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§Faculté des Sciences et Techniques, Université du Havre, 76058 Le Havre, France; and ¶Department of Mathematics, University of Miami,
Coral Gables, FL 33124-4250

Edited by Stanley Falkow, Stanford University, Stanford, CA, and approved June 30, 2005 (received for review May 18, 2005)

The emergence of drug-resistant strains of bacteria is an increasing
threat to society, especially in hospital settings. Many antibiotics
that were formerly effective in combating bacterial infections in
hospital patients are no longer effective because of the evolution
of resistant strains, which compromises medical care worldwide. In
this article, we formulate a two-level population model to quantify
key elements in nosocomial (hospital-acquired) infections. At the
bacteria level, patients infected with these strains generate both
nonresistant and resistant bacteria. At the patient level, suscepti-
ble patients are infected by infected patients at rates proportional
to the total bacteria load of each strain present in the hospital. The
objectives of this paper are to analyze the dynamic elements of
nonresistant and resistant bacteria strains in epidemic populations
in hospital environments and to provide understanding of mea-
sures to avoid the endemicity of resistant antibiotic strains.

mathematical populaton dynamics � nosocomial infection

Nosocomial (hospital-acquired) infections caused by antibi-
otic-resistant bacteria pose a serious threat to public health

(1–3). Despite interventions aimed at limiting the emergence
and spread of antimicrobial-resistant bacteria, including methi-
cillin-resistant Staphylococcus aureus, vancomycin-resistant En-
terococci, and multidrug-resistant Gram-negative bacilli, recov-
ery of these pathogens continues to rise rapidly (4–7).
Antimicrobial-resistant bacteria are transmitted among patients
in hospitals through the contamination of the institutional
environment or through human vectors. These bacteria also
serve as a reservoir of antibiotic-resistance plasmids that are
horizontally transmitted among strains and species of bacteria.

Part of the adaptation of bacteria to their environment involves
the use of genetic information borne on extra chromosomal ele-
ments known as plasmids, some of which are capable of recombi-
nation with the chromosome of their host cells. Other naturally
occurring plasmids are known only in an independent state. All of
these plasmids are capable of replication and transmission in the
course of cell division, and some mechanisms of infectious trans-
mission have been identified. Plasmids are vertically transferred to
daughter cells during binary fission and can be horizontally trans-
ferred from infected (donors) to uninfected cells (recipients)
through conjugation (8). In some cases, the plasmid DNA is
surrounded by a protein coat and is transmitted as an extracellular
virus. In other cases, infectious transmission requires contact be-
tween cells carrying that plasmid and cells free of it (9–11).
Plasmids can transfer copies of themselves to plasmid-free bacteria
at high rates. A typical example is extended-spectrum �-lactamase
Gram-negative bacilli, which are plasmid-mediated and are rapidly
increasing in the hospital setting (12).

Simple mass-action models have been used to study the spread
of conjugative plasmids in liquid culture (9, 10, 13–15). Stewart
and Levin (9) studied the population dynamics of a class of
conjugationally transmitted plasmids where the genes coding for
replication, conjugation, and other plasmid characters are trans-
mitted as a single inviolate element. They demonstrated that, as
a consequence of infectious transmission, there exists a broad set

of biologically possible conditions where nonantibiotic-
determining plasmids could become established and would be
maintained at substantial frequencies in bacterial populations.
Bergstrom et al. (16) showed that plasmids cannot persist simply
by bearing genes beneficial to their bacterial hosts and presented
a pair of simple illustrative models intended to highlight two
processes that could account for the long-term existence of
bacterial plasmids.

Multidrug resistance via genes borne on conjugationally trans-
mitted plasmids is among the best-known processes for bacterial
adaptation (17). A number of interventions have been proposed to
limit the spread of antibiotic-resistant bacteria. Preventative mea-
sures (such as hand washing and barrier precautions) are designed
to reduce bacteria transmission among hospitalized patients. To
judge the success of these interventions and to compare the merits
of different interventions, several mathematical models have been
proposed to provide quantitative predictions, which give rise to
criteria for evaluating the interventions (18–20). Lipsitch et al. (20)
developed a mathematical model of the transmission and spread of
antimicrobial resistance in a hospital setting. The model can be used
to explain a number of features of nosocomial infections, such as the
rapid rate of change in response to interventions, the efficacy of
nonspecific control measures, and the observation that use of one
drug is an individual risk factor for the acquisition of resistance to
other drugs, even in the absence of crossresistance or associated
linkage selection. Recently, a few other interesting models have also
been proposed for the study of antibiotic resistance in hospitals
(refs. 16 and 21–26 and E.M.C.D., M.A. Hom, and G.F.W.,
unpublished results).

