Multiphase formulation of plasma physics

Aymeric Baradat
Max Planck Institute for Mathematics in the Sciences, Leipzig
27/11/2019
Inaugural France-Korea Conference on Algebraic Geometry, Number Theory, and Partial Differential Equations, Bordeaux

Outline

The Vlasov-Poisson equation and the kinetic Euler equation

Known results concerning linear and non-linear instability

New results: the measure-valued setting and the multiphase formulation

An application to incompressible optimal transport

The Vlasov-Poisson case

The Vlasov-Poisson equation and the kinetic Euler equation

The Vlasov-Poisson equation

$$
(V P)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} U \cdot \nabla_{v} f=0, \\
-\Delta_{x} U=\int f \mathrm{~d} v-1, \\
\left.f\right|_{t=0}=f_{0},
\end{array}\right.
$$

The Vlasov-Poisson equation

$$
(V P)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} U \cdot \nabla_{v} f=0 \\
-\Delta_{x} U=\int f \mathrm{~d} v-1 \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

- $f=f(t, x, v), t \geq 0, x \in \mathbb{T}^{d}, v \in \mathbb{R}^{d}$ is the density of electrons in the phase-space $\mathbb{T}^{d} \times \mathbb{R}^{d}$,

The Vlasov-Poisson equation

$$
(V P)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} U \cdot \nabla_{v} f=0 \\
-\Delta_{x} U=\int f \mathrm{~d} v-1 \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

- $f=f(t, x, v), t \geq 0, x \in \mathbb{T}^{d}, v \in \mathbb{R}^{d}$ is the density of electrons in the phase-space $\mathbb{T}^{d} \times \mathbb{R}^{d}$,
- $U=U(t, x)$ is the electric field generated by the electrons together with the ions.

The Vlasov-Poisson equation

$$
(V P)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} U \cdot \nabla_{v} f=0 \\
-\Delta_{x} U=\int f \mathrm{~d} v-1 \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

- $f=f(t, x, v), t \geq 0, x \in \mathbb{T}^{d}, v \in \mathbb{R}^{d}$ is the density of electrons in the phase-space $\mathbb{T}^{d} \times \mathbb{R}^{d}$,
- $U=U(t, x)$ is the electric field generated by the electrons together with the ions.

Global existence of classical solutions for $d=2$ or 3 [Ukai, Okabe 78; Lions, Perthame 91; Pfaffelmoser 92].

The Vlasov-Poisson equation

$$
\left(V P_{\varepsilon}\right)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} U \cdot \nabla_{v} f=0 \\
-\varepsilon^{2} \Delta_{x} U=\int f \mathrm{~d} v-1 \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

- $f=f(t, x, v), t \geq 0, x \in \mathbb{T}^{d}, v \in \mathbb{R}^{d}$ is the density of electrons in the phase-space $\mathbb{T}^{d} \times \mathbb{R}^{d}$,
- $U=U(t, x)$ is the electric field generated by the electrons together with the ions.

Global existence of classical solutions for $d=2$ or 3 [Ukai, Okabe 78; Lions, Perthame 91; Pfaffelmoser 92].

The parameter ε is the Debye length. It is typically very small w.r.t. the scale of observations ($\sim 10^{-3} \mathrm{~m}$ in the ionosphere, $\sim 10^{-4} \mathrm{~m}$ in a tokamak).

The kinetic Euler equation

where again $f=f(t, x, v), p=p(t, x)$.

The kinetic Euler equation

$$
(k E u)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} p \cdot \nabla_{v} f=0 \\
\int f \mathrm{~d} v \equiv 1 \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

where again $f=f(t, x, v), p=p(t, x)$.
As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$
-\Delta p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, v) d v
$$

The kinetic Euler equation

$$
(k E u)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} p \cdot \nabla_{v} f=0 \\
-\Delta_{x} p=\operatorname{div} \operatorname{div} \int v \otimes v f d v \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

where again $f=f(t, x, v), p=p(t, x)$.
As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$
-\Delta p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, v) d v
$$

The kinetic Euler equation

$$
(k E u)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} p \cdot \nabla_{v} f=0 \\
-\Delta_{x} p=\operatorname{div} \operatorname{div} \int v \otimes v f \mathrm{~d} v \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

where again $f=f(t, x, v), p=p(t, x)$.
As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$
-\Delta p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, v) d v
$$

The pressure p has the same number of spatial derivatives as f. (Same scaling as in the Vlasov-Benney equation where p is replaced by the spatial density $\rho=\int f \mathrm{~d} v$ [Jabin, Nouri 11; Bardos, Nouri 12]).

