Exercice 1. Soit $\gamma: I \to \mathbb{R}^n$ une courbe de classe C^1 d'image Γ . Un vecteur $v \in \mathbb{R}^n \setminus \{0\}$ est dit vecteur de direction limite en $A \in \Gamma$ s'il existe une suite de points $(M_k)_k$ de Γ et une suite de réels $(\lambda_k)_k$ telles que

$$\lim_{k \to \infty} M_k = A \quad \text{et} \quad \lim_{k \to \infty} \lambda_k \overrightarrow{AM_k} = v.$$

Si tout les vecteurs de direction limite en A sont colinéaires, on appelle tangente à Γ en A la droite passant par A et portée par ces vecteurs.

On suppose que γ est un homéomorphisme sur son image. Soit $A = \gamma(t)$ un point de Γ tel que $\gamma'(t) \neq 0$ (on dit que A est un point régulier) et v un vecteur de direction limite en A. Montrer que v est colinéaire à $\gamma'(t)$ (que peut-on dire si $\gamma'(t) = 0$ et $\gamma''(t) \neq 0$?). Que peut on déduire?

Soit f un difféomorphisme de \mathbb{R}^n . Quelle est la tangente à $f(\Gamma)$ en f(A)? À quelle condition f preserve-t-elle les angles (entre courbes régulières)? Montrer que l'application de $\mathbb{R}^2 \setminus \{0\}$ dans lui-même définie par $f(x,y) = \frac{1}{x^2+y^2}(x,y)$ préserve les angles.

L'espace \mathbb{R}^n étant muni de la norme euclidienne, montrer que parmis toutes les droites D de \mathbb{R}^n passant par A, la tangente à Γ est la plus proche de la courbe : on étudiera la distance à D du point $M = \gamma(t+h)$ lorsque h tend vers 0.

Exercice 2. Montrer que l'application $f:(x,y)\mapsto (x,y-x^2)$ est un difféomorphisme local au voisinage de 0. Dessiner la courbe $t \mapsto (t^2, t^4 + t^5)$ et sa transformée par f; que remarque-t-on?

Exercice 3. Soient Γ la courbe de \mathbb{R}^2 d'équation $(E): 4x^2-12xy+10y^2=1$ et f un difféomorphisme de \mathbb{R}^2 . À quelle condition un point $(x,y) \in \mathbb{R}^2$ appartient-il à $f(\Gamma)$?

Donner l'équation de $f(\Gamma)$ lorsque f(x,y)=(2x-3y,y). En déduire un paramétrage de Γ et l'équation de la tangente à Γ en $(\sqrt{2}, \sqrt{2}/2)$.

Au voisinage de quels points l'équation (E) définit-elle y (resp. x) comme implicite de x (resp. y)? En déduire, à nouveau, l'équation de la tangente à Γ en $(\sqrt{2}, \sqrt{2}/2)$.

Exercice 4. Déterminer pour chacune des applications suivantes le rang de la jacobienne en chaque point.

(1) f est une application linéaire de \mathbb{R}^n dans \mathbb{R}^p .

$$(2) \quad f: \quad \mathbb{R}^n \setminus \{0\} \quad \to \quad \mathbb{R} \\ (x_1, \dots, x_n) \quad \mapsto \quad x_1^2 + \dots + x_n^2 \ .$$

(2)
$$f: \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}$$

 $(x_1, \dots, x_n) \mapsto x_1^2 + \dots + x_n^2$
(3) $f: \mathbb{R}^4 \rightarrow \mathbb{R}^2$
 $(x_1, \dots, x_4) \mapsto (x_1^2 + x_2^2, x_3^2 + x_4^2)$
(4) $f: \mathbb{R}^2 \setminus \{0\} \rightarrow \mathbb{R}^2$
 $(x, y) \mapsto (x^2 - y^2, 2xy)$

$$(4) f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 (x,y) \mapsto (x^2 - y^2, 2xy)$$

(5)
$$f_{\alpha}: \mathbb{R} \to \mathbb{R}^{3} \quad (\alpha \in \mathbb{R}) \\ t \mapsto ((2 + \cos t) \cos \alpha t, (2 + \cos t) \sin \alpha t, \sin t) .$$

Exercice 5. Redressement d'une submersion

Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application lisse. On suppose qu'il existe un point a tel que $\mathrm{D}f(a)$ est surjective. On pose $X_i = f_i$, la *i*-ième application coordonnée de f pour $i = 1, \ldots, p$.

