xs ., +Xn,, —Xn,
=0

Notice that

ko—1 ko—1

Y T (I=T)xy,— Y, T (I=T)x,, + X, € Enyi1,
=0 =0
we have 1
[ A BT

a contradiction. So Z (I —T) = X.

< Conversely, assume that Z (I — T') = X. Then by Lemma 4.3.15 (c), we have
N (I=T*)=R(I—T)" =X+ ={0}. Since ress (T*) = ress (T') , we can apply the
previous part of the proof and deduce that Z (I — T*) = X*. By using Lemma 4.3.15
(d), it follows that A4 (I —T) = Z((I - T*))* =X*+ ={0}. O

Remark 4.3.18. The Fredholm Alternative Theorem is useful for the solvability of
the nonhomogeneous equation u — Tu = f: either the nonhomogeneous equation
has a unique solution for every f € X or the nonhomogeneous equation is solvable
if and only if f satisfies the orthogonality condition f € A" (I —T*)* .

Lemma 4.3.19. Under the assumptions of Theorem 4.3.16, (I —T)
part of (I—T) in Z((1—T)*), is invertible.

a((1-Ty0) the

Proof. Set Xy, := Z((I — T)%). Then
I-T) X =(I-T)I-T)X=(I-T)(I-T)X C(I-T)"X = X4,
so (I —T) Xy, C Xi,- Moreover, assume that there exists x € X, \ {0} such that
(I-T)x=0.

There exists y € X, such that x = (I — T)®y, and
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(I-T)°y#0and (I-T)y=0,

which implies that .4 (I —T)*) # 4 (I—T)* ™), a contradiction. Since Xy, s
closed, it is a Banach space endowed with the norm of X, and by applying Lemma
4.3.17t0 (I - T)XkO , we obtain (I — T') (Xi,) = X, Since (I — T)Xk0 is bijective and

bounded, we know that (I — T),}k1 is bounded, the result follows. O
0
Let E be a subspace of X. Recall that the quotient space X /E is defined by
X/E:={{x+v:iveE}:xeX}.

Set
Xi={x+v:veE} VxeX.

Then X /E is a vector space with the addition
T+yi=x+y
and the multiplication by a scalar number
AR = Ax,
If we endow the norm ||.|[y 5 defined by
€1/ = in lx-+ ]

andif E is a closed subspace of X, then (X /E, ||.|| /) is a Banach space. Moreover,
if T € Z(X) and E is a subspace of X such that T (E) C E, then we can define
Tx g(X) =T (x).
Since T(E) C E, if x = y+ w for some w € E, then
Txp(X) ={T(x)+v:veE} ={T(y)+T(w)+v:vEE}
={T(y)+v:veE} =Tx/())

So Ty defines a map on X /E. Furthermore, it is readily checked that Ty is lin-
ear. The following lemma also provides the boundedness of Ty and an important
estimation for the essential norm of T /.

Lemma 4.3.20. Let T € £ (X) be a bounded linear operator on a Banach space X
and let E be a subspace of X satisfying

T(E)CE.

Then we have the following:
(@ | Txel| <ITl g
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) || Tx /e e S NT lless s
(c)  Tess (TX/E) <ress (T).

Proof. (a) Let 6 >0 be a constant. Letx= {x+v:v € E} € By (0,1). Since
= inf <1
I8l = inf e +v] < 1.

there exists vy € E such that

lx+vol <1468

and

x={x+w+v:veE}.
So we have

Txg(X) ={T (x+vo)+v:veEE}
and
1 T/e (|| = IE T Cetvo) vl T Ce+vo)l| < (1T (14 6).
Thus,
(b) Let € > ||T|| s - Then we can find an integer N > 1 and yi,...,yny € X such

that N

T (Bx (0,1)) C B (yi,€).

i=1

Set

yi={yi+v:veE}eX/E,Vi=1,..,N.
Letn >0and X € By (0,1) be fixed. Since x= {x+v:v € E} and

I¥llx/z = inf x+v] <1,

there exists v € E, such that ||[x+vo|| <1+ nand X = {x+vo+v:vEE}.
Since there exists iy € {1,...,N} such that

X+ vy
T v
H <1+n> Yo

75 B = (1+m)3il| = int [|7(e-vo) = (1) yig — ]

< |IT (x+vo) — (14+1) yi || < (1+n)e,

<e

and

it follows that
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N

Ty e (Bx e (0,1)) € (UB((1+m)3i, (1+1n)€).
i=1
Thus
[T /| o < (141 €Y > 0, Ve > ||T |,

and (b) follows.
By using the previous part of the proof, we have

Wi ST e ¥ =0,
and (c) follows. 0O
The second main result of this section is the following theorem.

Theorem 4.3.21. With the same notations and assumptions as in Theorem 4.3.16,
we have

X=n ((1-1)) oz (1-T1)").
Moreover, we have the following properties:
(a) (I— T)%(U—T)kt)) (the part of (I —T) in Z((I — T))) is invertible;
(b) The spectrum of (I — T)LA/((IfT)"O) (the part of (I—T) in A ((I—T)")) is {0}.

Proof. We first prove that .4 (I — T)*)N2%((I—T)*) = {0} . Assume that there
exists x € Z((I —T)*)\ {0} such that

(I-T)ox=o0.
Then there exists y € X with (I —T)* y = x such that
(I-T)*y=x#0and (I—T)*0y=0.
This implies that 4 ((I—T)*) # 4 ((I—T)*?), which contradicts the fact that
N ((I=T)) = #((I—T)*"") and is impossible. It follows that the part of
(I—T) in Z((I—T)) is invertible.
Similarly, assume that .4 ((I — T*)*) N2((I — T*)*) # {0} . Then we can find
x € Z((I—T%)*)\ {0} such that
(I-T*x=0.

It implies that A ((I — T*)*0) # 4" ((I — T*)*) which is impossible.
We now prove that

X=n (u-1/) oz (1-1)).
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Since T (A (I —T)®)) € A4 ((I—T)*), we can consider the quotient space X /.4 ((I — T )*)

endowed the norm ||. |, A ((-T)0) defined as above, and consider

Ty (a-mfo) : XIN ((1— T)k°> LX) N ((1— T)"O) .

Assume that A (I — T, # {0} . Then there exists

JH (-0
£= {x+v veN ((17 T)kO)} ex/ N ((I—T)k°> with £ 0y (4 gy

such that
(=T (1) @ =0

So there exist x ¢ A ((I—T)") and v,w € .4 ((I — T)*) such that
I-T)x—v)=we (I-T)x=w+({I—-T)w.
But (I —T) A (I-T)*) c A ((I—T)*), we have
w+(I—T)v€/V((I—T)k°) and (I—T)" x=0.

Hence, x € A ((I —T)*™™), which contradicts A ((I — T)*) = 4 (I —T) "),

Thus,
4 (If TX/L/V((IfT)kO)> ={0}.

Now from Lemma 4.3.20 we know that ress(TX/tM(l_T)kO)) <ress (T) < 1. Applying
Lemma 4.3.17 t0 Ty (;_7 k) and noting that 4" (I — = {0}, we
deduce that .

% (1= Tyv(uorpo)) =14 (=T)).

TX/./V((FT)"O) )

It follows that

7 (("TX//(UT%O))ko) =X/ ((1=1)°).

This is equivalent to say that for each = {y+v:ve 4 ((I—T)®)} with y € X,
there exists = {x+v:ve A4 (I —T)®)} with x € X, such that

ko

y= (I—TX/J/((LT)/«)D (x) = {(I—T)ko (xX)+vive s ((]_T)ko>}.

So for each y € X, there exist x € X and v € 4 ((I —T)*), such that
y=({I-T)x+v.

We deduce that
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X=2(1-1) o (1-1)%).

To conclude, assertion (a) follows from Lemma 4.3.19 and (b) is immediate since

ko _
(=T ) o =0 O

By noting that
N (AI=T) = ((1-27'T))

we can apply the previous results to study the spectrum of 7 contained in {4 €
O (T):|A| > ress(T)}.

As a first consequence we have the following results.

Lemma 4.3.22. Let T € .2 (X) be a bounded linear operator on a Banach space X .
Then

{o(T) :|A]| > ress(T)} C op(T).
Proof. Assume that A € ¢ (T) and A" (Al —T) = {0}. Applying Lemma 4.3.17 to
(I—A7'T), we deduce that Z (AI—T) = X, so (AI —T) is invertible, which is
impossible since A € 6 (T). O

Lemma 4.3.23. Ler T € £ (X) be a bounded linear operator on X. Assume that
F(T) > ress (T). Then each Ay € o(T)N{A € C:|A| > ress (T)} is isolated in
o(T).

Proof. Let Ay € 6(T)N{A € C:|A| > ress(T)}. Replacing T by A, 'T we can
assume (without loss of generality) that Ay = 1. Let ko > 1 be given such that

X:/((I Tko) %(1 Tko)

and

N ((1_ T)k°> - ((1 - T)k0+1) .

Let IT € Z (X) be the bounded linear operator of projection such that
R =N ((1 - T)k") and A (I1) = % ((1 - T)ko) .

We have
T =TI1.

Let Ty be the part of T in % (IT) and T 47y be the part T in .4 (IT). Then
from the previous results we known that 6(T 7)) = {1} and 1 € p (Tym ) (i.e.

Ly (1) — T y (1) is invertible), and since p (7 4(y7)) is open, we can find € > 0, such
that for A € Be (1,€), ALy ) — Ty (7 is 1nvert1ble Soforeach A € B (1,€)\ {1}
we have that A] — T is invertible, and

-1

A=T)"" = (ALy(m) - Tyan)  (I—T)+ (AMopmy — Topany) 11

This completes the proof. 0O
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Remark 4.3.24. In Lemma 4.3.23, we assumed r(T) > ress (T) only to make sure
that 6 (T)N{A € C:|A| > ress (T)} is nonempty.

Lemma 4.3.25. Let T € £ (X) be a bounded linear operator on X. Assume that
P(T) > ress (T) . Then for each ¥ € (ress (T) ,r(T)], the subset

S(T)N{A € C:[A| =7}
is finite.
Proof. Replacing T by r(T)~'T, we can assume that 7(T) = 1. Set
10 :=1inf{y € (ress (T),1] : the subset {A € o (T) : |A| > v} is finite}.
Assume that ¥y > ress (T') . Then for each € € (0,99 — ress (T')) , the subset
{Aeo(T):pw+e>|A|>w—¢}
is infinite.

Hence, we can construct a sequence {A, },~, C o (T) such that

, and A, # A, whenever n # m.

Al = 1, ] > TR

By taking a subsequence we can assume that A, — 2. Moreover, by Lemma 4.3.22
for each n > 1, there exists f, € X with || ;|| = 1, such that

Tfn = lnfn~

Then k ({1, 'Tf,:n>0}) =k ({4, 'Tfu:n>p}) and A, — A. We have

K ({A7 T fin>0)) = ’IF k({Tf, :n>0}),
which implies that

K({fa:n>0}) <15 " ress (T) K ({ £ :n > 0}).

It follows that
K{fu:n>0})=0.

So we can extract a converging subsequence { fnp} — f, and since T is bounded

p=>0
we obtain that

Tf=Af.
Thus, we have A € & (T) and there exists {1, },59 C 0 (T) — 2 with A, 7&1,%1 >0.
It follows that 1 is not an isolated point of the spectrum, but PL‘ > ress (T'), this is
impossible by Lemma 4.3.23. 0O
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Using the definition of the essential spectrum and summarizing the above results,
we can state the Nussbaum theorem (Nussbaum [280]) as follows.

Theorem 4.3.26 (Nussbaum). Let T € £ (X) be a bounded linear operator on a
Banach space X. Then

Tess (T) = sup{|A]: A € Oess (T)} .
The above results can be summarized in the following theorem.

Theorem 4.3.27. Let T € .Z (X) be a bounded linear operator on a Banach space
X. Then

r(T) = max (ress (T), sup |A|> )
(T)

A€0(T)\Gess

Moreover, if ress (T) < r(T), then for each ¥ € (ress (T) ,r(T)] the subset
o(T)n{AcC:|A[>7}

is finite. Furthermore, for each 29 € 6 (T)N{A € C:|A| > ress (T)}, there exists
ko > 1 so that

X =2 (el =T)0) &1 (o~ 1)),

such that
(% (Gar=1))) 2 (ol 1)) 7 (A (ot = 7)) ) <1 (ol = 1))

with the following properties:

(a) (Aol — T)%((%[_T>k0) (the part of (I —T) in Z((Aol — T)*)) is invertible;
(b) The dimension of N (Aol — T)*) is finite;
(c) The spectrum of T . ;1) (the part of T in N (Mol = T)R)) is {40} .

4.4 Essential Growth Bound of Linear Operators.

Let (X,]|.||) be a complex Banach space and A : D(A) C X — X be the infinites-
imal generator of a strongly continuous semigroup {74(t)},-, of bounded linear
operators on X . In the following lemma we use the convention that

e " =0and In(0) = —co.

Definition 4.4.1. Let {74()},>, be a strongly continuous semigroup of bounded
linear operators on a Banach space X with infinitesimal generator A. Then the
growth bound of {Ty(t)}, is defined by
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@(A) == lim In(|[Z(1)[1) ()II) € [—o0, -+o0)

t—r+oo0

and the essential growth bound of {Ty(t)},- is defined by

nens(A) = lim A ess)

t—r+oo0 t

€ [—o0,+00).

Lemma 4.4.2. Let {T, (t)}zzo be a strongly continuous semigroup of bounded linear
operators on a Banach space X with infinitesimal generator A. Then we have the
following properties

(a)  @o(A)=1lim/ e (HTA()”) € [—oo, 4-o0) exists;

(b)  @pess(A) =1lim; M € [—oo, 40) exists;
(c) wO‘,ess(A) < (UO(A)

(d) r(Ta(r)) = e®Wr v >0;

(e)  Fess (TA (t)> = ea’(),ess<A)l, Vvt > 0.

Proof. (a) We have for ¢ € [n,n+ 1] that
In([Za @) _ In([[Ta(t =n)Ta(n)])
t t
nIn((|Za@)[) +In([Za(m)]])
t

n

<

Thus, for ¢t € [n,n+ 1] we have

In([[Ta(n+ D) _ Wn(([Ta(n+1=0)[)+In (|72 (@)])
n+1 n+1
t In(|Ta(n+1—1)]) +In(||Z2(#)[)
~n+l1 t ’

Hence

. 1/n . (H ()H) . 1/n
Jim I (| 7an)]'") < timsup IR < im o (170"

So when ¢ — 40, we obtain

limwln<||TA( )Hl/”> < liminf ————+ In(] A( )H)

n—r+ t—>+oo

and (a) follows. The proof of (b) is similar.

(c) Tt is sufficient to note that || Ty (¢)||. < ||T4(®)||, V& > 0. We also remark that

In ({74 () )

t
ITa(n)|/"=e

less

So when n goes to 4o, we obtain (c). The proof of (d) is similar. O
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The following theorem, which was proved by Webb [362][363], gives relation-
ship between the spectrum of a semigroup and the spectrum of its infinitesimal
generator.

Theorem 4.4.3 (Webb). Let {Ty(t)},.q be a strongly continuous semigroup of
bounded linear operators on a Banach space X with infinitesimal generator A. Then
we have the following statements:

(i) If & € 0,(A), then e*' € 6,(Ta(t)) for t > 0; if u € 0,(Ta(t)) for some t >

0,1 # 0, then there exists A € 6,(A) such that e = p and N (M —Ty(t))
is the closed linear extension of the linear independent subspaces N (MI —A),
where Xy € 6,(A) and M = p;

(i) If A € 6(A), then e € 6 (Ty(1)) fort >0, and N (AL —A) C N (M —Ty(1))
fort > 0;

(iii) If A € Gess(A), then €M € Gegs(Ty (1)), t > 0;

(iv) sup Red < ay(A) and sup Reld < mpess(A);

Ao (A) AE€Gess(A)
(iv) wp(A) :max{(oo,ess(A), sup Re (k)}
A€0(A)\Oess(A)

Proof. (i) The results were proved in Hille and Phillips [187, Theorem 16.7.2, p.
467].

(i1) The first part was Theorem 16.7.1 of Hille and Phillips [187]. To prove the
second part, let x € .4 (Al —A). Note that ¢*x satisfies the initial value problem
% = Au(t), t >0, u(0) =x, and T4(¢)x is the unique solution of the initial value
problem, we have Ty (t)x = e*x for all £ > 0. Hence, A (Al —A) C A (M1 —Ty(1))
fort > 0. Let k be a positive integer and assume for induction that .4 (A1 —A)¥) C
N ((eMI =Ty (1)) fort > 0. Letx € A (A —A)F). Then (A1 —A)kx € A (Al —
A), which implies that (A —A)fx € A (e*I — Ty (t)). Thus,

0= (M =Ty (1)) (M — A)rx = (AT — A (M T — Ty (1))x,

which by induction implies that (e* I — Ty())x € A ((e*'I — Ta(r))¥). Therefore,
N (AL =AY C A (M =Ty (t))) forallt >0, k=1,2,....

(iii) Let A € Gess(A) and let T > 0. By (ii) we have e** € 6(Ty(r)). Assume that
e*® € 6(Ty(1)) \ Oess (T4 (1)). Then €7 is isolated in (T4 (r)), A (eI — Ty (7)) is
finite dimensional and Z(e**I — Ty (1)) is closed. By (ii), A (Al —A) C A (XTI —
Ta(7)), so A (Al —A) is finite dimensional. To show that A is isolated in 6(A),
suppose that there exists a sequence {z;} C 6(A), zx # A for any k, such that z; — A.
Once again by (ii) one has ¢%* € 6(Ty(¢)) for all k. Moreover, e # ¢*7 for all k
sufficiently large since ¢%® = €7 if and only if Rezy =ReA and Imz; =ImA + 27
for some integer j. Since e%*® — ¢*7, €*7 is not isolated in & (Ty(7)). Thus, A is
isolated in 6(A).

Next we show that (A1 —A) is closed. Since .4 (e**I — Ty (7)) is finite dimen-
sional, there exists a positive integer m such that
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N(PTT=Ty(1)) = N (X1 = Ty (T)™).
So e*7 is a pole of (ul —Ty(1))~", e** € 6,(Ta(7)), and X = M; © M5, where
My = N (1 =Ty (2))™), My = ("] —Tx(7))™)

are closed subspaces. Let I}, I, be the projections induced by this direct sum; that
is,
Ilix=x;, x=x1+x, ;i €EM;, i=1,2.

For 1 > 0, Ty (t) commutes with (eI — Ty (t))™, so Ty(t) also commutes with IT;
for each ¢ > 0. In fact, for each ¢ > 0,74 () is completely reduced by M;, thus A
is completely reduced by M;. Let {T,(¢)}+>0 and A;(i = 1,2) be the restriction of
{Ta(t) };>0 and A to M;(i = 1,2). Observe that A; is the infinitesimal generator of
{TAi(I)}tZO on Mi(i = 172)

We first claim that e**] — Ty, (7) is one-to-one on M. Suppose that .4 (e**I —
Ta, (1)) # {0}. By (i) it follows that there exists A € 6,,(A,) such that e*7 = M.
Thus, there exists x € M;,x # 0, such that 4,x = Ax. However, (i) implies that

x €N (Md —A2) C N (XTI —Ty, (1)) C N (X1 —Tu(1)) C M.

Hence, x € M; "M, = {0}, a contradictoion.

We then claim that Z(e**I — Ty, (7)) is closed in M,. Let {y;} C Z(e"I —
Ty, (7)) such that y; — yo in Ma. Since % (e**I — Ty, (7)) is closed in X, there exists
Xxo € X such that

yo = (eMI— TA(T>))C() = (elrl— TA(‘L'))(Hl)C() + Ihxo).

By the uniqueness of the direct sum representation, (e**I — T (7))ITjxo = 0. Thus,
(e)LTI— TA(T))HQ)CO =0-

We next claim that there is a constant ¢; such that || (e**1 — Ty (7))x|| < ¢ ||(A —
A)x|| for all x € D(A). Let x € D(A) and define

u(t) = (1 —Ty(7))x, 1 >0,

'
v(t) :/ HMINT () (AL — A)xds, t > 0.
0

Note that u(¢) and v(¢) are both solutions of the initial value problem

d

(Tv: = Aw(t) + (AL —A)Tu(1)x, t > 0; w(0) = 0.

The uniqueness of solutions to the problem implies that u(¢) = v(¢) for > 0. By the
uniform boundedness of Ty(z) : [0,7] — £ (X), there exists a constant ¢; such that
forall x € D(A),

(71— Ty (2))x|| = H/OTeMT*@TA(s)(;u—A)xdsn <cl||(AM=A)x||. 44.1)
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Now using the fact that the necessary and sufficient condition for the range %Z(T)
of a one-to-one closed linear operator 7 in the Banach space X to be closed is
|lx|| < ¢||Tx|| for all x € X for some constant ¢ (Schechter [311]), we obtain ¢, such
that for all x € Ma, ||x|| < c2(e**1 —Tx(7))x||. Thus, from (4.4.1) we have for x € M,
that

[x]| < creaf[ (A1 —Az)x]].

So Z(AI — Ay) is closed in My.
We finally argue that Z (A1 —A;) is closed in X. Let {yx} C Z(AI—A) such that
Yk — Yo. For k= 1,2,..., there exists x; € D(A) such that y; = (Al — A)x;. Then

ITiyk = (/’LI*A)IL'X/( = (/’LI*AI')I—I,'X]( — Hiy(), = 1,2.

Since Z(AI —A3) is closed in My, there exists xo 2 € M; such that (A1 —Az)xp2 =
ITyy. Since M is finite dimensional, Z(AI — A;) is closed in M; and there exists
Xo,1 € My such that (A1 —A;)xo,1 = ITiyo. Thus,

(Al —A)(x0,1 +x02) = IT1yo + Ihyo = yo.

Hence, Z(AI —A) is closed, which means that A € G.s(A), a contradiction.
(iv) Follow from (i), (ii), Lemma 4.4.2 (d) and (e).
(v) Define

(Dz(A) = max{a)o,ess(A)7 sup Re (),)}
AEC(A)\Oess(A)

Lemma 4.4.2(c) and (iv) imply that @,(A) < @y(A). To prove ap(A) < @ (A), by
Lemma 4.4.2(d) it suffices to show that for some 7 > 0, (T (r)) < e®2W" Letr >0
and let ft € 0(Tx(r)) \ Oess (Ta()), then Lemma 4.3.22 implies that u € 6,(T4(z))
and by (i), there exists A € 6,(A) such that e* = p. By (iii), 1 € 6 (A) \ Cess (A).
Therefore, || < eReM < ¢@(4) which implies that

F(Ty (1)) < e®2Wr,

This completes the proof. 0O

4.5 Spectral Decomposition of the State Space

The goal of this section is to investigate the spectral properties of the linear op-
erator A. Indeed, since A is the infinitesimal generator of a linear C°-semigroup of
Xo, we can apply the standard theory to the linear operator Ay. We first investigate
the properties of projectors which commute with the resolvents of Ay and A. Then
we will turn to the spectral decomposition of the state spaces Xy and X. Assume
that A : D(A) C X — X is a linear operator on a complex Banach X. We start with
some basic facts.
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Lemma 4.5.1. We have the following:

(i) If Y is invariant by A, then A |ly= Ay (i.e. D(Ay) = D(A)NY);

(ii) If M —A) 'Y C Y for some A € p (A), then
D(Ay)= (A —A)"'Y, A€ p(Ay), and (Aly —Ay)' = (A1—A)""|y.

Proof. (i) Assume that Y is invariant by A, we have

D(Ay)={xeDA)NY :AxeY}=DA)NY =D(A|y),
so A |y: Ay.
(ii) Assume that (A1 —A) ™'Y C Y for some A € p (A). Then we have
D(Ay) ={xeDA)NY:AxeY}={xeDA)NY : (AI-A)x €Y}
=M —-A)"y,
and the result follows. O

Let IT : X — X be a bounded linear projector on a Banach space X and let Y be
a subspace (closed or not) of X. Then we have the following equivalence

OY)cY<sI(Y)=YnI(X). 4.5.1)

Lemma 4.5.2. Ler (X, ||.||) be a Banach space. Let A : D(A) C X — X be a linear
operator and let I : X — X be a bounded linear projector. Assume that

OAI-A)'=@AI-A)"'IT
for some A € p(A). Then we have the following

(i) IT(D(A)) = D(A)NIT (X) and IT (W) =DA) NI (X);
(ii) AIlx = ITAx,Vx € D(A);
(iii) Amx) = A lnx)s
(iv) For A € p (Apx)) , one has D(Ay(x)) = (AI—A)""TT(X) and (AIfAH(X))_l =
(A =A)"" x);
(v) (A |H(X))m: (AW) |H(W) :

Proof. 'We have

I(DA) =T (A —A)"" (X) = (M —A)"'TI(X) c D(A).

cD
Thus, IT(D(A)) C D(A). Since IT is bounded, we have IT (D(A)) c D(A). So by

using (4.5.1), we obtain IT (D(A)) = D(A) NI (X) and IT (D(A)) =D(A)NII (X).
This proves (i).
Let x € D(A) be fixed. Set y = (Al —A)x. Then
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MAx=TIA(AM—A)"'y=A (Al —A) "' Ty = AIlx,

which gives (ii). Hence, IT (X) is invariant by A, and by using Lemma 4.5.1, we
obtain (iii). Moreover, we have

AI-A)'I(X)=I(AI-A)"'X cII(X).

So Lemma 4.5.1 implies (iv). Finally, we have

D (4 lnn)gry) = {+€ D ) v € DA e

xeII(X)ND(A) :AxeD(A)ﬂH(X)}
)}

xell (D(A)) ND(A): Ax € IT (D(A)
=0 ((45m) lna)) -

This shows that (v) holds. O

Lemma 4.5.3. Let the assumptions of Lemma 4.5.2 be satisfied. Assume in addition
that IT has a finite rank. Then IT (D(A)) is closed, IT (TA)) =II1(D(A)) C D(A),
and A |r1(x) is a bounded linear operator from I1 (D (A)) into IT (X).

Proof. By using Lemma 4.5.2, we have IT (D(A)) = D(A)NII(X), so IT(D(A)) is
a finite dimensional subspace of X. It follows that IT (D(A)) is closed and A |7y is
bounded. Now since IT is bounded, we have IT (D(A)) CII(D(A)) = (D(A)),
and the result follows. O

Lemma 4.5.4. Let Assumption 3.4.1 be satisfied. Let Iy : Xo — Xo be a bounded
linear projector. Then

IIoTy, (1) = Tay (t)ITo, Vi >0 (4.5.2)
if and only if
Iy (AL —Ag) ™" = (AT —Ag) ' T, VA > w. (4.5.3)
If we assume in addition that (4.5.2) is satisfied, then we have the following:

(i) H() (D(Ao)) = D(A()) N H() (X()) andAoIon = Hvox,Vx € D(Ao);
(”) Ao |H0(X0): (AO)HO(XO);
(iii) TAO'”O(X()) (t) = T, (t) |H0(XO)7Vt > 0;
(iv) If ITy has a finite rank, then Iy (Xo) = Iy (D(Ag)) C D(Ay), Ao |Ho(Xo) is a
bounded linear operator from ITy (Xy) into itself, and

o A()‘ t
TAolno(xo)(’) =¢ "MX0)" | vt >0.

Proof. (4.5.2)=(4.5.3) follows from the following formula
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—1 Foo A
(AI—Ap) x= / e Ty, (s)xds, VA > o, Vx €Y.
J0

(4.5.3)=(4.5.2) follows from the exponential formula (see Pazy [281, Theorem 8.3,
p-33D

t —n
Ty, (x = lim (1— on) x, Vx € Xo.
n— o0 n
By applying Lemmas 4.5.2 and 4.5.3 to Ag, we obtain (i)-(iv). O
The following result will be crutial to construct a center mainfold in Chapter 6.

Proposition 4.5.5. Let Assumption 3.4.1 be satisfied. Let Iy : Xo — Xy be a bounded
linear projector satisfying the following properties

Iy (M —Ap) ' = (M —Ag) ' Iy, VA > o

and
Iy (Xo) C D(Ao) and Ao |z,(x,) s bounded.

Then there exists a unique bounded linear projector I1 on X satisfying the following
properties:

(i) IT |x,= Ilp;
(ii) IT1(X) C Xo;
(iii) T(AM —A) "' =AM -A) "', VA > o.

Moreover, for each x € X we have the following approximation formula

1
Mx= lim ThA (A1 —A) 'x= lim —ITySs (h)x.
* Aortoe ( )X =0t h 0Sa (h)x
Proof. Assume first that there exists a bounded linear projector IT on X satisfying
(1)-(iii). Let x € X be fixed. Then from (ii) we have I'lx € Xy, so

Mx= lim A(AI—A)""Ix.
A—4oo

Using (i) and (iii), we deduce that

Mx= lim A (AI—A) 'x.
A =00
Thus, there exists at most one bounded linear projector IT satisfying (i)-(iii).

It remains to prove the existence of such an operator I1. To simplify the notation,
set B = Ao |r,(x,) - Then by assumption, B is a bounded linear operator from ITy (Xo)
into itself, and

Ty, () Iox = P Iyx, Wt > 0,Vx € Xy.

Let x € X be fixed. Since S4(t)x € Xo for each t > 0, we have for each 4 > 0 and
each A > o that
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(AL —Ag) ' Sa(h)x = Sa(h) (AT —A) 'x = /Oh Tay(h—5) (A1 —A) "' xds
and
ITy (AT —Ag) ™" Sa(h)x = (AT —Ao) ™' MSa (h)x

h
:/ MoTy, (h—s) (A1 —A) " xds
[ -y s

Since B is a bounded linear operator, ¢ — ¢?' is operator norm continuous and

1 h B(h—s 1 h B(h—s
Z/() e ( )dSZIHO(XO)+z/O [6 ( )*IHO(XO)]dS'

Thus, there exists sy > 0, such that for each i € [0, ko],

1 rh s
Hh/o [@B(h >7IH0(X0)]dS < 1.

Z(Iy(Xo))

It follows that for each & € [0,ho], the linear operator ; f " eB(h=5) g is invertible
from ITj (Xp) into itself and

1 h —1 1
B(h—s
(h/() M )ds> = (IHO(XO)_ ([Ho (X0) — h/ ))
Z(IUOXO h/ Blh=sgq )

We have for each A > @ and each & € (0, h] that

h —1
(}11/ eB(“>ds) (AL —Ap) ™" HO%SA(h)x =Iy(AI—A) "x
0

Since for each 7 > 0, €% ITy = Ty, (r)ITy commutes with (A1 —Ag) ™", it follows that

1
for each h € [0, hy] ( 1 gBlh— S)ds) Iy commutes with (A1 —Ag) ™" . Therefore,
we obtain for each A > w and each i € (0, k] that

h -1
A (AL —Ag)~! (]11 /0 eB(h_S)ds> HO%SA(h)x:HOA(AI—A)_Ix. (4.5.4)

Now it is clear that the left hand side of (4.5.4) converges as A — . So we can
define IT : X — X for each x € X by
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Mx= lim IA(AI—A)"" (4.5.5)

A—s-oo

Moreover, for each i € (0,hg] and each x € X,

1 -
IIx = (/ eB(hS)ds> HO*SA(/’l)x. (4.5.6)
hJo h

It follows from (4.5.6) that IT : X — X is a bounded linear operator and IT (X) C Xp.
Furthermore, by using (4.5.5), we know that IT | x,= Il and IT commutes with the
resolvent of A. Also notice that for each & € (0, hg],

1 h
EHOSA h / des

So |
ITx = lim — IS4 (h)x.
* hlg(l)h 0Sa(h)x

Finally, for each x € X,

MIIx = lim MIGA(AI—A) 'x= lim IIZA(AI—A)"

A—r+oo A—>+Foo
= lim ITgA (AI—A)"'x=IIx.
A—rtoo

This implies that IT is a projector. O

Note that if the linear operator ITy has a finite rank, then Ag |, (Xp) 18 bounded. So
we can apply the above proposition. By Proposition 3.4.3, Lemmas 4.5.2 and 4.5 .4,
we obtain the following results.