The kinetic Euler equation

$$
(k E u)\left\{\begin{array}{c}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} p \cdot \nabla_{v} f=0 \\
-\Delta_{x} p=\operatorname{div} \operatorname{div} \int v \otimes v f d v \\
\left.f\right|_{t=0}=f_{0}
\end{array}\right.
$$

where again $f=f(t, x, v), p=p(t, x)$.
As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$
-\Delta p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, v) d v
$$

The pressure p has the same number of spatial derivatives as f. (Same scaling as in the Vlasov-Benney equation where p is replaced by the spatial density $\rho=\int f \mathrm{~d} v$ [Jabin, Nouri 11; Bardos, Nouri 12]).
[Grenier 96]: (kEu) is well-posed in spaces of analytic regularity.

Known results concerning linear and non-linear instability

Linearization of (VP) around homogeneous profiles

$$
(V P)\left\{\begin{array}{c}
\partial_{t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)-\nabla_{x} U(t, x) \cdot \nabla_{v} f(t, x, v)=0, \\
-\Delta_{x} U(t, x)=\int f(t, x, v) \mathrm{d} v-1, \\
\left.f\right|_{t=0}=f_{0},
\end{array}\right.
$$

Linearization of (VP) around homogeneous profiles

Any homogeneous and smooth profile $f(t, x, v)=\mu(v)$ gives rise to stationary solution with $\nabla_{x} U=0$.

$$
(V P)\left\{\begin{array}{c}
\partial_{t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)-\nabla_{x} U(t, x) \cdot \nabla_{v} f(t, x, v)=0, \\
-\Delta_{x} U(t, x)=\int f(t, x, v) d v-1, \\
\left.f\right|_{t=0}=f_{0},
\end{array}\right.
$$

Linearization of (VP) around homogeneous profiles

Any homogeneous and smooth profile $f(t, x, v)=\mu(v)$ gives rise to stationary solution with $\nabla_{x} \boldsymbol{U}=\mathbf{0}$.
The linearization of (VP) around μ leads to:

$$
(L) \quad\left\{\begin{array}{c}
\partial_{t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)-\nabla_{x} U(t, x) \cdot \nabla_{v} \mu(v)=0, \\
-\Delta_{x} U(t, x)=\int f(t, x, v) d v>1, \tag{L}\\
\left.f\right|_{t=0}=f_{0},
\end{array}\right.
$$

Linearization of (VP) around homogeneous profiles

Any homogeneous and smooth profile $f(t, x, v)=\mu(v)$ gives rise to stationary solution with $\nabla_{x} \boldsymbol{U}=\mathbf{0}$.
The linearization of (VP) around μ leads to:

$$
(L)\left\{\begin{array}{c}
\partial_{t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)-\nabla_{x} U(t, x) \cdot \nabla_{v} \mu(v)=0, \\
-\Delta_{x} U(t, x)=\int f(t, x, v) \mathrm{d} v>1, \\
\left.f\right|_{t=0}=f_{0},
\end{array}\right.
$$

We look for exponential growing modes (EGM):

$$
f(t, x, v)=g(v) \exp (i n \cdot x) \exp (\lambda t),
$$

where $n \in \mathbb{Z}^{d}$ is the frequency, $\lambda \in \mathbb{C}$ with $\Re(\lambda)>0$ is the growing rate.

Linearization of (VP) around homogeneous profiles

Any homogeneous and smooth profile $f(t, x, v)=\mu(v)$ gives rise to stationary solution with $\nabla_{x} \boldsymbol{U}=\mathbf{0}$.
The linearization of (VP) around μ leads to:

$$
(L)\left\{\begin{array}{c}
\partial_{t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)-\nabla_{x} U(t, x) \cdot \nabla_{v} \mu(v)=0, \\
-\Delta_{x} U(t, x)=\int f(t, x, v) \mathrm{d} v>1, \\
\left.f\right|_{t=0}=f_{0},
\end{array}\right.
$$

We look for exponential growing modes (EGM):

$$
f(t, x, v)=g(v) \exp (i n \cdot x) \exp (\lambda t)
$$

where $n \in \mathbb{Z}^{d}$ is the frequency, $\lambda \in \mathbb{C}$ with $\Re(\lambda)>0$ is the growing rate.

If there exists an EGM, we say that μ is unstable.

Penrose instability criterion

Proposition (Penrose 1960)

Let μ be a smooth profile. Equation (L) admits an EGM of frequency n and growing rate λ iff the following Penrose condition (Pen) holds:

$$
\int \frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} d v= \begin{cases}\varepsilon^{2}|n|^{2}, & \text { for }\left(V P_{\varepsilon}\right), \\ 0, & \text { for }(k E u) .\end{cases}
$$

In that case:

$$
g(v) \propto \frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} .
$$

Penrose instability criterion

Proposition (Penrose 1960)

Let μ be a smooth profile. Equation (L) admits an EGM of frequency n and growing rate λ iff the following Penrose condition (Pen) holds:

$$
\int \frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} \mathrm{~d} v=\int \frac{-|n|^{2}}{(\lambda+i n \cdot v)^{2}} \mu(v) \mathrm{d} v= \begin{cases}\varepsilon^{2}|n|^{2}, & \text { for }\left(V P_{\varepsilon}\right), \\ 0, & \text { for }(k E u) .\end{cases}
$$

