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Abstract

We develop a mathematical model to provide epidemic predictions for the
COVID-19 epidemic in China. We use reported case data from the Chinese
Center for Disease Control and Prevention and the Wuhan Municipal Health
Commission to parameterize the model. From the parameterized model
we identify the number of unreported cases. We then use the model to
project the epidemic forward with varying level of public health interventions.
The model predictions emphasize the importance of major public health
interventions in controlling COVID-19 epidemics.
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What are unreported cases?

Unreported cases are missed because authorities are not doing enough
testing on people showing symptoms, or ’preclinical cases’ in which people
are incubating the virus but not yet showing symptoms.

Research published1 traced COVID-19 infections which resulted from a busi-
ness meeting in Germany attended by someone infected but who showed
no symptoms at the time. Four people were ultimately infected from that
single contact.

1Rothe, et al., Transmission of 2019-nCoV infection from an asymptomatic contact
in Germany. New England Journal of Medicine (2020).
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Why unreported cases are important?

A team in Japan2 reports that 13 evacuees from the Diamond Princess were
infected, of whom 4, or 31%, never developed symptoms.

A team in China 3 suggests that by 18 February, there were 37,400 people
with the virus in Wuhan whom authorities didn’t know about.

2Nishiura et al. Serial interval of novel coronavirus (COVID-19) infections, Int. J.
Infect. Dis. (2020).

3Wang et al. Evolving Epidemiology and Impact of Non-pharmaceutical Interventions
on the Outbreak of Coronavirus Disease 2019 in Wuhan, China, medRxiv (2020)
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Early models designed for the COVID-19

Wu et al. 4 used a susceptible-exposed-infectious-recovered
metapopulation model to simulate the epidemics across all major
cities in China.

Tang et al. 5 proposed an SEIR compartmental model based on the
clinical progression based on the clinical progression of the disease,
epidemiological status of the individuals, and the intervention
measures which did not consider unreported cases.

4Wu, Joseph T., Kathy Leung, and Gabriel M. Leung, Nowcasting and forecasting
the potential domestic and international spread of the COVID-19 outbreak originating in
Wuhan, China: a modelling study, The Lancet, (2020).

5Biao Tang, Xia Wang, Qian Li, Nicola Luigi Bragazzi, Sanyi Tang, Yanni Xiao,
Jianhong Wu, Estimation of the transmission risk of COVID-19 and its implication for
public health interventions, Journal of Clinical Medicine, (2020).
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Early results on identification the number of unreported
cases

Identifying the number of unreported cases was considered recently in

Magal and Webb6

Ducrot, Magal, Nguyen and Webb 7

In these works we consider an SIR model and we consider the Hong-Kong
seasonal influenza epidemic in New York City in 1968-1969.

6P. Magal and G. Webb, The parameter identification problem for SIR epidemic
models: Identifying Unreported Cases, J. Math. Biol. (2018).

7A. Ducrot, P. Magal, T. Nguyen, G. Webb. Identifying the Number of Unreported
Cases in SIR Epidemic Models. Mathematical Medicine and Biology, (2019)
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The model

Our model consists of the following system of ordinary differential equations
S′(t) = −τS(t)[I(t) + U(t)],
I ′(t) = τS(t)[I(t) + U(t)] − νI(t),
R′(t) = ν1I(t) − ηR(t),
U ′(t) = ν2I(t) − ηU(t).

(2.1)

Here t ≥ t0 is time in days, t0 is the beginning date of the epidemic, S(t) is
the number of individuals susceptible to infection at time t, I(t) is the number
of asymptomatic infectious individuals at time t, R(t) is the number of reported
symptomatic infectious individuals (i.e. symptomatic infectious with sever symp-
toms) at time t, and U(t) is the number of unreported symptomatic infectious
individuals (i.e. symptomatic infectious with mild symptoms) at time t. This
system is supplemented by initial data

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) ≥ 0 and U(t0) = U0 ≥ 0. (2.2)
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Compartments and flow chart of the model.
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Figure: Compartments and flow chart of the model.
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Why the exposed class can be neglected?

Exposed individuals are infected but not yet capable to transmit the
pathogen.

A team in China8 detected high viral loads in 17 people with COVID-19
soon after they became ill. Moreover, another infected individual never
developed symptoms but shed a similar amount of virus to those who did.

In Liu et al. 9 we compare the model (2.1) with exposure and the best fit
is obtained for an average exposed period of 6-12 hours.

8Zou, L., SARS-CoV-2 viral load in upper respiratory specimens of infected patients.
New England Journal of Medicine, (2020).