Lemma 4.5.6. Let Assumption 3.4.1 be satisfied. Let I1 : X — X be a bounded linear
projector. Assume that

TAI—-A)"'=QAI—A)""I, VA € (0, +).
Then A |r1(x)= Arix) satisfies Assumption 3.4.1 on IT (X ) . Moreover,
(i) (A |H<X))7D(A\n(x)) = (Am) (@)= Ao lmxy):

(ii) Sy (t)IT = HSA (t),Vt > 0;

From the above results, we obtain the second main result of this section.

Proposition 4.5.7. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Let I1 : X — X be
a bounded linear projector. Assume that

TAI—-A)"'=QAI—-A)"'II, VA € (0, +).



4.5 Spectral Decomposition of the State Space 207

Then the linear operator A |H(X): Aqx) satisfies Assumptions 3.4.1 and 3.5.2 in
I1(X). Moreover, for each T > 0, each f € C([0,7],X), and each x € Xy, if we set
foreacht € |0, 7] that

u(t) = Tay (Ox+ L (84 ) (1),

dt
then
d
ITu(t) = Ty o (OTx+ 2 (St # 111 ) (),
t t
Mu(t) = Mx+A |x) / Hu(s)ds+/ ITf(s)ds,
Jo 0
and

I TTu(t)|| < Me® ||ITx]| + 6 (¢) sup [[TTf(s)], vt € [0,7].

s€[0,1]
Furthermore, if II1 has a finite rank and I1(X) C Xo, then IT(X) = I1(Xp) C
IT(D(Ao)) C D(Ao), A |ri(x) is a bounded linear operator from I1(Xo) into it-
self. In particular; A |x)= Ao |r1(x,) and the map t — ITu(t) is a solution of the
following ordinary differential equation in II (Xp) :

dITu(t)
dt

= Ao |r1(xy) Tu(t) +I1f(¢), Vt €10,7]; IMu(0) = Ix.

By combining Lemma 4.4.2 and Theorem 4.4.3 and by applying Theorem 4.3.27
to Ty (¢) for some ¢ > 0, we obtain the following theorem, which is one of the main
results in this chapter. This theorem can also be obtain by combining Theorem 4.4.3,
Webb [362, Proposition 4.11, p. 166], and Engel and Nagel [126, Corollary 2.11, p.
258].

Theorem 4.5.8. Let (X, ||.||) be a complex Banach space and let A : D(A) C X — X
be a linear operator satisfying Assumption 3.4.1. Assume that wy (Ag) > @ ess (Ao)-
Then for each N > @y ess (Ao) such that

X, =0(A)N{A €C:Re(A) >n}

is nonempty and finite, each Ay € Xy is a pole of (A1 —Ao)7l and B has a finite
rank. Moreover, if we set '
n= Y B,
Ao€Zy
then
I, (A —Ag) ' = (Al —Ag) "' ITy,, VA € p (A),
@ (40) = @ (40 |, x)) = sup Re(R),
AeXy

and
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(401, ) <7

Remark 4.5.9. In order to apply the above theorem, we need to check that @y (Ag) >
0 ess (Ag) - This property can be verified by using perturbation techniques and by
applying the results of Thieme [331] in the Hille-Yosida case, or the results in
Ducrot et al. [110] in the present context.

4.6 Asynchronous Exponential Growth of Linear Operators.

Definition 4.6.1. Let {T'(¢)},-, be a strongly continuous semigroup of bounded lin-
ear operators on a Banach space X with infinitesimal generator A. We say that
{T(#)},>0 has asynchronous exponential growth with intrinsic growth constant
Ao € R if there exists a nonzero finite rank operator Py € X such that
lim e M'T(t) = Py.
t—r+oo

Webb [363] gave necessary and sufficient conditions for {7 (¢) },~ to have asyn-

chronous exponential growth.

Theorem 4.6.2 (Webb). Let {T(t)},~, be a strongly continuous semigroup of
bounded linear operators on a Banach space X with infinitesimal generator A.
Then {T(t)},~ has asynchronous exponential growth with intrinsic growth con-
stant Ay € R if and only if

(i) w().,ess(A) < Ao;
(ii) Ao = sup{Red : L € 6(A)};
(iii) Ao is a simple pole of (Al —A)~1.

Proof. (Necessity) Suppose {T(t)}tzo has asynchronous exponential growth with
intrinsic growth constant Ay.
(i) We can see that P is a projection and

T(t)Py=PyT (1) =Py, 1 >0.

Thus,
T(t)Pox— P
APyx = lim LDRx = Rox _ AoPox, x € X,
t—0 t
so that Ag € 6,,(A). Since P, is a projection, there exists a direct sum decomposition
X =PX®(I—Py)X.LetX = (I—Py)X, T(t)=e T (t)(I—Py), and observe that
X is invariant under 7'(¢). Consider the semigroup {7'(¢)};>¢ in the Banach space X
and let A be its infinitesimal generator. Notice that
lim [[70)] = lim [lle7(0) ~ By + (e *T(0) ~ )R] =0.

t—+oo
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It follows from Lemma 4.4.2 (d) that e® @) = r(T(t)) <||T(t)||, which means that
@y (A) < 0. Hence, there exists ¥ < 0 and My > 1 such that | 7(¢)|| < Mye”,t > 0.
Since P, has finite rank, T'(¢) Py is compact and so

K(T(1)) < K(T(1)Po) + & (T (1) (I — By)) < Mye P07,

Thus, COO,ess(A) < AO +7< a0
(ii) Suppose that there exists A; € o (A) such that ReA; > Ag. By Theorem 4.4.3
(iv), A1 ¢ Oess(A), it follows from Theorem 4.4.3 (v) that A; € 6,(A). There exists

z# 0 such that T(t)z = eM’z. Thus,

ReT (t)z = R [(cosImA;)Rez — (sinImA; )Imz],
Im7 (t)z = R [(cos ImA;)Imz 4 (sinImA; £)Rez).

Since e *'ReT (t)z and e %'ImT (r)z converge, ReA; = Ay and ImA; = 0. Thus,
Ao =sup{Red : L € 6(A)}.

(iii) Assume that Ay is not a simple pole of (A1 —A)~!. From (i) we know that
A €0, (A) and Ay is isolated, therefore by Theorem 4.1.3 there exists the Laurent
expansion (4.2.2) with By given by (4.2.3) and satisfying (4.2.4). Choose x such
that B_;x # 0 and let y = (A — AoI)*2B_1x. We have AB_;x = AgB_;x and Ay =
B_jx+ Agy. Since

d
= (ezf’l (tB_ix —l—y)) = Ao (1B_jx+y) + ' B_ix

=A (e%‘ (tB_gx+ y))

and the solution of the initial value problem
d
S L@y =AT()y, 120; T(0)y=y

is unique, T'(t)y = €' (tB_;x+y). But e %'T (t)y does not converge. Therefore, Ao
is a simple pole.

(Sufficiency) Suppose that @ ess(A) < Ao, Ao =sup{Reld : A € 6(A)}, and Ag is
a simple pole of (Al —A)~!. By Theorem 4.4.3 (iv) and Proposition 4.11 in Webb
[362], Ao € 6,(A) and A} (A) is finite dimensional. Let @y ess(A) < ¥ < Ao and
assume that there exists an infinite sequence {A;} C o (A) such that ReA; > ¥. Then,
A € 6,(A) and it follows from Theorem 4.4.3 (i) that e’ € 6,(T (¢)). Fix t > 0. If
{e*!} is infinite, then (7 (¢)) has an accumulation point. Thus,

ress(T(t)) > e’ > ea)o’eSS(A)t7

which contradicts Lemma 4.4.2 (e). If {¢™'} is finite, then e™' = y for infinitely
many k. By Theorem 4.4.3 (i), .4, (T (¢)) is infinite dimensional, since it must con-

tain all linearly independent subspaces .4 (A —A) whenever e*' = p. Thus,
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reSS(T(I)) Z Re‘u Z eyt Z em().ess(A>l’
which again contradicts Lemma 4.4.2 (e). There must exist y > %7CSS(A) such that

sup Reld <y < Ag.
AEG(A)\Gess(A)aA#/’LO

Since Ay is a simple pole, A3 (A) = A (Al —A) and T (¢)Py = ¢M'Py, t > 0. Thus,
Py # 0, Py has finite rank, and
lim_[le™%'T (1) - Ry|| ZIETmllef%‘T(f)(l—PO)ll < lim Myel72V||(1—Ry)|| =0.

t—+oo
This completes the proof. O

Theorem 4.6.2 (i) requires pess(A) < Ag. Now we give a means to estimate
a)O,ess (A)

Proposition 4.6.3. Let {T (1)}, be a strongly continuous semigroup of bounded
linear operators on a Banach space X. Suppose that T(t) = U(t) + V(t) for suf-
ficiently large t, where ||U(t)} < Ce" (C and y are independent of t) and V (t) is
compact. Then

0 ess (A) <7.

Proof. By the properties of x(.) (Lemma 4.3.2) we have
K(T(1) < k(U(1) +x(V(1)) = k(U(r)) < Ce”
for ¢ sufficiently large. The conclusion follows from Lemma 4.4.2 (b). O

In applications, it is more convenient to consider the semigroups in Banach lat-
tices (Schaefer [310]).

Definition 4.6.4. Let (X, ||.||) be a Banach space. We say that X, is a positive cone
if it is a closed convex subset of X satisfying the following properties

i) AxeX ,VA>0,xeX;
(i) XN (=X;)={0}.

We say that (X, <) is an ordered Banach space if we can find a positive cone X
such that
X Z 0 xe X+.

An ordered Banach space (X, <) is called a Banach lattice if it satisfies the following
additional properties

(i) Any two elements x,y € X have a supremum x Vy = sup{x,y} and an infimum
x Ay =inf{x,y} in X;

(i) |x| < |y| implies ||x|| < ||y|| for x,y € X, where the modulus of x defined by
|x| = xV (—x).
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Recall that a bounded linear operator L is positive if and only if
LX, CX,.

The following theorem addresses the asymptotic behavior of strongly contin-
uous semigroups in a Banach lattice which combines the results and ideas from
Greiner [152], Greiner and Nagel [153], Greiner et al. [154], and Webb [363]. De-
tailed proofs can be found in Webb [363] and are omitted here.

Proposition 4.6.5. Let {T(t)},~ be a strongly continuous semigroup of positive
bounded linear operators on a Banach lattice X with infinitesimal generator A. Let
Ao =sup{ReA : A € 6(A)} and assume that @y ess(A) < Ao. Then

(i) Ao>RedforallA € c(A)\{Ao};

(ii)  There exists xy € Xy ,xo # 0, such that Axy = Ayxo;

(iii)  If there exists a strictly positive functional f € X* and A1 € R such that for
all x € X, NN (Al —A), (f,e M T(t)x) is bounded in t, then Ay < Ay;

(iv)  If there exists a strictly positive functional f € X* and A € R such that for
all x € X, NN (Aol — A), lim;_s o (f,e"M'T(t)x) exists and is positive, then
A= Aos

(v)  Ifthere exists a strictly positive functional f € X* such that for all x € N3, (A),
(f,e ™'T (¢)x) is bounded int, then Ay is a simple pole of (A1 —A)~' (f is strictly
positive means (f,x) > 0 for all x € X;,x #0).

By Theorem 4.6.2 and Proposition 4.6.5, we have the following result on asyn-
chronous exponential growth which is more applicable in practice.

Corollary 4.6.6. Let {T(t)},., be a strongly continuous semigroup of positive
bounded linear operators on a Banach lattice X with infinitesimal generator A.
Assume that

(i)  @pess(A) <Ap:=sup{Red : A € c(A)};
(ii)  There exists a strictly positive functional f € X* such that for all x € N3 (A),
(f,e ™ "T(1)x) is bounded in t.

Then{T(t)},~ has asynchronous exponential growth with intrinsic growth constant
Ao in a Banach lattice.

Definition 4.6.7. Denote the dual of the positive cone X, by X} = {f € X*:
(f,x) >0, Vx > 0}. A strongly continuous semigroup of bounded linear operators
{T(t)},>¢ is irreducible if for x € X, \ {0}, f € X} \ {0}, there exists # > 0 such
that (f,T(¢)x) > 0.

By Theorem 4.6.2, Proposition 4.6.5, and Theorem 1.3 of Greiner [152], we have
the following result which gives another sufficient condition for asynchronous ex-
ponential growth.

Corollary 4.6.8. Let {T(t)},. be a strongly continuous semigroup of positive
bounded linear operators on a Banach lattice X with infinitesimal generator A.
Assume that
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(i)  @pess(A) <Ap:=sup{Red : 1 € c(4)};
(ii) {T(t)},> is irreducible.

Then {T(t)},~ has asynchronous exponential growth with intrinsic growth constant
Ao in a Banach lattice.

4.7 Remarks and Notes

The spectral theory of linear operators has been well-developed, we refer to the
classical references on this topic: Brezis [48], Dunford and Schwartz [123], Hille
and Phillips [187], Kato [205], Schechter [311], Schaefer [310], van Neerven [346],
Webb [362], Yagi [376], and Yosida [381]. See also a survey by Arino [24]. The
part on the non-essential spectrum of bounded linear operators is based on the paper
of Nussbaum [280] where the essential spectral radius was first introduced and the
essential spectrum was first investigated. In fact, the work of Nussbaum was based
on the early work of Gohberg and Krein [149] concerning Fredholm’s index for
linear operators. Here we gave a direct proof of Nussbaum’s results about the non-
essential spectrum of linear operators. The results on the relationship between the
spectrum of a semigroup and the spectrum of its infinitesimal generator were given
in Webb [362, 363]. The estimates of growth bound and essential growth bound
were taken from Webb [362] and Engel and Nagel [126]. The presentation of this
chapter was mainly from Magal and Ruan [248].

(a) Essential Growth and Bounded Linear Perturbation. It is important to
find a method to evaluate the essential growth bound of linear operators. The first
result on this aspect is due to Webb [358, Proposition 3.3]. The following version is
a consequence of Theorem 3.2 in Magal and Thieme [251].

Theorem 4.7.1. Let {Tx(t)},~ be a strongly continuous semigroup of bounded lin-
ear operators on a Banach space X and with infinitesimal generator A : D(A) C X —
X. Let L € £ (X) be a bounded linear operator. Assume that LTy (t) is compact for
eacht > 0. Then

wO,ess(A+L) S (D(),ess (A)
Such a result has been extended first by Thieme [331, Theorem 3] when A is a

non-densely defined Hille-Yosida operator and L : D(A) — X is a bounded linear
operator. When A is not a Hille- Yosida operator we make the following assumption.

Assumption 4.7.2. Let A : D(A) C X — X be a linear operator satisfying Assump-
tion 3.4.1. Let p € [1,+o0) be fixed. Assume that there exist two constants, M>0
and @ € R, such that for each 7 > 0 and each f € L”((0,7),X), there exists an
integrated solution us € C([0, 7],X) of the Cauchy problem

du

= =Au(t)+ f(t), t €[0,%); u(0)=0

satisfying
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, Vre[0,1].

V7 | o@0—)
H”f(t)H SMHewt /0) LP((0,4).X)

The following theorem was proved by Ducrot et al. [110, Theorem 1.2].

Theorem 4.7.3. Let Assumption 4.7.2 be satisfied. Let L : D(A) — X be a bounded
linear operator. Assume that

LTy, (1) is compact for each t > 0.
Then we have the following inequality
wO,ess ((A + L)()) S @ ess (AO) .

Theorem 4.7.3 will be frequently used in the rest of the monograph to estimate
the essential growth bounds of linear operators.

(b) Asynchronous Exponential Growth. The property of asynchronous (or bal-
anced) exponential growth is one of the most important phenomena in population
dynamics since it is observed in many reproducing populations before the effects
of crowding and resource limitation take hold. The property means that the popula-
tion density u(x,r) with respect to a structure variable x is asymptotic to ¢*’u(x)
as time ¢ approaches infinity. The constant Ay is intrinsic to the population in its
environment. The characteristic distribution uo(x) depends only on the initial state.
An important outcome of this property is that the proportion of the population with
structure variable x between two given values tends to a constant as time becomes
large.

Sharpe and Lotka [315] were the first to study asynchronous exponential growth
in age-structured populations. Feller [139] was the first to give a rigorous proof
of asynchronous exponential growth in age-structured population dynamics. In the
1980s, it was recognized that the idea of asynchronous exponential growth can be
described in the framework of strongly continuous semigroups of bounded linear
operators in Banach spaces, see for example, Diekmann et al. [102], Greiner [152],
Greiner and Nagel [153], Greiner et al. [154], Webb [363], and the references cited
therein. Webb [361] indeed provided a new proof of Sharpe and Lotka Theorem
using the theory of semigroups of operators in Banach spaces. Since then, many
researchers have studied asynchronous exponential growth in various structured bi-
ological models, see for example, Arino et al. [26, 31], Bai and Cui [35], Banasiak
et al. [37], Dyson et al. [124], Farkas [132], Piazzera and Tonetto [288], Webb and
Grabosch [366], Yan et al. [377], and so on. Thieme [333] characterized strong
and uniform approach to asynchronous exponential growth and derived applicable
sufficient conditions. Thieme [334] derived conditions for the positively perturbed
semigroups to have asynchronous exponential growth and applied the results to age-
structured population models.

The presentation in Section 4.6 was mainly taken from Webb [363] which deals
with asynchronous exponential growth of semigroups of linear operators. Gyllen-
berg and Webb [165] considered the following abstract nonlinear differential equa-
tion
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dz

dr
where A is the infinitesimal generator of a semigroup of linear operators in the Ba-
nach space X and F is a nonlinear operator in X. They showed that if the linear
semigroup generated by A has asynchronous exponential growth and F satisfies
IF] < f(lIx])]x||, where f: RT — R* and [ f(r)/rdr < o, then the nonlin-
ear semigroup associated with the abstract Cauchy problem (4.7.1) also has asyn-
chronous exponential growth.

Az(t)+F(z(t)), t > 0; z(0)=x€X, (4.7.1)



Chapter 5

Semilinear Cauchy Problems with Non-dense
Domain

The main purpose of this chapter is to present a comprehensive semilinear the-
ory that will allow us to study the properties of solutions of the non-densely defined
Cauchy problems, such as existence and uniqueness of a maximal semiflow, posi-
tivity, Lipschitz perturbation, differentiability with respect to the state variable, time
differentiability, classical solutions, stability of equilibria, etc.

5.1 Introduction
Consider the Cauchy problem

db;(:) = Au(t) + F(t,u(t)), t >0; u(0)=x € D(A), G.1.D

where A : D(A) C X — X is a linear operator in a Banach space X and F : [0, +) x
D(A) — X is a continuous map.

When A is a Hille-Yosida operator and is densely defined, the problem has been
extensively studied (see Segal [313], Weissler [372], Martin [258], Pazy [281],
Cazenave and Haraux [58], Hirsch and Smith [189]). When A is a Hille-Yosida oper-
ator but its domain is non-densely defined, Da Prato and Sinestrari [85] investigated
the existence of several types of solutions for (5.1.1). Thieme [328] investigated the
semilinear Cauchy problem with a Lipschitz perturbation of the closed linear oper-
ator A which is non-densely defined but is a Hille-Yosida operator. See also Thieme
[329, 335]. We are interested in studying the problem when D(A) is not dense in X
and A is not a Hille-Yosida operator.

Since the domain is not dense the integrated solution of (5.1.1) will belong to the
smaller subspace

Xo := m

Since the linear operator A is not a Hille-Yosida operator, we first assume that the
resolvent set p(A) of A is non-empty and that Ay, the part of A in D(A), is the

215
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infinitesimal generator of a strongly continuous semigroup {TAO (t) } />0 Of bounded

linear operators on D(A). This is equivalent to make the following assumption.

Assumption 5.1.1. Assume that A : D(A) C X — X is a linear operator on a Banach
space (X, ||.||) satisfying the following properties:

(a) There exist two constants, @y € R and My > 1, such that (wa,+oo)
C p(A) and

H(M—A)*"Hﬂxo) < (Ai/[’;%)k VA >, Yk 1

(b) limy_, .o, (AT —A) 'x =0, Vx € X.
Then A generates an integrated semigroup {Sa(t)},~o on X defined for all r > 0
by
t
Sa(t) = (AT —Ag) / Ty (Dl (AT —A)~!
0

foreach A € p(A).

As we already explained in Chapter 3, we need to impose some extra conditions
to assure the existence of integrated (or mild) solutions of the nonhomogeneous
Cauchy problem

du(r)
dt

= Au(t) + f(¢) for £ > 0 and u(0) = 0. (5.1.2)

We will only require that for each f € C ([0, 7], X) the Cauchy problem (5.1.2) has an
integrated solution us(r), and there exists amap & : [0,4c0) — [0, +o0) (independent
of f) such that for each ¢ € [0, 7],

Jurp()]] < 8(t) sup [I£ ()]l (5.1.3)
5€[0,1]

where
6(t) >0ast—0.

This is also equivalent to the following assumption.

Assumption 5.1.2. Let 7p > 0 be fixed. Assume that {S4(7)},-( has a bounded semi-
variation on [0, Tp] (that is,

V=(S4,0,7) —sup{ Z Sa(ti) = Sa(ti- 1))

p<te
where the supremum is taken over all partitions 0 =7y < .. < t, = Ty and over any
(X1, .0y Xy) € X" with ||x;||x < 1, Vi=1,..,n) and for any ¢ € [0, 79|,

lim V*(S4,0,) =0.
t(>0)—0
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Remark 5.1.3. We always have by the definition of semi-variation that
V=(84,0,¢) < 8(¢),Vt € [0,7]. (5.1.4)

Then for each f € C ([0, 7],X) the map  — (S4 * f)(¢) is continuously differentiable
and (5.1.2) has a unique integrated solution u () which is given by

urlt) = (s N)0), v € 0,7]

Remark 5.1.4. When the domain of A is dense in X or when f € C ([O, 7] ,D(A)) ,
we have

SA * f / TAO l — S d
d
The first main ingredient to derive a semilinear theory is the approximation formula
proved in Proposition 3.4.8; that is,

SN = Jim_ [ Tu-nu@i-a" f0d G19)

whenever ¢ € [0, 7] and f € C([0,7],X). From this approximation formula, we de-
duced the following formula in Corollary 3.4.9

d d d

Ty, (t —s)— - 1.
(SN0 = Tag (1 =) 5 (Sa# )+ S (Sax (5D —s) (.16
whenever ¢,s € [0,7] with s <7 and f € C([0,7],X). The second ingredient is the
estimation (5.1.3) which is equivalent to

4 isan)1)

|4 <5(0) sup /(5]

s€[0,1]

whenever ¢ € [0, 7].

As a consequence we are in a position to use Proposition 3.5.3. Let s > 0 be
fixed. The nonautonomous Cauchy problem (5.1.1) will generate a nonautonomous
semiflow which will be an integrated solution of (5.1.1); that is, the map t — U (¢, s)x
satisfies

ot °t
Ut 5)x = x+A/ U(l,s)xdl + / F(LU(L,s)x)dl, Vi > s (5.1.7)
N JS
or equivalently U(z,s) satisfies the following variation of constants formula
d
Ul(t,s)x =Ty, (t —s)x+ E(SA «F(.+5,U(.+s,8)x)(t—s),Vt >s.  (5.1.8)

As mentioned above it is important to observe that the problem is similar to the
densely defined semilinear Cauchy problem. Indeed when the domain of A is dense
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in X or F(X) C D(A), the integrated solution satisfies the following variation of
constants formula

r—s

Ul(t,s)x =Ty, (t —s)x+ Ty, (t—s—=DF(l+s,U(l+s,s)x)dl
0
or equivalently after a change of variable
ot
Ul(t,s)x =Ty (t —s)x+ / Ty, (t —r)F(r,U(r,s)x)dr

whenever ¢ > s.
The main difficulty in this chapter is to extend the known results on semilinear
Cauchy problem with dense domain for which one has L! estimation, that is,

I [ Taale =90 ds]| < b [ e 165)as,

to the L™ estimation in (5.1.5).

5.2 Existence and Uniqueness of a Maximal Semiflow: the
Blowup Condition

We start by making the following assumption.

Assumption 5.2.1. Assume that F : [0, +oc0) x D(A) — X is a continuous map such
that for each 7o > 0 and each & > 0, there exists K(7p,&) > 0 such that

|F(t,x) = F(t,9)|| < K(70,8) [[x—yl
whenever 7 € [0, 7], y,x € Xo, and ||x|| < &, |ly|| < &.

First note that without loss of generality we can assume that §(¢) is non-
decreasing. Moreover, by using the Bounded Perturbation Theorem 3.5.1, for each
o € R replacing 1) by some 74 € (0,7) such that 6(74)|0t| < 1, we know that
A + ol satisfies Assumptions 5.1.1 and 5.1.2. Replacing A by A — ol and F(t,.)
by F(t,.) + @l, we can assume that @ = 0. From now on we assume that 6(z) is
non-decreasing and @ = 0.

In the following, we will use the norm |.| on Xy defined by

x| = sup || Tu, (£)x]|, Vx € Xo.
>0

Then we have

[[x]] < |x| < M||x|| and | T, (£)x| < |x|, Vx € Xo, ¥z > 0. (5.2.1)
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Notice that by the assumption, for each f € C(]0,1],X), %(SA x f)(t) is well-
defined Vt € [0,7p]. Let f € C' ([0,27],X) . Then, for ¢ € [19,27],

i(SA*f)(t) = lim /OITAO(z—s)u(ul—A)*lf(s)ds

dt H—roo
= %(SA*f(.—l—’co))(t—ro)+TA0(I—T0)%(SA*f('))(70)7
SO
d
S GaxN0)||<8(t—w) sup |f(DI+8(—7) sup [fD]-
l€[Ty,t— 1) 1€[0,70]

Thus, Assumption 5.1.2 is satisfied with Z = C(]0,21],X), we deduce that %(SA *
f)(t) is well-defined for all 7 € [0,275] and satisfies the conclusions of Theorem
3.4.7. By induction, we obtain that for each 7y > 0 and each f € C([0, ], X), t —
(Sa = f) (¢) is continuously differentiable on [0, 7], (Sa * f) (¢) € D(A),Vt € [0, %],

and if we denote u(r) = 4 (Sa = f) (t), then

u(t) = A /0 "u(s)ds+ /0 " f(s)ds, ¥t € 0,7)].

In the following definition 7 is the blow-up time of the maximal solution of (5.1.1).

Definition 5.2.2. Consider two maps 7 : [0, +) x Xog — (0,+c0] and U : D — Xy,
where
D; = {(t,s,x) €040 xXp:5<1t < s+T(s,x)}.

We say that U is a maximal nonautonomous semiflow on Xy if U satisfies the fol-
lowing properties:

@) t(rU(rs)x)+r=71(s,x)+s,Vs >0,Vx € Xo,Vr € [s,s+T(s,%));

(i) U(s,s)x =x,Vs > 0,Vx € Xo;

(i) U@, r)U(rs)x=U(t,s)x,Vs > 0,Vx € Xo,Vt,r € [s,s+ T(s,x)) with ¢ > r;
(iv) If T(s,x) < +oo, then

lim  |U(t,s)x| = +oo.
t—(s+1(sx))"

Set
D= {(t,s,x) € [0, +0)? x Xo 11> s}.

In order to present the main result of this section, we introduce some lemmas.

Lemma 5.2.3 (Uniqueness). Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied.
Then for each x € Xy, each s > 0, and each T > 0, equation (5.1.1) has at most one
integrated solution U(.,s)x € C([s,T+s],Xp) .

Proof. Assume that there exist two solutions of equation (5.1.1), u,v € C ([s, T+ s], Xo)
with u(s) = v(s). Define
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to =sup{r > s:u(l) =v(l),VIl € [s,t]}.

Then, for each r > ty, we have
u(t)—v(t)=A t[u(l) —v(D)]dl+ t[F(l,u(l)) —F(Lv(D))]dl.

fo fo

It follows that
t—10
(=) (t — 1o +10) = A/O (u—v) (I +10)dl

+/Ot_tO[F(l+t0,u(l+to))—F(l+to,v(l+to))]dl.

u(t) —v(r) = %(SA (F(.+10,u(-+10)) = F (. +10,v(. +10))))(t — to).

Let & = max (||u||w’[_yﬁrﬂ] , Hv||w7[x,r+s]) . Thus, we have for each ¢ € g, 1) + 7o) that

lu(t) =v(0)| < 8K (T+s5,8) sup u(l) —v(D)]-

1€ty to+1]
Let € > 0 be fixed such that §(€)K (7 +5,&) < 1. We obtain that

sup [[u(l) =v(D)|| < 8(e)K (t+5,8) sup [[u(l) —v())]|.
1€ty to+€] €ty to+€]
So
u(t) =v(t), vt € [to,10+ €],

which gives a contradiction with the definition of #p. O

Lemma 5.2.4 (Local Existence). Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satis-
fied. Then for each T > 0, each B > 0, and each & > 0, there exists y(7,5,E) €
(0, o] such that for each s € [0,7] and each x € Xy with |x| < &, equation (5.1.1)
has a unique integrated solution U (.,s)x € C([s,s+ 6 (y(,B.,§))],Xo) which sat-
isfies

U, s)x| < (1+B)&, Vi € 5,5+ 8 (v(7,B,5))]-

Proof. Lets € [0, 7] and x € Xp with ||x|| < & be fixed. Let y(7,f3,&) € (0, 7] such
that

8(y(t,B,)M [Eriqy+ (14 B)EK (T4 7, (14 B)&)| < B
with &, = sup,c(q ¢ [IF (5. 0)]|, Yo > 0. Set

E={uecC([s,s+5(y(7,B,6))],X0) : [u(t)| < (1+B)5, V1 € [s,5+ 6 (y(,B,5))]}-
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Consider the map @y s : C([s,s+ 0 (v(7,B,&))], X0) = C([s,s+ 3 (y(7,B,&))], Xo0)
defined for each ¢ € [s,s+ 6 (y(7, p,C))] by

d
D, (u)(t) =Ty, (t —s)x+ E(SA «F (. +s,u(.+5)))(t—s).
We have Vu € E that (using (5.2.1) repeatedly)

900 < &40 | G (S0P (sl +9)0 -9

<EMS(y(eB.E)  swp  |F(nu)]
1€[s,5+8(y(7,8,6))]

Eu+K(T+T0,(1+B)E) sup Ju(r)]
t€ls,s+0(v(7,8,8))]

< E+Mo(y(T,B,8))

< (1+B)¢.

Hence, @, (E) C E. Moreover, for all u,v € E, we have (again using (5.2.1))

| Dy s (u) (1) — Py s (v) (2)]
<M (y(r,B.8))K(t+1,(1+p)SE) sup |u(r) —v(1)]

relss+8(r(z.p.8))
K(t+,(1+B)S)BS

< sup |u(t) —v(2)]
l+§Q+K(T+TO7(1+ﬁ)€)(l+ﬁ)§ tE[S,S"FS(Y(Taﬁ’&))]
B
L sup |u(t) —v(t)].
1+B r€ls,s+6(y(7,B,€))]

Therefore, @, ; is a (%) -contraction on £ and the result follows. O

For each s > 0 and each x € Xy, define
7 (s,x) =sup{r > 0:3U(.,s)x € C([s,s+1],Xp) an integrated solution of (5.1.1)}.
By Lemma 5.2.4 we already knew that
7(s,x) >0, Vs > 0, Vx € Xp.
Moreover, we have the following lemma.