In that case:

$$
g(v) \propto \frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} .
$$

Penrose instability criterion

Proposition (Penrose 1960)

Let μ be a smooth profile. Equation (L) admits an EGM of frequency n and growing rate λ iff the following Penrose condition (Pen) holds:

$$
\int \frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} d v=\int \frac{-|n|^{2}}{(\lambda+i n \cdot v)^{2}} \mu(v) d v= \begin{cases}\varepsilon^{2}|n|^{2}, & \text { for }\left(V P_{\varepsilon}\right), \\ 0, & \text { for }(k E u) .\end{cases}
$$

In that case:

$$
g(v) \propto \frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} .
$$

In dimension 1:

STABLE

UNSTABLE

Toward non-linear instability

Take (λ, n) satisfying (Pen) and set the ansatz:

$$
\left\{\begin{array}{c}
f(t, x, v)=\mu(v)+\delta \Re\left(\frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} \exp (\lambda t+i n \cdot x)\right)+R^{\delta}(t, x, v), \\
\left.R^{\delta}\right|_{t=0}=0 .
\end{array}\right.
$$

Toward non-linear instability

Take (λ, n) satisfying (Pen) and set the ansatz:

$$
\left\{\begin{array}{c}
f(t, x, v)=\mu(v)+\delta \Re\left(\frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} \exp (\lambda t+i n \cdot x)\right)+R^{\delta}(t, x, v) \\
\left.R^{\delta}\right|_{t=0}=0 .
\end{array}\right.
$$

Main question: Up to which time T_{δ} and in which norm $\|\bullet\|$ can you justify:

$$
\forall t \in\left[0, T_{\delta}\right], \quad\left\|R^{\delta}(t)\right\| \ll \delta \exp (\Re(\lambda) t) ?
$$

(We say that we justify the linear approximation in $\|\bullet\|$ up to time T_{δ}.)

Toward non-linear instability

Take (λ, n) satisfying (Pen) and set the ansatz:

$$
\left\{\begin{array}{c}
f(t, x, v)=\mu(v)+\delta \Re\left(\frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} \exp (\lambda t+i n \cdot x)\right)+R^{\delta}(t, x, v) \\
\left.R^{\delta}\right|_{t=0}=0
\end{array}\right.
$$

Main question: Up to which time T_{δ} and in which norm \|•\| can you justify:

$$
\forall t \in\left[0, T_{\delta}\right], \quad\left\|R^{\delta}(t)\right\| \ll \delta \exp (\Re(\lambda) t) ?
$$

(We say that we justify the linear approximation in $\|\bullet\|$ up to time T_{δ}.) Ideal case: $T_{\delta}=|\log \delta| / \Re(\lambda)-C$ where C does not depend on δ.

Toward non-linear instability

Take (λ, n) satisfying (Pen) and set the ansatz:

$$
\left\{\begin{array}{c}
f(t, x, v)=\mu(v)+\delta \Re\left(\frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} \exp (\lambda t+i n \cdot x)\right)+R^{\delta}(t, x, v) \\
\left.R^{\delta}\right|_{t=0}=0
\end{array}\right.
$$

Main question: Up to which time T_{δ} and in which norm $\|\bullet\|$ can you justify:

$$
\forall t \in\left[0, T_{\delta}\right], \quad\left\|R^{\delta}(t)\right\| \ll \delta \exp (\Re(\lambda) t) ?
$$

(We say that we justify the linear approximation in $\|\bullet\|$ up to time T_{δ}.) Ideal case: $T_{\delta}=|\log \delta| / \Re(\lambda)-C$ where C does not depend on δ.

Problem

$$
\mu(v)+\delta \Re\left(\frac{i n \cdot \nabla_{v} \mu(v)}{\lambda+i n \cdot v} \exp (i n \cdot x)\right)
$$

needs to be sufficiently regular and nonnegative. It is hence needed to add assumptions on μ (regularity + cancellation conditions).

Lyapounov instability for (VP)

This question has been widely studied, see e.g. [Guo, Strauss 95; Han-Kwan, Hauray 15; Han-Kwan, Nguyen 16].

Theorem (Han-Kwan, Nguyen 16)

Let μ be smooth, Penrose unstable and satisfying cancellation conditions. For all $s, m \in \mathbb{N}$, there exist solutions f^{δ} up to time $T_{\delta}>0$ of (VP) such that:

- Convergence at the initial time:

$$
\left\|\left(1+|v|^{2}\right)^{m / 2}\left\{f_{0}^{\delta}-\mu\right\}\right\|_{H^{s}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right)}=\mathcal{O}(\delta),
$$

- No convergence at time $T_{\delta}=\mathcal{O}(|\log \delta|)$:

$$
\liminf _{\delta \rightarrow 0}\left\|f^{\delta}\left(T_{\delta}\right)-\mu\right\|_{L^{2}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right)}>0 .
$$

III-posedness for (kEu)

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for ($k E u$) and if $k \in \mathbb{N}^{*}$, then ($k n, k \lambda$) also satisfies (Pen).