The relation between antibiotic usage and antibiotic resistance
for many types of pathogens is largely mediated by population-level
selection. Antimicrobial use and patient-to-patient transmission are
inextricably linked for promoting antibiotic resistance (27). So far,
modeling antibiotic resistance has been either at the bacteria (9, 16)
or the patient level (refs. 18, 20, and 23 and E.M.C.D., M. A. Hom,
and G.F.W., unpublished results). To the best of our knowledge,
antibiotic resistance at both the bacteria and the patient levels has
not been explored (ref. 28 and E.M.C.D., P.M., S.R., and G.F.W.,
unpublished results). In this article, we formulate a two-level
population model to quantify key elements in nosocomial epidem-
ics. At the bacteria level, both nonresistant and resistant bacteria
strains are generated by patients infected with these strains. We
assume that the emergence of resistance can occur only through
acquisition of plasmids, and resistance through other mechanisms
(such as chromosomal, efflux pumps, etc.) is not considered here.
At the patient level, susceptible patients are infected by infected
patients at rates proportional to the total bacteria load of each strain
present in the hospital. The main objective of this model is to
understand how the resistant strain becomes endemic in the
hospital, and what measures are effective in preventing this from
happening.
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The Bacteria Population Level in a Single Infected Host
To determine the contribution of each infected patient to the
total bacterial load in the hospital, we track each one according
to their infection age (the time since becoming infected; see Fig.
1). For a patient infected with only nonresistant bacteria, let
VF(a) represent the population level of nonresistant bacteria
present in the patient at infection age a (see Fig. 1A). VF(a)
satisfies the logistic growth equation (see Table 1),

dVF�a�

da
� VF�a� ��F �

VF�a�

�F
�, a � 0, VF�0� � VF0, [1]

where VF0 is the number of bacteria inoculated at the time of
acquisition (a � 0), �F is the proliferation rate of bacteria in the
individual (log2��F is the doubling time of the bacteria without
limitation of carrying capacity), and �F�F is the carrying capacity
(the maximal sustainable bacteria population in an infected
patient).

From Eq. 1, we can see that if �F � 0, then lima3� VF(a) �
�F�F; if �F �0, then lima3� VF(a) � 0. This indicates that if the
proliferation rate is positive, then the bacterial population will
reach the carrying capacity. If the proliferation rate becomes
negative (via treatment), then the bacteria population in the
patient will die out (see Fig. 2).

Plasmid is extrachromosomal DNA in the bacteria cell whose
genes may confer resistance to antibiotics. A bacterium containing

plasmid may revert to a bacterium without plasmid. On the other
hand, a bacterium with plasmid may combine with a bacterium not
containing plasmid to yield two bacteria with plasmid. For a patient
infected with resistant bacteria, both strains are generated through
proliferation by cell division, recombination of plasmid-bearing
(resistant) and plasmid-free (nonresistant) bacteria, and reversion
of plasmid-bearing to plasmid-free bacteria.

Let V�(a) and V�(a) denote the population levels of plasmid-
free and plasmid-bearing bacteria at infection age a, respectively,
in an individual infected with both resistant and nonresistant
bacteria. Thus, V��(V� � V�) is the fraction of bacteria that are
plasmid-free, and V��(V� � V�) is the fraction of bacteria that
are plasmid-bearing (see Fig. 1B). Let � be the reversion rate of
plasmid-bearing to plasmid-free bacteria. Then �V�(a) describes
the reversion process. Let � be the recombination rate of
plasmid-free and plasmid-bearing to plasmid-bearing bacteria.
Then �V�(a)V�(a)�(V�(a) � V�(a)) represents the recombina-
tion process. Let �� and �� be the proliferation rates of
plasmid-free and plasmid-bearing strains, respectively. Then we
assume V�(a) and V�(a) satisfy

�
dV��a�

da
� ��

�V��a�

V��a� � V��a�

� �� �
V��a� � V��a�

�F
� V��a� � �V��a� ,

dV��a�

da
� � �V��a�

V��a� � V��a�

� �� �
V��a� � V��a�

�F
� �� V��a� ,

[2]

with V�(0) � V0
� � 0 and V�(0) � V0

� as the number of bacteria
initially.