9Z. Liu, P. Magal, O. Seydi, and G. Webb, A COVID-19 epidemic model with latency
period, Infectious Disease Modelling (to appear)
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Parameters of the model

Symbol Interpretation Method

t0 Time at which the epidemic started fitted
S0 Number of susceptible at time t0 fixed
I0 Number of asymptomatic infectious at time t0 fitted
U0 Number of unreported symptomatic infectious at time t0 fitted
R0 Number of reported symptomatic infectious at time t0 fixed
τ Transmission rate fitted

1/ν Average time during which asymptomatic infectious are asymptomatic fixed
f Fraction of asymptomatic infectious that become reported symptomatic infectious fixed

ν1 = f ν Rate at which asymptomatic infectious become reported symptomatic fixed
ν2 = (1 − f) ν Rate at which asymptomatic infectious become unreported symptomatic fixed

1/η Average time symptomatic infectious have symptoms fixed

Table: Parameters of the model.
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Estimation of the parameters for the model (2.1)

We fit the data by using a phenomenological model for the cumulative
number of reported CR(t)

CR(t) = χ1 exp (χ2t) − χ3. (2.3)

By using our model the cumulative number of reported is given by

CR(t) = ν1

t∫
t0

I(s)ds. (2.4)
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By fixing S(t) = S0 in the I-equation of system (2.1), we obtain

t0 = 1
χ2

[ln(χ3) − ln(χ1)]

I0 = χ1χ2 exp (χ2t0)
f ν

= χ3χ2
f ν

, (2.5)

τ = χ2 + ν

S0

η + χ2
ν2 + η + χ2

, (2.6)

and
U0 = (1 − f)ν

η + χ2
I0 and R0 = fν

η + χ2
I0. (2.7)
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Numerical Simulations

We can find multiple values of η, ν and f which provide a good fit for the
data. For application of our model, η, ν and f must vary in a reasonable
range. For the corona virus COVID-19 epidemic in Wuhan at its current
stage, the values of η, ν and f are not known. From preliminary information,
we use the values

f = 0.8, η = 1/7, ν = 1/7.
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Fit of the exponential model (2.4) to the data for China
(top) Hubei province (middle) and Wuhan City (bottom)
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Time dependent transmission rate τ(t)

The formula for τ(t) during the exponential decreasing phase was derived
by a fitting procedure. The formula for τ(t) is{

τ(t) = τ0, 0 ≤ t ≤ N,

τ(t) = τ0 exp (−µ (t−N)) , N < t.
(3.1)

The date N is the first day of the confinement and the value of µ is the
intensity of the confinement. The parameters N and µ are chosen so that
the cumulative reported cases in the numerical simulation of the epidemic
aligns with the cumulative reported case data during a period of time after
January 19. We choose N = 25 (January 25) for our simulations.
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Figure: Graph of τ(t) with N = 25 (January 25) and µ = 0.16. The transmission
rate is effectively 0.0 after day 53 (February 22).



21/48

Predicting the epidemic in China with f = 0.8
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Daily number of cases

The daily number of reported cases from the model can be obtained by
computing the solution of the following equation:

DR′(t) = ν f I(t) −DR(t), for t ≥ t0 and DR(t0) = DR0. (3.2)
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Predicting the weekly data in China

Jan 21 Jan 28 Feb 04 Feb 11 Feb 18 Feb 25 Mar 03 Mar 10 Mar 17

2020   

0

500

1000

1500

2000

2500

3000

3500

4000
DR(t)

Daily Data



24/48

Multiple good fit simulations

We vary the time interval [d1, d2] during which we use the data to obtain
χ1 and χ2 by using an exponential fit. In the simulations below we vary the
first day d1, the last day d2, N (date at which public intervention measures
became effective) such that all possible sets of parameters (d1, d2, N) will
be considered. For each (d1, d2, N) we evaluate µ to obtain the best fit
of the model to the data. We use the mean absolute deviation as the
distance to data to evaluate the best fit to the data. We obtain a large
number of best fit depending on (d1, d2, N, f) and we plot the smallest
mean absolute deviation MADmin. Then we plot all the best fit with mean
absolute deviation between MADmin and MADmin + 5.

Remark 3.1
The number 5 chosen in MADmin + 5 is questionable. We use this value
for all the simulations since it gives sufficiently many runs that are fitting
very well the data and which gives later a sufficiently large deviation.
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Cumulative data for China until February 6 with f = 0.6
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Cumulative data for China until March 12 with f = 0.6
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Daily data for China until February 6 with f = 0.6



28/48

Daily data for China until March 12 with f = 0.6
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Cumulative data for France until Mars 30 with f = 0.4
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Cumulative data for France until April 20 with f = 0.4
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Cumulative data for France until Mai 17 with f = 0.4
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Daily data for France until Mars 30 with f = 0.4
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Daily data for France until April 20 with f = 0.4
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Daily data for France until Mai 17 with f = 0.4
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Early models with age designed for the COVID-19

Prem, Liu, Russell, et al., 10 They use an SIR model with age classes.
They use a matrix of contacts which is obtained from real data. No
comparison of their model with time dependent age structured data is
presented.