III-posedness for (kEu)

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for ($k E u$) and if $k \in \mathbb{N}^{*}$, then ($k n, k \lambda$) also satisfies (Pen).

As a consequence, we define:

$$
\gamma_{0}:=\sup _{(n, \lambda) \text { satisfying (Pen) }} \frac{\Re(\lambda)}{|n|} \text {. }
$$

III-posedness for (kEu)

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for ($k E u$) and if $k \in \mathbb{N}^{*}$, then ($k n, k \lambda$) also satisfies (Pen).

As a consequence, we define:

$$
\gamma_{0}:=\sup _{(n, \lambda) \text { satisfying (Pen) }} \frac{\Re(\lambda)}{|n|} \text {. }
$$

\rightsquigarrow EGMs of frequency n grow like $\exp \left(\gamma_{0}|n| t\right)$.

III-posedness for (kEu)

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for ($k E u$) and if $k \in \mathbb{N}^{*}$, then ($k n, k \lambda$) also satisfies (Pen).

As a consequence, we define:

$$
\gamma_{0}:=\sup _{(n, \lambda) \text { satisfying (Pen) }} \frac{\Re(\lambda)}{|n|} \text {. }
$$

\rightsquigarrow EGMs of frequency n grow like $\exp \left(\gamma_{0}|n| t\right)$.
\rightsquigarrow The linear equation (L) is ill-posed in Sobolev spaces.

III-posedness for (kEu)

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for ($k E u$) and if $k \in \mathbb{N}^{*}$, then ($k n, k \lambda$) also satisfies (Pen).

As a consequence, we define:

$$
\gamma_{0}:=\sup _{(n, \lambda) \text { satisfying (Pen) }} \frac{\Re(\lambda)}{|n|} \text {. }
$$

\rightsquigarrow EGMs of frequency n grow like $\exp \left(\gamma_{0}|n| t\right)$.
\rightsquigarrow The linear equation (L) is ill-posed in Sobolev spaces.

Theorem (Han-Kwan, Nguyen 16)

Let μ be analytic, Penrose unstable and satisfying cancellation conditions. For all $s \in \mathbb{N}, \alpha \in(0,1]$, there exist solutions f^{δ} up to T_{δ} with $T_{\delta} \rightarrow 0$ and

$$
\frac{\left\|f^{\delta}-\mu\right\|_{L^{2}\left(\left[0, T_{\delta}\right) \times \mathbb{T}^{d}\right)}}{\left\|\left(1+|v|^{2}\right)^{m / 2}\left\{f_{0}^{\delta}-\mu\right\}\right\|_{H^{s}\left(\mathbb{T}^{d} \times \mathbb{R}^{d}\right)}^{\alpha}} \underset{\delta \rightarrow 0}{\longrightarrow}+\infty
$$

New results: the measure-valued setting and the multiphase formulation

The measure-valued setting

We call a measure-valued solution of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ in such a way that:

The measure-valued setting

We call a measure-valued solution of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ in such a way that:

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \cup\left\{v \mapsto|v|^{2}\right\}$, the macroscopic observable

$$
\langle f, \varphi\rangle:(t, x) \longmapsto \int \varphi(v) f(t, x, \mathrm{~d} v) \quad \text { is smooth, }
$$

The measure-valued setting

We call a measure-valued solution of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ in such a way that:

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \cup\left\{v \mapsto|v|^{2}\right\}$, the macroscopic observable

$$
\langle f, \varphi\rangle:(t, x) \longmapsto \int \varphi(v) f(t, x, \mathrm{~d} v) \quad \text { is smooth, }
$$

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\left\{\begin{array}{c}
\partial_{t}\langle f, \varphi\rangle+\operatorname{div}_{x}\langle f, v \varphi\rangle+\nabla_{x} p \cdot\left\langle f, \nabla_{v} \varphi\right\rangle=0, \\
-\Delta_{x} p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, \mathrm{~d} v), \\
\left.f\right|_{t=0}=f_{0} .
\end{array}\right.
$$

The measure-valued setting

We call a measure-valued solution of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ in such a way that:

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \cup\left\{v \mapsto|v|^{2}\right\}$, the macroscopic observable

$$
\langle f, \varphi\rangle:(t, x) \longmapsto \int \varphi(v) f(t, x, \mathrm{~d} v) \quad \text { is smooth, }
$$

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\left\{\begin{array}{c}
\partial_{t}\langle f, \varphi\rangle+\operatorname{div}_{x}\langle f, v \varphi\rangle+\nabla_{x} p \cdot\left\langle f, \nabla_{v} \varphi\right\rangle=0, \\
-\Delta_{x} p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, \mathrm{~d} v), \\
\left.f\right|_{t=0}=f_{0} .
\end{array}\right.
$$

Any $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with $\int|v|^{2} \mathrm{~d} \mu(v)<+\infty$ is a stationary measure-valued solution.