System 2 has at most three equilibria: the trivial equilibrium
E0 � (0,0) (no infection), the semitrivial equilibrium EF � (�F
��,0) (infected only by plasmid-free bacteria), and the positive
equilibrium

E* � � ��F

� � 	
��� � 	 �

�	

� � 	
�,

	�F

� � 	
��� � 	 �

�	

� � 	
��

(infected by both plasmid-free and plasmid-bearing bacteria) if
	�0, where 	 � � � � � �� � ��. More precisely, by the results
in the Supporting Text, which is published as supporting information
on the PNAS web site (Theorem A5), we have the following:

(i) If 	 � � � � � �� � �� � 0, then system 2 has two
equilibria, E0 (unstable) and EF (stable), i.e., lima3� V� � �F ��,
lima3� V�(a) � 0.

Fig. 1. Flow diagram of bacteria populations in an infected patient. (A)
Plasmid-free bacteria in a single infected host before antibiotic treatment.
Here, log(2)��F is the doubling time, and �F�F is the carrying capacity of the
bacteria population. (B) Plasmid-free and plasmid-bearing bacteria in a single
infected host before antibiotic treatment. Here log(2)��� is the doubling time
of the plasmid-free strain, log(2)��� is the doubling time of the plasmid-
bearing strain, � is the recombination rate, and � is the reversion rate.

Table 1. Variables and parameters at the bacterial level

Variables Parameters

VF(a) Population of plasmid-free (nonresistant) bacteria present in
a patient infected only with plasmid-free bacteria at
infection age a

V � (a) Population of plasmid-free (nonresistant) bacteria present in
a patient infected with plasmid-free and plasmid-bearing
(resistant) bacteria at infection age a

V � (a) Population of plasmid-bearing (resistant) bacteria present in
a patient infected with plasmid-free and plasmid-bearing
bacteria at infection age a

�F Proliferation rate of plasmid-free strain in a patient infected
with only plasmid-free bacteria

�F The carrying capacity of bacteria in the host is �F�F

��, �� Proliferation rates of plasmid-free and plasmid-bearing
strains in a patient infected with both plasmid-free and
plasmid-bearing strains

� Reversion rate of plasmid bearing to plasmid-free
� Recombination rate of plasmid-free and plasmid-bearing to

plasmid-bearing strains

Fig. 2. Simulation of Eq. 1. Plasmid-free bacteria population in a single
infected host before and during antibiotic treatment. Here �F � 12.0 log(2)
(the doubling time is 2 h before treatment), �F � �2.0 after treatment, and �F

� 1010. Treatment starts at day 5 and lasts 15 days. Treatment is successful in
eliminating the nonresistant bacterial strain.
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(ii) If 	 � � � � � �� � ��� 0, then system 2 has three
equilibria, E0 (unstable), EF (unstable), and E* (stable), i.e.,

lima3�V��a� �
��F

� � 	
� �� � 	 �

�	

� � 	
� ,

lima3�V��a� �
	�F

� � 	
� �� � 	 �

�	

� � 	
� .

The solutions of system 2 track over time the total bacterial load of
patients infected with the resistant bacterial strains in terms of their
infection age. Such patients harbor both resistant [V�(a)] and
nonresistant [V�(a)] strains. If the recombination (�) and prolifer-
ation rates of plasmid-bearing bacteria (��) are decreased or the
reversion (�) and proliferation rates (��) of plasmid-free bacteria
are increased so that 	 � � � � � �� � �� � 0, then the
plasmid-free bacteria population will reach the carrying capacity,
and the plasmid-bearing bacteria population will die out (see Fig.
3). On the other hand, if the reversion (�) and proliferation rates
(��) of plasmid-free bacteria are decreased or the recombination
(�) and proliferation rates (��) of plasmid-bearing bacteria are
increased so that 	 � � � � � �� � �� � 0, then both plasmid-free
and plasmid-bearing bacteria population in the host will persist and
converge to steady-state values (see Fig. 4). In the absence of
treatment, the proliferation rate of the wild type (nonresistant) has
selective advantage over the resistant strain. In the presence of
treatment, the resistant strain has selective advantage over the
nonresistant strain, because it is unaffected by the drug.

