Multiphase formulation of plasma physics

Aymeric Baradat Max Planck Institute for Mathematics in the Sciences, Leipzig 27/11/2019

Inaugural France-Korea Conference on Algebraic Geometry, Number Theory, and Partial Differential Equations, Bordeaux

The Vlasov-Poisson equation and the kinetic Euler equation

Known results concerning linear and non-linear instability

New results: the measure-valued setting and the multiphase formulation

An application to incompressible optimal transport

The Vlasov-Poisson case

The Vlasov-Poisson equation and the kinetic Euler equation

$$(VP) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x U \cdot \nabla_v f = 0, \\ -\Delta_x U = \int f \, \mathrm{d}v - 1, \\ f|_{t=0} = f_0, \end{cases}$$

$$(VP) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x U \cdot \nabla_v f = 0, \\ -\Delta_x U = \int f \, \mathrm{d}v - 1, \\ f|_{t=0} = f_0, \end{cases}$$

• f = f(t, x, v), $t \ge 0$, $x \in \mathbb{T}^d$, $v \in \mathbb{R}^d$ is the density of electrons in the phase-space $\mathbb{T}^d \times \mathbb{R}^d$,

$$(VP) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x U \cdot \nabla_v f = 0, \\ -\Delta_x U = \int f \, \mathrm{d}v - 1, \\ f|_{t=0} = f_0, \end{cases}$$

- f = f(t, x, v), $t \ge 0$, $x \in \mathbb{T}^d$, $v \in \mathbb{R}^d$ is the density of electrons in the phase-space $\mathbb{T}^d \times \mathbb{R}^d$,
- U = U(t, x) is the electric field generated by the electrons together with the ions.

$$(VP) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x U \cdot \nabla_v f = 0, \\ -\Delta_x U = \int f \, \mathrm{d}v - 1, \\ f|_{t=0} = f_0, \end{cases}$$

- f = f(t, x, v), $t \ge 0$, $x \in \mathbb{T}^d$, $v \in \mathbb{R}^d$ is the density of electrons in the phase-space $\mathbb{T}^d \times \mathbb{R}^d$,
- U = U(t, x) is the electric field generated by the electrons together with the ions.

Global existence of classical solutions for d = 2 or 3 [Ukai, Okabe 78; Lions, Perthame 91; Pfaffelmoser 92].

$$(VP_{\varepsilon}) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x U \cdot \nabla_v f = 0, \\ -\varepsilon^2 \Delta_x U = \int f \, \mathrm{d}v - 1, \\ f|_{t=0} = f_0, \end{cases}$$

- f = f(t, x, v), $t \ge 0$, $x \in \mathbb{T}^d$, $v \in \mathbb{R}^d$ is the density of electrons in the phase-space $\mathbb{T}^d \times \mathbb{R}^d$,
- U = U(t, x) is the electric field generated by the electrons together with the ions.

Global existence of classical solutions for d = 2 or 3 [Ukai, Okabe 78; Lions, Perthame 91; Pfaffelmoser 92].

The parameter ε is the **Debye length**. It is typically very small w.r.t. the scale of observations ($\sim 10^{-3}$ m in the ionosphere, $\sim 10^{-4}$ m in a tokamak).

$$(kEu) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x p \cdot \nabla_v f = 0, \\ \int f \, \mathrm{d}v \equiv 1, \\ f|_{t=0} = f_0, \end{cases}$$

where again f = f(t, x, v), p = p(t, x).

$$(kEu) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x p \cdot \nabla_v f = 0, \\ \int f \, \mathrm{d}v \equiv 1, \\ f|_{t=0} = f_0, \end{cases}$$

where again f = f(t, x, v), p = p(t, x).

As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$-\Delta p(t,x) = \operatorname{div} \operatorname{\mathbf{div}} \int v \otimes v f(t,x,v) \, \mathrm{d}v.$$

$$(kEu) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x p \cdot \nabla_v f = 0, \\ -\Delta_x p = \operatorname{div} \operatorname{div} \int v \otimes v f \, \mathrm{d}v, \\ f|_{t=0} = f_0, \end{cases}$$

where again f = f(t, x, v), p = p(t, x).

As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$-\Delta p(t,x) = \operatorname{div} \operatorname{\mathbf{div}} \int v \otimes v f(t,x,v) \, \mathrm{d}v.$$

$$(kEu) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x p \cdot \nabla_v f = 0, \\ -\Delta_x p = \operatorname{div} \operatorname{div} \int v \otimes v f \, \mathrm{d}v, \\ f|_{t=0} = f_0, \end{cases}$$

where again f = f(t, x, v), p = p(t, x).