The measure-valued setting

We call a measure-valued solution of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ in such a way that:

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \cup\left\{v \mapsto|v|^{2}\right\}$, the macroscopic observable

$$
\langle f, \varphi\rangle:(t, x) \longmapsto \int \varphi(v) f(t, x, \mathrm{~d} v) \quad \text { is smooth, }
$$

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\left\{\begin{array}{c}
\partial_{t}\langle f, \varphi\rangle+\operatorname{div}_{x}\langle f, v \varphi\rangle+\nabla_{x} p \cdot\left\langle f, \nabla_{v} \varphi\right\rangle=0, \\
-\Delta_{x} p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, \operatorname{dv}), \\
\left.f\right|_{t=0}=f_{0} .
\end{array}\right.
$$

Any $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with $\int|v|^{2} \mathrm{~d} \mu(v)<+\infty$ is a stationary measure-valued solution. We say that μ is Pentose unstable if there exists (n, λ) with $\Re(\lambda)>0$ satisfying (Pen) (e.g. superposition of Diracs are unstable).

The measure-valued setting

We call a measure-valued solution of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ in such a way that:

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \cup\left\{v \mapsto|v|^{2}\right\}$, the macroscopic observable

$$
\langle f, \varphi\rangle:(t, x) \longmapsto \int \varphi(v) f(t, x, \mathrm{~d} v) \quad \text { is smooth, }
$$

- for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\left\{\begin{array}{c}
\partial_{t}\langle f, \varphi\rangle+\operatorname{div}_{x}\langle f, v \varphi\rangle+\nabla_{x} p \cdot\left\langle f, \nabla_{v} \varphi\right\rangle=0, \\
-\Delta_{x} p(t, x)=\operatorname{div} \operatorname{div} \int v \otimes v f(t, x, \operatorname{dv}), \\
\left.f\right|_{t=0}=f_{0} .
\end{array}\right.
$$

Any $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with $\int|v|^{2} \mathrm{~d} \mu(v)<+\infty$ is a stationary measure-valued solution. We say that μ is Pentose unstable if there exists (n, λ) with $\Re(\lambda)>0$ satisfying (Pen) (e.g. superposition of Diracs are unstable).

Do there exist unstable solutions in the neighbourhood of these unstable measures?

III-posedness for ($k E u$) around measures

Theorem (B. 2019)
Take μ an unstable measure, $\varphi_{1}, \ldots, \varphi_{N} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), s \in \mathbb{N}$ and $\alpha \in(0,1]$.

III-posedness for ($k E u$) around measures

Theorem (B. 2019)

Take μ an unstable measure, $\varphi_{1}, \ldots, \varphi_{N} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), s \in \mathbb{N}$ and $\alpha \in(0,1]$. Then there exists, $\left(T_{\delta}\right)_{\delta>0}$ tending to 0 and $\left(f_{0}^{\delta}\right)_{\delta>0}$ a family of measure-valued initial data such that:

III-posedness for ($k E u$) around measures

Theorem (B. 2019)

Take μ an unstable measure, $\varphi_{1}, \ldots, \varphi_{N} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), s \in \mathbb{N}$ and $\alpha \in(0,1]$. Then there exists, $\left(T_{\delta}\right)_{\delta>0}$ tending to 0 and $\left(f_{0}^{\delta}\right)_{\delta>0}$ a family of measure-valued initial data such that:

- for all δ, there is a measure-valued solution $\left(f^{\delta}, p_{\delta}\right)$ of $(k E u)$ starting from f_{0}^{δ} up to time T_{δ},

III-posedness for ($k E u$) around measures

Theorem (B. 2019)

Take μ an unstable measure, $\varphi_{1}, \ldots, \varphi_{N} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), s \in \mathbb{N}$ and $\alpha \in(0,1]$. Then there exists, $\left(T_{\delta}\right)_{\delta>0}$ tending to 0 and $\left(f_{0}^{\delta}\right)_{\delta>0}$ a family of measure-valued initial data such that:

- for all δ, there is a measure-valued solution $\left(f^{\delta}, p_{\delta}\right)$ of $(k E u)$ starting from f_{0}^{δ} up to time T_{δ},
- we have:

$$
\frac{\left\|p_{\delta}\right\|_{L^{1}\left(\left[0, T_{\delta}\right) \times \mathbb{T}^{d}\right)}}{\sum_{i=1}^{N}\left\|\left\langle f_{0}^{\delta}, \varphi_{i}\right\rangle-\left\langle\mu, \varphi_{i}\right\rangle\right\|_{W^{s, \infty}\left(\mathbb{T}^{d}\right)}^{\alpha}} \xrightarrow[\delta \rightarrow 0]{\longrightarrow}+\infty .
$$

