Biomodélisation 1

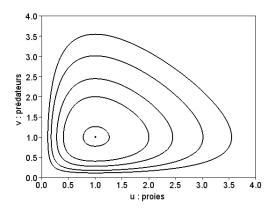
K1BE6W14 BiomodélisationMathématiques TP machine VIPh. Thieullen

Travaux pratiques VI Modèles d'interaction entre deux espèces

TP 1. Le modèle proie-prédateur simple de Lotka-Volterra, en variables sans dimension, est donné par les équations

$$\begin{cases} \frac{du}{dt} = u(1-v) \\ \frac{dv}{dt} = \alpha v(u-1) \end{cases} \qquad \alpha = 1.$$

Tracez quelques trajectoires dans le plan des phases (u, v); puis tracez les deux courbes (u(t) et v(t) sur un même graphique pour $t \in [0, 20]$ et une pour des conditions initiales $u_0 = 0.2$ et $v_0 = 0.2$. On trouvera la figure 1.



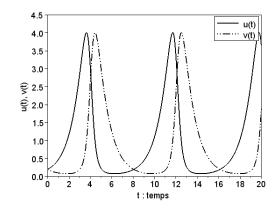


FIGURE 1 – Le modèle proie-prédateur de Lotka-Volterra

TP 2. On considère un problème de croissance de bactérie dans un chémostat. Les équations aux variables sans dimension sont données par le système

$$\begin{cases} \frac{dn}{dt} = \beta \frac{nc}{1+c} - n \\ \frac{dc}{dt} = -\frac{nc}{1+c} - c + \gamma \end{cases}$$

où n > 0 et c > 0 sont reliés respectivement aux concentrations des bactéries et de la solution nutritive, et où β et γ sont des constantes reliées au taux de division cellulaire, à la concentration de la source nutritive et à son débit. On choisira les constantes β et γ de sorte que $\beta > 1$ et que $\gamma(\beta - 1) > 1$. On prendra par exemple dans la suite $\beta = 2$ et $\gamma = 3$.

Philippe Thieullen

1. Tracez les deux points d'équilibre dans le plan (n, c).

$$n_0 = 0, \ c_0 = \gamma \quad \text{et} \quad n_1 = \beta \left(\gamma - \frac{1}{\beta - 1} \right), \ c_1 = \frac{1}{\beta - 1}.$$

On rappelle que pour dessiner un seul point , on peut utiliser la commande Scilab suivante (en modifiant éventuellement la taille et la couleur)

- 2. Tracer, pour chacun des points d'équilibre, les deux nullclines $\frac{dn}{dt} = 0$ et $\frac{dc}{dt} = 0$ dans le plan (n, c).
- 3. Tracez le champ de vecteur
- 4. Tracez quelques trajectoires. Quel est le type de chaque point d'équilibre (selle, nœud, spirale ou centre)? On trouvera la figure 2.

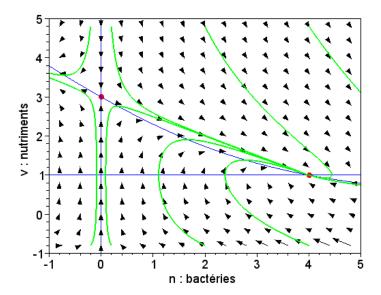


FIGURE 2 – Modèle de croissance dans un chémostat : (n_0, c_0) est un point selle, (n_1, c_1) est un nœud stable.

TP 3. On considère un problème de deux espèces en symbiose. On suppose que la survie de chaque espèce dépend de celle de l'autre. Les équations normalisée sont

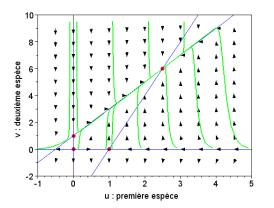
$$\begin{cases} \frac{du}{dt} = u(1 - u + \alpha v) \\ \frac{dv}{dt} = \rho v(1 - v + \beta u) \end{cases} \qquad \rho = 10, \quad \alpha = \frac{1}{4}, \quad \beta = 2.$$

Tracer les 4 points d'équilibre

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{et} \quad \begin{bmatrix} \frac{1+\alpha}{1-\alpha\beta} \\ \frac{1+\beta}{1-\alpha\beta} \end{bmatrix}$$

Biomodélisation 3

Tracez les nullclines et quelques trajectoires, puis recommencez avec $(\rho, \alpha, \beta) = (10, 1, 2)$. On trouvera la figure 3.



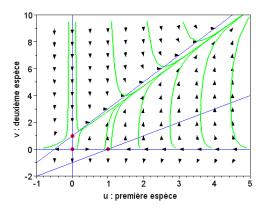


FIGURE 3 – Le modèle de deux espèces en symbiose de Lotka-Volterra : le dessin de gauche concerne le cas $\alpha\beta < 1$, celui de droite, le cas $\alpha\beta > 1$.