As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$-\Delta p(t,x) = \operatorname{div} \operatorname{\mathbf{div}} \int v \otimes v f(t,x,v) \, \mathrm{d}v.$$

The pressure p has the same number of spatial derivatives as f. (Same scaling as in the **Vlasov-Benney equation** where p is replaced by the spatial density $\rho = \int f \, dv$ [Jabin, Nouri 11; Bardos, Nouri 12]).

$$(kEu) \begin{cases} \partial_t f + v \cdot \nabla_x f - \nabla_x p \cdot \nabla_v f = 0, \\ -\Delta_x p = \operatorname{div} \operatorname{div} \int v \otimes v f \, \mathrm{d}v, \\ f|_{t=0} = f_0, \end{cases}$$

where again f = f(t, x, v), p = p(t, x).

As in the case of the incompressible Euler equation, p solves an elliptic equation:

$$-\Delta p(t,x) = \operatorname{div} \operatorname{\mathbf{div}} \int v \otimes v f(t,x,v) \, \mathrm{d}v.$$

The pressure p has the same number of spatial derivatives as f. (Same scaling as in the **Vlasov-Benney equation** where p is replaced by the spatial density $\rho = \int f \, dv$ [Jabin, Nouri 11; Bardos, Nouri 12]). [Grenier 96]: (kEu) is well-posed in spaces of analytic regularity. Known results concerning linear and non-linear instability

$$(VP) \begin{cases} \partial_t f(t, x, v) + v \cdot \nabla_x f(t, x, v) - \nabla_x U(t, x) \cdot \nabla_v f(t, x, v) = 0, \\ -\Delta_x U(t, x) = \int f(t, x, v) dv - 1, \\ f|_{t=0} = f_0, \end{cases}$$

Any homogeneous and smooth profile $f(t, x, v) = \mu(v)$ gives rise to stationary solution with $\nabla_x U = 0$.

$$(VP) \begin{cases} \partial_t f(t,x,v) + v \cdot \nabla_x f(t,x,v) - \nabla_x U(t,x) \cdot \nabla_v f(t,x,v) = 0, \\ -\Delta_x U(t,x) = \int f(t,x,v) \, \mathrm{d}v - 1, \\ f|_{t=0} = f_0, \end{cases}$$

Any homogeneous and smooth profile $f(t, x, v) = \mu(v)$ gives rise to stationary solution with $\nabla_x U = 0$.

The linearization of (VP) around μ leads to:

Any homogeneous and smooth profile $f(t, x, v) = \mu(v)$ gives rise to stationary solution with $\nabla_x U = 0$.

The linearization of (VP) around μ leads to:

$$\begin{aligned} \begin{array}{l} \textbf{L} \end{pmatrix} \quad \begin{cases} \partial_t f(t,x,v) + v \cdot \nabla_x f(t,x,v) - \nabla_x U(t,x) \cdot \nabla_v \mu(v) = 0, \\ & -\Delta_x U(t,x) = \int f(t,x,v) \, \mathrm{d}v \mathbf{I}, \\ & f|_{t=0} = f_0, \end{cases} \end{aligned}$$

We look for exponential growing modes (EGM):

$$f(t, x, v) = g(v) \exp(in \cdot x) \exp(\lambda t),$$

where $n \in \mathbb{Z}^d$ is the **frequency**, $\lambda \in \mathbb{C}$ with $\Re(\lambda) > 0$ is the **growing** rate.

Any homogeneous and smooth profile $f(t, x, v) = \mu(v)$ gives rise to stationary solution with $\nabla_x U = 0$.

The linearization of (VP) around μ leads to:

$$\begin{aligned} \begin{array}{l} \textbf{L} \end{pmatrix} \quad \begin{cases} \partial_t f(t,x,v) + v \cdot \nabla_x f(t,x,v) - \nabla_x U(t,x) \cdot \nabla_v \mu(v) = 0, \\ & -\Delta_x U(t,x) = \int f(t,x,v) \, \mathrm{d}v \mathbf{I}, \\ & f|_{t=0} = f_0, \end{cases} \end{aligned}$$

We look for exponential growing modes (EGM):

$$f(t, x, v) = g(v) \exp(in \cdot x) \exp(\lambda t),$$

where $n \in \mathbb{Z}^d$ is the **frequency**, $\lambda \in \mathbb{C}$ with $\Re(\lambda) > 0$ is the **growing** rate.