Multiphase formulation

We look for solutions of the form:

$$
f(t, x, v)=\int \delta_{v=u^{w}(t, x)} \rho^{w}(t, x) \mathrm{d} \mu(w) .
$$

Multiphase formulation

We look for solutions of the form:

$$
f(t, x, v)=\int \delta_{v=u^{w}(t, x)} \rho^{w}(t, x) \mathrm{d} \mu(w) .
$$

Multiphase formulation

We look for solutions of the form:

$$
\begin{gathered}
f(t, x, v)=\int \delta_{v=u^{w}(t, x)} \rho^{w}(t, x) \mathrm{d} \mu(w) \\
\text { If } \rho^{w} \equiv 1, u^{w} \equiv w, w \in \mathbb{R}^{d} \text {, we get } f(t, x, \bullet)=\mu .
\end{gathered}
$$

Multiphase formulation

We look for solutions of the form:

$$
f(t, x, v)=\int \delta_{v=u^{w}(t, x)} \rho^{w}(t, x) \mathrm{d} \mu(w)
$$

If $\rho^{w} \equiv 1, u^{w} \equiv w, w \in \mathbb{R}^{d}$, we get $f(t, x, \bullet)=\mu$.
If $\left(\rho^{w}, u^{w}\right)_{w \in \mathbb{R}^{d}}$ is a classical solution of:

$$
(M F)\left\{\begin{array}{c}
\partial_{t} \rho^{w}+\operatorname{div}\left(\rho^{w} u^{w}\right)=0 \\
\partial_{t} u^{w}+\left(u^{w} \cdot \nabla\right) u^{w}=-\nabla p \\
-\Delta p=\operatorname{div} \operatorname{div} \int u^{w} \otimes u^{w} \rho^{w} \mathrm{~d} \mu(w), \\
\left.\rho^{w}\right|_{t=0}=\rho_{0}^{w} \text { and }\left.u^{w}\right|_{t=0}=u_{0}^{w}
\end{array}\right.
$$

then f is a measure valued solution of (kEu).

Multiphase formulation

We look for solutions of the form:

$$
f(t, x, v)=\int \delta_{v=u^{w}(t, x)} \rho^{w}(t, x) \mathrm{d} \mu(w)
$$

If $\rho^{w} \equiv 1, u^{w} \equiv w, w \in \mathbb{R}^{d}$, we get $f(t, x, \bullet)=\mu$.
If $\left(\rho^{w}, u^{w}\right)_{w \in \mathbb{R}^{d}}$ is a classical solution of:

$$
(M F)\left\{\begin{array}{c}
\partial_{t} \rho^{w}+\operatorname{div}\left(\rho^{w} u^{w}\right)=0 \\
\partial_{t} u^{w}+\left(u^{w} \cdot \nabla\right) u^{w}=-\nabla p \\
-\Delta p=\operatorname{div} \operatorname{div} \int u^{w} \otimes u^{w} \rho^{w} \mathrm{~d} \mu(w) \\
\left.\rho^{w}\right|_{t=0}=\rho_{0}^{w} \text { and }\left.u^{w}\right|_{t=0}=u_{0}^{w}
\end{array}\right.
$$

then f is a measure valued solution of (kEu). See [Grenier 95;
Brenier 97] for studies of this system.

Multiphase formulation

We look for solutions of the form:

$$
f(t, x, v)=\int \delta_{v=u^{w}(t, x)} \rho^{w}(t, x) \mathrm{d} \mu(w)
$$

If $\rho^{w} \equiv 1, u^{w} \equiv w, w \in \mathbb{R}^{d}$, we get $f(t, x, \bullet)=\mu$.
If $\left(\rho^{w}, u^{w}\right)_{w \in \mathbb{R}^{d}}$ is a classical solution of:

$$
(M F)\left\{\begin{array}{c}
\partial_{t} \rho^{w}+\operatorname{div}\left(\rho^{w} u^{w}\right)=0 \\
\partial_{t} u^{w}+\left(u^{w} \cdot \nabla\right) u^{w}=-\nabla p, \\
-\Delta p=\operatorname{div} \operatorname{div} \int u^{w} \otimes u^{w} \rho^{w} \mathrm{~d} \mu(w), \\
\left.\rho^{w}\right|_{t=0}=\rho_{0}^{w} \text { and }\left.u^{w}\right|_{t=0}=u_{0}^{w},
\end{array}\right.
$$

then f is a measure valued solution of (kEu). See [Grenier 95;
Brenier 97] for studies of this system.
The stationary solution $(1, w)_{w \in \mathbb{R}^{d}}$ is linearly unstable if and only if $\boldsymbol{\mu}$ is Penrose unstable.