The Patient Population Level in the Hospital
Let S(t) be the number of susceptible patients in the hospital at time
t. Let iN(t, a) and iR(t, a) be the densities of individuals infected by
bacteria nonresistant and resistant to antibiotics at time t and
infection age a, respectively (see Fig. 5). Then

IN�t� � �
0

�

iN�t, a�da and IR� t� � �
0

�

iR� t , a�da

are the numbers of patients infected by bacteria nonresistant and
resistant to antibiotics at time t � 0, respectively. Define

	
�
� � �
0

�


�a�
�a�da, � 
 � L1�0, ��, � 
 � L��0, ��.

Then

	VF
�iN�t�� � 	V��iR�t�� � �

0

�

�VF�a�iN�a, t� � V��a�iR�a, t��da

denotes the total number of nonresistant bacteria in the envi-
ronment at time t � 0, and

	V��iR�t�� � �
0

�

V��a�iR�a, t�da

denotes the total number of resistant bacteria in the environment
at time t � 0. Thus, the total, nonresistant, and resistant infection
rates are

��	VF
�iN�t�� � 	V��iR�t�� � 	V��iR�t��� S�t�, ��	VF

�iN�t��

� 	V��iR�t��� S�t�, and �� 	V�� iR� t��� S� t� ,

respectively.
The bacteria and patient population levels are coupled into the

following system (see Table 2):

�
dS�t�

dt
�  � �S�t���� 	VF

� iN� t�� � 	V��V�� iR� t��	 S� t� ,

�

� t
iN� t , a� �

�

�a
iN� t , a� � ��N�a� iN� t , a� , a � �0, �� ,

�

� t
iR� t , a� �

�

�a
iR� t , a� � ��R�a� iR� t , a� , a � �0, �� ,

iN� t , 0� � �� 	VF
� iN� t�� � 	V�� iR� t��	 S� t� ,

iR� t , 0� � �	V�� iR� t��S� t� ,

�S�0� , iN�0, a� , iN�0, a�� � �S0, �N�a� , �R�a�� ,

[3]

where �S0, �N, �R� � �0, �� � L1�0, �� � L1�0, �� .

Fig. 3. Simulation of system 2 with �� � 8.0 � log(2), �� � 4.0� log(2), � �
0.00001, � � 0.001, �F � 1010, and 	 � �2.77 � 0. The plasmid-free [V�(a)]
population has lima3� V�(a) � 5.55 � 1010, and the plasmid-bearing [V�(a)]
population has lima3� V�(a) � 0.

Fig. 4. Simulation of system 2 with �� � 8.0 � log(2), �� � 9.0 � log(2), � �
0.00001, � � 0.001, �F � 1010, and 	 � 0.69 � 0. The plasmid-free [V�(a)]
population has lima3� V�(a) � 1.27 � 106, and the plasmid-bearing [V�(a)]
population has lima3� V�(a) � 6.23 � 1010.

Fig. 5. Flow diagram of epidemic populations in the hospital. Susceptible
patients acquire nonresistant or resistant bacteria at infection age 0 at time t.
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In order to describe the outcomes of the epidemic in terms of
the parameters in system 3, define

TF � �
0

�

VF�a�exp� ��
0

a

�N�s�ds	 da ,

TV� � �
0

�

V��a�exp� ��
0

a

�N�s�ds	 da ,

TV� � �
0

�

V��a�exp� ��
0

a

�R�s�ds	 da .