There are more results about age and COVID-19 Ayoub et al. 11 and
Chikina and Pegden 12

10K. Prem, Y. Liu, T. W Russell, et al., The effect of control strategies to reduce
social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling
study, The Lancet Public Health 5(5) (2020).

11H. H. Ayoub, et al., Age could be driving variable SARS-CoV-2 epidemic trajectories
worldwide, medRxiv (2020).

12M. Chikina and W. Pegden, Modeling strict age-targeted mitigation strategies for
COVID-19, arXiv (2020).
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Age dependence on the number of reported case of
COVID-19 in Japan 13
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Figure: In this figure we plot in blue the age distribution of the Japanese
population for 10 000 people and we plot in orange the age distribution of the
number of reported cases of SARS-CoV-2 for 13660 patients on April 29. We
observe that 77% of the confirmed patients belong to the 20–60 years age class.

13https://covid19japan.com/

https://covid19japan.com/ 
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Multiple exponential growth of cumulative reported
number of case per age classe
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Figure: Time evolution of the cumulative number of reported cases of
SARS-CoV-2 per age class.
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Multiple exponential growth of cumulative reported
number of case per age classe
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Figure: Time evolution of the cumulative number of reported cases of
SARS-CoV-2 per age class.
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Age dependence on the number of death due to COVID-19
in Japan 14
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Figure: Cumulated number of SARS-CoV-2-induced deaths per age class. We
observe that 83% of death occur in between 70 and 100 years old.

14https://covid19japan.com/

https://covid19japan.com/ 
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Model with age structure

We considerN1, . . . , N10 the number of individuals respectively for the age classes [0, 10[, . . . , [90, 100[.
The model for the number of susceptible individuals S1(t), . . . , S10(t), respectively for the
age classes [0, 10[, . . . , [90, 100[, is the following

S′
1(t) = −τ1S1(t)

[
φ1,1

(I1(t) + U1(t))
N1

+ . . .+ φ1,10
(I10(t) + U10(t))

N10

]
,

...

S′
10(t) = −τ10S10(t)

[
φ10,1

(I1(t) + U1(t))
N1

+ . . .+ φ10,10
(I10(t) + U10(t))

N10

]
.

(4.1)
The model for the number of asymptomatic infectious individuals I1(t), . . . , I10(t), re-
spectively for the age classes [0, 10[, . . . , [90, 100[, is the following

I ′
1(t) = τ1S1(t)

[
φ1,1

(I1(t) + U1(t))
N1

+ . . .+ φ1,10
(I10(t) + U10(t))

N10

]
− νI1(t),

...

I ′
10(t) = τ10S10(t)

[
φ10,1

(I1(t) + U1(t))
N1

+ . . .+ φ10,10
(I10(t) + U10(t))

N10

]
− νI10(t).

(4.2)
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The model for the number of reported symptomatic infectious individualsR1(t), . . . , R10(t),
respectively for the age classes [0, 10[, . . . , [90, 100[, is

R′
1(t) = ν1

1 I1(t) − ηR1(t),
...
R′

10(t) = ν10
1 I10(t) − ηR10(t).

(4.3)

Finally the model for the number of unreported symptomatic infectious individuals U1(t), . . .,
U10(t), respectively in the age classes [0, 10[, . . . , [90, 100[, is the following

U ′
1(t) = ν1

2 I1(t) − ηU1(t),
...
U ′

10(t) = ν10
2 I10(t) − ηU10(t).

(4.4)
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Thanks to Prem, Cook and Jit 15 we obtain the matrix of conditional prob-
ability φi,j of contact between age classes which is the following
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15K. Prem, A.R. Cook, M. Jit, Projecting social contact matrices in 152 countries
using contact surveys and demographic data, PLoS Computational Biology 13(9) (2017)
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Dependency of other parameters

In order to describe the confinement for the age structured model (4.1)-
(4.4) we will use for each age class i = 1, . . . , 10 a different transmission
rate having the following form{

τi(t) = τi, 0 ≤ t ≤ Di,

τi(t) = τi exp (−µi (t−Di)) , Di < t.
(4.5)

The date Di is the first day of public intervention for the age class i and µi

is the intensity of the public intervention for each age class.
The parameter fi (probability to become reported) is also assumed to be
dependent on the age class.
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Best fit to the data from Japan
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Figure: In this figure we compare the 10 age classes coming to the data (black
dots) and the 10 age classes coming for the model (color curves)
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Best fit to the data from Japan
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Figure: In this figure we compare the 10 age classes coming to the data (black
dots) and the 10 age classes coming for the model (color curves)
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Transmission matrices
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