III-posedness in the multiphase formulation

Recap: 1. Each stationary profile is a multiphase solution;
2. We can build measure-valued solutions as solutions of (MF);
3. (MF) and (kEu) have the same linear instabilities.

III-posedness in the multiphase formulation

Recap: 1. Each stationary profile is a multiphase solution;
2. We can build measure-valued solutions as solutions of (MF);
3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):
Theorem (B. 2019)
Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in(0,1]$.

III-posedness in the multiphase formulation

Recap: 1. Each stationary profile is a multiphase solution;
2. We can build measure-valued solutions as solutions of (MF);
3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):

Theorem (B. 2019)

Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in(0,1]$. There exist $\left(T_{\delta}\right)_{\delta>0}$ tending to zero and $\left(\rho_{0}^{\delta}, \boldsymbol{u}_{0}^{\delta}\right)_{\delta>0}$ a family of initial data such that:

III-posedness in the multiphase formulation

Recap: 1. Each stationary profile is a multiphase solution;
2. We can build measure-valued solutions as solutions of (MF);
3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):

Theorem (B. 2019)

Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in(0,1]$. There exist $\left(T_{\delta}\right)_{\delta>0}$ tending to zero and $\left(\rho_{0}^{\delta}, \boldsymbol{u}_{0}^{\delta}\right)_{\delta>0}$ a family of initial data such that:

- for all δ, there is a solution $\left(\rho^{\delta}, \boldsymbol{u}^{\delta}, p_{\delta}\right)$ to (MF) starting from ($\rho_{0}^{\delta}, \mathbf{u}_{0}^{\delta}$) up to time T_{δ},

III-posedness in the multiphase formulation

Recap: 1. Each stationary profile is a multiphase solution;
2. We can build measure-valued solutions as solutions of (MF);
3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):

Theorem (B. 2019)

Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in(0,1]$. There exist $\left(T_{\delta}\right)_{\delta>0}$ tending to zero and $\left(\rho_{0}^{\delta}, \boldsymbol{u}_{0}^{\delta}\right)_{\delta>0}$ a family of initial data such that:

- for all δ, there is a solution $\left(\rho^{\delta}, \boldsymbol{u}^{\delta}, p_{\delta}\right)$ to (MF) starting from ($\rho_{0}^{\delta}, \boldsymbol{u}_{0}^{\delta}$) up to time T_{δ},
- we have:

An application to
incompressible optimal
transport

An application to incompressible optimal transport

An application to incompressible optimal transport

An application to incompressible optimal transport

An application to incompressible optimal transport

An application to incompressible optimal transport

An application to incompressible optimal transport

An application to incompressible optimal transport

An application to incompressible optimal transport

Goal: Under constraints related to incompressibility and to endpoints:

Minimize

$$
\sum_{\omega \text { path }} \frac{1}{2} \int_{0}^{1}\left|\dot{\omega}_{t}\right|^{2} \mathrm{~d} t .
$$

An application to incompressible optimal transport

Goal: Under constraints related to incompressibility and to endpoints:

Minimize $\sum_{\omega \text { path }} \frac{1}{2} \int_{0}^{1}\left|\dot{\omega}_{t}\right|^{2} \mathrm{~d} t$.

Formalisation: The endpoints are prescribed by a bistochastic measure $\gamma \in \mathcal{P}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)$ and we look for a solution in the set of generalized flows $P \in \mathcal{P}\left(C^{0}\left([0,1] ; \mathbb{T}^{d}\right)\right)$ [Brenier 89].

An application to incompressible optimal transport

Goal: Under constraints related to incompressibility and to endpoints:
Minimize $\sum_{\omega \text { path }} \frac{1}{2} \int_{0}^{1}\left|\dot{\omega}_{t}\right|^{2} \mathrm{~d} t$.

Formalisation: The endpoints are prescribed by a bistochastic measure $\gamma \in \mathcal{P}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)$ and we look for a solution in the set of generalized flows $P \in \mathcal{P}\left(C^{0}\left([0,1] ; \mathbb{T}^{d}\right)\right)$ [Brenier 89].

Motivation: For a given P, if all the trajectories follow the same smooth vector field v, then P is a solution "iff" v is a solution of the incompressible Euler equation [Arnol'd 66; Brenier 89].

An application to incompressible optimal transport

Goal: Under constraints related to incompressibility and to endpoints:
Minimize $\sum_{\omega \text { path }} \frac{1}{2} \int_{0}^{1}\left|\dot{\omega}_{t}\right|^{2} \mathrm{~d} t$.

Formalisation: The endpoints are prescribed by a bistochastic measure $\gamma \in \mathcal{P}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)$ and we look for a solution in the set of generalized flows $P \in \mathcal{P}\left(C^{0}\left([0,1] ; \mathbb{T}^{d}\right)\right)$ [Brenier 89].