Lemma 5.2.5. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then U : D; — X
is a maximal nonautonomous semiflow on Xy.

Proof. Lets > 0 and x € X, be fixed. We first prove assertions (i)-(iii) of Definition
5.2.2.Letr € [s,s+7(s,x)) be fixed. Then, for all 7 € [r,s+ T (s,x)),

't 1t
U(l,s)xzx—i—A/ U(l,s)xdl—i—/ F(LU(l,s)x)dl



222 5 Semilinear Cauchy Problems with Non-dense Domain
- U(r,s)x—l—A/tU(l,s)xdl—&- /'F(z,u(z,s)x)dz.
Js Js
By Lemma 5.2.3, we obtain that
U(t,s)x=U(t,r)U(r,s)x, ¥t € [r,s+ T (s,x)).
So t(r,U(r,s)x)+r > T(s,x)+s. Moreover, if we set

U(t,r)U(r,s)x Vt € [rr+1(rU(r,s)x)),
V) = {U(Ls)x vt € [s,r], '

then
v(t) =x+A /jtv(l)dl—i—/tF(l,v(l))dl7 Vi € [s,r+1(r,U(r,s)x)].

Thus, by the definition of 7 (s,x) we have s+ 7 (s,x) > r+ 7(r,U(r,s)x) and the
result follows.

It remains to prove assertion (iv) of Definition 5.2.2. Assume that T (s,x) < oo
and that ||U (¢,$)x|| - +eeoast s+ 7 (s,x). Then we can find a constant & > 0 and
a sequence {t,},~ C [s,5+7(s,x)), such that #, — s+ 7 (s,x) as n — 40 and

|U (tn,8)x| <&, Vn > 0.

Using Lemma 5.2.4 with T = s+ 7(s,x) and 8 = 2, we know that there exists
v(7,B,&) € (0,1] for each n > 0, 1, + T (ty,x) > 1, + v(7,B,&). From the first
part of the proof we have

s+7(s,%) > 1, +7(1,B,8)
and, when n — —+oo, we obtain
s+7(s,x) 2 s+ 7(s,x) +7(7,B,5),
which is impossible since y(7,5,&) > 0. O

Lemma 5.2.6. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then the follow-
ing properties are satisfied

(i) The map (s,x) — T(s,x) is lower semi-continuous on [0,+o0) X X;
(ii)  For each (s,x) € [0,+) x Xo, each T € (0,7(s,x)), and each sequence
{(s0,%n) } >0 C [0,+00) x Xo such that (sp,x,) — (s,x) as n — +oo, one has

sup |U (I4s4,80)xn —U (I +5,5)x| = 0 asn — +oo;
1€]0,7]

(iii) Dz is open in D,
(iv) The map (t,s,x) — U(t,s)x is continuous from D into Xy.
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Proof. Let (s,x) € [0,+0) x Xy be fixed. Consider a sequence {(sn,xn)},~o C
[0,40) x Xy satisfying (s,,x,) — (s,x) as n — +oo. Let T € (0,7 (s,x)) be fixed.
Define
E=2 sup |U(t,s)x|+1>0
1€[s,5+7]

and
T, = sup{t € (0,T(sn,%n)) : [U (I 4 $p,80)%n| <2&,VI € [0,2]}.

Let € € (0, 9] be given such that

& :=68(e)MK (T+5,28) < 1, 5= sups,,.

n>0
Set

Er=08(e)M sup |[F(I+s,,U(l+5,5)x) —F(l+s,U(l+s5,5)x)|| = 0asn— +oo.
1€[0,7]

Then, we have for each / € [0, min (7,,7)] and each r € [0,/] with [ — r < € that
U(l+s,5)x =U(l+s,r+s5)U(r+s,s)x

d
= Tay(I=r)U(r+s,8)x+ a(SA «F(.+r+s,U(.+r+s,s)x)(—r).
Hence,

U (L4 ny50)%0 — U (L+5,5)x]
=|U(l+sp,r+50)U(r+su,sn)xn — U (I +s,7+5)U(r+s,s)x]|
< |TA0(17}") [U(r+sn,sn)xn — U(r+s,s)x]|

+M& (€) sup ||F(h+su,U(h+sn,8n)x0) — F (h4s,U(h+5,5)x)||
herl]

<NU(r+ suysn)xn — U (r+s,5)x|
+&1 sup |U(h+sp,50)xn —U(h+s,5)x| + &3
he[r]

Therefore, for each [ € [0,min(7,,7)] and each r € [0,/] with [ — r < €,

sup |U(h+ su,80)Xn —U(h+s,5)x| < ¢ U (r+sn,80)x0 —U(r+s,5)x| + &}].
helrl] 6l
From this we deduce for r = O that

sup |U(h+sp,5n)x, —U(h+5,5)x| — 0 as n — oo,

he[0,min(e,T,,7)]

Thus, we have proved (ii) on a subinterval [0, min(€,7,,7)]. By induction on the
number of subintervals, we have that
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sup |U(h+ sn,80)%, —U(h+s,5)x| = 0 as n — oo (5.2.2)

he[0,min(T,,7)]
It follows that

sup U (h+sp,80)xn| < sup  |U(h+su,sn)%0 —U(h+s,5)x| +&.

he[0,min(7,,7)] he[0,min(T,,7)]

Since € > 0, there exists ng > 0 such that T, > T, Vn > ny, and the result follows by
using (5.2.2).
Now (iii) follows from (i). Moreover, if (#,,5,,%x,) — (,s,x), then we have
\U (tn,50)%n — U (t,8)x| < |U((tn = $n) + SnySn)Xn — U ((tn — sn) +5,5)x]
+HU((ty —sn) +5,8)x—=U((t —s) +5,5)x]

and by using (ii),
|U (tn,8n)%, — U(t,5)x] = 0 as n — +oo.
This proves (iv). O

Summarizing the above lemmas, we now state the main result of this section
which is a generalization of Theorem 4.3.4 in Cazenave and Haraux [58].

Theorem 5.2.7. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then there exist
a map T :[0,+0) X Xo — (0,+00] and a maximal nonautonomous semiflow U :
D¢ — Xo, such that for each x € Xy and each s > 0, U(.,s)x € C([s,s+ 7 (s,x)),Xo)
is a unique maximal integrated solution of (5.1.1) (i.e. satisfies (5.1.7) or (5.1.8)).
Moreover, D¢ is open in D and the map (t,s,x) — U(t,s)x is continuous from Dy
into Xy.

5.3 Positivity

We are now interested in the positivity of the solutions of equation (5.1.1). Let
X1 C X be a positive cone of X. It is clear that

Xot+ :=XoNXy

is also a positive cone of Xj.
We need the following assumption to prove the positivity of solutions of equation
(5.1.1).

Assumption 5.3.1. Assume that there exists a linear operator B € . (Xp,X) such
that

(a) For each y > 0, the linear operator A — ¥B is resolvent positive; that is,
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(AI—(A—yB))"'X, Cc X,

for all A > @, large enough;
(b) For each & > 0 and each ¢ > 0, there exists Y = y(&, 0) > 0, such that

F(t,x)+7vBx € X,
whenever x € Xo4, ||| <& andr € [0,0].

Proposition 5.3.2. Let Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 be satisfied. Then
for each x € Xy and each s > 0, we have

U(t,s)x € Xot, VtE[s,5+x(s,x)).

Proof. Without loss of generality we can assume that s = 0 and x € Xo;. Moreover,
using the semiflow property, it is sufficient to prove that there exists € € (0, x (0,x))
such that U (r,0)x € Xy, Vr € [0,€]. Let x € X+ be fixed. Set & :=2(||x|| +1). Let
Y > 0 be given such that

F(t,x)+7vyBx € X,

when x € Xo, [|x|| < § and # € [0, 1]. Fix 7, > O such that 7| B|| #(x, x)V (54,0, 7y) <
1. For each 6 € (0, 7,) , define

E° ={peC([0,0],Xo): lo(1)| <&, Vt€[0,0]}.
Then it is sufficient to consider the fixed point problem
ut) = T(A,yB)O(t)x—i— (Sa—yg o [F(.,u(.))+yBu()])(r) =:¥(u)(r),Vt € [0,0].

Since A — yB is resolvent positive, we have T(4_yp), (t)Xo+ C Xo+,Vt > 0. Using the
approximation formula (5.1.5), we have for each 7 > 0 that

(SAf}’BO(P) (t) € Xo+, VI € [07T]a V(P € C([Oaf] 7X+)'

Moreover, by using Theorem 3.5.1, for each ¢ € E° and each € [0, 5], we deduce
that
(@) (O] = || Ta—ym)o ()x+ (Sa—ym o [F (-, 0() + vB()]) (1)]]

< [|Te-ymyo (05|

VW(SA,OJ)
= sup [|F (s, 9(s)) + yBo(s
1= 7Bl 2(x,x)V=(S4,0,7y) se[o,t]” (s,0(5)) ()l

< sup | Tia—ym), (0)x]|
t€[0,0]

V>=(84,0,0)
+ sup ||F(s,0)||+ [K(1,&)+7v|B , .
1_’}/HBHIZ(XO,X)VM(SAaOvTY) se[O?G]H ( )H [ ( é) }/” ||$(X0X)]§
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Hence, there exists o7 € (0,1) such that

Y(E°)CE°, Yo € (0,01].
Therefore, for each o € (0, 0;] and each pair ¢,y € E®, we have for ¢ € [0, o] that

1® (@) (1) —F(W)(1)]
= |[(Sacys o [F(.0()) = F(,w() +¥B(o—w) ()]) (t)]

VOO(SAv()?G)
< K(1,8)+7v||B su — s)|| -
BT 0.5 K19+ 1Blze0] s (0= ¥ )]

Thus, there exists 0, € (0, 01] such that ¥(E®2) C E® and ¥ is a contraction strict
on E°2. The result then follows. 0O

Example 5.3.3. Usually Proposition 5.3.2 is applied with B = I. But the case B # [
can also be useful. Consider the following functional differential equation:

dx(r)
{ = f ), v =0, (5.3.1)
X =@ €C([-7,0],R"),

where f: C ([—7,0],R") — R" is Lipschitz continuous on bounded sets of C ([—7,0] ,R").
In order to obtain the positivity of solutions, it is sufficient to assume that for each
M > 0 there exists Y = y(M) > 0 such that

f(@)+v9(0)>0

whenever |||, <M and ¢ € C ([-7,0],R" ). It is well known that this condition
is sufficient to ensure the positivity of solutions (see Martin and Smith [259, 260]).
In order to prove this, one may also apply Proposition 5.3.2. By identifying x;, with

v(t) = )?) , system (5.3.1) can be rewritten as a non-densely defined Cauchy
1
problem (see Liu et al. [233] for more details)

dv(r)
dt

— Av(t) + F(v(t)), V¢ > 0, and v(0) = (g)

with X = R" x C([~1,0],R"),D (A) = {Ogn } x C! ([~7,0],R"), where A : D(A) C

X — X is defined by
/
(o) (7%")
¢ ¢

(3)-(30)

Then Proposition 5.3.2 applies with

and F : D(A) — X by
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o(3)-(3)

Recall that a cone X, of a Banach space (X, ||.||) is normal if there exists a norm
I|.Il; equivalent to ||.||, which is monotone; that is,

Vx,y€Xy, 0<x<y=|xll; <|lyl;-

Corollary 5.3.4. Let Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 be satisfied. Assume
in addition that

(a) X is a normal cone of (X, ||.||);
(b) There exist a continuous map G : [0,+o0) X Xoy — X and two real numbers
k1 > 0 and ky > 0 such that for each t > 0 and each x € Xy,

F(t,x) < G(t,x) and ||G(1,x)|| < ku |[x]| + k2.

Then
X (5,%) = +oo, Vs >0, Vx € Xos.

Moreover, for each y > 0 large enough, there exist C; > 0 and C; > 0 such that we
have the following estimate

U (1, 5)x]| < " [Cy x|+ €.

Proof. Without loss of generality, we can assume that s = 0 and the norm ||.| is
monotone. Let € € (0, i) and 7, > 0 be given such that MaV>(S4,0,7¢) < €. Let
x € Xo4+ be fixed. Then by Proposition 5.3.2, we have for each 7 € [0, (0,x)) that

0 < Ut,0)x = Ty, (1) + (Ss 0 F (. U(,0)x)) (1)
< Ty (1)x+ (SaoG(,U(.,0)x)) ().

Hence, for each ¥ > max (@, 0), we have for each r € [0, x (0,x)) that

e MU (5, 0)x]| < &7 [|Tag (0)x]| + 7" [[(Sa 0 G(,U(,0)0)) (1)
< My 7O x| +C (e,7) sup e 7 [|G(s,U(s,0)%)

s€(0,1]
< My |lx|| +C(g,7) sup e ki |U(s,0)x]| + k2]
s€[0,]
< My |[x]| +k2C (g,7) + kiC (&,7) Sl[lp]e’““l\U(s,O)xH-
s€[0,z

Since 2kie < 1, for y > max(wq4,0) sufficiently large, we obtain k;C(€,y) =

% < 1 and the result follows. O
—e
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5.4 Lipschitz Perturbation

Let E be a subset of Y and G : Y — Z be a map from a Banach space (Y, ||.||y)
into a Banach space (Z, ||.||;). Define

IG(x) =GO,
1Gllipez) = sup ===
LpEZ) = Crs =y

Proposition 5.4.1. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : [0,~+o0) X
D(A) — X be a continuous map and ¢ € (0,+e] be a fixed constant. Assume that

Ir (o) := sup ||F(t7')HLip(XO,X) < oo
t€(0,0)

Then for each x € Xo and each s € [0,0), there exists a unique solution U (.,s)x €
C([s,0),X0) of
! t
Ut 5)x :x+A/ U(l,s)xdl +/ F(LU(l,s)x)dl, Vi € [s,0).
N N

Moreover, there exists ¥y > max (0, @, ) such that for each y > Y, each pair t,s €
[0,0) witht > s, and each pair x,y € X, we have

U (1,5)x]| < &7 [2MA x|+ sup e = ||F(1,0)]]
l€[s,0)

and
U (2, 8)x = U (t,5)yl| < 2Mae™" ™) |lx—y]].

Proof. Fix s,t € [0,0) with s < ¢. Let € > 0 such that
emax(Ir (o),1) < 1/8.
Let 7, > 0 be given such that M4V>(S4,0, ;) < €. Then by Lemma 3.5.5 we have

for each vy > wy that

2emax (1,e 7%)
1 (‘P)||f(ch([s,+oc)7X),BCV([s,+oc)7X0)) <C(r.e) = RO

Let 9 > max (0, @, ) be fixed such that

_ > M-
1 — el@a—7)7 <2 V'}’_ o
To prove the proposition it is sufficient to prove that the following fixed point prob-
lem
U(.,8)x =Ty, (. —s)x+ZLo¥(U(.,5)x) (5.4.1)
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admits a solution U (., s)x € BC" ([s,0) ,Xo) , where ¥ : BC? ([s,0) ,Xo) — BCY ([s,0),X)
is a nonlinear operator defined by

¥ (o)(l)=F(,o()), VI € [s,t], Vo € BC"([s,0),Xo) .

We have

HTAo(- —s) ”f(XO,BCY([s,G),XO)) < My,

L5l 2 (Bev(1s,0),%).BC7(15.0) x0)) < 4E5
and
1Nl Lip(ae(1s,0).%0).BC7(1.0).%)) < IF ().

From this we deduce that

125 0 Wl Lip(B(15,0),X0),BC (15.0) %)) < 4€TF (0) < 1/2.

Thus, the fixed point problem (5.4.1) has a unique solution. Moreover, for each
x € Xo, there exists a unique solution in BCY ([s, 0),Xp) .

||U(-7S)x||3c7([x,z]7x0)
< My [l + (|25 (F ON [+ 145 (P (U (-, 5)x) =2 (0)) ]
+

< Ma x| +4e ”lP(O)HBCY([s,O'),X) % HU<~7S)XHBCV([W),XO) )
which implies that
U (o 8)xl per((s,0).x0) < 2Ma X[ + 8 [ (0) | g (.0 x) -
Since by construction &€ < %, we have

sup e ") |U (., s)xl) < 204 || + sup e MV ||F(1,0)]].

Iefs.o) Iefs,o)
Similarly, we have for each pair x,y € Xy that
U(s)x=U(.,5)y = Tap(- =8)(x=y) + Z ¥ (U (., 5)x) =¥ (U (., 5)y)]-
Therefore,
1U(,8)x=U(5)3 | peris,o).x)
< Mallx =3l + 5 10 (51~ UCo5llseroon -

This completes the proof. 0O
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5.5 Differentiability with Respect to the State Variable

In this section we investigate the differentiability of solutions with respect to the
state variable. Let Y be a Banach space. Define open and closed balls as follows

By (x,r):={y€Y:|x—ylly <r},
By (x,r):={y€Y:|x—yly <r}
whenever x € Y and r > 0.

Proposition 5.5.1. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Assume in
addition that

(a) For eacht > 0 the map x — F (t,x) is continuously differentiable from Xy into X;
(b) The map (t,x) — DyF (t,x) is continuous from [0,+o0) X Xy into £ (Xo,X).

Letxo € Xo,5>0,7€10,%(s,%0)),and y € (0, x (s,x0) — T) . Let 1 > 0 (there exists
such a constant since Dy is open in D) such that

%(Say) > T‘f‘% VyEBXO (x07n)'

Then for eacht € [s,s+ T+ 7], the map x — U (t,s)x is defined from Bx, (x,n) into
Xo and is differentiable at xo. Moreover, if we set

V(t,8)y = DxU(t,5)(x)(y), Vy € Xo,

thent — V(t,8)y is an integrated solution of the Cauchy problem

WS gy (1,5)y-4 D (U 510V (1.9 1 € [+ 7 (5.30).
Vis,s)y =y

or equivalently, ¥t € [s,s+ x(s,x0)), t = V(¢,5)y is a solution of
V(t,8)y =Ta,(t —5)y+ (SaoDF (,U(.,8)x0)V(.,8)y)(t —s).

Proof. First by using the result in the Section 5.4 about the Lipschitz case, it is clear
that V(z,s) is well defined. Set

R(1)(y) = U(t,s) (xo+y) = U(t,5)(x0) =V (2,5)y.

Then

R(1)(y) = (Sao[F(.,U(.;5) (0 +¥)) = F (,U(.;5) (x0))
—DF(,U(.,5)x0)V(.,8)y])(t—s).

But

F(t,U(t,s)(xo+y)) —F (t,U(t,s) (x0))
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= [ D0 (,5) (c0-+9) 4 (1 U0,5) () (U 8) 30+
—U(t,s) (x0))dr
1
= [ W) W) (0 +3) ~U(1.9) (x0)) dr
+DXF(I’U(taS) (xo)) (U(I,S) ()C() +y) - U(t>s) ()C())) )
where

¥ (t,r,y) = DyF(t,rU(t,s)(xo +y) + (1 —r)U(t,s)(x0)) — D:F (t,U(t,s)(x0))-

Thus,

R(1)y = (Sx 0 [K() + DaF (.U (8)30)R()y]) (1 —5).
where

K= [ 9400,50) (U(0,9) G +3) ~ Ul0,5) ()
and

W (t,r,y) = DyF(t,rU(t,s)(xo +y) + (1 —r)U(t,s)(x0)) — DyF (t,U(t,s)(x0))-

The result follows from Proposition 3.5.3 and the continuity of (¢,x) — U(t,s)x.
O
5.6 Time Differentiability and Classical Solutions

In this section, we study the time differentiability of the solutions. Consider a
solution u € C([0,1],D(A)) of

t t
u(t) :x+A/ u(s)ds+/ F(s,u(s))ds, t €[0,7].
0 0
Assume that x € D(A) and F : [0,7] x D(A) — X is a C! map. When the domain
of A is dense, it is well known (see Pazy [281], Theorem 6.1.5, p. 187) that for
each x € D(A), the map ¢ — u(z) is a classical solution; that is, the map ¢ — u(r) is
continuously differentiable, u(¢) € D(A) for all ¢ € [0, 7], and satisfies

u'(t) = Au(t) + f(t,u(t)), vt € [0,7], u(0) =x.

Now we consider the same problem but in the context of non-densely defined
Cauchy problems. When A satisfies the Hille-Yosida condition, this problem has
been studied by Thieme [328] and Magal [242]. So the goal is to extend these re-
sults to the non-Hille-Yosida case. For each 7 > 0, set
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d+ +
chr(o,1],X) = {feC([O,rLX) d—f e C([0,1),X), }m% ddtf(t) < oo}.

The following lemma is a variant of a result due to Da Prato and Sinestrari [85].

Lemma 5.6.1 (Da Prato-Sinestrari). Ler A : D(A) C X — X be a closed linear op-
erator. Let T > 0, f € C([0,7],X), and x € Xy be fixed. Assume that u € C([0,7],X)
is a solution of

—x+A/ ds—l—/f )ds, ¥t € [0,1].
Assume in addition that u belongs to C'*([0,7],X) or C([0,7],D(A)). Then
ue C'([0,7],X)NC((0,7],D(4))

and

u'(t) = Au(t) + f(t), Vt € [0, 7].
Proof. Ifu € C([0,T],D(A)), since A is closed, we have

u(r) :x—l—/OtAu(s)ds—&—/otf(s)ds, vt €[0,1].

Sou € C'([0,7],X) and u'(t) = Au(t) + f(1),Vt € [0,7].
If u € C1*([0,7],X), then we have for each ¢ € [0,7) and 2 > 0 that

u(t+h) —u(t) [ f(s)ds 4 [ u(s)ds
h h h '

Since A is closed, we deduce that u(r) € D(A) and Au(t)

Since u € C'*([0,7],X), we then have that u € C([0,7],D
proof. 0O

() — f(1),¥t € [0,7).
A)) and complete the

Lemma 5.6.2. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Assume that g € C' ([0,T],X

and g(0) € D(A), thent — (Sp o g) (t) is continuously differentiable and

d

9 (5408) () = Tay()8(0) + (S402) (1), W € [0.7].
Proof. Since g is continuously differentiable, the map r — (S4 * g) (¢) is continu-
ously differentiable,

d

o (Sa8) () = $a(1)8(0) + (Sa +¢)) (1), Ve € [0,7],

Since g(0) € D(A), we have Sx()g(0) = J¢ Ta,(1)g(0)dl, ¥t € [0,T], and the result
follows. O

)
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The following theorem is due to Vanderbauwhede [343, Theorem 3.5], a gener-
alized version is given and proved in Chapter 6 (see Lemma 6.1.13 and its proof)
when it is used to prove the smoothness of center manifolds.

Theorem 5.6.3 (Fibre Contraction Theorem). Let M| and M, be two complete
metric spaces and ¥ : My x M, — My x M a mapping of the form

¥ (x,y) = (¥ (x), ¥ (x,y)),V (x,y) € My x My
satisfying the following properties:
(i) | has a fixed point X € My such that for each x € M,
P (x) = X as n — +oo;

(ii)  There exists k € [0,1) such that for each x € M\ the map y — ¥ (x,y) is k-
Lipschitz continuous;

(iii)  The map x — ¥ (x,¥) is continuous, where y € M, is a fixed point of the map
y =¥ (%,y).

Then for each (x,y) € My X M,
P (x,y) = (X,5) as n — +oo.
The key result of this section is the following lemma.

Lemma 5.6.4. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let T > 0 be fixed and
F :]0,7] x D(A) = X be continuously differentiable. Assume that there exists an
integrated solution u € C([0,71],X) of the Cauchy problem

du(r)
dt

= Au(t)+ F(t,u(t)), t € [0,7], u(0) =x € Xp.
Assume in addition that

x € D(Ag) and F(0,x) € D(A).
Then there exists € > 0 such that u € C'([0,€],X)NC([0,€],D(A)) and
u'(t) = Au(t) + F(t,u(t)), vt €[0,€].

Proof. We apply the Fibre Contraction Theorem (Theorem 5.6.3) to prove the
lemma.

(1) Construction of the map ¥. Since F is continuously differentiable, there exist
& >0, K; >0, and K> > 0 such that

16:F (2,)]| < Ky and [[0xF (2,7) || 2(x, x) < Kz

whenever ||x —y|| < & and 0 <t < &. For each € € (0, &], set
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M; = {9 € C([0,€],Xo) : 9(0) =x, |l@(t) —x|| < &,Vr € [0,¢]},
Mf = {(P € C([O,SLX()) : (P(O) :A0x+F(07x)»
||(P(t) —on—f—F(O,X)H < &, vt € [078]}
From now on, we assume that for each i = 1,2, M? is endowed with the metric

d(@,9) = @ — |10 and M{ x M is endowed with the usual product distance

d(9.¥),(9,¥)) =d(¢, @) +d(y, P).
For each € € (0, &), set

EE — {((ph(pz) €M x M5 : () :x—l—/ol(pz(s)ds,Vte [O,e]}.

Then it is clear that E¥ is a closed subset of M} x M%.
Consider amap ¥ : M¥ x M§ — C([0,€],Xo) x C([0,€],Xp) defined by

Y (01, 02) = (P (¢1), B (@1, 9)), V(Q1,92) € M} x M5,

where for each ¢ € [0,¢],

(1) (t) = Tay(H)x+ (SaoF (L, o1(.))) (1),
5 (@1, 92) (1) = Ta, (t) [Aox + F(0,x)]
+(Sa0 0 F (., 01(.) +kF (., 01(.)92(.)) (2).

(il) ¥ (M§ x M%) C M} x M%. One can easily check that ¥ is a continuous map.
We now prove that for some € > 0 small enough, ¥ (M} x M5) C M§ x M5, and

(1) (0) =x, ¥a(91,92) (0) = [Aox+ F(0,x)].

For each € € (0,&)], each t € [0, €], and each ¢ € M}, we have

1 () (1) —x]|
< || Tag (1) x = x|| + [[(Sa o F (. 0()) (1) |

< HTAO(I)X_XH—’_VOO(SAvO?t) Sl[lop]HF(S,(P(S))”
s€l0,r

< |1 (1) —x]

+V7(84,0,€) ( sup [|F(s,x)|[ + Kz sup ||<P(S)—x||>

s€[0,] s€[0.1]

< sup. [Ty (1)x —x[| +-V**(S4,0, €) ( sup [[F(s,x) +K2€0> :

rel0.e s€(0,€]

Thus, there exists &, € (0, &) such that for each € € (0,€], ¥ (M}) C M¥.
Moreover, for each € € (0,€;], eachr € [0, €], and each (@1, p2) € MY x ME, we
have
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¥ (@1, <P2)() [Agx+ F(0,x)]]|
< || Ty (1) [Aox + F (0,x)] — [Agx + F(0,x)] |

+[(Sa0dF (., 01(.) +F (., 01(.)@2()) (1)l
< SupteOe ||TA0 [AOX+F(O x)} [Aox+F (0, x)]H

54;0,€)supejo e 9 F (s, @1(s))l

( (5.6.1)
+V (84,0 S)SupseOs] [0cF (5,91 ()| |20l

0

(

< sup;¢fo e}HTAo [Agx+ F(0,x)] — [A0x+F(07x)]H
+V=(84,0,8) {K| + Kz [||[Aox+ F(0,x)|| + &]} -

Therefore, there exists & € (0, €] such that for each € € (0, &),
¥ (M x M§) C M§.

Similarly, for each € € (0,&], ¥ (M} x M§) C M{ x M5.
(iii) ¥ (E®) C E®. Let (¢1,¢2) € E. Then ¢; C C'([0,€],Xo) and @] (1) =
@2(t),Vr € [0, €] . Notice that

(@) (1) = Tay (1)x + (Sa o F(, 01 (1)) (1),
using Lemma 5.6.2 and the fact that x € D(A¢) and F(0,x) € D(A), we have

OO _ a1 0.0+ (510 L F010) 0)

= T, (1) [Aox+ F(0,x)]
+(Sa0dF (., 01(.)) +F (L, 1(.)92(.)) (1)

Thus,

@O _ gy (91,40 1)

and
¥ (E®) C E®.

(iv) Convergence of ¥". To apply Lemma 5.6.3, it remains to verify conditions
(i) and (ii) for some € € (0, &) small enough. Let (¢1,92), (@1, 02) € M x M5 be
fixed. We have for each € € (0, &] that

11 (1) (1) — ¥4 (@ )()II—II(SA<>F( @)= F (@ (1)) @l

V=(S4,0,€) |F (s,91(s)) = F (5,91 (s))]|
V=(84,0,€)Ks sup [l@i(s) — @i(s)].

s€[0,€]

So there exists €3 € (0, &] such that 6; :=V>(S4,0,&3)K; € (0,1), we have for each
€ € (0, &] that

191 (1) = (@)l o] < G 191 = D1l o] -
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Moreover,

%5 (@1, 92) (1) = o (@1, 02) ()| = 1(Sa 0 F (-, 01()) (92() — 92)) (1)
< V7(84,0,€)Kz sup [[@a(s) — @2(s)]|

s€(0,€]

< & sup [l@2(s) = @2(s)]|,

s€[0,¢]

which implies that

195 (@1, 92) (t) — 5 (01, 92) || 0.6) < G112 = P2lcc o g -

Hence, for € = &3 we have ¥ (M} x M§) C M x M§, ¥ (E®) C E* and W satisfies
the assumptions of Lemma 5.6.3. We deduce that there exists (u,v) € M{ x M5 such
that for each (¢, ;) € M} x M5,

" (@1, 02) — (u,v) as n — +oo.

Since W (E¢) C E* and E¥ is closed, we deduce that (u,v) € E€. In particular, u €
C'(]0,€],X), and the result follows. [

In next lemma, we show that the conclusions of Lemma 5.6.4 hold for ¢ € [0, 7].

Lemma 5.6.5. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let T > 0 be fixed and

F :]0,7] x D(A) = X be continuously differentiable. Assume that there exists an
integrated solution u € C([0,7],X) of the Cauchy problem

du(t)
dt

= Au(t)+ F(t,u(t)), t € [0,7], u(0) =x € Xp.
Assume in addition that
x € D(A) and F(0,x) € D(A).
Then u € C'(]0,7],X)NC(]0,7],D(A)) and
u'(t) = Au(t) + F(t,u(t)), vt €[0,1].