The average length of time in the hospital while infected of
a patient infected with only the nonresistant strain is
LN�0

� exp[� 0
a �N�s�ds]da , where exp�� 0

a �N�s�ds� is the
probability of remaining infected at least a days. The average
bacterial load of nonresistant bacteria per patient infected only
by nonresistant bacteria is HF � TF�LN. Similar interpretations
hold for the average bacterial load HV� � TV��LR (nonresistant)
and HV� � TV��LR (resistant) per patient infected by both
the nonresistant and resistant bacteria strains, where LR �
�0

� exp[��0
a �R�s�ds]da is the average length of time in the

hospital while infected of a patient infected by both strains.
Let R0 � (���) max(TF, TV�). R0 is the number of secondary

bacterial infections produced by a single patient infected with either
the nonresistant or the resistant bacteria strain (29–32). If R0 � 1,
then both strains extinguish. If R0 � 1 and TF � TV�, then the
nonresistant strain becomes endemic, and the resistant strain
extinguishes. If R0 � 1 and TV� � TF, then both strains become
endemic. From the formula for R0, it is evident that the average
hospital bacterial loads HF and HV� and infection durations LF and
LV� are critical values in determining the course of the epidemic.
Each is strongly influenced by antibiotic use and, especially, over-
use. By the results in Supporting Text, we distinguish three cases
concerning the possible outcomes of the epidemic in terms of the
equilibria for system 3 (the MATHEMATICA code for the all simu-
lations is available upon request). The three cases depend on the
relationship of , �, �, TF, and TV�, as indicated in the diagram in
Fig. 6. To prevent the endemicity of both strains, it is necessary to
maintain both TF and TV� lower than ��(�). If the nonresistant
strain is endemic [TF � ��(�)], then the essential requirement to
prevent the endemicity of the resistant strain is to maintain TV� �

TF, that is, to hold the average daily hospital-resistant bacteria load
of patients infected with the resistant strain lower than the average
daily hospital-nonresistant bacteria load of patients infected with
the nonresistant strain.

R0 � (����) max(TF, TV�) < 1. When the parameters lie in Region
I, the only nontrivial steady state is E1 given by S � ��, IN �
0, IR � 0. In this case, both the resistant and nonresistant strains
go extinct. An illustration of this case is given in Fig. 7.

R0 � (����) max(TF, TV�) � (����) TF > 1. When the parameters lie
in Region II, in addition to E1, there is a nontrivial steady-state
E2 given by

Table 2. Variables and parameters at the patient level

Variables Parameters

S(t) Total number of susceptible patients in the hospital at
time t

iN(t, a) Age density of individuals infected by bacteria
nonresistant to antibiotics at time t and infection age a

iR(t, a) Age density of individuals infected by bacteria resistant to
antibiotics at time t and infection age a

IN(t) Total number of patients infected by nonresistant
bacteria at time t

IR(t) Total number of patients infected by resistant bacteria at
time t

 Patient admission rate
� Infection rate (exposure of patients to bacteria in the

hospital)
� Exit rate from the hospital of susceptible patients
�N(a) Exit rate of patients with infection age a infected with

nonresistant bacteria
�R(a) Exit rate of patients with infection age a infected with

resistant bacteria

Fig. 6. Parametric determination of epidemics in the hospital. The admission
rate , the average length of stay of uninfected patients 1��, the infection rate
parameter �, and the average patient bacterial loads HF � TF�LN (nonresistant
strain) and HR � TV��LR (resistant strain) determine three possible epidemic
outcomes.

Fig. 7. Simulation of system 3 when parameters lie in Region I. (Upper)
Treatment starts on day 3 and lasts 21 days for patients undergoing treatment.
�F � 12.0 � log(2) before treatment and �2.0 during treatment for patients
infected only with the nonresistant strain. �� � 8.0 � log(2) before treatment
and �2.0 during treatment and �� � 4.0 � log(2) before and during treatment
for patients infected with the resistant strain. � � 0.00001, � � 0.001, �F � 1010.
Treatment eliminates the nonresistant strain in patients with only this strain
but not in patients with the resistant strain. (Lower)  � 5.0, � � 0.05, � � 3.0
� 10�14, �N � 0.05, �R � 0.04, TF � 1.31 � 1011 � TV� � 2.84 � 1011, TV� � 4.44 �
1011, and R0 � 0.85 � 1. (S(t), IN(t), IR(t)) converges to the steady state (98,0,0).
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S � 1���TF�, iN�a�

� � � ����TF��exp� ��
0

a

�N�s�ds	 , iR�a� � 0.

Notice that the condition R0 � (���)TF �1 ensures the existence
of this nontrivial steady state. In this case, the nonresistant strain is
endemic, and the resistant strain goes extinct. An illustration is
given in Fig. 8. The changes from the simulation in Fig. 7 to the
simulation in Fig. 8 are that the length of treatment is changed from
21 to 14 days, treatment starts on day 5 instead of day 3, and the
transmission rate � is increased from 3.0 � 10�14 to 5.0 � 10�14.