Motivation: For a given P, if all the trajectories follow the same smooth vector field v, then P is a solution "iff" v is a solution of the incompressible Euler equation [Arnol'd 66; Brenier 89].

In general: An incompressible generalized flow P is a solution "iff" all the trajectories are accelerated by the same scalar pressure field p.

An application to incompressible optimal transport

Goal: Under constraints related to incompressibility and to endpoints:
Minimize $\sum_{\omega \text { path }} \frac{1}{2} \int_{0}^{1}\left|\dot{\omega}_{t}\right|^{2} \mathrm{~d} t$.

Formalisation: The endpoints are prescribed by a bistochastic measure $\gamma \in \mathcal{P}\left(\mathbb{T}^{d} \times \mathbb{T}^{d}\right)$ and we look for a solution in the set of generalized flows $P \in \mathcal{P}\left(C^{0}\left([0,1] ; \mathbb{T}^{d}\right)\right)$ [Brenier 89].

Motivation: For a given P, if all the trajectories follow the same smooth vector field v, then P is a solution "iff" v is a solution of the incompressible Euler equation [Arnol'd 66; Brenier 89].

In general: An incompressible generalized flow P is a solution "iff" all the trajectories are accelerated by the same scalar pressure field p.

By our ill-posedness result: \boldsymbol{p} is not a smooth function of γ [B. 2019].

The Vlasov-Poisson case

Lyapounov instability in the Vlasov-Poisson case

Ongoing work with D. Han-Kwan.
This time, the multiphase system is:

$$
\left\{\begin{array}{c}
\partial_{t} \rho^{w}+\operatorname{div}\left(\rho^{w} u^{w}\right)=0 \\
\partial_{t} u^{w}+\left(u^{w} \cdot \nabla\right) u^{w}=-\nabla U \\
-\Delta U=\int \rho^{w} \mathrm{~d} \mu(w) \\
\left.\rho^{w}\right|_{t=0}=\rho_{0}^{w} \text { and }\left.u^{w}\right|_{t=0}=u_{0}^{w}
\end{array}\right.
$$

Lyapounov instability in the Vlasov-Poisson case

Ongoing work with D. Han-Kwan.
This time, the multiphase system is:

$$
\left\{\begin{array}{c}
\partial_{t} \rho^{w}+\operatorname{div}\left(\rho^{w} u^{w}\right)=0, \\
\partial_{t} u^{w}+\left(u^{w} \cdot \nabla\right) u^{w}=-\nabla U, \\
-\Delta U=\int \rho^{w} \mathrm{~d} \mu(w), \\
\left.\rho^{w}\right|_{t=0}=\rho_{0}^{w} \text { and }\left.u^{w}\right|_{t=0}=u_{0}^{w} .
\end{array}\right.
$$

- Local existence is quite easy assuming one more derivative for \boldsymbol{u} than for ρ.

Lyapounov instability in the Vlasov-Poisson case

Ongoing work with D. Han-Kwan.
This time, the multiphase system is:

$$
\left\{\begin{array}{c}
\partial_{t} \rho^{w}+\operatorname{div}\left(\rho^{w} u^{w}\right)=0, \\
\partial_{t} u^{w}+\left(u^{w} \cdot \nabla\right) u^{w}=-\nabla U, \\
-\Delta U=\int \rho^{w} \mathrm{~d} \mu(w), \\
\left.\rho^{w}\right|_{t=0}=\rho_{0}^{w} \text { and }\left.u^{w}\right|_{t=0}=u_{0}^{w} .
\end{array}\right.
$$

- Local existence is quite easy assuming one more derivative for u than for ρ.
- If $d=1$ and μ is is a superposition of 2 Diracs, this is exactly the framework of [Cordier, Grenier, Guo 2000] in which they prove non-linear instability.

Lyapounov instability in the Vlasov-Poisson case

Ongoing work with D. Han-Kwan.
This time, the multiphase system is:

$$
\left\{\begin{array}{c}
\partial_{t} \rho^{w}+\operatorname{div}\left(\rho^{w} u^{w}\right)=0, \\
\partial_{t} u^{w}+\left(u^{w} \cdot \nabla\right) u^{w}=-\nabla U, \\
-\Delta U=\int \rho^{w} \mathrm{~d} \mu(w), \\
\left.\rho^{w}\right|_{t=0}=\rho_{0}^{w} \text { and }\left.u^{w}\right|_{t=0}=u_{0}^{w} .
\end{array}\right.
$$

- Local existence is quite easy assuming one more derivative for u than for ρ.
- If $d=1$ and μ is is a superposition of 2 Diracs, this is exactly the framework of [Cordier, Grenier, Guo 2000] in which they prove non-linear instability.
- A generalization of their proof in higher dimension and general μ would provide a proof of non-linear instability for (VP) in a measure-valued setting.

Pictures from Frans Ebersohn, PEPL, University of Michigan.