Proof. Letw € C([0,7],D(A)) be a solution of the equation
t
w(t) =Ax+F(O,x)+A/ w(s)ds
0
t
+/ %F(S,M(S)) + DyF (s,u(s))w(s)ds,Vt € [0, 7].
0

From Section 5.4 concerning global Lipschitz perturbation, it is clear that the solu-
tion w(z) exists and is uniquely determined. Since u(¢) exists on [0, 7], let € [0, 7)
be fixed. We have for each € (0,7 —t) that
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u(t+n) —u(t)
h

o[ e ]

1 t+h t
+h{ F(s,u(s)) ds—/Fsus))ds}

{ s+h }+ A/

S MS !
/ (s+h, +h (()ds_‘_ﬁ/OF(s,u(S))dS-

Therefore,

u(t+h)—u(t)
L
:A/t {”(s'kh)_”(s)_w(s)} ds

+ A/ s)ds+ — /Fsu s))ds —Ax—F(0,x)

+f [ bt ) Fls bty ))—DXF(s,u(s))w(s)] ds

JF/Ot [F(erh,u(s))F(s,u(s)) aF(s,u(s))] ds.

h ot
Denote ( 0 0
u(t+h) —ul(t
vp(t) := — —w(t)
and
xh—fA/ ds+h/Fsu))ds Ax—F(0,x).
We have

vi(t) :xh—|—A/tvh
+//DF u(s+h) —u(s)) +u(s))

(KB )

t 1
+ /0 /0 IDLF (L (u(s+h) — u(s)) +u(s)) — DoF (u(s))] w(s)dlds
+/~0t [F(s—i—hm(s))—F(s,u(s)) gtF(s,u(s))] s,

h
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Set

K= sup [DF (1 (u(s+h) —u(s)) +u(s)|| ox,x) < oo
1€[0,1],5€[0,7],h€[0,7—s]

Let T > 0 be given such that

MAVm(SAaOat) <

SET 1)’ vt € [0,7].
Choose ¥ > max(0, w4) so that
1 1
m <3
Then by Proposition 3.5.3, we have for all ¥ > max (0, @4) that

e " a0l

1 -
< Ma bl + 5 sup e va(s)l|
s€(0,7]

+ sup e "
s€[0,7]

/01 [DiF (I(u(s+h) —u(s)) +u(s)) — DeF (u(s))] w(s)le

1 s u(s)) — F(s,u(s
+ sup e " /0 [F( +h ()})l Fls, ())—aatF(s,u(s))}dl

s€[0,7]

)

which implies that

e " vn ()]l
< 2My [|xa|
1
+2 sup e ¥ / [DXF(l(u(s—&—h)—u(s))+u(s))—DXF(u(s))]w(s)le
s€[0,7] JO
|| [T [F(sth,u(s) —F(s,u(s)) 9
e | [ [P G o

We now claim that

limx, = 0.
N0

Indeed, we have

M = %A/Ohu(S)ds—&—%/OhF(S»M(S))dS

and by Lemma 5.6.4, we have
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lim u(h) —u(0)

=Ax+F(0
h—0+ h x+F(0.%),

NeJ
lim Xp = 0.
N0

We conclude that for each ¢ € [0,7), we will have
t+h)—ult
lim M = w(t).
h—0F
Since w € C([0,7],X), we deduce that u € C'"*([0,7],X). By using Da Prato-
Sinestrari Lemma 5.6.1, we obtain the result. O

To extend the differentiability result to the case where F(0,x) ¢ D(A), we notice
that since u(¢) € D(A) for all ¢ € [0, T, a necessary condition for differentiability is

Ax+F(0,x) € D(A).

In fact, this condition is also sufficient. Indeed, taking any bounded linear operator
B € Z(X), if u satisfies

u(t) :x+A/()ru(s)ds+/()tF(s,u(s))ds, vt €[0,1],
then we have
u(t) =x+(A+B) /Ot u(s)ds—k/ot (F(s,u(s)) —Bu(s))ds, t €[0,1].
So to prove the differentiability of u(r) it is sufficient to find B such that (A4 B)x €

D(A). Take B(¢) = —x*(®)Ax, where x* € X* is a continuous linear form with
x*(x) = 1if x # 0, which is possible by the Hahn-Banach theorem. We then have

x€D(A)=D(A+B) and (A+B)x € D(A) =D(A+B).

Moreover, assuming that Ax+ F(0,x) € D(A), we obtain F(0,x) — Bx € D(A). By
using Theorem 3.5.1, we deduce that A 4 B satisfies Assumptions 5.1.1 and 5.1.2.
Therefore we obtain the following theorem.

Theorem 5.6.6. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let T > 0 be fixed and
F :]0,7] x D(A) — X be continuously differentiable. Assume that there exists an
integrated solution u € C ([0, 7|, X) of the Cauchy problem

du(r)
dt

=Au(t)+F(t,u(t)), r €[0,7], u(0) =x € Xo.

Assume in addition that

x € D(A) and Ax+ F(0,x) € D(A).
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Then u € C'(]0,7],X)NC(]0,7],D(A)) and
u'(t) = Au(t) + F(t,u(t)), vt €[0,1].
We now consider the nonlinear generator

Ave =A@+ F(0,0), ¢ € D(Ay) = D(A).

As in the linear case, one may define Ay o (the part Ay in D(A)) as follows

Ao =AyonD(Ayo) = {y €D(A):Ayy € M} :

Of course, one may ask about the density of the domain D(Ay ) in D(A).

Lemma 5.6.7. Let Assumptions 5.1.1, 5.1.2 and 5.2.1 be satisfied. Then the domain
D(Any) is dense in Xo = D(A). Assume in addition that X has a positive cone X,
and that Assumption 5.3.1 is satisfied. Then D(Ay o) N Xo4 is dense in Xo.

Proof. Let y € D(A) be fixed. Consider the following fixed point problem: x; €
D(A) satisfies

(A —A—F)x, =Ay o x), =AAI—A) "y + (AT —A)'F(0,x;).

Denote

@ (x) =AM —A) "y + (AT —A)'F(0,x), Vx € Xo.
Fix r > 0. Since y € D(A), by Lemma 3.5.4, lim_, ,.. H(/II—A)’I Hg(m —0, we
deduce that there exists Ay > @4 such that

(DA(BXQ(yar)) - BXo(yar)7 VA > A07

where By, (y,r) denotes the ball centered at y with radius  in Xy. Moreover, there
exists A; > Ao, such that for each A > A4, @, is a strict contraction on By, (y,r).
Hence, VA > Ay, there exists xj € By, (y,r) such that @, (x; ) = x;. Finally, using

the fact that y € D(A), we have Alim AAI—A)"ly=1y,s0

— oo

lim x; =y.
A—>+oo

The proof of the positive case is similar. O

5.7 Stability of Equilibria

In this section we first investigate the local stability of an equilibrium.
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Proposition 5.7.1. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : D(A) — X
be a continuous map. Assume that

(a)  There exists X € D(A ) such that AX+F (X) = 0;
(b) Thereexist M >1,® <0, and L € £ (Xo,X) such that

< Me®, Vi >0;
Z(Xo)

Ty, ()

(c) |IF _LHLip(EXO(x,r),X) —0asr—0.

Then for each y € (©,0) there exists € > 0, such that for each x € By, (X,€) , there
exists a unique solution U (.)x € C ([0, +o°),Xp) of

t t
U(t)x:x—i—A/ U(s)xds+/ F(U(s)x)ds, ¥t >0
0 0
which satisfies
|U(1)x —%|| < 2Me" ||x—%|, Vt>0,¥x € Xo.
Proof. Without loss of generality we can assume that x =0, L =0, w4 < 0, and
||F||Lip(§xo(x,n),x) —0asn —0.
Choose 1np > 0 such that
HF”UP(EXO(ZTIO)»X) < e
Let ¢ : (—oo,400) — [0, +o0) be a Lipschitz continuous map such that
=0 if2<]al
o(a)¢ €[0,1] if1 <|a| <2
=1 if |o) < 1.

Set
F.(x) = ¢(r|x]|)F (x), Vx € Xp, Vr > 0.

o if2< ),
Ew_{FU £l < L.

Then

2
Choose 1 € (0,10] and fix r = n Let x,y € Xp. Define ¢ : [0,1] = R by

o) =IF(t(x=y)+y) = F-O), Ve €[0,1].

Since ||F ||LiP(§X0 ®n).X) < +oo, the map ¢ is Lipschitz continuous, we have for each
pair 7,5 € [0, 1] that
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190) = 9(5)] < 1F iy ) (210ip+ 1) =yl = 1.

In particular, for = 1 and s = 0, we deduce that
()= B O < Il iy (5200 (2190 1) =

2
So for all r > w F, € Lip (Xo,X) and
0

1F lLip g x) < HFHLip(EXO(x,%).x) (ZH(DHLip"' 1) —0asr— 4eo.  (57.1)

2 . . . _

For each r > o’ we consider the nonlinear semigroup {U,(r)},~, which is a solu-
0 >

tion of

ot t
Un(t)x = x+ A / U, (s)xds + / Fy (U (s)x)ds, Vit > 0.
0 0

Let ¥ € (@,0) be fixed. By Proposition 5.4.1 and (5.7.1), there exists ro = ro (y) >
2
— such that

Mo
|Ury (1)x|| < 2Me" ||x||, Vi >0, Vx € Xo.

Lete € (0, ﬁﬁ) . Then for each x € Bx, (0, ¢€),
7 1
[|Ury (0)x]| < 2Me" ||x|| < T

On the other hand, since F' = F, on By, (O, i) , we deduce that for each x €

Bx,(0,€), Uy, (.)x is a solution of
1 !
U,(t)x:x+A/ U,(s)xds—i—/ F (U,(s)x)ds, ¥t > 0.
0 0

The uniqueness of the solution with initial value x in By, (0,€) follows from the
fact that F is locally Lipschitz continuous around 0 and by using the argument of
Lemma 5.2.3. O

Remark 5.7.2. (1) If F is continuously differentiable in By, (X, o), set L = DF (X).
Then by the formula

P ) = [ DF(s(x3) +3)(x—)ds, ey € By, (5.6).

it is clear that

||F —DF(x) X)—>0asr—>0.

||LIP(EX0 (f,r)_’

So if X is an equilibrium (i.e., assertion (a) is satisfied) and
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HT<A+DF(X)>0(UH$(XO) <Me™, V>0

for some M > 1 and ® < 0, the conclusion of the proposition holds.

(2) In order to see an example where the condition (c) is more appropriate than
the usual differentiability condition, consider the following case. Assume that F' is
quasi-linear; that is, F(x) = L(x)x, where L : Xo — % (Xo,X) is a Lipschitz contin-
uous map (but not necessarily differentiable in a neighborhood of 0). Then

[(F =L(0))x = (F = L(0)) yl| = [[(L(x) = L(0))x = (L(y) = L(0)) |
<L) = L(0)) x = (L(y) — L(0)) x|
HILG) = L(0)x = (L(y) = L(0)) ]|

< Pl I g e =1l

So
[(F = L))

Thus, in this case we can apply the condition (c), but F is not differentiable.

Lip(Bx,, (0.2).X) <2€||L||y;, — Oas e — 0.

We now investigate the global asymptotic stability of an equilibrium.

Proposition 5.7.3. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : D(A) — X
be a Lipschitz continuous map. Assume that:

(a)  There exists X € D(A) such that AX+ F (X) = 0;
(b) There exist M >0, ® <0, and L € £ (Xo,X), such that

< Me®™, Vit > 0.
Z(Xo)

[T, (0

Consider a Co-semigroup of nonlinear operators {U(t)},~ on Xo which is a solu-
tion of

t !
U(t)x:x+A/ U(s)xds+/ F(U(s)x)ds, ¥Vt >0.
0 0
Then for each y € (®,0), there exists 8 = & (y) > 0, such that
IF =Ll ip(xg x) < 60 = [|U(t)x =X < 2Me" || x—X]||, Vi >0, Vx € Xo.

So X is a globally exponentially stable equilibrium of {U ()},

Proof. Replacing U(t)xby V(t)x=U(t)(x+x)—Xand F(.) by G(.) = F (. +%) —
F(X), respectively. Without loss of generality we can assume that X = 0. Moreover,
using Theorem 3.5.1 and replacing M by M, @, by ®,Aby A+ L, and F by F — L,
respectively. We can further assume that L =0 and w4 < 0.

Fix 7> 0 and set € := M5(7). Let y € (wy4,0) be fixed. Choose 8 = & (y) >0
such that

2ee 1" 1
S —.
1—el@a—N% = 2

&
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Then by Lemma 3.5.5 we have

2ee 1% 1
126 (9)1] 2 (8C7((0.+20) ) BT (0,49 X0) = T tan—pie = 28"

It is sufficient to consider the problem U(.)x € BCY ([0, +),Xy),
U(t)x =Ta, (1)x+ L (P (U(.)x)) (1), Vt € [0,400),
where ¥ : BCY ([0, +<0),X0) — BCY ([0,+0),X) is defined by
(@) (1) =F(@(t)), Vit €[0,+e).

I FllLipgy x) < S0, we have |20 0 Plliip(pev((0,+20),0) BT (0400). X)) < 1/2, s0 for
eacht >0

1
U ()xllper 0,400, x0) < M |2l + 3 U C)xll per(0,400),x0)
and the result follows. O

As a consequence of Theorem 2.2 in Desch and Schappacher [94] and Proposi-
tion 5.5.1, we have the following result on the instability of an equilibrium.

Proposition 5.7.4. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let F : D(A) — X
be a Lipschitz continuous map. Assume that there exists X € D(A) such that A+
F(x) = 0. Assume in addition that

CSS)

and there exists A € 0, ((A+ DF(X)),) with Re(A) > 0. Then X is an unstable
equilibrium in the following sense: There exist a constant € > 0 and a sequence
{xn} (C Xo) — X as t, — +oo, such that

@055 (A+DF (%)) := lim IH(HT(A+L)O(t)

[—>o0 t

<0

U (t,) xn, —%|| > € for alln > 0.

5.8 Remarks and Notes

For densely defined Cauchy problems we refer to Segal [313], Weissler [372],
Martin [258], Pazy [281], Cazenave and Haraux [58], Hirsch and Smith [189]. When
A is a Hille-Yosida operator but its domain is non-densely defined, Da Prato and
Sinestrari [85] investigated the existence of several types of solutions for the semi-
linear Cauchy problem. Thieme [328] investigated the semilinear Cauchy problem
with a Lipschitz perturbation of the closed linear operator A which is non-densely
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defined but is a Hille-Yosida operator. Integrated semigroup theory was used to ob-
tain a variation of constants formula which allows to transform the integrated so-
lutions of the evolution equation to solutions of an abstract semilinear Volterra in-
tegral equation, which in turn was used to find integrated solutions to the Cauchy
problem. Moreover, sufficient and necessary conditions for the invariance of closed
convex sets under the solution flow were found. Conditions for the regularity of the
solution flow in time and initial state were derived. The steady states of the solution
flow were characterized and sufficient conditions for local stability and instability
were given. See also Thieme [329, 335]. This chapter is taken from Magal and Ruan
[245, 247] which generalized the results of Thieme [328, 329, 335] to non-densely
defined semilinear Cauchy problems where the linear operator is not a Hille-Yosida
operator.

We also refer to Friedman [146], Pazy [281], Henry [183], and Lunardi [240] for
more results about Cauchy problems for abstract parabolic equations and to Barbu
[38], Goldstein [150], Webb [362], and Pavel [282] for a nonlinear semigroup ap-
proach.






Chapter 6

Center Manifolds, Hopf Bifurcation and Normal
Forms

The purpose of this chapter is to develop the center manifold theory, Hopf bifur-
cation theorem, and normal form theory for abstract semilinear Cauchy problems
with nondense domain.

6.1 Center Manifold Theory

In this section, we investigate the existence and smoothness of the center mani-
fold for a nonlinear semiflow {U (r)},~, on Xy, generated by integrated solutions of
the semilinear Cauchy problem

du(r)
dt

=Au(t)+F(u(t)), t >0; u(0) =x < Xy, (6.1.1)

where A : D(A) C X — X is a linear operator satisfying Assumptions 3.4.1 and 3.5.2,
and F : Xp — X is Lipschitz continuous. So ¢ — U (¢)x is a solution of

3 t
U(t)x :erA/ U(s)xder/ F(U(s)x)ds, Vt > 0, (6.1.2)
0 0
or equivalently

U(t)x = Ty, (1)x+ (Sa o F(U()x)) (¢), ¥t > 0. (6.1.3)

We know that for each x € Xp, (6.1.2) has a unique integrated solution t — U (¢)x
from [0, +c0) into Xp. Moreover, the family {U(t)},- defines a continuous semi-
flow; that is,

@) UO)=ITandU@)U(s)=U(t+s),Vt,s>0;
(ii) The map (¢,x) — U(t)x is continuous from [0, +e0) X Xj into Xp.

Furthermore, there exists ¥ > 0 such that

247
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U@ x—U(t)y|| < Me" ||x—y|, Vt>0,Vx,y € Xo.

Assume that X € Xp is an equilibrium of {U(r)},-, (i.e. U(t)x =X,Vt > 0, or
equivalently ¥ € D(A) and Ax + F (X) = 0). Then by using (6.1.2) and by replacing
U(t)xby V(t)x=U(t)x—x, and F(x) by F(x+X) — F (X), without loss of generality
we can assume that X = 0. Moreover, assume that F is differentiable at O and denote
by DF(0) its differential at 0. Then by using Theorem 3.5.1 and by replacing A by
A+DF(0), and F by F — DF(0), without loss of generality we can also assume that
DF(0) = 0. So in the following, we assume that the space X, can be decomposed
into Xos, Xoc, and Xy, the stable, center, and unstable linear manifold, respectively,
corresponding to the spectral decomposition of Ag.

Assumption 6.1.1. Assume that Assumption 3.4.1 and 3.5.2 are satisfied and there
exist two bounded linear projectors with finite rank, Iy, € £ (Xp) \ {0} and ITy, €
Z (Xp), such that

Iy 11y, = I, ITp. = 0

and
Iy Ty, (1) = TAO(I)H(]/(, Vi >0, Vk={c,u}.

Assume in addition that

(a) If Iy, # 0, then & (—Ao |, (x,)) <0
(b)o (AO |H0c(X0)) CiR;
(c) If Iy := 1 — (Iy. + Iy,) # 0, then @y (Ao |H0s(X0>) <0.

Remark 6.1.2. By Theorem 4.5.8, Assumption 6.1.1 is satisfied if and only if

(a) @ ess (AO) <0;
(b) o (A()) NiR # 0.

For each k = {c,u}, denote by IT; : X — X the unique extension of Iy satisfying
(i)-(iii) in Proposition 4.5.5. Denote

I, = I — (I, +I1,) and IT, = I — IT,.
Then we have for each k € {c,h,s,u} that
M (AL—A) " = (A —A) "' T, VA > o,

I1;, (X()) C Xo,

and for each k € {c,u} that
I, (X) C Xp.

For each k € {c,h,s,u}, set
Xok = I, (Xo) , Xie =TT (X), A = A |x,, and Agx = Ao |x,, -

So for each k € {c,u},
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X = Xok-
Thus, by using Lemma 4.5.6(i) and (4.5.1) we have for each k € {c,h,s,u} that

(Ak)m =Ap |X0k and Xor = X; N Xp-

In other words, A is the part of Ay in X = D (Ax). Moreover, we have
X=X,®X.®X,and X, = X; D X,,.

Lemma 6.1.3. Fix 8 € (0, min(—ayp (Ags) , —00 (—Aoy))). Then we have

[0, ()| ) < Mse™P", Ve 20, (6.1.4)
le™ || 4 x,) < Mue P, V1 20 (6.1.5)
with
My = 500 [T, (1) g € < o
M, = gg | e~ Aout f(xm)eﬁt < oo,
Moreover, for each n € (0,8), we have
e[| 4x,) < €M, VEER, (6.1.6)

with

M, 5 = sup||eoc! e M < feo,
on 1eR H Z(Xoc)

Let (Y, ||.||y) be a Banach space. Let ) € R be a constant and / C R be an interval.
Define

B (1.v) = {F € C(1)ssupe M W)y < o
tel
It is well known that BC"(1,Y) is a Banach space when it is endowed with the norm
I llscn i) = supe™ L)y
te

Moreover, the family {(BC" (L,Y), ||.||gcn 1.y)) }n>0 forms a scale of Banach spaces;

that is, if 0 < { < n then BC®(I,Y) € BC"(1,Y) and the embedding is continuous.
More precisely, we have

£ lseniryy < 1 llgce gy ¥V € BCE(LY).

Let (Z,].]|;) be a Banach spaces. From now on, we denote by Lip(Y,Z) (resp.
Lipg(Y,Z)) the space of Lipschitz (resp. Lipschitz and bounded) maps from Y into
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75t 1P —F )
X)—1\y
||FHLip(y,z) ‘= sup T
X,yE€Y :xF£y Hx - y”Y

We shall study the existence and smoothness of center manifolds in the following
two sections.

6.1.1 Existence of Center Manifolds

In this subsection, we investigate the existence of center manifolds. From now on
we fix B € (0, min(—wyp (Aos) , — @ (—Aoy)))- Recall that u € C(R, Xp) is a complete
orbit of {U(t)},5¢ if

u(t) =U(t —s)u(s), Vt,s € Rwithr >y, (6.1.7)

where {U(#)},- is a continuous semiflow generated by (6.1.2).
Note that equation (6.1.7) is also equivalent to

t—s

1—s
u(t) = u(s) —|—A/ u(s+r)dr+ F(u(s+r))dr
0 0
forall¢,s € R witht > s, or to
u(t) = Ta, (t —s)u(s) + (Sa o F (u(s+.))) (r—s) (6.1.8)
foreachr,s € R witht > s.

Definition 6.1.4. Let 7 € (0, 8). The n-center manifold of (6.1.1), denoted by Vy,,
is the set of all points x € Xy, so that there exists u € BC" (R, Xp), a complete orbit
of {U(#)},50, such that u(0) = x.

Let u € BC" (R, Xp) be given. For all 7 € R, we have

el ||”H3cn(R,x0) < (- +T)||Bcn<1R,XO) < ”””BC"(R,XO)'
So for each 1 > 0, Vy, is invariant under the semiflow {U(t)},; that is,
U(t)Vy =Vy, V£>0.

Moreover, we say that {U (t) },~ is reduced on Vy if there exists a map ¥ : Xo. —
Xon, such that
Vi = Graph (W) = {xc + ¥ (xc) : xc € Xoc} -

Before proving the main results of this chapter, we need some preliminary lemmas.

Lemma 6.1.5. Let Assumption 6.1.1 be satisfied. Let T > 0 be fixed. Then for each
F€C(]0,7],X) and each t € [0,71], we have
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Mo (S0 f) (t) = (Sa o ILf) (1) = (Sa, o TLf) (1), (6.1.9)

and for each k € {c,u},
ok (Sa© f) (1) = (Sa o I f) (f):/oteAOkO*r)ka(V)dﬂ vie[0,7].  (6.1.10)

Furthermore, for each y > —J, there exists 6&7 > 0, such that for each f €
C([0,7],X) and each t € [0,7], we have

¢ || Mos (Sa o f) (1)|| < Csy sup 7| f(s)] ds. 6.1.11)

s€[0,1]

Proof. The first part (i.e. equations (6.1.9) and (6.1.10)) of the lemma is a conse-
quence of Proposition 4.5.7. Moreover, applying Proposition 3.5.3 to (Sa, ¢ ILf) (¢)
and using (6.1.4), we obtain (6.1.11). O

Lemma 6.1.6. Let Assumption 6.1.1 be satisfied. Then we have the following:
(i) Foreachn €0,B), each f € BC" (R,X), and eacht € R,

K(f)(t) == rl_i)IPmHOs (Saof(r+.))(t—r) exists;

(ii)) For each m € [0,B), K; is a bounded linear operator from BC" (R,X) into
BC™ (R, Xos). More precisely, for each v € (—f3,0), we have

ISl 2 (men (mx) Bon (R x0)) < Covs V1 € [0,—V],

where 657\, > 0 is the constant introduced in (6.1.11);
(iii) Foreachn €0,B), each f € BC" (R,X), and eacht,s € R witht > s,

K(£)(8) = Tag, (t = $)K(f)(s) = Ios (Sa © f (s +.)) ( = 5).

Proof. (i) and (iii) Let 1 € (0,f) be fixed. By using (3.4.12), we have for each
t,s,r € Rwith r <s <r¢, and each f € BC" (R, X) that

Saof(r+.))(t—r) =Ty (t—5)(Saof(r+.)(s—r)+(Saof(s+.)) (t—s).
By projecting this equation on Xo,, we obtain for all ¢, 5,7 € R with r < s <7 that

Ilos (Sao f(r+.)) (t —r) = Tp,, (t — )Mo (Sao f(r+.)) (s—r)
+Ios (Sao f(s+.)) (£ —s). (6.1.12)

Let v € (—f3,—n) be fixed. Then by using (6.1.4) and (6.1.11), we have for all
t,s,r € Rwith r <s <t that

[ log (Sa0 f(r+)) (¢ =) = Tlos (Sa 0 f (s +)) (t = 5)]
= [|Tag, (1 = 5)Tos (Sa 0 £ (r+.)) (s = 1)
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< Mye PUIC e sup e f(r+1))|

1€[0,s—7]
=MCsye PUe"677 sup &7V | f(o)|

o<(rs]

=M,Csye PUe sup e7voeMIle M1l £(a)]|
l€[ns]

< ||fHBC77(]R7X)MYCY,Ve_ﬁ(t_s)evs sup e VoeNl°l,
o€lns]

Hence, for all s,r € R_ with s > r, we obtain

[[Hos (Sa© f(r+.)) (t —r) —Ios (Sao f(s+.)) (t =)
< ||fHBcn(R.x)Msésﬁvefﬁ(tis)evs sup e~ (VFO,
' o€Elns]

Because — (v+1) > 0, we have

[Tos (Sa o f(r+.)) (t —r) = Hog (Sa < f(s+.)) (t = s)
< £llgcn (R,X)Msés,vefﬁ(tis)ewei(vﬂ)s

= ||fHBcn(1R<,x)Msés,ve_ﬁte(ﬁ_n)s-
Since B —n > 0, by using Cauchy sequences, we deduce that
K(f)(t) = Em o (Sao f(s+.)) (t —s) exists.
Ry —00

Taking the limit as r goes to —oo in (6.1.12), we obtain (iii).
(ii) Let v € (—B,0) and n € [0,—V] be fixed. For each f € BC" (R,X) and each
t € R, we have

1K) = tim [T (Sao £(r+.)) (¢ =)
< Coulimsupe ™) sup | f(r+1)|
r—e 1€[0,t—r]

= Asﬁvlimsupe"(’*r) sup e V(o) Ilf(o)]l
r—y—oo oeln]

= CA'W limsupe"” sup e Vool —nlol IlI7 ()]l

r—r—o0 oc(nt]

=Cove" | flly sup e
oe(—ooy]

7voen\o|_

Since v+ 1 <0, we deduce that if r <0,

K@ < Cowe ™M fll sup e DO

oe(—ooy]

= we("*”)’ I£1l, e~ (vt



6.1 Center Manifold Theory 253

=Gy I/l
and since 1 — v > 0, it follows that if > 0,

e MK (f) ()] < Cowe” ™ ||f]l, sup e ¥e!
GE(—oot]

§6S1V||f||ne(‘/7n)tmax( sup e*(v+n)o’ sup e(ﬂ*\/)a)
0'6(700,0] GE[O,[]

= Cov || flly " eV =Gy I, -
This completes the proof. 0O

Lemma 6.1.7. Let Assumption 6.1.1 be satisfied. Let 1 € [0,f) be fixed. Then we
have the following:

(i) Foreach f € BC" (R,X) and eacht € R,

K. (f)(t) := — / +me_A0"<l_’)Hu f(D)dl := — lim Ty, f(dl

t r——+oo t

exists;
(ii) K, is a bounded linear operator from BC" (R,X) into BC" (R, Xo,) and

M, HHuHi”(X)
K, S—F——
I Kull 2 (Ben (m,x) B—n

(iii)  Foreach f € BC" (R,X) and eacht,s € R witht > s,

Ku(£)(0) = UK (£)(s) = Tou (Sa o f(s+.)) (1 =)

Proof. By using (6.1.5) and the same argument as in the proof of Lemma 6.1.6, we
obtain (i) and (ii). Moreover, for each s,¢,7 € R with s <t < r, we have

r 4 r
/eAOu(s—l)Huf(l)dl:/eru(sfl)Huf(l)dl_i_/ eAOL‘(S*Z)Huf(l)dl
t

N N

t r
:/eAOM(S_l)HMf(l)dl+eA0u(s_t)/ eAOu(t—l)Huf(l)dl_
s t
It follows that
r t r
Aoult=9) / AuGD T, £(1)dl = / A=D1, £(1)dl + / A0 11, £(1)dl.
N N t

When r — +oo, we obtain for all 5,7 € R with s < ¢ that

1—s

—M K, (F)(s) = A I f (s 4 r)dr — Ky ()(1)
= I, (Sao f(s+.)) (t =) = Kun (F)(2)-
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This gives (iii)). O

Lemma 6.1.8. Ler Assumption 6.1.1 be satisfied. Let n € (0,3) be fixed. For each
xc € Xoe, each f € BC" (R, X), and eacht € R, denote

Ki(xe)(t) :== eAOCtxc» Ke(f)(t) = /Ot eAOE(t_S>Hc'f(s)dS'

Then K| (respectively K.) is a bounded linear operator from Xy, into BC" (R, Xy.)
(respectively from BC" (R,X) into BC (R, Xo.) , and

oo oo
||KC||$(BCT’(R,X)) S ||HC||$<X) max (/0 He(Ac*nI)lHdL/o H67<Ac+n1)lH dl) )

e(Ac_nl)t e_(Ac‘Hﬂ)t

» Sup

K11l 2 (x, pen (r,x)) < max (sup
>0

t>0

Proof. The proof is straightforward. 0O

Lemma 6.1.9. Let Assumption 6.1.1 be satisfied. Let ) € (0, 3) and u € BC" (R, X))
be fixed. Then u is a complete orbit of {U (t)},~ if and only if for eacht € R,

u(t) = Ky (Iocu(0))(#) + K (F (u(.))) ()
FKL(F () () + Ko (F () (0)- (6.1.13)

Proof. Let u € BC" (R,Xp) be fixed. Assume first that u is a complete orbit of
{U(#)};50- Then for k € {c,u} we have for all /,r € R with r <1 that

1
Myeu(l) = ") Myu(r) +/ AT (u(s))ds.

Thus,
dIlpu(t)

dt
From this ordinary differential equation, we first deduce that

= A()kn()ku(t) + HkF(u(t)), vt e R.

oeu(t) = €' Ty.u(0) + /0 t AU ITF (u(s))ds, Vi € R. (6.1.14)
Hence, for each ¢,l € R,
Mo, u(t) = =D ITo,u(l) + /I t AT F (u(s))ds, Vi,1 € R.
It follows that for each [ > 0,
HefAO“(FwHOu”(l) H < My [Tl (x) e P ul| pen (R.X) -

So when [ goes to +oo, we obtain
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+o0
Mowu(r) = — / A0S T F (u(s))ds, Vi € R. (6.1.15)

Jt

Furthermore, we have for all 7,/ € R with ¢ > [ that
Iosu(t) = Tay, (t — D) Iosu(l) + Hog (Sa o F(u(l+.))) (t —1)
and for each / < 0 that
|| Tag, (¢ — D) Iosu(1)|| < e P! M |Ju]|, e P~
Taking [ — —oo, we obtain
Iosu(t) = Ky (F(u(.))) (1), Vt €R. (6.1.16)

Finally, summing up (6.1.14), (6.1.15), and (6.1.16), we obtain (6.1.13).
Conversely, assume that u is a solution of (6.1.13). Then

t
Moeu(t) = € Ty (0) + / AU LF (u(s))ds, Vi € R.
0

It follows that

dnocu(t)

7 = AocTocu(t) + IT.F (u(z)), Vt €R.

Thus, for [,r e R_ with r <1,
ITyeu(l) = Ty, (t — s)ocu(r) +Ioe (Sa o F (u(s +.))) (t —5).

Moreover, using Lemma 6.1.6 (iii) and Lemma 6.1.7 (iii), we deduce that for all
t,s e Rwitht > s

Iosu(t) — T, (t — s)Hogu(s) = Ios (Sao F(u(s+.))) (t —s),
Io,u(t) — Ta, (t — s)Ipuu(s) = Iy (Sao F (u(s+.))) (t —s).

