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Introduction

Lorentzian geometry

Definition

A (n dimensional) Lorentzian manifold is a manifold all of whose tangent
spaces are endowed with a quadratic form a signature (n − 1, 1).

On each tangent space, we can see a light cone:

the vector v is called
timelike, spacelike, lightlike.

A Lorentzian manifold is naturally endowed with a connection, i.e. a
way to compute the acceleration, and a volume form (if it is
orientable).
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Introduction

Personal themes of research

Space of Lorentzian metrics

Topology

Dynamics of the action of the
group of diffeomorphisms

Totally geodesic foliations

Codimension 1 case:

timelike foliations,
foliations of mixed type.

Dimension 1 case:

lightlike foliations,
foliations by circles.

Geodesically equivalent manifolds

Projectively equivalent
manifolds,

Affinely equivalent manifolds.

Lorentzian surfaces with a Killing
field

Spacelike Zoll surfaces,

Conjugate points,

Extension and classification
problems.
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Surfaces with a Killing field

An example: the Clifton-Pohl torus

A Killing field on a Lorentzian surface (S , g) is a (complete) vector field
K such that LKg = 0 i.e. whose flow is a one parameter group of
isometries.

The Clifton-Pohl torus

It is the quotient of R2 r {(0, 0)} endowed with the metric 2dxdy
x2+y2 by an

homothety, usually (x , y) 7→ 2(x , y).
The radial field of R2 induces a periodic Killing field on the torus.

A Lorentzian surface with a Killing field carries (at least) 3 natural
foliations: the one given by the Killing field and the 2 lightlike one.

We will use these foliations in order to give a representation of the
surface.
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Surfaces with a Killing field

An example: the Clifton-Pohl torus

A picture of the CP-torus

Figure: The three foliations of the Clifton-Pohl plane
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Surfaces with a Killing field

An example: the Clifton-Pohl torus

Incompleteness of the Clifton-Pohl torus

Proposition

1 The CP-torus is not geodesically complete (even if it is compact).

2 The CP-plane is extendable i.e. it can be isometrically embedded in
a bigger surface (here it is a geodesically complete one).

Proof: Let F be the following simple change of variables:

F : ]− π/2, π/2[2r{0} → M

(u, v) 7→ (tan(u), tan(v)).

The metric F ∗g reads

2dudv

cos2 u sin2 v + sin2 u cos2 v
.

This metric extends to a metric ĝ on R2 r Λ. �
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Surfaces with a Killing field

An example: the Clifton-Pohl torus

With C. Boubel and C. Tarquini, we used the extended CP-plane in
2006 to construct an example of Lorentzian foliation which is
equicontinuous on a proper open subset only.

More recently, with Ch. Bavard, we used it to prove a remarkable
property of the CP-torus

Theorem 1 (Bavard, M– (2013))

The CP-torus has no conjugate points.

The extended CP-plane has many conjugate points.

The CP-torus is not flat, so there is no (simple) Lorentzian Hopf
Theorem.

The metric ĝ is invariant under an action of Z2 and therefore gives a
metric on a twice punctured torus.
Its fundamental group can be seen as a Fuchsian group.
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Surfaces with a Killing field

An example: the Clifton-Pohl torus

The universal cover of the extended plane
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Surfaces with a Killing field

Extensions of surfaces

The properties of the CP-torus we saw are in fact quite general:

Theorem 2 (Bavard, M– (2015))

Let T be smooth (resp. real analytic) Lorentzian 2-torus having a non
trivial Killing field K. Then the universal cover of T admits a smooth
(resp. real analytic) lightlike complete extension E. In the real analytic
case this extension is unique.

Theorem 3 (Bavard, M– (2015))

If T is real analytic and nonelementary then the exact sequence:

0→ R ' Isom0(E )→ Isom(E)→ Π→ 1

is split.
Moreover, the action of Π (through the choice of a section) on E is
conjugate to the action of a Fuchsian group on the hyperbolic space.
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Surfaces with a Killing field

Extensions of surfaces

Universal extensions

Let f : R→ R be a smooth function that vanishes somewhere. We will
assume to simplify things that the connected components of Rr f −1(0)
do not cluster. We will say that f is of finite type.
We want to associate to f a lightlike complete Lorentzian surface with a
Killing field.

We start with the Lorentzian surface Ribf = (R2, 2dxdy + f (x)dy2). It
has a Killing field ∂y but is not lightlike complete (because f vanishes).

Remark

For any connected component C of Rr f −1(0) there exists a symmetry
σC of C × R fixing a geodesic orthogonal to K and permuting the
lightlike foliations.

On C × R there exist coordinates (u, v) such that the metric reads
±du2 + h(u)dv2 and σC (u, v) = (u,−v).
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Surfaces with a Killing field

Extensions of surfaces

The surface Xf

We take 2 copies of Ribf that we glue together thanks to the symmetries
σC (we choose one symmetry on each connected component). We obtain
a (Hausdorff) Lorentzian surface Xf which also has a Killing field K .

Figure: The surface Xf

The surface Xf is almost lightlike complete. The lightlike (i.e. the
vertical and horizontal) orbits of K may carry half complete geodesics.
It is the case of the geodesics forming the red T.
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Surfaces with a Killing field

Extensions of surfaces

Addition of saddle points

To conclude the construction we take a 2-cover Yf of Xf in order to
transform each ”half saddle” (like the red T) into a punctured saddle.

For a good choice of gluing symmetries σC the punctured saddles can be
completed into saddles (i.e. we can add the blue point).
The surface obtained is now lightlike complete, we take its universal
cover and call it the universal extension associated to f and denote it E u

f .

We obtain this way a lot of classical Lorentzian surfaces.
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Surfaces with a Killing field

Extensions of surfaces

Link between E u
f and T̃

Theorem 2 is obtained by proving that there exists a function f (not
necessarily of finite type) such that T is locally modeled on E u

f and that
the associated developing map in injective.
Theorem 3 is a special case of the following result about Isom(E u

f ).

Theorem 4

Let f : I → R be a smooth function and E u
f the associated extension. If

f ′′′ 6= 0 then the exact sequence:

0→ R ' Isom0(E )→ Isom(E u
f )→ Π→ 1

is split.
Moreover, the action of Π (through the choice of a section) on E u

f is
proper (and therefore conjugate to the action of a Fuchsian group on the
hyperbolic space) if and only f is of finite type.
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Surfaces with a Killing field

Extensions of surfaces

Some consequences

The spaces E u
f give a better understanding of the Lorentzian surfaces

with Killing fields:

By looking at the space of tori modeled on a given space E u
f , we

were able to give a complete classification of Lorentzian tori and
Klein bottles with a Killing field.

We know the universal cover of any non compact real analytic
Lorentzian surface with a Killing field that satisfies a rather weak
completeness condition.

Maybe more anecdotally, we found a Lorentzian surface S such that
Isom(S) is a 2-torsion group acting non properly on S .

Thanks to this understanding, with Stefan Suhr, we gave three
families of explicit examples of spacelike Zoll surfaces.
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