R0 � (����) max(TF, TV�) � (����) TV� > 1. When the parameters lie
in Region III, in addition to E1, there is a positive steady state E2
given by

S �
1

�TV�
, iN�a� �

� � ����TV��� TV�

TV� � TV� � TF
exp � ��

0

a

�N�s�ds	 ,

iR�a� �

� � ����TV��� TV� � TF)

TV� � TV� � TF
exp � � �

0

a

�R�s�ds	 .

Notice that the condition R0 � (���) TV� � 1 ensures the existence
of this positive steady state. In this case, both the nonresistant and
resistant strains are endemic. Although the nonresistant strain is
necessarily positive in this steady state, its value may be extremely
small and thus negligible. This case is seen in many hospitals in
which resistant strains become endemic, whereas nonresistant
strains go undetected over long periods of time. An illustration is
given in Fig. 9. In this simulation, treatment is initiated at day 1
(before the bacteria population has peaked) and is stopped at day
8 (after the nonresistant strain is eliminated but before the resistant

strain has peaked). This simulation illustrates the case of effective
elimination of the nonresistant strain and endemicity of the resis-
tant strain when the nonresistant strain does not have selective
advantage over the resistant strain in patients harboring the resis-
tant strain.

Discussion
We have developed a model of nosocomial epidemics that
describes transmission dynamics in terms of bacterial load at two
separate levels, the bacterial load in individual patients and the
total bacterial load of all patients in the hospital. At the bacterial
level in individual patients, there are two classes of bacteria
(nonresistant and resistant). At the patient level, there are three
classes of patients (susceptibles, infectives infected by the non-
resistant strain, and infectives infected by the resistant strain).
The total hospital bacterial load of separate antibiotic nonre-
sistant and resistant strains depends on both levels: (i) the
number of bacteria harbored by individual patients through their
stages of infection and use of antibiotics, and (ii) the number of
patients infected with each of these strains. Nosocomial infection
transmission of antibiotic resistance in hospitals is not typical of
epidemic models, in which contact of susceptibles with infectives
determines transmission dynamics. In the hospital setting, un-
infected patient–infected patient contact is not the primary
transmission of infection but rather patient–healthcare worker
contact and patient–environment contact, which depends on
hospital contamination. Total hospital contamination, in turn,
depends on the bacterial load of individual patients.

A natural way to track the bacterial load in individual patients
is infection age, which begins at age 0 upon acquisition. The
bacterial load in individuals is a function of this infection age, as
the infection progresses and treatment is administered. We
analyze the population dynamics at this level (systems 1 and 2)
and establish conditions on the parameters (cell doubling times,
plasmid recombination rates, plasmid reversion rates, host-
carrying capacity, and therapy schedules) for the bacterial loads

Fig. 8. Simulation of system 3 when parameters lie in Region II. (Upper)
Treatment starts on day 5 and lasts 14 days for patients undergoing treatment.
�F � 12.0 � log(2) before treatment and �2.0 during treatment for patients
infected with the nonresistant strain. �� � 8.0 � log(2) before treatment and
�2.0 during treatment, �� � 4.0 � log(2) before and during treatment for
patients infected with the resistant strain. � � 0.00001, � � 0.001, �F � 1010. The
nonresistant strain is present in patients with the resistant strain because of
the reversion of plasmid-bearing to plasmid-free bacteria. (Lower)  � 5.0, � �
0.05, � � 5.0 � 10�14, �N � 0.05, �R � 0.04, TF � 2.62 � 1011� TV � � 1.76 � 1011,
TV � � 6.30 � 1011, and R0 � 1.31 � 1. The nonresistant strain becomes
endemic, and the resistant strain is eliminated. (S(t), IN(t), IR(t)) converges to
the steady state (76,24,0).