Therefore, u satisfies (6.1.8) and is a complete orbit of {U(#)},5. O

Let ) € (0, B) be fixed. We rewrite equation (6.1.13) as the following fixed point
problem: To find u € BC" (R, X) such that

u = K (ITycu(0)) + K> Pr (u), (6.1.17)
where the nonlinear operator @ € Lip (BC" (R,Xp),BC™ (R,X)) is defined by
DPp(u)(t) = F(u(r)), Vi €R
and K» € £ (BC" (R,X),BC" (R, X)) is the linear operator defined by

Ky =K. +K;+K,.



256 6 Center Manifolds, Hopf Bifurcation and Normal Forms

Moreover, we have the following estimates

),

1K1 (x..8cn (Rx)) < max(sup
>0

,sup

He(Arnld)t
>0

’e—(Aanld)t

1PrllLip < 1FlLip
and for each v € (—f3,0), we have
K2l 2 (Benmoxyy < ¥(vim), Vi € (0,—V],
where

v(v.n):= 65’V+W (6.1.18)
+ [Tl ) max (fo = He(Af‘””)’Hdl,fO*” He—<Av+n>lHd1) .

Furthermore, by Lemma 6.1.9, the n-center manifold is given by
Vip ={x€Xo:3uecBC"(R,Xp) asolution of (6.1.17) and u(0) = x}. (6.1.19)

We are now in the position to prove the existence of center manifolds for semilin-
ear equations with non-dense domain, which is a generalization of Vanderbauwhede
and Iooss [345, Theorem 1, p.129].

Theorem 6.1.10. Let Assumption 6.1.1 be satisfied. Let € (0,) be fixed and let
8 = 6 (1) > 0 be such that

8 [ Kzl 2 (pen (moxy) < 1-

Then for each F € Lip(Xo,X) with ||F [ ipx, x) < o, there exists a Lipschitz con-
tinuous map ¥ : Xo. — Xop such that

Vi = {xe + W (xc) : xc € Xoc} -
Moreover, we have the following properties:

(i) supy ex, [P (xe) || < [IK; +Ku||$(Bcn(R,x)) S;I() [T, F (x)]];
xeXo
(ii)  We have

K5 +Kull 2 (gen (R,x))”FHLip(xo,x) K1l o (xe pen (R.Xp)) . (6.1.20)
1—||K2H$(Bcﬂ (RX))”FHLip(XO,X) ’ o

”'PHLip(Xoc,Xoh) =

(iii)  For eachu € C(R,Xy), the following statements are equivalent:

(1) u€BC"(R,Xy) is a complete orbit of{U(t)},ZO;
(2) Iopu(t) = ¥ (Ioeu(t)),Vt € R, and Ipeu(.) : R — Xo. is a solution of the
ordinary differential equation
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dx.(t)
dt

= Agexe(t) + ILF [x:(t) + ¥ (x.(2))] . (6.1.21)

Proof. (i) Since |[F || iy [|K2[| ¢ (sen(r x)) < 1, the map (Id — K> Pr) is invertible,
(Id — K, ®@F)~! is Lipschitz continuous, and

| (1d — K> ®r (6.1.22)

1 1

) HLiP(BC" (R.Xo)) < =112l 2 gen @ ) IF lLip g x)
Let x € X be fixed. By Lemma 6.1.9, we know that x € V;, if and only if there exists
ury.x € BCT(R,X), such that ury,  (0) = x and

urioer = Ki (Ioex) + Ko Pp (urgy,x) -

So
Vi = {(Id — KxPr) ' Ki(xc) (0) : xc € Xoc } -

We define ¥ : Xo. — Xop, by
¥ (x.) = My, (Id — Ka®r) ' K1 (x)(0), V. € Xoe- (6.1.23)
Then
Vi = {xc +W(xc) s xc € Xoc} -

For each x. € Xy, set
Uy, = (]d—K2¢F)71K1(xC).

We have
Uy, = K ()CC) + K> P (uxc) .

By projecting on Xy, we obtain
HOhuxc = [Kv + Ku] br (“xc) y

SO
¥(x.) = [Ky + Ky Pr (uy,) (0) (6.1.24)

and (i) follows.

(i) It follows from (6.1.22) and (6.1.24).

(iii) Assume first that u € BC™ (R, X)) is a complete orbit of {U(t)},~. Then by
the definition of V;, we have u(r) € V;;,Vt € R. Hence, B

ITopu(t) = W (Iocu(t)), Vi €R.

Moreover, by projecting (6.1.8) on Xy, we have for each ¢,s € R with ¢ > s that
t—s

Mou (1) = I ou(s)+ | 0 DILF (u(s+1))dl.
0

Thus, t — ITy.u(t) is a solution of (6.1.21).
Conversely assume that u € C (R, Xy) satisfies (iii)(2). Then
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Iopu(t) =¥ (ITocu(t)), vVt € R,

and ITy.u(.) : R — Xp, is a solution of (6.1.21). Set x = u(0). We know that x €
Vy, and by the definition of Vj,, there exists v € BC" (R,Xp), a complete orbit of
{U(1)},5¢, such that v(0) = x. But since Vj, is invariant under the semiflow, we
deduce that
HOhV(t) = IP(HOCV(I))a Vi € Ra

and Iv(.) : R — Xo, is a solution of (6.1.21). Finally, since ITy.v(0) = ITy.u(0),
and since F and ¥ are Lipschitz continuous, we deduce that (6.1.21) has at most
one solution. It follows that

ITyv(t) = Ioeu(t), Vi € R,
and by construction
Hov(t) = ¥ (Ioev(t)) = ¥ (Iocu(t)) = Hopu(t), Vi € R.
Thus,
u(t) =v(t), vr eR.
Therefore, u € BC" (R, Xp) is a complete orbit of {U(t)},5. O

Proposition 6.1.11. Let Assumption 6.1.1 be satisfied. Assume in addition that F €
Lipg (Xo,X) (i.e. F is Lipschitz and bounded). Then

Vn ZV;;, Vn,é S (O,ﬁ).

Proof. Letn,§ € (0,f) be given such that § < n. Let x € V¢. By the definition of
Ve there exists u € BC¢ (R, X;), a complete orbit of {U (t)};>0, such that u(0) = x.
But BC® (R, Xy) C BC" (R,Xp), so u € BC" (R, Xy), and we deduce that x € V.

Conversely, let x € V;; be fixed. By the definition of V;, there exists u € BC" (R, Xp),
a complete orbit of {U (1)}, , such that #(0) = x. By Lemma 6.1.9 we deduce that
u is a solution of

u = K (ITheu(0)) + Ky Pr (u).
But K, (ITo.u(0)) € BC® (R, Xo) and F is bounded, so we have ®r (1) € BC? (R, Xp) C
BCS (R, X,) and
K> ®p (1) € BC® (R, Xp).

Hence, u € BC* (R,Xp) and
u=K, (HOCM(O)) + K, (Lt)

Using Lemma 6.1.9 once more, we obtain thatx € Ve. O
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6.1.2 Smoothness of Center Manifolds

We introduce the following notation. Let k > 1 be an integer, let Y;,Y>,.., Y, ¥
and Z be Banach spaces, and let V be an open subset of Y. Denote £ (Y}, Y3, .., Y, Z)
(resp. .Z *) (Y,Z)) the space of bounded k-linear maps from ¥} X ... X ¥} into Z
(resp. from Y* into Z). Let W € C*¥ (V,Z) be fixed. We choose the convention that if
I=1,...k—1and u,u € V with u # &, the quantity

w | [D'W (u) = D'W (@)] (..., u;) — D""'W (1) (u — iy, ..y |
p

uy,...,u; €By (0,1) ||l/t—/\||

goes to 0 as ||u—u]| — 0. Set
Ck(V,Z) = {W e C*(v,2):[W|;y :=sup [ D'W(x)[| < +ee, 0< j < k}
' xeV

For each 1 € [0, f3), consider Kj, : BC" (R,X) — BC™ (R, Xo;,) , the bounded linear
operator defined by
Kp = K+ Ky,

where K and K, are the bounded linear operators defined, respectively, in Lemma
6.1.6 and Lemma 6.1.7. For each p > 0 and each n > 0, set
Vpi= {xeXo: [Tl < p}. Vp:=fxreXo: I < p},

and
V) i={ueBC" (R,Xo)  u(t) €V, Vt €R}.

Note that since Vp is a closed and convex subset of Xj, so is Vg for each n > 0.

Definition 6.1.12. Let X be a metric space and H : X — X be a map. A fixed point
X € X of H is said to be attracting if

lim H"(x) =X foreachx e X.
n—y+oo
The following lemma is an extension of the Fibre Contraction Theorem (Theo-

rem 5.6.3 which corresponds to the case k = 1). This result is taken from Vander-
bauwhede [343, Corollary 3.6].

Lemma 6.1.13. Let k > 1 be an integer and let (My,dy),(My,dy),...,(M,dy) be
complete metric spaces. Let H : My X My X ... X My — Mo X M| X ... X M} be a
mapping of the form

H(x()a-xlv“'uxk) = (HO (X()) 7H1 (X(),.Xl) ) "'7Hk (x07x17"'7-xk))7

where for each 1 =0,....k, H; : My X My X ... X M — M is a uniform contraction;
that is, Hy is a contraction, and for each 1 = 1,..,k, there exists T, € [0, 1) such that
Jor each (xp,x1,...,x—1) € Mo X M| X ... X M;_y and each x;,%; € Mj,
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dy (Hy (x0, X1, s X1-1,%1) s Hy (X0, %1, 0, X1-1,%1)) < Td (x1,X7) -
Then H has a unique fixed point (X9,X1, ...,Xx). If, moreover, for each 1 = 1,...,k,
Hy (X)) : Mo XMy X ... XMj_1 — M,

is continuous, then (X, X1, ...,X;) is an attracting fixed point of H.

Proof. We prove the lemma for k = 1. The proof for any integer k > 1 can be easily
derived from this case. It is clear that (Xp,X;) is the unique fixed point of H, so we
only need to prove its attractivity.

Let (xg,x1) € Mo x M. Consider the sequence (x(n),x;(n)) defined by

(x0(0),x1(0)) := (x0,x1)

and
(xo(n+ 1),x1 (n+ 1)) = (Ho(xo(n)), Hi (xo(n), 31 (n)) , ¥ > 0.

Since Hy is a contraction, it is clear that lim,,_, ;«xo(n) = X). It remains to show that
lim,,_, 4 X1 (n) = X;. We observe first that

(n)), H(X0,%1))
(n)),Hi(xo(n),%1)) +d(Hi (x0(n),%1), Hi (xo(n), %)
< nid(x1(n),X1) + O,
where o, := d(H; (xp(n),
Setting 6, := d(x;(n),

),Hi(xp(n),x1) — 0 as n — +oo.
), we obtain

On1 S 118+ @y, Vn > 0.
Since 11 < 1, it is not difficult to prove that {§,} is bounded sequence and

limsup &, < 7 limsup &,,.
n——oo n—y+oo

Hence, limsup,,_, .6, =0. O

We recall that the map ¥ : Xo. — Xoy, is defined by
¥ (xc) = I (I~ K2 @)~ (Kixe) (0), Vxe € Xoc.
We define the map I : BC™ (R, Xo.) — BC" (R, Xp) by
Iy (u) = (I — K, ®p) " (1), YueBCT (R, Xo.).
For each § > 0, the bounded linear operator L : BC® (R,Xp) — Xop, is defined by
L(u) = Iu(0), VYu € BC® (R, Xo.).

Then we have
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lP(xC) = LI—E)(lec)a Vxe € Xoc

and
IH(u) = u+ Ky @ (I (u)), Yu e BC" (R, Xq.).

So we obtain
Iy=J+K,oPpo(ly), (6.1.25)

where J is the continuous imbedding from BC" (R, Xo.) into BC™ (R, Xp) .
From (6.1.25), we deduce that for each u € BC" (R, Xo.),

110() — ull gen(m xp) < 1Kzl 2(men (mx) 800 (R x0)) 1 l0,x, -

VTG 1) 0) oy < Kl (o) ITTF o, = o ¥t € R

For each subset E C BC™ (R, Xo.) , denote

—0
Myg=40¢€C (E7Vp0> ssup [|@(u) — ullgen(r x,) < +o°
uck

and set
Mo = Mo gcn (. xo,)-
From the above remarks, it follows that I (respectively I | ) must be an element of

My (respectively My ). Since Vgo is a closed subset of BC" (R, Xp), we know that
for each subset E C BC" (R,Xo.), Mo g is a complete metric space endowed with

the metric _
‘@(u)—@(u)H .

do.g (@7@) = sup BCM(RX)

uckE

Set

do = do pen (R X,,)-
Lemma 6.1.14. Let E be a Banach space and W € C}I (VP,E). Let £ >6 >0
be fixed. Define @y : V)l — BC® (R,E), Ppw : Vo' — BC (R,.Z (Xo,E)), and
CD‘EVI) (Vg = Z(BC? (R,Xy),BC* (R,E)) for each t € R, each u € V,!, and each
v € BC® (R,X) by

Py () (1) 1= W (u(0))
Dpw (u) (1) :=DW (u(t)),
(@ () () (1) == DW () (v(1)),

respectively. Then we have the following:

(a) IfE >0, then dy and Ppy are continuous;
(b)  Foreachu,v €V, &) (u) € £(BC® (R,Xy),BCE (R,E)),
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H(Dé‘p () = CDV(‘}) v) HE(BC5(R,X0),BC5 (RE))

< | Pow (1) = Pow (V) lpct-s & 2 (xy )

and

|2 ]

) < [ ®ow (u)||BC5*5(R,$(X0,E)) <|w 1Vp ?

#£(BC (R, X,),BCE (R,E)
(c) IfE>6,then <I->v(vl) is continuous;
(d) IfE > 06 >n,we have for each u,ii € fol that

A
)

) < H”_i‘\HBC‘S(R,XO)%E—ﬁ (u, )

| o () — @ @) - @) @) ()|

BCS (R,E
where

g5 (u ) = SE)PI] [ Ppw (su+ (1 = s)it) — Ppw ()| s (r 2 (x).£)) >
se|0,

and if € > & > 1, we have (by continuity of ©pw)
sg_g(u,ut) =0 as [ju— i‘\HBC’I(R,XO) — 0.

Proof. We first prove that @y € C(V,) ,BC% (R,E)). For each u,i € V,! and each
R > 0, we have

[ Pw () = Pw (@)l gt g,y = fgﬂge_é"' W (u(2)) =W ()]

(6.1.26)
— max <sup &S W (u(e)) — W (1)) 2 |W||oefR> .

lt|<R

Fix some arbitrary € > 0. Let R > 0 be given such that 2 |W||,e ¢ < & and denote
Q = {u(¢) : |t| <R}. Since W is continuous and £ is compact, we can find §; > 0
such that

(Wx)—W&)| <eifxe L, and ||x—x] < 3.

Let § = e R, If [t =l pen (r x) < O, then [|u(r) —u(t)|| < 61,Vt € [-R,R], and
(6.1.26) implies || Pw (1) — Pw (u)|| ¢ ®RE) S E-

We now prove that (Dv(Vl) € C(Vpn,.i”(BC‘ss (R,Xo),BC* (R,E))). From the first
part of the proof, since E is an arbitrary Banach space, we deduce that ®Ppy is
continuous. Moreover, for each u,u € V,? and each v € BC? (R,X;),

| (@l @) = supe S IDW (u(2)) (v(1) |

BCS(RE)  teR

< [[Ppw (M)HBC§*5(R.=‘/(XO,E)) ||VHBC5(]R,X0)
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and

H ([45‘5‘,1) (M) B qb‘g"l) (ﬁ)} (v)) HBC& (R,E)

< || ®pw (”) — Ppw (L/‘\)”Bcifﬁ(R,g(xo,E)) ”VHBCS(RXO) :

Thus, if & > §, we have for each u € V,? that
o) (uy ez (Bc5 (R,Xo),BC* (RE))  Vuev)
andif & > 6,
o) ec (V,?,,Z (BC5 (R,Xo),BCS (R,E))) . Yu > 0.
Since V), is an open and convex subset of Xy, we have the following classical formula
1
W) = W0) = [ DW (st (1= 5)y) (x—y)ds, Yy € V.

0

Therefore, for each u,ii € V',

| P ()~ @ @)~ @Y @) ()|

BCé (R,E)
= Isgﬂge’é"‘ W (u(r)) =W (ulr)) = DW (ul2)) (u(r) —u(2))|
< sup e eS| [DW (su(t) + (1 = s)ia(t)) — DW (i(1))] (u (1) = (1))

< oo =11l pes (r xg) SE)PI] [ Ppw (su+ (1 — s)it) — Ppw (i)l g5 (r_(xy ) -
se|0,

The proof is complete. O

The following lemma is taken from Vanderbauwhede and Iooss [345, Lemma 3].

Lemma 6.1.15. Let E be a Banach space and W € Cli (Vp,E). Let &y and (D‘EVI) be
defined as in Lemma 6.1.14. Let ® € C (BC” (R, Xo.), V,?) be such that

(a) O is of class C' from BC" (R, Xo.) into BC"™H (R, X)) for each u > 0;
(b) Its derivative takes the form

DO (u)(v) = 0 (u) (v), Yu,v € BC" (R, Xo.)

for some globally bounded ®V) : BC" (R, Xo,) — £ (BC" (R, Xo.) ,BCM (R, X))

Then @y o © € C) (BC" (R, Xo.),BC" (R,E)) N C! (BC" (R, Xo.) ,BCTH (R,E))
for each u > 0 and

D (P o0) (u)(v) = CPv(Vl) (© () O (u) (v), Yu,v € BC" (R, Xo.) .
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Proof. By using Lemma 6.1.14, it follows that
Dy 00 € CY (BC™ (R, Xo.),BC" (R,E))
and
o)) (0(.)0V)(.) € C(BC (R, Xy.),& (BCT (R, Xoc) ,BCTH (R,E))).

Let u,u € BC" (R, Xy.) . By Lemma 6.1.14, we also have
| (© ) - v (0 @) -y © @)@ -

< | #w @) v @ @) - © @) ©W -0 @), 0 .

+ o © @) [e w-e@-em@u-u

)
o

<110 (1) = © (@)l ncnsura sy 72 (© () 0 (@)

[ Pow (8 (@) pcurp, 0. ||© (1)~ © (@) — OV @) ()|

BCNHH(R,E)

} HBCML(R E)

BCHH/2(R Xo)
and the result follows. O
One may extend the previous lemma to any order k > 1.

Lemma 6.1.16. Let E be a Banach space and let W € Cllj (Vp ,E) (for some integer
k>1). Ler L € {1,...,k} be an integer. Suppose & > 0,11 > 0 are two real numbers
and 61,8,,...,8 > 0 such that € = L+ 61 + 6 + ... + 8. Define

@0y ) (1) :=DOW (u(r)), Ve €R,Yu e vy,

L (u) (ur, 1z, ..oy) (£) 1= DOW (u(2)) (ur () 12 (£) .oy (1)),
Vi € R,Vu €V, Vu; € BCY (R, Xo), fori=1,..,1.
Then we have the following:
(a) If& >0, then Ppyy : Vy! — BCS (R LU (X0, E )) is continuous;
(b) Foreachu,veV,! ,qv( (u) e 2 ( BC% (R, Xp),...,BCY (R, Xo) ; BCE (R,E)) :

() ()

b — P,

H w () = Py (v) 20 (B C51 (R.X),....BC% (R.X0):BCE (R.E))
< ||(DD(1)W( ) = Ppury HBC# (R.20(Xy.E))

and

| @
W f()(BC‘Sl (R.Xo),....BCO (R, Xo) :BCE(R.E))
= ||q> Ow ||Bcu (R 20 (X0,E)) = |W|1A,Vp

(c) Ifu>0,then dﬁ‘%) is continuous;
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(d) If 8 > n, we have for each u,ii € V) that

| ) - @ @) - @) @) (u—)

20D (BC2 (R Xp).....BCY (R, X0):BCE (R.E) )
)

—~ 1
< ot = il sy gy 2 (4:70)

where

! ~ —~ ~
sl (u,i) = Sl[épl] | @pwy (su+ (1= 5)i) = Py (@) || g (R.20(X.E)) >
se|0,

and if W > 0, we have by continuity of @p)y, that

0 N
sl (@) = O as u— 4llcn ,x9) = 0-

Proof. The proof is similar to that of Lemma 6.1.14. O

In the following lemma we use a formula for the k”*-derivative of the composed
map. This formula is taken from Avez [34, p. 38] which also corrects the one used
in Vanderbauwhede [343, Proof of Lemma 3.11].

Lemma 6.1.17. Let E be a Banach space and let W € C’b< (Vp ,E) . Let Py and W®)
be defined as above. Let © € C (BC" (R,Xo.),Vy' ) be such that

(a) @ is of class C* from BC" (R, Xy.) into BCK1HH (R, Xy) for each u > 0;
(b) Foreachl =1,...,k, its derivative takes the form

D'Ou) (vi,va,....,vi) = 0D (u) (vi,va,...,v;) ,Yu,v1,va, ...,v; € BCT (R, Xo,)

for some globally bounded ®") : BC™ (R, Xo.) — ") (BC™ (R, Xo) ; BC" (R, Xp)) .

Then @y 0 © € CJ) (BC" (R, Xo.) ,BC" (R,E)) NCk (BC" (R, Xoc) , BCKTH (R, E))
foreach L > 0. Moreover, for eachl =1, ...,k and each u,vy,vs,...,v; € BC" (R, Xy,)

D' (w0 0) (u)(v) = (D 0 0)") (1) (v1,v2,...,v1)

for some globally bounded (®y 0 @)V : BC" (R, Xo.) — £ (BC (R, Xo.) :BC" (R,E)).
More precisely, we have for j =1, ...,k that

(i) (Dwo0)) (u) = ) (O () DYO () + Dy ;(u);

(ii)  Dy1(u)=0; N N

(iti) For j > 1, the map Py ;(u) is a finite sum Y. Py, ;(u), where for each
AEAJ'

A € Aj the map Py, 5 j(u) : BC" (R, Xo) — L) (BCM (R, Xoc) ,BC" (R, E)) has
the following form
DO (u) (”i;‘ U ,...,ui:i> yees

DO (u) (“i'{’""?“"‘)

lrl

By () (1,1, 1)) = B (O ()
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with2<I< j1<rn<j—1forl<i<lri+nmn+..+rn=j,
{ir, it {1, j}, Vm=1,..,1
{lrm rm}ﬁ{l ” rn} m lf‘m#f’l
<< L <ipn Vm=1,..,1,
and each A € A correspOnds to each such a particular choice.
Proof. The proof is similar to that of Lemma 6.1.15. O

We make the following assumption.

Assumption 6.1.18. Let k > 1 be an integer and let 0,7 € (0, %) such that kn <
N < B. Assume that

a) F € Lip (Xo,X ﬂCk (Vp, )

b) po := ||Kh||j(BC0 &.x)) 1T Fllo.x, <P:

c) SUPge(n,f) ||K2||$(BC9(R,X)) HF”Lip(Xo,X) <L

Note that by using (6.1.18) we deduce that

sup_ K2l (pco )y <+
6<[n.n]

Thus, Assumption 6.1.18 makes sense.

Following the approach of Vanderbauwhede [343, Corollary 3.6] and Vander-
bauwhede and lIooss [345, Theorem 2], we obtain the following result on the
smoothness of center manifolds.

Theorem 6.1.19. Let Assumptions 6.1.1 and 6.1.18 be satisfied. Then the map ¥
given by Theorem 6.1.10 belongs to the space CX (X, Xy) .

Proof. Step 1. Existence of a fixed point. Let k,7, and 7) be the numbers intro-
duced in Assumption 6.1.18. Let i > 0 be given such that kn + (2k— 1) u = 1. We
first apply Lemma 6.1.13. For each j = 1,...,k and each subset E C BC" (R, Xy, ),
define M; g as the Banach space of all continuous maps

@, E — 2\ (Bc" (R, Xoc) , BC/M+2i=D (]R,XO)>
such that
< oo,

|@j|j = i‘elg 16 (u) Hzm (BCM (R Xoc) BCIN+2i=Di(R X))

For j =0,...,k, define the map H; g : Mo g X M1 g X ... x Mj g — M g as follows:
If j =0, set for each u € E that

Ho g (0) (1) = u+ Ky 0 P 0 Op(u).
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If j =1, set for each u € E that
H £ (09,0)) (u)(.) =J" + Ky 0 B (0 () 0Oy (u) , (6.1.27)

where J! is the continuous imbedding from BC" (R, X;,) into BC"T™# (R, Xp) .
If k > 2, set for each j =2,...,k and each u € E that

Hj_’E (@0,@1,...,@j) (u)

~ 6.1.28
:KQO(P;;U (6 (u))o@j (u)+Hj,E (@0,@1,‘..,@]',1) (u), ( )

where

ﬁj,E (©0.61,...,0;1) (u) =Y I'AIM',E (69,6, ...,0,_1) (u)
;LEA]‘

and

ﬁl,j,E (@07@17"'7@1'*1) (I/l) (anul7"'7uj)
=Ko @g) (O (u)) (@rl (u) (ui;l ,uigl,...,ui;}) sy O (1) (ui:,,...,ui;§)>

with the same constraints as in Lemma 6.1.17 for 4, r;, [, and i;j .
Define
H;=H;pcnryx,) foreachj=0,.. k.

In the above definition one has to consider K> as a linear operator from BC/M+(2/~Di (R X)
into BC/T+(2/=DH (R, X)), and @1(71) (®(u)) as an element of

20 (BCnTHCN IR (R Xo) .. BCTIH UK (R, Xo); BOIT K (R X))
Notice that I
n+@j=1u> Yona+Cn-1p
k=1

since2 <[/ < jand ry+ry+...+r = j. Finally, define H : My x M| X ... X M} —
My X My X ... X M by

H(@O,@l’...7@k) == (HO (@0) )Hl (@O,@l),,Hk (@0,@17.’@]()) .

We now check that the conditions of Lemma 6.1.13 are satisfied. We have already
shown that Hy is a contraction on Xp. It follows from (6.1.27) and (6.1.28) that H;
(1 < j <k) is a contraction on X;. More precisely, from Assumption 6.1.18 c), we
have for each j =1,...,k that
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sup HK2 o 4);]) (u)
uEV‘;7

g(BcanZj—l)u (R,Xp),BC/N+(2j-1u (R-,Xo))

I
< 11K2l| s (geimeer- e ) U || @1 ()
uEVpn
< sup. ||K2||$(Bc9(R,x)) |F\1,Vp
6<[n.n]
< sup ||K2||$(BC9(R,X)) 1 ipexy a0 < 1
6€[n.n]

g(chJr(ijl)u (R,Xp),BC/N+(2j=u (]Rg,x))

Thus, each H; is a contraction. The fixed point of Hy is I, and we denote by I" =
(I, I, ..., If) the fixed point of H. Moreover, for i =0, each Hj is still a contraction
so we have for each j = 1,...,k that

sup )HFJ‘(“) 20) (BCT (R X),BCIM (RXp)) < O

ueBCN (R,X()c

Step 2. Attractivity of the fixed point. In this part we apply Lemma 6.1.13 to

prove that for each compact subset C of BC (R, Xy ) and each ® € My x M X ... X
Mk7

. m _

mgTwHC (@ |C) =I |C . (6129)

Let C be a compact subset of BC (R, Xy.). From the definition of Hc, it is clear
that

I' |c=Hc (I |c)

and from the Step 1, it is not difficult to see that for each j =0,....k, H;c is a
contraction. In order to apply Lemma 6.1.13, it remains to prove that for each
j=1,...k, Hic(©c,O1c,....0j_1c,I; |c) € M; dependents continuously on
(@076‘,@1,6‘, ...,@J;]p) € MO,C X Ml,C X .. X Mj*],C-

We have

H; (@o,c,@l,c,~~~,@j71,c,1ﬂ(j> |c> (u)
=Ko (15;1) (@oc(u)) oD (u) +H; (e, O1c;.-0j 1) (u).

Since ') (u) € .2V (BCM (R, Xo) ,BC/M (R, Xo)) and ®(u) € V', we can consider

CDI(VI) as amap from V| into . (BC/M (R, Xp) , BC/1*(2/=DH (R, X;)), and by Lemma
6.1.14 this map is continuous.
Indeed, let @y, 0y € My be two maps. Then we have

sup ‘Kz 0 [cp};) (@ () — o (@o(u))} o' (u)

ueC

2U) (BN (R Xo) BCIN+2i~DH (R X))

S ||K2‘|$(BC./TI+(2/—1)A(R7X))
2 @0(w) @ (Bua)) | 0T (1)

P )|

-sup
ucC

2J) (BCT (R Xo.),BCIM+2I=DH(R X))

< 1Kzl 2 (peimei-vn g xy)) SUP

ueC 20 (BC (R Xo.),BCI (R Xp))
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-sup | @1 (@0 (u)) — @ (O (w)

ueC

) Hym (BCIN (R Xp),BC/M+2/= DI (R X))

and by Lemma 6.1.14 we have

f,‘ég ‘(p)(pl) (@o(u)) — Pp ( )H ) (BCM (R.Xy).BCIN+2I-DH(R X))
= f,‘ég ’(PDF (@o(w)) — Ppr <@0(u)> HBC(ZJ'*I)#(R,‘%(XO,X))
sup e~ 2= DRI\ DF (@) (u)(t)) — DF (@o(u) (1) ,
= max Ef) e~ @i-0ul || DF (@ (u) (1)) DF(<@0(M)(I))>$(XO7X)
<R 2L(Xo.X)

Since @0 is continuous, C is compact, it follows that @O(C) is compact, and by

Ascoli’s theorem (see for example Lang [224]), the set C= | {@o(u) (t)} is
[f|<RueC

compact. But since DF (.) is continuous, we have that for each € > 0, there exists

n > 0, such that for each x,y € X,

d(x€)<n, d(».C) <n, and |x—y| <n = |DF (x) - DF()| <e.

Hence, the map Oy ¢ — K> o dﬁl(pl) (@oc(.)) oY) (.) is continuous.
It remains to consider 1 <r; < j—1,r1+r+...+r = j. We have

s 800 0 (@0)] (64 0.8, ).,
< ||K2||g(3cjn+(2jfl)u(R’x)’chHZFI)u(RXO))
sup,cc [ |2} (@o<u>> o (6o(w))]

(80 .8, W),
) (BCM (R Xo. ), BC/MTH2I-DE (R X))
< ||K2||$ BC/N+Q2j=Di (R x),BC/N+(2j= 1)“(R~,X0))

@ (@) - 1 (o)

) (BCM (R Xoc ) BCIM+2I-DR(R X))

g(/)( I Bcrpn+(2rpfl)#(R,XO);BCMHZJ'—I)u(R7x>>
p=1,...,0

I1 @rp (u)

p:l,.“,l‘

Hzm (Bcn (R Xy, ),BCPN+2rp=1)H (R,XO))

and by Lemma 6.1.16 we have

’(DI(VI) (Oo(u)) — ‘DI(VI) (éO(M)) Hip(/)

SUPyec

n BCWD"*(ZVP*I)“(]R,XO);BCf”Jr(zf’l)”(va)>

‘d)D(l)F (@0(”)> - ¢D(’>F (@O(up)) HBC‘s (R.20)(X0,X))

< SUP,ec
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with § = (jn+(2j—1)u) —Yi_, in + (2r — 1) > 0. By using the same com-
pactness argument as previously, we deduce that

sup
ueC

‘¢D(’)F (B0 (1)) = Ppn e (éO(M)) HBcs (R20(X0.X)) 0

as do c(6y, @0) — 0. We conclude that the continuity condition of Lemma 6.1.13 is
satisfied for each H; ¢ and (6.1.29) follows.