- (1) Montrer qu'il existe un voisinage de a sur lequel Df(a) est encore surjective.
- (2) Montrer que l'on peut compléter les fonctions X_i (i = 1, ..., p) en un système de coordonnées locales (X_1, \ldots, X_n) sur un voisinage V de a dans \mathbb{R}^n .
- (3) Montrer que f est une application ouverte sur V. Montrer que f admet un inverse à droite sur un voisinage W de a.

Application: On note $\mathcal{S}_n(\mathbb{R})$ le sous-espace de $\mathcal{M}_n(\mathbb{R})$ formé des matrices symétriques. On se fixe une matrice $A_0 \in \mathcal{S}_n(\mathbb{R}) \cap \mathrm{GL}_n(\mathbb{R})$, symétrique et inversible. Montrer qu'à toute matrice A suffisament proche de A_0 dans $\mathcal{S}_n(\mathbb{R})$ on peut associer une matrice M telle que

$$A = {}^t M A_0 M$$

de telle sorte que l'application $A \mapsto M$ soit lisse.

En utilisant un développement de Taylor avec reste intégral à l'ordre 2, en déduire une preuve du lemme de Morse

Exercice 6. Quadriques et cônes

Soit Q une forme quadratique non-dégénérée de \mathbb{R}^n de signature (p,q)

- (1) (a) Montrer que la quadrique $Q^{-1}(\{1\})$ est une hypersurface lisse, c'est-à-dire une sous-variété de codimension 1, de \mathbb{R}^n .
 - (b) Déterminer en tout point son espace tangent. Lorsque p=2 et q=1 montrer que la surface obtenue est réglée.
- (2) On suppose $pq \neq 0$.
 - (a) Montrer que $Q^{-1}(\{0\}) \setminus \{0\}$ est aussi une sous-variété de \mathbb{R}^n .
 - (b) Montrer que le cône $Q^{-1}(\{0\})$ n'est pas une sous-variété.

Exercice 7. Hélicoïde droit

Soient a et b deux réels non nuls, et

$$\varphi: \begin{tabular}{ll} $\varphi:$ & \mathbb{R} & \to & \mathbb{R}^3 \\ & t & \mapsto & $(a\cos t, a\sin t, bt)$ \\ \end{tabular} \ . \label{eq:parameters}$$

- (1) (a) Prouver que $h = \varphi(\mathbb{R})$ est une courbe lisse de \mathbb{R}^3 (hélice circulaire).
 - (b) Déterminer en tout point $(x, y, z) \in h$ la tangente à h.
- (2) Soit H l'ensemble engendré par les droites orthogonales à l'axe (Oz) rencontrant h.
 - (a) Montrer que H est une surface lisse et réglée de \mathbb{R}^3 (hélicoïde droit).
 - (b) Déterminer en tout point $(x, y, z) \in H$ le plan tangent à H.

Exercice 8. Quelques groupes classiques

Dans cet exercice on identifie l'espace $\mathcal{M}_n(\mathbb{R})$ des matrices carrées d'ordre n à coefficients réels avec \mathbb{R}^{n^2} . On notera Id_n la matrice identité d'ordre n.

On s'intéresse aux groupes suivants :

$$\operatorname{SL}_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}) ; \det(M) = 1 \}$$
 le groupe spécial linéaire,
 $\operatorname{O}_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}) ; {}^tMM = \operatorname{Id}_n \}$ le groupe orthogonal euclidien,

Pour chacun d'eux,

- (1) montrer que l'on a bien une sous-variété de $\mathcal{M}_n(\mathbb{R})$,
- (2) déterminer son espace tangent en tout point,
- (3) dire si elle est ou non compacte.

indication : dans le cas du groupe orthogonal euclidien, remarquer que l'application qui à M associe tMM est à valeurs dans l'espace des matrices symétriques.

Exercice 9. Cubique cuspidale

- (1) Représenter dans le plan \mathbb{R}^2 la courbe \mathcal{C} d'équation $y^2 = x^3$ (la cubique cuspidale).
- (2) Au voisinage de quels points C est-elle une sous-variété de \mathbb{R}^2 ?
- (3) Soit $\gamma:]-1,1[\to \mathbb{R}^2$ une courbe paramétrée telle que $\gamma(0)$ soit un point de rebroussement. L'image de γ est-elle une sous-variété au voisinage de $\gamma(0)$?

Exercice 10. Position d'une surface par rapport à son plan tangent Soit S une surface lisse de R^3 d'équation z = f(x, y). On suppose que f(0, 0) = 0 et que $D^2 f(0, 0)$ est de signature (1, 1). Montrer qu'il existe un voisinage U de 0 tel que $S \cap T_0 S$ est la reunion de deux courbes lisses sécantes. [on utilisera le lemme de Morse]