Fig. 9. Simulation of system 3 when parameters lie in Region III. (Upper)
Treatment starts on day 1 and lasts 7 days for patients undergoing treatment.
�F � 12.0 � log(2) before treatment and �0.8 during treatment for patients
infected with the nonresistant strain. �� � 3.0 � log(2) before treatment and
�2.0 during treatment, �� � 3.0 � log(2) before and during treatment for
patients infected with the resistant strain. � � 0.00001, � � 0.001, �F � 1010.
(Lower)  � 5.0, � � 0.05, � � 5.0 � 10�14, �N � 0.05, �R � 0.05, TF � 5.62 �
106� TV� � 2.48 � 1011, TV� � 5.48 � 107, and R0 � 1.24 � 1. The population
of patients infected only with the nonresistant strain is effectively eliminated,
and patients infected with the resistant strain completely dominate. (S(t), IN(t),
IR(t)) converges to the steady state (83,0,17).
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of each strain within an infected individual Stability Analysis of
System 2 in Supporting Text). We also analyze the transmission
dynamics at the patient population level (system 3) and provide
conditions on the parameters (hospital admission rates, length of
stay, and exposure rates to total hospital bacterial load) to
distinguish the mutually exclusive epidemic outcomes: (i) both
the nonresistant infective and resistant infective populations
extinguish, (ii) the nonresistant infective class becomes endemic
but the resistant class does not, and (iii) both infective classes
become endemic (Steady States for System 3 in Supporting Text).

Because these three cases are distinguished by simple condi-
tions on the parameters at the bacteria and patient levels, it is
possible to evaluate control measures that can alter epidemic
outcomes. The impact of control measures such as isolation of
patients infected with resistant strains, restricted use of antibi-
otics, and reduced or extended hospital stays can be discussed in
terms of these parameters. The parametric input can be under-
stood in terms of a single quantity: R0 � (���) max(TF, TV�),
which measures the number of secondary bacterial infections
generated by a patient infected with either strain. R0 involves the
hospital admission rate , the average length of stay 1�� of
susceptible patients, the infection transmission parameter �, TF
� HFLN (the average bacterial load of patients infected by
nonresistant bacteria times their average infection lifespan), and
TV� � HV�LR (the average bacterial load of patients infected by
resistant bacteria times their average infection lifespan). Because
the hospital admission rate  and average length of stay 1�� of
susceptible patients are largely uncontrollable, the quantities �,
TF, and TV� are critical in controlling the epidemic.

The prevention of endemicity of both nonresistant and
resistant bacterial strains requires R0 � 1. If R0 � 1, then
max(TF, TV�) determines whether the resistant strain extin-
guishes (TV� � TF) or becomes endemic (TV� � TF). The
importance of maintaining strict compliance with hospital hy-
giene measures (reducing � in the formula for R0) is illustrated
by the examples in Figs. 7 (R0 � 1), 8, and 9 (R0 � 1), where the
infection rate parameter � is significantly higher in Figs. 8 and

9. The simulations in Figs. 7 and 9 illustrate the difficulty in
maintaining TV� � TF. Treatment is successful only against the
nonresistant strain and, in fact, hugely amplifies the resistant
strain, if used by patients harboring this strain. The essential
difference in Figs. 8 (TV� � TF) and 9 (TV� � TF) is that the
nonresistant strain does not have a selective advantage over the
resistant strain in patients harboring the resistant strain, and the
resistant strain is dominant when therapy is stopped. The
implication for maintaining TV� � TF is that antibiotic therapy
for patients infected with the resistant strain must be strictly
limited. Another essential consideration in maintaining TV� � TF
is reducing the average hospital infection lifetime LR of patients
infected by the resistant strain in the general hospital population,
which can be accomplished by sequestering patients infected
with the resistant strain from the general hospital population.

Conclusion
The model we have developed here presents an ecological view
of antibiotic-resistance evolution in hospitals by connecting two
environmental levels, bacteria in infected hosts and patients in
the hospital. The main advantage of this modeling approach is
that it allows quantification of the consequences of therapy
regimens and hospital controls in terms of the complex dynamics
of competing bacterial strains. Our model illustrates the essential
difficulties in controlling the advance of resistant bacterial
infections in hospitals. Antibiotic therapy is necessary and
effective for patients infected with the nonresistant strain but
ineffective for patients infected with the resistant strain. In the
absence of treatment, the nonresistant strain dominates the
resistant strain. But treatment administered to patients infected
with the resistant strain reverses this domination and may
contribute inexorably to the eventual endemicity of the resistant
strain.
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