Step 3. It now remains to prove that for each u,v € BCT (R, Xo.),Vj=1,...,k,

Loi(u)— T (v) = /0] i(s(u—v)+v) (u—v)ds, (6.1.30)

where the last integral is a Riemann integral. As assumed that (6.1.30) is satisfied,
we deduce that Iy : BC (R, Xo.) — BCK1+ =D (R X;) is k-time continuously dif-
ferentiable, and since

Y (x.) =LolyoKy (x.)

and L is a bounded linear operator from BCK1+(2k=Di (R X;) into Xoy,, we know
that ¥ : Xo. — Xop, is k-time continuously differentiable.
We now prove (6.1.30). Set

0" =(67,07,...67)

with
Oy (u) =u,0) (u)=J, and ©) =0, Vj=2,....k

and set
o" = (ey.,er,....0) =H" (0, vm > 1.

Then from Lemma 6.1.17, we know that @ : BC" (R, Xo.) — BCK1T (k=11 (R Xp)
is a Ck-map and

D/Oy (u) = 07" (u), Vj=1,....k, VueBC" (R,Xp.).

For each u,v € BC™ (R,Xy.) and each Vj = 1,....k,Vm > 1,

() — O (v) = /OIQ;"(s(ufv)Jrv) (u—v)ds.
Let u,v € BC" (R, Xo.) be fixed. Denote
C={s(u—v)+v:se|0,1]}.
Then clearly C is a compact set, and from Step 2, we have for each j =0,..., k that

Sléfc) H@Jm(w) *FJ(W) HBc.fn+(2j—1)u(R7x0) —0 asm— too.
w
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Thus, (6.1.30) follows. 0O

It follows from the foregoing treatment that we can obtain the derivatives of I(u)
at u = 0. Assume that F(0) = 0 and DF(0) = 0, we have

DFO(O):J
I5(0) (u1,12) = KZOq’()()(DFo(O)( >Dro< )(12)),
15(0) (11,12, 13) = Ky 0 & 0)(D<2 ul,ug)DFo(O)(uz))

+Kzod>£2) (0) (DI3(0) (u1), DOIG (0) () )

3 (6.1.31)
+Kz0 @) (0) (DI3(0) (1), DI3(0) (). DI (0) (3)),

DO (0)= ¥ Krod! (0) (D(”)F 0),...,DI"(") (0)) .
AEAJ‘

We have the following Lemma.

Lemma 6.1.20. Let Assumptions 6.1.1 and 6.1.18 be satisfied. Assume also that
F(0) =0 and DF(0) = 0. Then

¥(0)=0, D¥(0)=0,
and ifk > 1,
DIP(0) (x1, ... xs) = ILDDIH(0) (Kyx1, ..., K1x,) (0),
where DUIG(0) is given by (6.1.31). In particular, if k > 1 and
I,DF (0) [xp0x...xx0, = 0for 2< j < k,

then ‘
D'P(0)=0 forl1<j<k.

In the context of Hopf bifurcation, we need an explicit formula for D*¥(0). Since
DI((0) = J, we obtain from the above formula that Vx;,x, € Xo.,

D*%(0) (x1,x2) = IT,K, [D(Z)F(O) (Kix1,K1x2)| (0),

where
Ky =K +K,, Ki(x:)(t) := 0l x,

KN0)i=— [ e g

and
Ky()(1) = tim Ty, (Sa0 f(r+.)) (6 —r).

Hence,
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DZ‘P(O) (x1,x2)
+
_ / =4l 11, DR F(0) (eAw xp, &Ml xz) dl
0

+ lim Iy (SA <>D(2>F(0) (eAOC(”')xl,eAOC(”')xz)) (—r).
r—>—co
In order to express the terms in the above formula, we note that

(AL—A)"" lim I, (SAOD( JF(0) (e/‘W+ ')xl,e"‘of(”')xz))(—r)

F—y—oo0

= lim Il TAO (—r—s)(AI—A)"'DPF(0) (eAOC(r“)xl ) eAOC(rH)xz) ds
0

r—r—oo

= lim [ Ty (1) (AI—A) ' DO F(0) (e*AOc’x,,e*Awlxz) dli

r——o Jo
o0
= | Tay () (21 —A) ' DA F(0) (e_AOC'lxl , e—AOclxz) dl.

Therefore, we obtain the following formula
DZ‘I/(O) (X] X2)
+
- / e~ 40 1,0 F(0) (a“w xp, Aol xz) di
0

~+oo
+ lim / Tao (DTTogA (A1 — 4) ™ DOF(0) (el e~0lxy ) .
A—400J0

Assume that X is a complex Banach space and F is twice continuously differen-
tiable in X considered as a C-Banach space. We assume in addition that Ag, is di-
agonalizable, and denote by {vi,...,v,} a basis of X, such that for each i = 1,...,n,
Aocvi = Ajv;. Then by Assumption 6.1.1, we must have A; € iR, Vi=1,...,n. More-
over, for each i, j = 1,...,n, we have

D*¥(0) (vi,v))

~+oo
= —/0 e(}”ﬁlf)Ze_AO"IHuD(Z)F(O) (vi,vj)dl
400
+ lim Ty, (DITosA (AT —A)~ D(Z)F(O) (ef’l"lvi,e%flvj) dl
A—+J0
— (= i+ A1 = (—Ao) " TLDPF(0) (vi,v))

R
+dim [ G, (0TI (A1) DOFO) (i) di

— (= i+ A1 = (—Ao) " ILDPF(0) (vi,v))
+ 1lim A A —A)" (L4 A)1—Ay) ' TLDPF(0) (v, ;).

A—r+oo

Thus,
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D*W(0) (vi,v;) = (& + ) I — Agy) ' ILDPF(0) (v, )
+((Mi+2A)1—Ay) "' TLDPF(0) (vi,v)) .

Note that by Assumption 6.1.1 /R C p (Ay), so the above formula is well defined.
As in Vanderbauwhede and Iooss [345, Theorem 3], we have the following theo-
rem about the existence of the local center manifold.

Theorem 6.1.21 (Local Center Manifold). Let Assumption 6.1.1 be satisfied. Let
F : Bx,(0,€) = X be a map. Assume that there exists an integer k > 1 such that
F is k-time continuously differentiable in some neighborhood of 0 with F(0) =0
and DF (0) = 0. Then there exist a neighborhood Q of the origin in Xy and a map
¥ € Cf (Xoc, Xon) with ¥ (0) = 0 and D¥ (0) = 0, such that the following properties
hold:

(i) Iflis aninterval of R and x. : I — Xo. is a solution of

dx.(t)
dt

= Agexe(t) + ILF [e(t) + ¥ (xc(t))] (6.1.32)

such that
ut) :=x.(t)+%¥(x.(t)) € 2, Ve €l,

then for eacht,s € I witht > s,
! ot
u(t) = u(s) + A / u(l)dl + / F(u(l))d.
N N

(ii) Ifu:R —Xy is a map such that for eacht,s € R witht > s,

u(t) = u(s) +A / “u()di+ / "F (1)) dl
and u(t) € Q, Vt € R, then
ITu(t) = ¥ (ITu(t)), vVt € R,

and IT.u : R =Xy, is a solution of (6.1.32).
(iii)  If k > 2, then for each x1,x3 € Xoc,

DZ‘P(O) (x1,x2)
~+oo
_— / =40l 1, DR F(0) (eAOCle,eAsz) dl
0

+ lim Ty, (sA oDV F(0) (e"OC(’+ '>x1,eA°C<’+')Xz)) (=r).

r—y—o0

Moreover, X is a C-Banach space, and if {v,...,v,} is a basis of X, such that for
eachi=1,...,n, Agcvi = Ajv;, with A; € iR, then for each i, j = 1,...,n,

D*W(0) (vi,vj) = (M +A) 1 —Agy) " TLDPF(0) (vi,v;)
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+ (M4 A1) 1= Ay) ' TLDPF(0) (v, ;).
Proof. Set for each r > 0 that
Fr(x) = F(x)2e (r~ " Mo () 2 (" 1T (0)1l) ¥ € Xo,

where X, : Xoo — [0,4o0) is a C* map with yo. (x) = 1 if ||x|| < 1, xoc(x) =0
if ||x|| > 2, and g, : [0,4c0) — [0,400) is a C* map with j (x) = 1 if |x] <1,
Xn (x) = 0if |x| > 2. Then by using the same argument as in the proof of Theorem 3
in [345], we deduce that there exists ro > 0, such that for each r € (0, rg], F; satisfies
Assumption 6.1.18. By applying Theorem 6.1.19 to

d”;(tt) = Au(t) +F, (u(t)), t >0, and u(0) = x € D(A)

~—

for r > 0 small enough, the result follows. O

In order to investigate the existence of Hopf bifurcation we also need the follow-
ing result.

Proposition 6.1.22. Let the assumptions of Theorem 6.1.21 be satisfied. Assume that
X € X is an equilibrium of {U (1)}, (i.e. X € D(A) and AX+ F (X) = 0) such that
xXe Q.
Then
Iy = ¥ (Io.X)

and Ily.x is an equilibrium of the reduced equation (6.1.32). Moreover; if we con-
sider the linearized equation of (6.1.32) at Iy.X :

dy.(t)
dt

= L(X)y.(t)

with
L(x) = [Agc + II.DF (X) [[ + D¥ (I x)]],

then we have the following spectral properties
o(L(®) = o ((A+DF (¥)))N{A € C:Re(A) € [-n, 7]}
Proof. Let X € X be an equilibrium of {U(#)},-, such that X € Q. We set
X, =II.x and u(t) =X, Vt € R.
Then the linearized equation at X is given by

dw(t)
dt

= (A+DF (X)) w(t) fort > 0 and w(0) = wy € Xp. (6.1.33)

So
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w(t) = T(a+pF ), (t)wo, V1 > 0.
Moreover, we have
DY (x;)y. = IT, I3 (@) (K1yc)]
and
I (@) (v) = v+ KaBpie) (I () (1)) , ¥ € BCT (B, Xoe)

It follows that 1

L) = (I - Ka®ppr) v
Thus,
DY (X.)ye = I [(I_KZ(pDF(X))_I (Kl)’c)} .
This is exactly the formula for the center manifold of equation (6.1.32) (see (6.1.23)
in the proof of Theorem 6.1.10). By applying Theorem 6.1.10 to equation (6.1.33),
we deduce that
Wy = {ye +D¥ (%) ye : ye € Xoc}
is invariant by {T(A +DF()), (1) }t>0 . Moreover, for each w € C (R, X)) the following
statements are equivalent:
(1) we BC" (R, X)) is a complete orbit of {T(AJFDF(X))O(I)}DO.
(2) Hypw(t) = DY (x;) (IToew(t)),Vt € R, and Iyew(.) : R — Xy, is a solution of
the ordinary differential equation
dwe(t)
dt

= Agewe(t) + ILDF () [we(t) + D¥ (%) (we(1))].

The result follows from the above equivalence. O

6.2 Hopf Bifurcation
The main purpose of this section is to present a general Hopf bifurcation theory
for the non-densely defined abstract Cauchy problem:

PO put)+ F (@) 020, u(0) =x DAY, (62.1)

where A : D(A) C X — X is a linear operator on a Banach space X, F :RxD(A) = X
is a Ck-map with k > 2, and u € R is the bifurcation parameter. Here, we study the
Cauchy problem (6.2.1) when D(A) is not dense in X and A is not a Hille-Yosida
operator. Also the solutions must be understood as integrated solutions of (6.2.1).
We apply the Center Manifold Theorem in Section 6.1 to prove a Hopf bifurcation
theorem for the abstract non-densely defined Cauchy problem (6.2.1).

Assume that 0 is an equilibrium of (6.2.1) for each pt € R small enough; that is,
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F(u,0)=0,Yu eR.

Moreover, replacing A by A+ dyF (0,0) and F by G (i, u(t)) = F (1, x) — o F (0,0) x,
the problem is unchanged (since Theorem 3.5.1 implies that A 4 d,F (0,0) satisfies
Assumptions 3.4.1 and 3.5.2). So without loss of generality, we can assume that

d,F (0,0) =0.
We make the following assumption.
Assumption 6.2.1. Let € > 0 and F € C* ((—¢,€) x By, (0,€);X) for some k > 4.

Assume that the following conditions are satisfied:

(@ F(u,0)=0,Yu € (—¢,¢€),and dyF (0,0) = 0;

(b) (Transversality condition) For each u € (—¢,¢€), there exists a pair of con-
jugated simple eigenvalues of (A + dF(u,0))o, denoted by A () and A (1),
such that

A (1) = a(u)+io(p),
the map u — A () is continuously differentiable,

®(0) >0, & (0) =0, delo) £0,
and
o (Ag) NiR = {/1 0) ,m} : 6.2.2)

(¢) The essential growth rate of {Ty,(t)},., is strictly negative; that is,

w(),ess (AO) <0.

The above conditions are closely related to the usual conditions for the finite
dimensional case. The only difference with respect to the finite dimensional case
is assumption (c) which is necessary to deal with spectral theory of the semigroup
generated by Ag.

In order to apply the reduction technics and results in Theorem 6.1.21 and Propo-
sition 6.1.22, we first incorporate the parameter into the state variable by considering
the following system

du(r) _
d
du(t
‘5)—Amw+Fuwmum>
(1(0),u(0)) = (to,uo) € (—€,€) x D(A).
Note that F is only defined in a neighborhood of (0,0) € RxX. In order to rewrite

(6.2.3) as an abstract Cauchy problem, consider the Banach space RxX endowed
with the usual product norm

(6.2.3)
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(4] = s,

and the linear operator &7 : D(&/) C RxX — RxX defined by

”(5): (Axwug(o,om): (%F?o,mg) (“>

D(/) = RxD(A).

with

Observe that by Assumption 6.2.1 (a) we have d,F (0,0) = 0, and the linear operator
&/ is the generator of the linearized equation of system (6.2.3) at (0,0). Consider
the function .7 : (—¢,€) x By, (0,€) — RxX defined by

7 (5) N (F(#ax)guF(O,O)u) :

Using the variable v(t) = (l; ((tt)) ) , we can rewrite system (6.2.3) as the following

abstract Cauchy problem

dZ*(f) — )+ F (M), 120, v(0)=veD().  (624)

We first observe that .% is defined on Bryx (0, €) and is 4-time continuously differ-
entiable. Moreover, by using Assumption 6.2.1 (a), we have

Z (0) =0and D.Z (0) = 0.

In order to apply Theorem 6.1.21 and Proposition 6.1.22 to system (6.3.7) we need
to verify Assumption 3.5.2.

6.2.1 State Space Decomposition

In order to apply the Center Manifold Theorem, we need to study the spectral
properties of the linear operator /. From Assumption 6.2.1 (b) and (c), we know
that -

6 (Ag) NiR = {,1 (0),2 (0)} and @ css (Ag) < 0.

For each A9 € 6 (Ao) with Re (Ag) > m ess (A0) , Ao is a pole of the resolvent of Ay.
That is, there exists an integer k > 1 such that

oo

(A—A0) "= Y (A —20)"BY,,

k=—k
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where )
0 ._ a1 B -1
le?,ﬂo T 2mi /:T(A(),&‘)+ (A =%) (AT =A0) " dA

for € > 0 small enough. The bounded linear operator B/i % % is the projector on the

generalized eigenspace of A associated to Ag.
Set |
= BY, 2(0) +B/1017W
and N
Iy, = Z Bﬂom
A€ (Ag)Re(1)>0

Since A (0) and A (0) are simple eigenvalues of Ag, we have
BY, = lim (2. —7) (Al —Ag) ™! fory=A(0) ory=24(0).
-
Lemma 6.2.2. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Then
o (o) =0 (o) =0 (A)U{0} = o (A)U{0},

where o is the part of & in D(<f), and for each A € p (&),

(M —a)"! (‘;) = ((M_A)‘ [xi_alfF(OaO)l_lﬂ] )

Proof. Let A € C\ (0 (A)U{0}). Then

()-8
(uc i rnn) ()

o Ju=27
x=(A—A)"" R4+ 9uF (0,001 1]

It follows that
(R A
= (A ) - <W—A>‘ [#+0uF (0,002~ ] )

p (/) > C\o(4)U{0}.

It is clear that 0 € ¢ (%7) because

M((—A)la:LF(O,O)u) - (8)

SO
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Moreover, if A € 6 (A), we have

(Al — o) (2) _ (g) o (A-A)x=%

Sodeo(e). O

Lemma 6.2.3. Let Assumptions 3.4.1 and 3.5.2 be satisfied. Then the linear opera-
tor o : D(&/) C RxX — RxX satisfies Assumptions 3.4.1 and 3.5.2. Moreover, we

have
Hy o H
740 (%)= (0 5113, 0.0 (625)
and
wy . tu
50(%) = (s gsatharooma) 629
Furthermore

6OO,ess (%) = w07ess (AO) .

Proof. To prove that o7 satisfies Assumptions 3.4.1 and 3.5.2, it is sufficient to apply
Theorem 3.5.1. Recall that

(AI—Ag) 'x= / +D°e_MTA (t)xdt
0 0

and
-1 Ry
(AI—A) x:l/ M, (1)xdt.
0

Thus, for each A > 0 large enough,

Awe“(nwn+&$%F@®u>w

A lu
- ((M—Ao)lx—&-l‘l (A1—A)""! 8,1F(0,0)u)

and

e u
l,/o ¢ Sa(t)x+ f3Sa(1)duF (0,0) udi dr

_ Al
- <(M_A)1x+/11 (AI—A)laﬂF(0,0)u)'

It follows that T (¢) and S/ () are defined respectively by (6.2.5) and (6.2.6).
By using formula (6.2.5) we deduce that

17260 = 70 ¥ 0.

(since u € R) and it follows that
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O ess () = lim M M

t—>+o0 t i t

= wO,ess (AO) .

This completes the proof. 0O

Next we compute the projectors on the generalized eigenspace associated to some
eigenvalue of 7. Consider 49 € {A € 6 (&) : Re(A) > mpess (Ao)} \{0}. Since

0, ess (42{0) = Wp,ess (AO) and 0 (“Q%) =0 (%) =0 (AO) U {0} =0 (A) U {0}7

it follows that Ay is a pole of order ko of the resolvent of %. Since Re(4y) >
0 ess (%) , by Lemma 4.2.13, we deduce that A is a pole of order kg of the resol-
vent of .. Moreover, A is a pole of order k; of the resolvent of A. We have

oo

A -a)"'= ¥ (A-2)BY,

k=—ko

and

oo

A=A)""= Y (A-20)"B,,

k=—k

for |A — Ap| small enough. The projector on the generalized eigenspace of A (re-
spectively .27) associated to Ag is B 1o (respectively BY L Zo)'
We have k| = ko. Indeed, we have

(AT —2)"! (‘;) = ((M—A)‘ [xial:LF (0,0) A" ] ) ’

SO

lim (A=A (Al — 7)™ (‘;)

A (o)
= lim (A —20)" A"
()~ \ (A —2A0) 1 (AT —A) " [x+ 9uF (0,0) A" ]

0
pu— 71 .
(BAk] o [x+0uF (0,0) Ay ' ] )
Since the above limit exists it follows that ky < k;, and since B’i ki o 2 0 it follows

that ko = k1. So we obtain the following lemma.

Lemma 6.2.4. Let 1y € {1 € 6 (&) :Re(A) > @y ess (A0) } \{0}. Then Ag is a pole
of order kq of the resolvent of A if and only if Ay is a pole of order kg of the resolvent
of o

Now we compute

o .,L/ =) (3 -
B = 5 mgﬁ(x o) (Al — /)" dA.
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Set N

u o (M

~ | =B .
Since

(
(A —o7)"! (i) = ((M_A)‘ [xi_;fF(O»O)l'NO

0
k:Z—ko (A— %)kBZ‘%x>

A lu
+< )> (A—Aﬂ)kB£7M8NF(O,O)AIy> :

k=—ko

it follows that 1

o= A—20) A pda,
Ry AR R

~ 1 e )
’ j:Z_kO 2mi /Swo,e)* (A =20) " (A = Ao)’ By g%

1 k-1 iy —1pA
+ — A— A=) A7 B, d,F (0,0) udA

and

Afl _ _io()t —A{))l (71)1
_1:0 %H .
Since
s A y—k=lg 2 Nja—l
2mi /sc(ao,eﬁ (A =%) (A=A’ A" dA
R [t (ke 1)]
omi g AT /scuo,sﬁ =4 a
and

. 21 N\ L= (k+1)) .
),— [/+17(k+l)] dl — / i0 . lede
) g B 0) [ (pe”) ipe

— jpliti=H /27: (eie)[j”*k]de
0

 fomiifl=k—j
10 otherwise,

it implies that

281
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e T N O PN ot DA
— /SC(M+(/1 oy A= 20) A = T

For [ =0, it yields

ANkt g, ) 2@ if j=k
/SC(A{M?)+ (A=) dh = {O otherwise
and .
—k—1 ' oA
_):k TM/SC<AO8)+ (A=2)"" (A=) B}, x dA = B, x.
Jj=—ko ’
Therefore, we obtain
I
ZI — A(I)Hrl =
0 k<0
and
X BA : (71)]{_] A a
¥= kJoerj;k WBM) 1F (0,0) .
=—ko

From the above computation we obtain the following lemma.
Lemma 6.2.5. We have the following:
(i)  The projector on the generalized eigenspace of &/ associated to
Me{leo(«):Re(A) >0},
a pole of order kg of the resolvent of < is given by

0
Bﬁf (“)_ -1 1)1
~120 { x Bél’%erj:z_kO( LB, 9uF (0,0)u

o

(ii)) A (0) and A (0) are simple eigenvalues of </ and the projectors on the gener-
alized eigenspace of </ associated to A (0) and A (0) are given by

B2y <5) - <Bf1w [x+ y‘(l)8,1F(0,0) u] ) fory=A(0) ory=2(0).

The projector on the generalized eigenspace of <7 associated to O is given in the
following lemma.

Lemma 6.2.6. 0 is a simple eigenvalue of </ and the projector on the generalized
eigenspace of < associated to 0 is given by

B0 (”) - ((A)‘I«?:LF(O,OW)'
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Proof. Since 0 € p (A) it follows that

- (Y u
imA@Al=) (x>H})(/XWA)*H(MA)‘laﬂF(o,O)p>

B ((—A)‘laﬁmo,om) = Ih <”)

This completes the proof. O

From the above results we obtain a state space decomposition with respect to the
spectral properties of the linear operator .«7. More precisely, the projector on the
linear unstable manifold is given by

of o/
Hu = Z Bfl,k
A€o (A):Re(1)>0

and the projector on the linear center manifold is defined by

o _ pd =4 o
7 = B2, o+ B 30)+B”, 77
Set
7 =1- (M7 + 17 ).

6.2.2 Hopf Bifurcation Theorem

The main result of this section is the following theorem.

Theorem 6.2.7 (Hopf Bifurcation). Let Assumptions 3.4.1, 3.5.2 and 6.2.1 be
satisfied. Then there exist a constant €* > 0 and three C*~' maps, € — u(€) from
(0,&*) into R, & — x¢ from (0,€*) into D(A), and € — T (&) from (0,€*) into R,
such that for each € € (0,€*) there exists a T (&)-periodic function ue € C*(R, X)),
which is an integrated solution of (6.2.1) with the parameter value L = l(€) and

the initial value x = x¢. So for each t > 0, u.(t) satisfies

%m=%+4£%mm+1Fw@ww»ﬂ

Moreover, we have the following properties

(i)  There exist aneighborhood N of 0 in Xy and an open interval I in R containing
0, such that for U € I and any periodic solution u(t) in N with minimal period
T close to % of (6.2.1) for the parameter value 11, there exists € € (0,€*) such
that u(t) = ug(t + 0) (for some 0 € [0,7(¢))), u(e) =, and T (¢) =T;

(ii)  The map € — u(€) is a C*~! function and we have the Taylor expansion
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2
u(e) =Y wae”+0(e""), ve e (0,e%),

where [kz | is the integer part o fkT,
(iii)  The period y(€) of t — ug(t) is a C*=! function and

T(e)=—=[1+ f 7,82+ 0(e"1), Ve € (0,€"),

where @(0) is the imaginary part of A(0) defined in Assumption 6.2.1;
(iv)  The Floquet exponent B(€) is a C<= function satisfying B(€) — 0 as € — 0
and having the Taylor expansion

k

(52

Z Ban€™ 4+ 0(e5 "), Ve € (0,€%).
The periodic solution x¢(t) is orbitally asymptotically stable with asymptotic
phase if B(€) < 0 and unstable if B(g) >0

Proof. By using the results of Section 6.2.1, we deduce that o7 satisfies Assumption
3.5.2 and we can apply Theorem 6.1.21 to the system

d\:l(tl) =av(t)+.Z (1)), 1>0, v(0)=vy € m (6.2.7)

Set
Zoe = Hf{ (R x@)

and

Loy = (1 - Hff) (RxD(A)) .
By using Theorem 6.1.21, we can find ¥ € C’g (Zoc, Zon) such that the manifold
M= {x.+¥(x.):x. € Zoc}

is locally invariant by the semiflow generated by (6.2.7).
By applying IT# to both sides of (6.2.7), we obtain the reduced system in 2, =
7 (RxX):

£ (20) - () oo () o (). oo

where
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Now since <g ) is a branch of the equilibrium of (6.2.7), it corresponds to a branch

of the equilibrium (x ‘(i#) ) =17 ('g ) of system (6.2.8). Applying Proposition
(4
6.1.22 to system (6.2.7) and using Assumption 6.2.1, we deduce that the spectrum
u

of the linearized equation of (6.2.8) around % (1) consists of
(o

{02, 7w}

It follows that we can apply the Hopf bifurcation theorem in the book by Hassard et
al. [181] to system (6.2.8). The proof is complete. O

Remark 6.2.8. In Assumption 6.2.1, if we only assume that k > 2 and the condition
(6.2.2) is replaced by

o (40) Niw (0)Z = {1.(0),2(0)}

(i.e. the spectrum of Ap does not contain a multiple of A (0)). Then by the Hopf
bifurcation theorem of Crandall and Rabinowitz [76], we deduce that the assertion
(i) of Theorem 6.2.7 holds.

6.3 Normal Form Theory

6.3.1 Nonresonant Type Results

Let m > 1 be a given integer. Let Y be a closed subspace of X. Let .Z; (X(;”, Y)
be the space of bounded m-linear symmetric maps from X§' = Xo x Xp X ... X Xp
into Y and .Z; (X!, D(A)) be the space of bounded m—linear symmetric maps from
X" =X, x X X ... x X, into D(A); that is, for each L € .Z; (X"",D(A)),

L(xl,...,xm) € D(A), V(x],...,xm) EXZ”,

and the maps (x1,..,%,) = L(x1,...,xp) and (x1,..,%n) = AL (x|, ..., X ) are m—linear
bounded from X" into X. Let .%; (X", X;, N D(A)) be the space of bounded m—linear
symmetric maps from X" = X, x X, X ... x X, into D (A;,) = X;; N D(A) which be-
longs to .%; (X", D(A)).

Let k = dim(X,) and Y be a subspace of X. We define V" (X,,Y) the linear space

of homogeneous polynomials of degree m. More precisely, given a basis {b i }j: Lk

of X, V"(X,,Y) is the space of finite linear combinations of maps of the form

k
Xe= ) xib; e X, — x’l”x';Z...kav

J=1
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with
n+n+..+n=mandV €Y.

Define amap ¢ : Z; (X,Y) — V"(X.,Y) by
G(L)(x) = L(xer %), VL€ L (X, Y).
Let G € V"(X.,Y) be given. We have G(x.) = 5;D"G(0)(x,, -+, x.). So
7 1(G) = %D’"G(O).
In other words, we have
L= %DmG(O) < G(xe) =L(xcy..cixc), Vxe € X,
It follows that ¢ is a bijection from . (X", Y ) into V" (X,,Y ). So we can also define

V™(X.,D(A)) as
V"(Xe,D(A)) := 9 (L (X, D(A))).

In order to use the usual formalism in the context of normal form theory, we now
define the Lie bracket (Guckenheimer and Holmes [155, p.141]). Recall that

X = Xoc C D(AO) - D(A)a

so the following definition makes sense.

Definition 6.3.1. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Then for each
G € V™(X.,D(A)), we define the Lie bracket

[A,G](x;) := DG(x;) (Ax.) —AG(x.), Vx. € Xe. (6.3.1)
Recall that A, € £ (X,) is the part of A in X, we obtain
[A,G](x.) = DG(x;) (Acxe) — AG(x.),Vx, € X,..
Setting L := %DmG(O) € % (X",D(A)NX,). We also have
DG(x.)(y) =mL(y,x¢, ., Xc), DG(xc)Acxe = mL(Acxe,XeyoonyXe),

and
1A, G)(x.) = % L e, x)] (0) — AL(xer... ). 6.3.2)

We consider two cases when G belongs to different subspaces, namely, G €
V™(X.,D(A)NX;) and G € V" (X,,D(A)), respectively.
(i) G € V*(X.,D(A)NXj,). We consider the change of variables

IH.ov=1IIu

My = Mu—G(ITu) & 4=V G(IIv).  (63.3)

v:uG(ch)@{
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Then
G(xc) = L(x¢,Xc, ..., Xc ), VX0 € X,

The map x. — AG(x,) is differentiable and
D(AG) (x)(y) = ADG(x)(¥) = MAL (3., s x.)
Define amap £ : X — X by
E(x):=x+G(ILx),Vx € X.
Since the range of G is included in X}, we obtain the following equivalence

y=E)ex=E""0y),
where
£ =y-G(ILy), Wy € X,
and
IL.E ! (x) = ILx,Vx e X.
Finally, since G(x) € D(A), we have

2 (D(A)) C D(A) and &~ (D(A)) c D(A).
The following result justifies the change of variables (6.3.3).
Lemma 6.3.2. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let L € £ (X!", X, N D(A)).
Assume that u € C([0,7],X) is an integrated solution of the Cauchy problem

di‘l(tt) =Au(t)+F(u(t)), t €1[0,7], u(0)=x€ D(A). (6.3.4)

Then v(t) = E~1 (u(t)) is an integrated solution of the system

dv(t)
dt

where H : D(A) — X is the map defined by

=Av(t)+H(v(t)), t€[0,7], v(0)=E"!(x) € D(A), (6.3.5)

H(E(x)) = F (G (x)) = [A, G](ITex) = DG(Ix) [TI.F (& (x))]
Conversely, if v € C([0,7],X) is an integrated solution of (6.3.5), then u(t) =
& (v(¢)) is an integrated solution of (6.3.4).

Proof. Assume that u € C ([0, 7],X) is an integrated solution of the system (6.3.4);
that is,

/0 "u(t)dl € D(A), ¥ € [0,7],

and
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't
(t):x+A/ dl+/ ))dl, ¥t € [0,7].
JO

Set
v(r) = E (u(r)),vr €0,1].

AAE@W:AAE@M—A%GUmm»w
—x—/rFul dl—/otAG(H D) di

= u( ) G (Meu(t )) (x—G(HcX))
(G (Ieu(t)) = G (I1ex))

/F ))dl — /AGHCM)

(
=v(1) =& (¥) + (G (ITu(r)) — G (Ix))
—/ Fu(l))dl - /AG(HCu (1)d

We have

Since dim (X,) < +oo, t — IT.u(t) satisfies the following ordinary differential equa-
tions

dIl.u(t
cclt( ) = AocITu(t) + ILF (u(t)).
By integrating both sides of the above ordinary differential equations, we obtain
dIT.u(l
G (I, Il.x) /DG ( “()>d1

= /O DG (IT.u(1)) (AoeTTeu(1)) + DG (IT.ue(1)) (ILF (u(1))) dl.
It follows that
A /O ()l = v(t) — & (x)

+Aﬁxxnﬂanmmnwuyuanmnm

_/tF(u(l))dl—/tAG(HCu(l))dl.
0 0

=gaﬂﬁéﬁmw+fﬂwmmz

H(§(x)) = F (§ (x)) +AG(IL:S (x))
—DG(I1:E (x)) [ATI:E (x) + TI.F (& (x))].

Thus

in which
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Since I1.§ = I1,, the first implication follows. The converse follows from the first
implication by replacing F by H and £ by £~ O

Set for each > 0,

BC™ (R,X) := {f € C(R,X) :supe M| ()] < +°°}.
teR

We have the following lemma.
Lemma 6.3.3. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. If
f(t) =r*eMx
for some k e N, A € iR, and x € X, then
(Kt K) (T f)(0) = (— 1) k! (AT — A4) ") T € D(4,) € D(A).

Proof. 'We have

~+oo
K. (f)(0) = — /0 Ak M T xd]

dk 400
= —m/ HMe Al T, xdl
0
dk .
= _m (_A/I +A0u) Hux
dk

- W(Mngu)_IHux

= (= D*k! (AT = Agy) " TV T,
Similarly, we have for 4 > @, that

(1l —A) 'Ky (f)(0) = lim (ul—A) ' I (Sao f(T+.)) (—7)

T—y—oo0
-7

= lim Tay, (—7 =) (I —A) ' T f (s + T)ds

T——o0 J
)

T - a1 -

= lim_ /0 Tng, (r — ) (W — A) " I, £ (s — r)ds

(1) (I — A) " L ()l

So we obtain that

(=4 K(9O0) = [ () e T (0) (ur —4) ! o

dk

= Ik (AT —Ag) ™" (I —A) "' Myx
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= (=D AT —Ag)~* V) (ur —A) ' Tx
u
= (I —A) " (= 1) k! (AT — Ay) = D .
Since (uf —A)_1 is one-to-one, we deduce that
K (£)(1) = (= D)fk (A= A) "4 T
and the result follows. O

The first result of this section is the following proposition which is related to
nonresonant normal forms for ordinary differential equations (see Guckenheimer
and Holmes [155], Chow and Hale [62], and Chow et al. [63]).

Proposition 6.3.4. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. For each R €
V™ (X, Xy) , there exists a unique map G € V'™ (X, X, N D(A)) such that

[A,G] (xc) = R(xc),Vx. € X, (6.3.6)
Moreover, (6.3.6) is equivalent to
G(xe) = (Ku+Ks) (R(e""x))(0),

L(x1,...,%n) = (Ku + K;) (H (¢*x1,...,e" %) )(0),

with L := -LD"G(0) and H := 1, D"R(0).
Proof. Assume first that G € V"™ (X, X, N D(A)) satisfies (6.3.6). Then L= -1 D"G(0) €
£ (X, X,ND(A)) satisfies

d

o [L(A'x1, .., %)) (0) = ARL(x1, o, Xon) + H (X1, 0 Xin),

where H = -LLD"R(0) € %, (X", X,) . Then (6.3.6) is satisfied if and only if for each
(X1,..,Xm) € X and each t € R,

d
” [L(eA'xy, ..., €M x,) ] (1) = ApL(e?'xy, ..., e xy,) 63.7)
+H (A xy, ..., e xy,).
Set
V(1) i= L(eMxy, ..., e %), Vi € R
and
w(t) := H(e ' xy, ..., e x,), Vi € R.
The Cauchy problem (6.3.7) can be rewritten as
d
V(o) =Ap(t)+w(t), VieR. (6.3.8)

dt
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Since L and H are bounded multilinear maps and ¢ (Ag.) C iR, it follows that for
eachn >0,
veBCT(R,X) andw € BC" (R,X).

Letn € (O,min (—wo (Ags), inf Re(),))) . By projecting (6.3.8) on X,,, we

Aec(Agy)
have I
t
;‘;( ) = A I (1) + Lw(?),

or equivalently, V¢,s € R with 7 > s,

1
(1) = M) T (s) + / AT w(ndl,

t
v(s) = e Tu(r) —/ e A=) T w(l)dl.

N

By using the fact that v € BC™ (R, X)), we obtain when ¢ goes to +oo that
,v(s) = K,(IT,w)(s), Vs € R.
Thus, for s = 0 we have
TLL(x1,.... %) = K (ITLH(e"x1, ..., ¢4 x,,))(0). (6.3.9)
By projecting (6.3.8) on X;, we obtain

I,
dT:(t) — AT v(t) + Twl(t),

or equivalently, V¢,s € R with 7 > s,
Iyv(t) = T, (t — $)Tv(s) + (Sa, o TTw(. +5)) (t —5).
By using the fact that v € BC™ (R, X), we have when s goes to —oo that
Iv(t) = K,(IT,w) (¢), Vt € R.
Thus, for t = 0 it follows that
ILL(x1,...,xn) = Ky(IT,H (e x1, ..., % x,,)) (0). (6.3.10)

Summing up (6.3.9) and (6.3.10), we deduce that

L(X1, ooy Xm) = (Ky + Ky) (H (€ X1, ..., €% %) ) (0). (6.3.11)

Conversely, assume that L(xy, ...,x,,) is defined by (6.3.11) and set

(1) == (Ku +K,) (H (eAc<f+~)x1 : ...,eAc<f+~>xm) )(0), Vr € R.
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Then we have
v(t) = L xy, ..., x,,), Ve € R.

Moreover, using Lemma 6.1.6-(iii) and Lemma 6.1.7-(iii), we deduce that for each
t,s € Rwithr > s,

v(t) =Ty (t = s)v(s) + (Saow(. +5)) (t —s),
or equivalently,
V(1) = v(s) +A / ()l + / (i)l
Since ¢t — v(¢) is continuously differentiable and A is closed, we deduce that
v(t) € D(A), Vt € R,

and

The result follows. O

Remark 6.3.5. (An explicit formula for L) Since n := dim (X,) < 4oo, we can find
a basis {ey,...,e,} of X, such that the matrix of A, (with respect to this basis) is
reduced to the Jordan’s form. Then for each x, € X., e*<x. is a linear combination
of elements of the form

ety i

for some k € {1,...,n}, some A € 6(A.) C iR, and some x; € {ey,...,e,}. Let
Alyeery Ay € 0 (AL) CIR, X1,y X € {e1,-s€n}, kiyeonskiy € {1,...,n}. Define
f(1):=H (tkl ellt'xl,...,tk’”el’”"xm> .Vt €R.
Since H is m-linear, we obtain
f)y=rt'ety

with
k=ki+ky+..+kn, A=A+....4+ Ay,

and
Y=H(X1,.cc,Xm) -

Now by using Lemma 6.3.3, we obtain the explicit formula
(Ko +K,) (H ((.)k1 eMox, o, () e}”’”'xm> )(0) = (— 1) k! (AL — Ap) "V Ty € D(A).

(ii) G € V"(X;,D(A)). From (6.3.2), for each H € V"(X.,X), to find G €
V™(X.,D(A)) satisfying
A,G] =H, (6.3.12)
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is equivalent to find L € .Z; (X", D(A)) satisfying

% [L(eA"txl I ,eA"txm)]tzo =AL(X1,...,Xn) —|—ﬁ(x1 yeeesXm) (6.3.13)
for each (x1,...,x,) € X" with
YH)=H.

Define @5, : V"(X;,X.) — V"(X.,X.) by

05, (Ge) = [Ac, G|, YGe € V(X Xe) (6.3.14)
and O)} : V"(X., X, ND(A)) = V™ (X, Xp) by

O (Gy) = [A,G4],YG € V"™ (X, X4 ND(A)).

We decompose V™ (X,, X, ) into the direct sum

V"X, Xe) = K, DECL, (6.3.15)

where
A= R(Of)

is the range of @F, and €, is some complementary space of %5, into V"(X,,X,).
The range of the linear operator ®5, can be characterized by using the so called
non-resonance theorem. The second result of this section is the following theorem.

Proposition 6.3.6. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let H € RS, B
V™ (Xc,Xp). Then there exists G € V"(X.,D(A)) (non-unique in general) satisfying

A,G] =H. (6.3.16)
Furthermore, if N(©f,) = {0} (the null space of ©5;), then G is uniquely determined.

Proof. By projecting on X, and X, and using the fact that X, C D(A), it follows that
solving system (6.3.12) is equivalent to find G, € V" (X.,X,) and G, € V" (X, X, N
D(A)) satisfying

[Ae,G] = II.H (6.3.17)

and
[A,G,] = IT,H. (6.3.18)

Now it is clear that we can solve (6.3.17). Moreover, by using the equivalence be-
tween (6.3.12) and (6.3.13), we can apply Proposition 6.3.4 and deduce that (6.3.18)
can be solved. 0O

Remark 6.3.7. In practice, we often have

N(©,)NR(6;,) = {0},
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In this case, a natural splitting of V" (X, X,) will be
V™ (Xe,Xe) = R(6,) ©N(O,).
Define P, : V"(X;,X) — V"(X,,X) the bounded linear projector satisfying
P (V7 (X, X)) = T, BV (X, Xp), and (1 — ) (V7 (X X)) = G5,

Again consider the Cauchy problem (6.3.3). Assume that DF (0) = 0. Without loss
of generality we also assume that for some m € {2,....k},

HhDjF(O) |XC><XC><...><XC: O; 9 (HcDjF(O) |XC><XC><...><XC) S <gj_c7 (Cm—l)

foreach j=1,....m—1.
Consider the change of variables

u(t) = w(t) + G(ILw(1)) (6.3.19)

and the map I + %GOHC : D(A) — D(A) is locally invertible around 0. We will
show that we can find G € V"(X,.,D(A)) such that after the change of variables
(6.3.19) we can rewrite the system (6.3.3) as

dv:lit) = Aw(t) + H(w(t)) for t > 0, and w(0) = (I+ GoII.)x € D(A), (6.3.20)

where H satisfies the condition (C,,). This will provide a normal form method which
is analogous to the one proposed by Faria and Magalhaes [136].

Lemma 6.3.8. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let G € V' (X.,D(A)).
Assume that u € C([0,7],X) is an integrated solution of the Cauchy problem (6.3.3).
Then w(t) = (I+ GoIl.)~ ' (u(t)) is an integrated solution of the system (6.3.20),

where H : D(A) — X is the map defined by
H(w(1)) = F (w(t)) = [A,G] (TTw(1)) + O(|[w(®)|"*").

Conversely, if w € C([0,7],X) is an integrated solution of (6.3.20), then u(t) =
(I4+GoIl.)w(t) is an integrated solution of (6.3.3).

Lemma 6.3.8 can be proved similarly as Lemma 6.3.2, here we omit it.

Proposition 6.3.9. Let Assumptions 3.4.1, 3.5.2 and 6.1.1 be satisfied. Let r > 0 and
let F : Bx, (0,r) — X be a map. Assume that there exists an integer k > 1 such that
F is k-time continuously differentiable in Bx, (0,r) with F(0) = 0 and DF (0) = 0.
Let m € {2,...,k} be such that F satisfies the condition (C,,—1). Then there exists a
map G € V"(X.,D(A)) such that after the change of variables

u(t) = w(t) + G (Iw(r)),

we can rewrite system (6.3.3) as (6.3.20) and H satisfies the condition (Cy,), where
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H(w(t)) = F (w(t)) = [A,G] (TTw(t)) + O(w(®) " ").
Proof. Let x, € X, be fixed. We have
H(xc) = F (xc) = [A, G) (IToxe) + O( x| ).

It follows that

H(x.) = iD2F (0) (xcyxe) + v+ !

N (m_l)!DmilF(()) (Xey-eeXe)

+P %DmF (0) (xc.,...,xg)} +I—Pn) U!DmF (0) (x¢y- - -y xc)

~[A,G] (xc) + O(lee|"*)

since DF (0) = 0. Moreover, by using Proposition 6.3.6 we obtain that there exists a
map G € V"(X.,D(A)) such that

A,G)(x.) = P {ID’”F 0) (xc,...,xc)} .

m!

Hence,

H(x.) = lD2F (0) (xe,xc) + .o+ D"V (0) (xe, ..., xc)

2! (m—1)! (6.3.21)
(I — Py [LD"F (0) (xc, ... xe)] + O(||xe ™).
By the assumption, we have for all j =1,...,m — 1 that
IL,D’H(0) |x, xx,x..xx,= ILD'F (0) |x.xx.x.. xx,= 0
and _ '
g (HL'D]H(O) |X(.><X(.><4.4><X¢) =9 (HcDjF(O) |XC><XC><.4.><X(.) S ngc-
Now by using (6.3.21), we have
1 1
ﬁHhD’"H(O) [Xox X5, x X, = m9! [(1— P) (WD"’F (0) (xc,...,xc))} =0
and

G (IT.D"H(0) |x.xX,x..xX.) :g{HC%’l (I = Ppw) (D"F (0) (xc, ..., xc))]} € €y

The result follows. 0O
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6.3.2 Normal Form Computation

In this subsection we provide the method to compute the Taylor’s expansion at
any order and normal form of the reduced system of a system topologically equiva-
lent to the original system:

dL:T(tt) = Au(t) + F(u(t)), >0, (6:322)

u(0) =x € D(A).

Assumption 6.3.10. Assume that F € C* (D(A),X ) for some integer k > 2 with
F(0) =0and DF(0) = 0.

Set
F1 =F.

Once again we consider two cases; namely, G € V"(X,,D(A)NX;,) and G €
V™(X.,D(A)), respectively.

(i) G € V"(X;,D(A)NXy). For j=2,...k, we apply Proposition 6.3.4. Then
there exists a unique function G; € V/ (X, X, ND(A)) satisfying

1 .
[A,G}] (x.) = THDIF (0) (xe, .., Xe) , Ve € Xe. (6.3.23)

Define §; : X — X and 5/-_1 :X - X by

&j(x) :==x+Gj(Ilx) and ﬁjfl (x) :==x—Gj(ITx),¥x € X.
Then

Fj(x) := Fj—1(§; (%)) = [A, G| (I1x) — DG j(I1ex) [TI.Fj—1 (§; (x))] -
Moreover, we have for x € X that
IeFj(x) = IT.Fj— (§; (x)) = IFj—y (x+ G (Ilex)) .

Since the range of G; is included in X}, by induction we have

II.Fj(x) = IIL.F (x+ G2 (IT.x) + G3 (IT.x) + ... + G (IL.x)) .
Now, we obtain

I,D’F (0) |x,xx.x..xx.= O forall j=1,....k.

Setting
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ue(t) =& o0&t 0. & ul(t)) = u(t) — G (ITeu(t)) — G (Ieu(t)) — ... — Gy (Ieu(t)),

we deduce that u(¢) is an integrated solution of the system

(6.3.24)

Applying Lemma 6.1.20 and Theorem 6.1.21 to system (6.3.24), we obtain the fol-
lowing result which is one of the main results of this paper.

Theorem 6.3.11. Let Assumptions 3.4.1, 3.5.2, 6.1.1, and 6.3.10 be satisfied. Then
by using the change of variables

Mk(l> = M(l‘) -Gy (HCM(I)) - G3 (ch(l)) —...— Gy (ch(t))
=4
M(l‘) = Mk(l‘) + Gy (Hcl/lk(l‘)) +Gs (chk(l‘)) + ...+ Gy (chk(l‘)),

the map t — u(t) is an integrated solution of the Cauchy problem (6.3.22) if and
only ift — uy(¢) is an integrated solution of the Cauchy problem (6.3.24). Moreover,
the reduced system of Cauchy problem (6.3.24) is given by the ordinary differential
equations on X, :

dx.(t)
dt

x(t) + G (x.(2)) +
G3 (xc(t)) +...+ Gy (xc(t))

= Acx(t) + II.F [ ] TR (x(t)), (6.3.25)

where the remainder term R, € C¥ (X, X,) satisfies
D’R.(0) =0 for each j=1,....k,

or in other words R; (x.(t)) is a remainder term of order k.

Ifwe assume in addition that F € C*+2 (D(A),X) , then the map R. € C*+2 (X, X,.)
and R (x.(t)) is a remainder term of order k+2; that is

Re (x) = 7 0 (x.), (6.3.26)

where O (x.) is a function of x, which remains bounded when x. goes to 0, or equiv-
alently, _
D’'R;(0) =0foreach j=1,...k+1.

Proof. By Theorem 6.1.21 and Lemma 6.1.20, there exists ¥, € C¥ (X,,X;,) such
that the reduced system of (6.3.24) is given by

dx.(t)
dt

= Acxe(t) +TILF [xe(t) + G (xe(1)) + G (50 (1)) + oo. + G (1)) + ¥ (5 (1))]

and .
D', (0)=0for j=1,...,k.
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By setting

R. (xc) =ILF [x. 4+ Ga (x) + G3 (x¢) + ... + G (xc) + ¥ (xc)]
—II.F [x. + Gy (xc) + G3 (xc) + ... + G ()],

we obtain the first part of the theorem. If we assume in addition that F € C¥*+2 (D (A),X ) ,
then ¥, € C**2(X,.,X;) . Thus,

R. € C*2(X,,X.).

Set
h(xe) :=x.+Ga(xc) +G3 (xc) + ... + G (x¢) .
We have
Re (xc) = HeAF [h(xc) + W (xc)] — F [h(xc)]}
1
— 1, / DF (h(x.) + s (x.)) (% (x.))ds.

0

Define

h(xe) := h(xe) + s% (xc) .
Since DF (0) = 0, we have

DF ((x)) (94 (x0) = DF (0) (4 (x0) + [ D°F (13 (x4 30

- /0 DPF (zﬁ(xc)) (ﬁ(xc),'yk (xc)) dl.

Hence,

1ol
R (xc) = HC/O /0 D?F (1 (h(x.) + 5% (x0))) (h(xe) + 5% (xc) , W (xc)) dlds

and h(x.) is a term of order 1, ¥, (x.) is a term of order k+ 1, it follows that (6.3.26)
holds. This completes the proof. O

Remark 6.3.12. In order to apply the above approach, we first need to compute I1.
and A, then I, := I —II. can be derived. The point to apply the above procedure
is to solve system (6.3.23). To do this, one may compute

(AI—Ap)7* %HhDjF (0) (6.3.27)

for each A € iR and each k > 1 by using Remark 6.3.5, or one may directly solve
system (6.3.23) by computing II;, %Dj F;j_1. This last approach will involve the com-
putation of (6.3.27) for some specific values of A € iR and some specific values of
k > 1. This turns out to be the main difficulty in applying the above method.



6.3 Normal Form Theory 299

In next subsection, we will use the last part of Theorem 6.3.11 to avoid some
unnecessary computations. We will apply this theorem for k = 2, F in C*, and the
remainder term R, (x.) of order 4. This means that if we want to compute the Tay-
lor’s expansion of the reduced system to the order 3 (which is very common in such
a context), we only need to compute G,. So in application the last part of Theorem
6.3.11 will help to avoid a lot of computations.

(ii) G € V""(X,,D(A)). Now we apply Proposition 6.3.9 recursively to (6.3.22).
Set

uy = u.
Form =2,...,k, let G,, € V"(X.;,D(A)) be defined such that

1
A, Gpl(x) = Py, %DmFm,l (0) (x¢y...,xc)| foreachx. € X..

We use the change of variables
Um—1 = tm + G (I tiy) -
Then we consider F,, given by Proposition 6.3.9 and satisfying
Fon(tm) = Fn—1 (1) = [A, Gn] (Iett) + O(| || ).
By applying Proposition 6.3.9, we have
IT,D’ F,(0) [x, xx.x. xx.= O forall j=1,...,m,

and
G (D' F(0) [x,xx,x..xx.) € €} forall j=1,...m.

Thus by using the change of variables locally around 0
up (1) = (I 4+ GpIL) ™" . (I + GsIL) ™ (I + GoIL) ' u(r),

we deduce that u(7) is an integrated solution of system (6.3.24). Applying Theo-
rem 6.1.21 and Lemma 6.1.20 to the above system, we obtain the following result
which indicates that systems (6.3.22) and (6.3.24) are locally topologically equiva-
lent around 0.

Theorem 6.3.13. Let Assumptions 3.4.1, 3.5.2, 6.1.1, and 6.3.10 be satisfied. Then
by using the change of variables locally around 0

up(t) = (I+GeIL) .. (I+G3I1.) ' (14 GoIT)  u(r)
~
u(t) = (I + GaIL,) (14 G3IL.) ... (I + G I1.) u (1),

the map t — u(t) is an integrated solution of the Cauchy problem (6.3.22) if and
only ift — uy(¢) is an integrated solution of the Cauchy problem (6.3.24). Moreover,
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the reduced system of Cauchy problem (6.3.24) is given by the ordinary differential
equations on X, :

dx.(t)
dt

k
— A + gzni!ncmm (0) (ke (1), (1)) + Re (xc(0))

where |
@G (m'HCDka(O) |Xc><Xc><---><Xc) S %,;,fOF allm=1,...,k,

and the remainder term R, € C* (Xe,X.) satisfies
D’R.(0) =0 for each j=1,....k,

or in other words R; (x.(t)) is a remainder term of order k.

If we assume in addition that F € C*+2 (D(A),X ) . Then the reduced system of
Cauchy problem (6.3.24) is given by the ordinary differential equations on X, :

Pelt) _ cxele) +:in1zﬂcDka (0) (re(0), s xe(1)) + Re (3(0))

the map R. € C**% (X, X..), and R, (x.(t)) is a remainder term of order k +2; that
is
Re(xc) = ||xC||k+2 O (xc),

where O (x.) is a function of x, which remains bounded when x. goes to 0, or equiv-
alently, _
D/'R.(0) =0foreach j=1,....,k+1.

Proof. By Theorem 6.1.21 and Lemma 6.1.20, there exists ¥, € C¥ (X, X},) such
that the reduced system of (6.3.24) is given by

dx.(t)
dt

= Acxc(t) + I Fy [x.(t) + ¥ (xc(1))]

and '
D'Y,(0)=0for j=1,....k.

By setting
R. (xc) =II.Fy [xc + %% (xc)] —1II.Fy (xc) ,

we obtain the first part of the Theorem. If we assume in addition that F € C*+2 (D (A),X ) ,
then ¥, € C**2(X,,X;) . Thus, R, € C*2 (X,,X..) and

R (xc) =1II. {Fk [xc + %% (xc)] —F (xc)}

1
_1, / DFy (xo + s, (x.)) (% (x.)) ds.
0
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Set
h(xe) = xc+ 5 (xc).

Since DF (0) = 0, we have
DF, (h(xc)) (% (xc)) = DF (0) (% (xc))+/01D2Fk (h(xe)) (h(xc), ¥ (xc)) dl

_ /0 CD2E (1h(x)) (h(x), W (x0)) .

Hence,

1,1
Re(x) = II. /0 /0 D?F (1 (%o 4+ 5%, (x))) (xe + 5% (x.) , % (x.)) dlds
and ¥ (x.) is a term of order k + 1, it follows that
R (xc) = ||)CC||k+2 O (xc).

The result follows. 0O

6.4 Remarks and Notes

(a) Center manifold theory. The classical center manifold theory was first es-
tablished by Pliss [289] and Kelley [208] and was developed and completed in Carr
[56], Sijbrand [319], Vanderbauwhede [343], etc. For the case of a single equilib-
rium, the center manifold theorem states that if a finite dimensional system has a
nonhyperbolic equilibrium, then there exists a center manifold in a neighborhood
of the nonhyperbolic equilibrium which is tangent to the generalized eigenspace as-
sociated to the corresponding eigenvalues with zero real parts, and the study of the
general system near the nonhyperbolic equilibrium reduces to that of an ordinary
differential equation restricted on the lower dimensional invariant center manifold.
This usually means a considerable reduction of the dimension which leads to simple
calculations and a better geometric insight. The center manifold theory has signif-
icant applications in studying other problems in dynamical systems, such as bifur-
cation, stability, perturbation, etc. It has also been used to study various applied
problems in biology, engineering, physics, etc. We refer to, for example, Carr [56]
and Hassard et al. [181].

There are two classical methods to prove the existence of center manifolds. The
Hadamard (Hadamard [167]) method (the graph transformation method) is a geo-
metric approach which bases on the construction of graphs over linearized spaces,
see Hirsch et al. [188] and Chow et al. [65, 66]. The Liapunov-Perron (Liapunov
[228], Perron [286]) method (the variation of constants method) is more analytic in
nature, which obtains the manifold as a fixed point of a certain integral equation.
The technique originated in Krylov and Bogoliubov [220] and was furthered devel-
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oped by Hale [169, 171], see also Ball [36], Chow and Lu [67], Yi [378], etc. The
smoothness of center manifolds can be proved by using the contraction mapping in a
scale of Banach spaces (Vanderbauwhede and van Gils [344]), the Fiber contraction
mapping technique (Hirsch et al. [188]), the Henry lemma (Henry [183], Chow and
Lu [68]), among other methods (Chow et al. [64]). For further results and references
on center manifolds, we refer to the monographs of Carr [56], Chow and Hale [62],
Chow et al. [63], Sell and You [314], Wiggins [373], and the survey papers of Bates
and Jones [39], Vanderbauwhede [343] and Vanderbauwhede and Iooss [345].

There have been several important extensions of the classical center manifold
theory for invariant sets. For higher dimensional invariant sets, it is known that cen-
ter manifolds exist for an invariant torus with special structure (Chow and Lu [69]),
for an invariant set consisting of equilibria (Fenichel [140]), for some homoclinic
orbits (Homburg [190], Lin [229] and Sandstede [306]), for skew-product flows
(Chow and Yi [71]), for any piece of trajectory of maps (Hirsch et al. [188]), and for
smooth invariant manifolds and compact invariant sets (Chow et al. [65, 66]).

Recently, great attention has been paid to the study of center manifolds in infi-
nite dimensional systems and researchers have developed the center manifold theory
for various infinite dimensional systems such as partial differential equations (Bates
and Jones [39], Da Prato and Lunardi [84], Henry [183], Scheel [312]), semiflows
in Banach spaces (Bates et al. [40], Chow and Lu [67], Gallay [148], Scarpellini
[309], Vanderbauwhede [342], Vanderbauwhede and van Gils [344]), delay differ-
ential equations (Hale [172], Hale and Verduyn Lunel [175], Diekmann and van
Gils [104, 105], Diekmann et al. [106], Hupkes and Verduyn Lunel [193]), infinite
dimensional nonautonomous differential equations (Mielke [270, 271], Chicone and
Latushkin [59]), and partial functional differential equations (Lin et al. [230], Faria
et al. [135], Krisztin [219], Nguyen and Wu [277], Wu [374]). Infinite dimensional
systems usually do not have some of the nice properties the finite dimensional sys-
tems have. For example, the initial value problem may not be well posed, the solu-
tions may not be extended backward, the solutions may not be regular, the domain
of operators may not be dense in the state space, etc. Therefore, the center mani-
fold reduction of the infinite dimensional systems plays a very important role in the
theory of infinite dimensional systems since it allows us to study ordinary differen-
tial equations reduced on the finite dimensional center manifolds. Vanderbauwhede
and Jooss [345] described some minimal conditions which allow to generalize the
approach of Vanderbauwhede [343] to infinite dimensional systems.

The goal of Section 6.1 was to combine the integrated semigroup theory with the
techniques of Vanderbauwhede [342, 343], Vanderbauwhede and Van Gills [344]
and Vanderbauwhede and Iooss [345] to develop a center manifold theory for ab-
stract semilinear Cauchy problems with non-dense domain. The materials in Sec-
tion 6.1 were taken from Magal and Ruan [248]. The existence of center-unstable
manifold for abstract semilinear Cauchy problems with non-dense domain was es-
tablished in Liu et al. [235].

(b) Hopf bifurcation theorem. The Hopf bifurcation theorem, proved by several
researchers (see Andronov et al. [18], Hopf [191], Friedrichs [145], Hale [171]),
gives a set of sufficient conditions to ensure that an autonomous ordinary differential
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equation with a parameter exhibits nontrivial periodic solutions for certain values of
the parameter. The theorem has been used to study bifurcations in many applied
subjects (see Marsden and McCraken [257] and Hassard et al. [181]).

In the 1970’s, several Hopf bifurcation theorems were obtained for infinite di-
mensional systems in order to establish the bifurcation of periodic solutions of the
Navier-Stokes equations. Such results are usually based on the so-called Liapunov-
Schmidt or center manifold reduction approach. We refer to Iudovich [201], Sat-
tinger [308], Iooss [200], Joseph and Sattinger [202], Marsden [256], Marsden and
McCraken [257], Crandall and Rabinowitz [76], Henry [183], Da Prato and Lunardi
[84], and Kielh&fer [213] for results on the subject. The Hopf bifurcation theo-
rem has also been extended to functional differential equations (Hale and Verduyn
Lunel[175], Diekmann et al. [106], Wu [374]), functional equations (Hale and De
Oliveira [174]), and integral equations (Diekmann and van Gils [104], Diekmann et
al. [106]). We also refer to Golubitsky and Rabinowitz [151] for a nice commentary
on Hopf bifurcation theorem and more references.

In Section 6.2, which was adapted from Liu et al. [234], we applied the center
manifold theorem developed in Section 6.1 to prove a Hopf bifurcation theorem for
the abstract non-densely defined Cauchy problem. Since the problem is written as
a Cauchy problem, the method may seem fairly classical, however the result is new
and general, which can be applied to several types of equations. We will apply the
main theorem to obtain a known Hopf bifurcation result for functional differential
equations and a general Hopf bifurcation theorem for age structured models.

(c) Normal form theory. A normal form theorem was obtained first by Poincaré
[291] and later by Siegel [317] for analytic differential equations. Simpler proofs of
Poincaré’s theorem and Siegel’s theorem were given in Arnold [32], Meyer [267],
Moser [272], and Zehnder [382]. For more results about normal form theory and
its applications see, for example, the monographs by Arnold [32], Chow and Hale
[62], Guckenheimer and Holmes [155], Meyer and Hall [?], Siegel and Moser [318],
Chow et al. [63], Kuznetsov [223], and others.

Normal form theory has been extended to various classes of partial differen-
tial equations. In the context of autonomous partial differential equations we re-
fer to Ashwin and Mei [33] (PDEs on the square), Eckmann et al. [125] (abstract
parabolic equations), Faou et al. [130, 131] (Hamiltonian PDEs), Hassard, Kazari-
noff and Wan [181] (Functional Differential Equations), Faria [133, 134] (PDEs
with delay), Foias et al. [143] (Navier-Stokes equation), Kokubu [217] (reaction-
diffusion equations), McKean and Shatah [262] (Schrodinger equation and heat
equations), Nikolenko [278] (abstract semi-linear equations), Shatah [316] (Klein-
Gordon equation), Zehnder [383] (abstract parabolic equations), etc. We also refer
to Chow et al. [70] (and references therein) for a normal form theory in quasiperi-
odic partial differential equations.

In Section 6.3 we used the integrated semigroup theory, the semilinear Cauchy
problem theory, and the center manifold theory to establish a normal form theory
for the non-densely defined Cauchy problem. The goal was to provide a method for
computing the required lower order terms of the Taylor expansion and the normal
form of the reduced equations restricted on the center manifold. The main difficulty
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comes from the fact that the center manifold is defined by using implicit formulae
in general. Here we showed that it is possible to find some appropriate changes of
variables (in Banach spaces) to compute the Taylor expansion at any order and the
normal form of the reduced system. The main results and computation procedures
will be used to discuss Hopf bifurcation in age structured population models. The
presentations in Section 6.3 were taken from Liu et al. [236].



Chapter 7
Functional Differential Equations

The goal of this chapter is to apply the theories developed in previous chapters
to functional differential equations. In Section 7.1 retarded functional differential
equations are re-written as abstract Cauchy problems and the integrated semigroup
theory is used to study the existence of integrated solutions and to establish a gen-
eral Hopf bifurcation theorem. Section 7.2 deals with neutral functional differential
equations. In Section 7.3, firstly it is shown that a delayed transport equation for cell
growth and division has asynchronous exponential growth; secondly it is demon-
strated that partial functional differential equations can also be set up as an abstract
Cauchy problem.

7.1 Retarded Functional Differential Equations

For r > 0, let € = C([—r,0];R") be the Banach space of continuous functions
from [—r,0] to R” endowed with the supremum norm

loll= sup [@(6)g-
0c[—r0]

Consider the retarded functional differential equations (RFDE) of the form

dx(t) -~
{ — = Bx() + L) + f(t,2).91 2 0, (7.1.1)
x=¢€eC,

where x; € € satisfies x; (6) = x (1 +6),B € M, (R) is an n x n real matrix, L : € —
R" is a bounded linear operator given by

. 0
Lg)= [ an(e)9 ().

J—r

305
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here 1 : [-r,0] = M, (R) is a map of bounded variation, and f : Rx % — R" is a
continuous map.

In order to study the RFDE (7.1.1) by using the integrated semigroup theory, we
need to rewrite (7.1.1) as an abstract non-densely defined Cauchy problem. Firstly,
we regard RFDE (7.1.1) as a PDE. Define u € C ([0, 4<0) x [—r,0] ,R") by

u(t,0)=x(t+0),ve>0,v0 € [—r0].
Note that if x € C' ([~r,4-o0),R") , then

du(t,0)
ot

du(t,9)
20

=x(t+0)=

Hence, we must have

u(t,0)  dulr,6)

= > — .
o g =0.5120,v0 € [-r0]

Moreover, for 6 = 0, we obtain

du(t,0)

5 =X (1) =Bx(t) +L(x) + f(t.3)

— Bu(t,0)+ L(u(t,.)) + f(t,u(t,.), ¥ > 0.
Therefore, we deduce formally that # must satisfy a PDE

du(t,0)  Ju(t,0)

ot 20 O
au(;téo) = Bu(t,0) +L(u(t,.)) + f(t,u(t,.),Vt > 0, (7.1.2)
u(0,.) =@ €e%C.

In order to rewrite the PDE (7.1.2) as an abstract non-densely defined Cauchy
problem, we extend the state space to take into account the boundary condition.
This can be accomplished by adopting the following state space

X=R"x%¥

taken with the usual product norm

H()H ol
¢ R” '

Define the linear operator A : D(A) C X — X by

A (0(“;”> _ (_‘P'(O);,B‘P(O)), v(o(“;”> € D(A), (7.1.3)

with
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D(A) = {Ogn} x C' ([-1,0],R").

Note that A is non-densely defined because

D(A) = {Opi} x € £X.

We also define L: D(A) — X by

and F : R x D(A) — X by
7((5))-(57)
0= ()

Now we can consider the PDE (7.1.2) as the following non-densely defined Cauchy
problem

Set

dv(t)
dt

= Av(t) +L(v(t)) +F(t,v(t)), t > 0; v(0) = (0$”> eD(A). (7.14)

7.1.1 Integrated Solutions and Spectral Analysis

In this subsection we first study the integrated solutions of the Cauchy problem
(7.1.4) in the special case

20w+ (")) 2000 = (%) < D 7.15)

where i € L' ((0,7),R"). Recall that v € C([0,7],X) is an integrated solution of
(7.1.5) if and only if

/0 "(s)ds € D(A), ¥t € [0, 1] (7.1.6)

V() = (0(“;”> +A/Otv(s)ds+/0t (hg)>ds, vt € [0, 1]. (7.1.7)

From (7.1.6) we note that if v is an integrated solution we must have

and

v(t) = lim %/lt+hv(s)ds € D(A).

h—0t
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Hence v(7) = <SER;)) with u € C([0,7],%). In order to obtain the uniqueness of

integrated solutions of (7.1.5) we want to prove that A generates an integrated semi-
group. So firstly we need to study the resolvent of A.

Theorem 7.1.1. For the operator A defined in (7.1.3), the resolvent set of A satisfies

p(A):p(B)a

where B is an n x n matrix defined in (7.1.1). Moreover, for each A € p (A), we have
the following explicit formula for the resolvent of A :

(o Opn
MJ_A>1(¢>:<:$) (7.1.8)
& y(0) =" (A1—B)" [p(0)+ o]+ [g O (s)ds.

Proof. We first prove that p (A) C p (B) for which we only need to show that
o(B) Co(A). Let A € o (B). Then, there exists x € C"\ {0} such that Bx = Ax.
Consider

9(6) =e*’x,

A = / = =
¢ ¢ Ao Ao
Thus A € 6 (A). This implies that 6 (B) C ¢ (A). On the other hand, if A € p (B)
for (Z) € X, we must have (Olﬂin ) € D(A) such that

- (3)-()

we have

4 ¢
o V() -By(0)=a
Ay—y'=¢
o J A =B)y(0) =a+¢(0)
Ay—vy'=¢
(A =B)y(0) =a+¢(0
=

(M —B)y(0) =+ |
- { v (8) = 0w (0)— J§ OV (1)d1,¥8 € [-1,0],

sy (5) =M AI—B) o+ (0)]— [2 Do (1)al, ¥8 € [-r,0].

Therefore, we obtain that A € p (A) and the formula in (7.1.8) holds. O

Since B is a matrix on R”, we have ay(B) := sup Re(A) and the following
Aea(B)
lemma.
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Lemma 7.1.2. The linear operator A : D(A) C X — X is a Hille-Yosida operator.
More precisely, for each wy > @ (B) there exists My > 1 such that

[A1=2)"|| yx <()L1‘472)),1,vn21,vx>w/4. (7.1.9)
— WA

Proof. Let wy > ax (B) be given. We can define the equivalent norm on R”

x| := supe” ™' |||
>0

Then we have
’ele‘ < x|Vt >0

and
[l < x| < Mg [[x]]
where
My = sup He(B’“’A”’ .
>0 M,(R)

Moreover, for each A > @y, we have

~+o0
‘(lI—B)_lx’ = /0 e M ePixds| < 1 ECL)A.
We define the equivalent norm |.| on X by
o
()]~ 1al 1l
where
19llo, = sup |e=9(6)].
LIS
Using (7.1.8) and the above results, we obtain
o (5)
ar-ay
< sup {e“’/‘eew ‘(JLI—B)_1 [p(0)+ wAe/ |d9}
0c[—r0]
1
st[fwwe[wn+m 0 [ *WWNW}
0e[—r0] A — @y o
1 o040 A0 e @000 {e%}”“’*‘)e — 1]
= — O
e GRS el OIS R 19110,

1

< 7o Ll + 1ol
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(o)l

Therefore, (7.1.9) holds and the proof is completed. O

B 1
l—(DA

Since A is a Hille-Yosida operator, A generates a non-degenerated integrated
semigroup {S(t)},o on X. It follows from Corollary 3.6.3 that the abstract Cauchy
problem (7.1.5) has at most one integrated solution.

Lemma 7.1.3. Let h € L' ((0,7),R") and ¢ € € be given. Then there exists an
unique integrated solution, t — v(t), of the Cauchy problem (7.1.5) which can be
expressed explicitly by the following formula

0= (a5

with
u(t)(0) =x(t+0), vt € 10,1], V0 € [-r,0], (7.1.10)
where
x(t) = o), t € [-n0],
P (0)+ f3PUn(s)ds, t € [0,1].

Proof. Since A is a Hille-Yosida operator, there is at most one integrated solution
of the Cauchy problem (7.1.5). So it is sufficient to prove that u defined by (7.1.10)
satisfies for each ¢ € [0, 7] the following

(fé%gm) €D(4) (7.1.11)
) (%%>:<q$>+A<ﬁ2%m>+<ﬁwng- (7.1.12)
Since

't+0

/mmmﬂzfammﬂzé x(s)ds

Jo
and x € C([-r1],R"), [fu(l)dl € C'([-r,0],R"). Therefore, (7.1.11) follows.
Moreover,
(%) (70 00)
¢ ¢

whenever ¢ € C! ([~r,0],R"). Hence

A pratpar) = (7O O ) |
_ (f,), ) N ( () — q;(((;)]+ +.)B fgx(s)ds) |

Therefore, (7.1.12) is satisfied if and only if
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+B/ ds+/ (7.1.13)
By using the usual variation of constants formula, we deduce that (7.1.13) is equiv-

alent to .
x(t) = B p(0) —|—/ B n(s)ds
0

The proof is completed. O

(A) — D(A), the part of A in D(A), is defined by

D
o’ ) =a(5) (%) e
o= {(%y ) coweal’y ) epe)

From the definition of A in (7.1.3) and the fact that D(A) = {Ogn} X €, we know
that A is the linear operator defined by

W% )=(5) (55 ) o

D(A) = { (0$"> € {Opn} x C' ([-1,0],R") : —¢'(0) + Bp(0) = 0} .

Recall that Ay : D (Ag) C

where

Now by using the fact that A is a Hille-Yosida operator, we deduce that Ag is the
infinitesimal generator of a strongly continuous semigroup {TAO (r) and

w0 =11, 0) (%)

}tzo

is the integrated solution of

dv(r)
dt

=Av(t), t > 0; v(0) = (O(HE") € D(A).

Using Lemma 7.1.3 with 7 = 0, we obtain the following result.

Lemma 7.1.4. The linear operator Ay is the infinitesimal generator of a strongly
continuous semigroup {Tx,(t)} 1>0 Of bounded linear operators on D(A) which is

defined by
TA (t) ! _— ey ! ( 1 1 )
0 0 Ta, (1) (@) )’ o

where
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R Bt+0) o (0), 1+ 0 > 0,
T 000 ={ 5o 020

Since A is a Hille-Yosida operator, we know that A generates an integrated semi-

group {Sa(t)},>o on X, and t — Sa(t) ( j;) is an integrated solution of

= Av(t) + (j;) 1> 0; v(0) =0.

Since Sy (¢) is linear we have

510 () =50 (% )10 (3 )
SA(1) <°$"> :/Ot Ty (1) (O(H;")dl

and S4(¢) (g) is an integrated solution of

where

= Av(t)+ <g) ,1>0; v(0) = 0.
Therefore, by using Lemma 7.1.3 with A(¢) = x and the above results, we obtain the

following result.

Lemma 7.1.5. The linear operator A generates an integrated semigroup {Sa(t)},>¢

on X. Moreover,
10 (5) = (s0tem) (5) %

where Sy (¢) is the linear operator defined by

Sa(t) (x,9) = Sa() (0,9) + (1) (x,0)

with

530 0.0)0) = [ T (5)(@) (@)ds = [ P9 g0)ast [ g5+ 0)as

and

t+6 Bs
-~ _ e xds, t+6 >0,
S0 (0)(6) = { oz

Now we focus on the spectra of A and A + L. Since A is a Hille-Yosida operator,
so is A+ L. Moreover, (A+L),: D((A+L),) C D(A) — D(A), the part of A+ L in
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D(A), is a linear operator defined by

(A+L), (g) _ ((2,) , v((g) eD((A+L),),

D(a+19) = { (o ) € 000) X CH (=101 7): 90) =B0(0) + (g |.

where

From Proposition 4.2.14 and Theorem 7.1.1, we know that
0(B)=0(A)=0(A¢) ando(A+L)=0((A+L),).
From (7.1.14), we have
Tio (1) (@) () = LU TOBET 9 (0), 1t > 1,0 € [-1,0].

Therefore, R
Th, (t) =1L,

where L) : 4 — R" and L, : R" — % are linear operators defined by
Lip=e""""9(0), peC.1>r

and
Ly (x)(0) =P 9x x e R", 6 € [-1,0],

respectively. Clearly L; is compact. Hence, we have
w(),ess(AO) = —ocoand o (B) = G(A) = Op (AO) =0 (AO)'
Therefore,

@A) = sup Re(A).
A€op(Ao)

In the following lemma, we specify the point spectrum of (A + L), .
Lemma 7.1.6. The point spectrum of (A+ L), is the set
op((A+L))) ={A €C:det(A(A)) =0},

where

N 0
A(?L):QLI—B—L(el'I) —AI-B— [ *%an(8). (7.1.15)

Proof. Let A € C be given. Then A € op((A+L),) if and only if there exists
(05” ) € D((A+L),)\ {0} such that
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O]Rn ORn)
A+L =A .
e (%) =2 (%
That is, A € op ((A+L),) if and only if there exists ¢ € C' ([~,0],C")\ {0} such

that
0 (0)=A9(0),V0 € [-10] (7.1.16)

and

0'(0) =Bo(0)+L(¢). (7.1.17)
Equation (7.1.16) is equivalent to

0(8)=e9(0), V0 € [-1,0]. (7.1.18)

Therefore,
¢ #0= ¢(0)#0.

By combining (7.1.17) and (7.1.18), we obtain

29(0) = Bo(0) + L (¢*9(0)).

The proof is completed. O
From the above discussion, we have the following proposition.

Proposition 7.1.7. The linear operator A+ L : D(A) — X is a Hille-Yosida opera-
tor and (A+ L), is the infinitesimal generator of a strongly continuous semigroup

{T(A+L)0 (1) }t>0 of bounded linear operators on D(A). Moreover,

Tan® (%) = (50 @)

with R
T(AJrL)O(t) ((P) (9) = x<t+ 9)7 vt > O,VB € [—}"70] )
where
x(t) — (p(t)) N vt € [7"70]7
B o(0) + f3 P L (x;)ds, Yt > 0.
Furthermore,
ess((A+L)y) = —oo, A+L),) = Re(A),
es((A+L)y) = o, @(A+L)g) =, max  Re(A)

oc(A+L)=0((A+L)y) =0p((A+L))) ={A €C:det(A(A)) =0},
and each Ay € 6 ((A+L),) = 6 (A+L) is a pole of (Al —(A +L))"". For each
Y €R, the subset {A € 6 (A+L),) : Re (L) > v} is either empty or finite.

Proof. The first part of the result follows immediately from Lemma 7.1.3 applied
with h(t) = L(x;) . So it remains to prove that 0 s ((A + L)) = —ce. But this prop-
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erty follows from the fact that T, 1), (t) is compact for each ¢ large enough. This
is an immediate consequence of Theorem 4.7.3 (which applies because LTy, (t) is
compact for each r > 0, and Ty (¢) is compact for > r). O

7.1.2 Projectors on the eigenspaces

Let Ay € 6 (A +L) be given. From the above discussion we already knew that A
is a pole of (A1 — (A+ L)) 'of finite order ko > 1. This means that A is isolated in
6 (A + L) and the Laurent’s expansion of the resolvent around A takes the following

form
—+oo

A—(A+L) "= Y (A-2)"Bp. (7.1.19)

nifko

The bounded linear operator BZLOI is the projector on the generalized eigenspace of
A+ L associated to Ag. The goal of this subsection is to provide a method to compute
B)i‘)l. Note that

(A=) A= (A+L) "' = f (A—20)" B ..
m=0

So we have the following approximation formula

o | 1 dfo—1
B = lim —— 4
17 3% (ko — 1)1 dAFo—T

((A o) (AT — (A +L))*'). (7.1.20)

In order to give an explicit formula for B’}O , we need the following results.

Lemma 7.1.8. For each A € p (A+L), we have the following explicit formula for
the resolvent of A+ L

(AI—(A+L))"! (g) _ <o$n>
=

w(6) = /eoe“efshp(s)dsjtel% (A)"! [aJr(p(()) i (/'Oek("")(p(s) dsﬂ .

Proof. We consider the linear operator Ay : D(A) C X — X defined by

Ay(°$"> _ (-‘P’(O)+((1’)5’/—YI)<P(0)> 7 v<0$n> € D(A),

and the bounded linear operator L, € .2 (D(A),X) defined by
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[ Or) L(9)+79(0)
"\ o 0%

A+L=Ay+L,

Then we have

Moreover,

B—1vl) = R = Re(A)—y=ay(B)—7.
@ (B—yl) =, max Re(d)= max Re(d)—y=an(B)-y

Hence, by Theorem 7.1.1, for A € C with Re(A) > oy (B) —y we have A € p (Ay)

and
(-

54

w(0)=e* Al (B—y1)) " [0 (0)+a +/ MO (s)ds. (7.1.21)

Therefore, for each A € C with Re (1) > @y (B) — ¥, we know that A/ — (Ay+Ly)
is invertible if and only if / — L, (l[ —Ay) - is invertible, and

(A= (Ay+Ly)) " = (a1 -ay) " [1-1L, (M—Ay)’l}fl. (7.1.22)
We also know that [I Ly /'LI A ( ) ( A> is equivalent to ¢ = @ and

,[A(el-(}u (B—vI))~ a) YAI—(B—yI))”! }
(et (- (B-1) ¢<o> ' <>ds)],
+y(AI—(B—y1))"' §(0)

Q)

+

Because
I (el' (AL—(B—vI))" a) M- B—) "
[ —(B—I)— (e’ll) }(M—(B—y]))*‘
[1 B— L( )}(M—(B—w))*‘a
—AA)AL—(B—y1))""

we know that/ — Ly (A1 — Ay) ~!isinvertible if and onlyif A(A)=AI—B—L (el'l)
is invertible. Moreover,

1Ly (-] (%) - (Z)
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is equivalent to @ = @ and

=AM —(B—y))AL)"

a+z(el-(uf(3—y1)> $(0)+ [ IG (s)d ) ,
+y(AL—(B—v1))"" $(0)
(7.1.23)

Recalling that A + L = Ay + Ly and using (7.1.21), (7.1.22) and (7.1.23), we obtain
for each y > 0 large enough that

(AT—(A+L))"! <g> _ (oﬁn)

=
V(0) = (1 - <B m B ()+f #(s)ds
eroq )t |@HE(H -8~ m) <>+f°e“~—s><p<s>ds)]_
+Y (AL = (B—11))"" ¢ (0)

Now by taking the limit when y — 4o, the result follows. O
The map A — A (1) from C into M,, (C) is differentiable and

dA(A) 0 26
o =1 dan(e)ect.

AV ()=

So the map A — A (1) is analytic and

n 0
Al (A.) — ddAl(nA') _ dn (9) eneﬂt(-)7 n>2.

We know that the inverse function
v:L—L!
of a linear operator L € Isom (X) is differentiable, and
Dy(L)L=—L"'oLoL™".

Applying this result, we deduce that A — A (1)~ from p (A + L) into M, (C) is dif-
ferentiable, and &-A (1) ™' = ~A(A)"' (LA (1)) A(A)"". Therefore, we obtain
that the map A — A (A) ™" is analytic and has a Laurent’s expansion around 2g :

AR = Y (A-dora

nzf/];()
From the following lemma we know that ?0 = ko.

Lemma 7.1.9. Let Ay € 6 (A+ L) be given. Then the following statements are equiv-
alent
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(a) Ay is a pole of order kg 0f(7LI—(A—|—L))71,
(b) Ay is a pole of order ko of A (1)7l
(c) limy_ (A —20)A(A)"" #0andlimy_,, (A — ) A1)~ =0.

Proof. The proof follows from the explicit formula of the resolvent of A + L ob-
tained in Lemma 7.1.8. O

Lemma 7.1.10. The matrices A_y,...,A_y, satisfy

Ay
-2 0
Ak (Ao) : =1:
A*k()“rl 0
A
and
(Aky Akys1 -+ Ao A1) Ay (M) = (0 -+ 0),
where
A (o) A1) (A0) A% (Ag) /21 -+ AW () / (ko — 1)
0 . . ) .
Mg (Ao) = 0 AP (29) /2!
AW (%)
0 0 A (%)

Proof. We have

(A=2)1=A(2) <+Z(/1 Ao)" An- k()) = (f(k—lo)unko)A(x).

n=0 n=0
Hence,
A o
(A~ 201 = (i (Ao “‘”) <+2 <A—%>"Ank(,>
n=0 : n=0
+oo 0 A(n—k) Ao
= ’;)(l —Ao) kgf) (n_lg)!)Ak—ko
and

IR IE W W
n=0 :

By the uniqueness of the Taylor’s expansion for analytic maps, we obtain for n €
{0 ko — 1} that
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A ()
TR

(n—k)

n A (/'10) n
0=y 4, _
kgo T =) k§0

Therefore, the result follows. O

Now we look for an explicit formula for the projector B@l

eigenspace associated to Ag. Set

on the generalized

#(2)(9)(0):= [ g (5)as

and

% (1) <(g)> (8) := *® {(er(p(O)JrZ</Oe’l('_s>(p(s)ds)] .

Then both maps are analytic and

af{a -
(AI—(A+L)) <<p>‘ %(A)(w)(e)ww_l%m(g)(9) |

We observe that the only singularity in the last expression is A (7L)_1 . Since ¥ and
Y are analytic, we have for j = 1,2 that

doo (9 gy
w)=Y FM 0,

|
n=0 n:

where |A — Ap| is small enough and L{,() = %,Vﬂ >0,Vj=1,2. Hence,

) 1 dko—l ko
A e — 1)1 Ak T ((’I*M) # (“)
+o0 | - n+1
i ko— 1)1 & (nr D)Ll
=0

Ly (%)

and
i 1 dk()fl
o (ko — 1)1 dAko—T

. 1 gl = ntho v (A —2%)"
:inowm-lK Y (=20 An) (Z( . W‘”)]

Vl:7k0

o e (e, & -2
= /1]15110 CENCE [(Z(l—%) Ank()) (an!Lﬁ(Z@)]

(=204 2)" 9 (2)]

n=0
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. 1 g S n— (A —2)’
:/lhanlloi( ko 1)1 dAfoT [ZZ (A=) lAn - koij, Lz(%)
) 1 dko 1 + 1 )
= Jim Ty kT lz (A ~4o) ,Z“" ity ““)1
ko1
Z A 1-iL3 (Ao).

From the above results we obtain the explicit formula for the projector Bi{)l on the
generalized eigenspace associated to Ag, which is given in the following proposition.

Proposition 7.1.11. Each Ay € 6 (A+L) is a pole of (A — (A+L)) ' of order ko >
1. Moreover, ky is the only integer so that there exists A_y, € M, (R) with A_, # 0,
such that
Ay, = lim (A —2)oa@n)™
ko /ILH;O ( AO) ( )

Furthermore, the projector B'iol on the generalized eigenspace of A+ L associated
to Ay is defined by the following formula

Ogn

o (@) _

Bl(‘P>_ Z§°51},A-1_,-L§(Ao)(g) , (7.1.24)
where

= 1li ! do”/ k -1 .
Acj= fim i (A" AR) ) = L,

a 0

and

B ()= 556 () o)

L ke d7F ~( 1%
= LG [a+<p(0>+L</ e <"S><p(s)ds)},jzl,
k=0 :

here

d% {a+(p(0)+z (/Oel('s>¢(s)dAs)} ~I (/O(. —s)ieM'S)(p(s)ds> i1

In studying Hopf bifurcation it usually requires to consider the projector for a
simple eigenvalue. Now we consider the case when A is a simple eigenvalue of
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A+ L. That is, Ay is pole of order 1 of the resolvent of A + L and the dimension of
the eigenspace of A + L associated to the eigenvalue Ay is 1.

We know that A is a pole of order 1 of the resolvent of A + L if and only if there
exists A_; # 0, such that

A= lim (A—2p)A(A) "
i ;LLH/{O( Ao)A (A)
From Lemma 7.1.10, we have A_j1A (A9) = A (A) A—; = 0. Hence
Ay [B+Z(eﬂﬂ~1)} — [B+Z(e%-1)] Ay =MA .

From the proof of Lemma 7.1.6, it can be checked that Ay is simple if and only if
dim[.#"(A (Ao))] = 1. In that case, there exist V) ,W; € C"\ {0} such that

WAZA (Ao) =0and A () Vy, =0. (7.1.25)

Hence, by Lemma 7.1.10 (replacing VM)WAZ by SVAOWAZ for some & # 0 if neces-
sary), we can always assume that

A =Vy, Wy

Then we can see that BA_OIBA_O1 = BA_“1 if and only if

N 0
A=A [I+L (/ e%-dsﬂ Ay,

Therefore, we obtain the following corollary.

Corollary 7.1.12. Ay € 6 (A+L) is a simple eigenvalue of A+ L if and only if

(A=2%)A) =0

lim
A=Ay

and

dim[A47(A (20))] = 1.

Moreover, the projector on the eigenspace associated to Ay is

(2

On
tfA_, [a+<p(0)+§< [0P(=)g (s)ds ) | ] ’

where
A =V Wy

in which V) ,W,, € C"\ {0} are two vectors satisfying (7.1.25) and
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R 0
A=A, {H—L (/ eﬂﬂ-dsﬂ Ay

7.1.3 Hopf Bifurcation

Applying Theorem 6.1.21, a local center manifold theorem can be established
for the RFDE (7.1.1). See Hale and Verduyn [175] and Guo and Wu [159]. Here we
apply Theorem 6.2.7 to establish a Hopf bifurcation theorem for the RFDE.

Consider the following functional differential equation with a parameter

dx(r)
{ S = Bx(0)+ f(w.x), v >0, (7.1.26)
X0 = (P S %7

where 1 € R,x; € € satisfies x; (0) =x(1+60),B € M, (R) is an n X n real matrix,
and f: R x € — R" is a C*-map with k > 4.

By setting v(¢) = ()? ) we can rewrite equation (7.1.26) as the following abstract
t
non-densely defined Cauchy problem on the Banach space X = R" x ¢ :

dv(r)
dt

=Av(t) + F(u,v(1)), 1 >0, v(0) = (0(“;”> € D(A),

where A : D(A) C X — X is the linear operator defined by
A0 ) = (T80
¢ ¢’

D(A) = {Ogn} x C' ([-1,0],R™)
and F : R X D(A) — X is defined by

O f(u,tp))
F = .
(= (%)= ("%,
We assume that f(u,0) =0,Vu € R, and set

(o () morwa ()= (8) = ("6Y)

By Proposition 7.1.7, we know that the linear operator A+ L(u,.) : D(A) - X is a
Hille-Yosida operator. Moreover, 0 ess((A +L (4, .)),) = —oo and

with

(A+L(,.) = o (A+L(u.))
= op(A+L(1.)o)
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— (A eC:det(A(u,A)) =0},

where R
A(u,A)=AI—B—1 (u,eM) .

Hence, A + L satisfies Assumptions 3.4.1, 3.5.2 and 6.2.1(c). In order to apply the
Hopf Bifurcation Theorem 6.2.7 to system (7.1.26), we need to make the following
assumption.

Assumption 7.1.13. Let € > 0 and f € C*((—¢,¢€) x €;R") for some k > 4. As-
sume that there exists a continuously differentiable map A : (—¢, &) — C such that
foreach u € (—¢,¢€),

det (A (1, A (1)) =

and A () is a simple eigenvalue of (A + dcF (u,0)),, which is equivalent to

. det(A(u,A))
Ai%) (A=A () #0

and
dim (A (A1, A (n)))) = 1.

Moreover, assume that

Im (A (0)) > 0, Re(A (0)) =0, dRe;i )
and
(e (A’O)):O}mR:{A(o%W}- (7.1.27)

From Theorem 6.2.7 we can derive the following Hopf bifurcation theorem for
functional differential equations.

Theorem 7.1.14. Let Assumption 7.1.13 be satisfied. Then there exist a constant
€* > 0 and three C*"'-maps, € — (&) from (0,€*) into R, € — @¢ from (0,€*)
into €, and € — T (€) from (0,€*) into R, such that for each € € (0,€*) there exists
a T (€)-periodic function x¢ € C*(R,R"), which is a solution of (7.1.26) for the
parameter value L = W(€) and the initial value @ = @g. Moreover, we have the
following properties

(i)  There exist a neighborhood N of 0 in R" and an open interval I in R containing
0 such thatfor U € I and any periodic solution )?( ) in N with minimal period T
close to %& 2 of (7.1.26) for the parameter value W, there exists € € (0,€*) such
that X(t) :xg(wre) (for some 6 € [0,7(€))), u(e) =, and T () =T.

(ii) The map € — u(g€) is a C*~'-function and

~

,2]

[

4

u(e) = 28" +0(e" 1), Ve € (0,€%),

ﬁl"l
"S:
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where [%52 5 2] is the integer part ofkT.
(iii)  The period T (€) of t — ug(t) is a C*~'-function and

/(
T
T (e Z T,€™"]+0(e71), Ve € (0,€%),

where @ is the imaginary part of A (0) defined in Assumption 7.1.13;
(iv)  The Floquet exponent B(€) is a C*=! function satisfying B(¢) = 0 as € — 0
and having the Taylor expansion

k
T
Z Bon€™ +0(e° 1), Ve € (0,€%).

The periodic solution x¢(t) is orbitally asymptotically stable with asymptotic
phase if B(€) < 0 and unstable if B(€) >0

Remark 7.1.15. In Assumption 7.1.13, if we only assume that k > 2 and replace
condition (7.1.27) by
{A€C:det(A(0,1))=0}NiwZ={io,—in}

with @ = Im(Z (0)). Then by using Remark 6.2.8, we deduce that assertion (i) of
Theorem 7.1.14 holds. So we derive a well known Hopf bifurcation theorem for
delay differential equations (see Hale and Verduyn Lunel [175, Theorem 1.1, p. 332

D.

By using the results in Section 6.3, we can also develop a normal form theory for
the RFDEs. See Faria and Magalhies [136, 137] and Guo and Wu [159].

7.2 Neutral Functional Differential Equations

Consider the linear neutral functional differential equation (NFDE) in L? spaces

{ % (x(t) = L1 () = B(x(t) = L1 (x))) + Lo (x,), £ >0, (7.2.1)
x(0) =X R", xo = € L ((—1,0),R"),

with x, € L? ((—r,0),IR") satisfing x; (6) = x (¢ + 0) for almost every 6 € (—r,0).
Here p € [1,4+0), r € [0,4+), B € M, (R) is an n x n real matrix, while L;, j = 1,2,
are bounded linear operators from L? ((—r,0),R") into R" given by

Li@)= [ n(0)9(0)d0,

here n; € L((—r,0),M, (R)) with 3+ =1, j=1,2.
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7.2.1 Spectral Theory
Set u(t) = x; for t > 0 and we get

%[M(EO) — Ly (u(t))] = Blu(t,0) — L (u(r))] + La(u(t)), t = 0.

Let y(t) = u(¢,0) — L1 (u(r)). We obtain that

%(f) = By(t) + Lo(u(t)), 1 > 0

and
u(t,0) =Ly (u(t)) +y(2).
Therefore, u satisfies a PDE

ou_ou

(7.2.2)

Let X =R" x L? ((—r,0),R") x R"” endowed with the product norm

21
(‘P) H = |z1lge + @l o ((—r0) rr) + 22]R
2

OR}Z
and Xo = {Opn} X LP ((—1,0),R") x R™. Set v(t) = (u(t)) . We can consider
y(t)

(7.2.2) as an abstract non-densely defined Cauchy problem

dv(r) -~ Og —
e Av(t)+Lv(r)+Lv(t),t>0; v(0)=| ¢ | € D(A), (7.2.3)

Yo

where A : D(A) C X — X is a linear operator defined by

(OR") (—(P(O))
Al o = ¢
y By

D(A) := {Ogn} x WHP ((—=r,0),R") x R",

with
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L, L: Xo — X are defined by

ORI‘I y . O]Rn L] ((p)
Ll o |=(0]andL| ¢ | = 0 ,
y 0 y Ly(9)

respectively. Note that D(A) = Xp.
Lemma 7.2.1. The resolvent sets of A and A + L satisfy
p