If there exists an EGM, we say that μ is **unstable**.

Penrose instability criterion

Proposition (Penrose 1960)

Let μ be a smooth profile. Equation (L) admits an EGM of frequency n and growing rate λ iff the following **Penrose condition (Pen)** holds:

$$\int \frac{in \cdot \nabla_{v} \mu(v)}{\lambda + in \cdot v} \, \mathrm{d}v = \begin{cases} \varepsilon^{2} |n|^{2}, & \text{for } (VP_{\varepsilon}), \\ 0, & \text{for } (kEu). \end{cases}$$

In that case:

$$g(\mathbf{v}) \propto rac{\mathit{in} \cdot
abla_{\mathbf{v}} \mu(\mathbf{v})}{\lambda + \mathit{in} \cdot \mathbf{v}}.$$

Penrose instability criterion

Proposition (Penrose 1960)

Let μ be a smooth profile. Equation (L) admits an EGM of frequency n and growing rate λ iff the following **Penrose condition (Pen)** holds:

$$\int \frac{in \cdot \nabla_{v} \mu(v)}{\lambda + in \cdot v} dv = \int \frac{-|n|^{2}}{(\lambda + in \cdot v)^{2}} \mu(v) dv = \begin{cases} \varepsilon^{2} |n|^{2}, & \text{for } (VP_{\varepsilon}), \\ 0, & \text{for } (kEu). \end{cases}$$

In that case:

$$g(v) \propto rac{\mathit{in} \cdot
abla_v \mu(v)}{\lambda + \mathit{in} \cdot v}.$$

Penrose instability criterion

Proposition (Penrose 1960)

Let μ be a smooth profile. Equation (L) admits an EGM of frequency n and growing rate λ iff the following **Penrose condition (Pen)** holds:

$$\int \frac{in \cdot \nabla_{v} \mu(v)}{\lambda + in \cdot v} dv = \int \frac{-|n|^{2}}{(\lambda + in \cdot v)^{2}} \mu(v) dv = \begin{cases} \varepsilon^{2} |n|^{2}, & \text{for } (VP_{\varepsilon}), \\ 0, & \text{for } (kEu). \end{cases}$$

In that case:

$$g(v) \propto rac{\mathit{in} \cdot
abla_v \mu(v)}{\lambda + \mathit{in} \cdot v}.$$

In dimension 1:

Take (λ, n) satisfying (Pen) and set the ansatz:

$$\begin{cases} f(t, x, v) = \mu(v) + \delta \Re \left(\frac{in \cdot \nabla_v \mu(v)}{\lambda + in \cdot v} \exp(\lambda t + in \cdot x) \right) + R^{\delta}(t, x, v), \\ R^{\delta}|_{t=0} = 0. \end{cases}$$

Take (λ, n) satisfying (Pen) and set the ansatz:

$$\begin{cases} f(t, x, v) = \mu(v) + \delta \Re \left(\frac{in \cdot \nabla_v \mu(v)}{\lambda + in \cdot v} \exp(\lambda t + in \cdot x) \right) + R^{\delta}(t, x, v), \\ R^{\delta}|_{t=0} = 0. \end{cases}$$

<u>Main question</u>: Up to which time T_{δ} and in which norm $\| \bullet \|$ can you justify:

$$\forall t \in [0, T_{\delta}], \quad \|R^{\delta}(t)\| \ll \delta \exp\left(\Re(\lambda)t\right)?$$

(We say that we justify the linear approximation in $\|\bullet\|$ up to time T_{δ} .)

Take (λ, n) satisfying (Pen) and set the ansatz:

$$\begin{cases} f(t, x, v) = \mu(v) + \delta \Re \left(\frac{in \cdot \nabla_v \mu(v)}{\lambda + in \cdot v} \exp(\lambda t + in \cdot x) \right) + R^{\delta}(t, x, v), \\ R^{\delta}|_{t=0} = 0. \end{cases}$$

<u>Main question</u>: Up to which time T_{δ} and in which norm $\| \bullet \|$ can you justify:

$$\forall t \in [0, T_{\delta}], \quad \|R^{\delta}(t)\| \ll \delta \exp\left(\Re(\lambda)t\right)?$$

(We say that we justify the linear approximation in $\| \bullet \|$ up to time T_{δ} .) <u>Ideal case</u>: $T_{\delta} = |\log \delta| / \Re(\lambda) - C$ where C does not depend on δ .

Take (λ, n) satisfying (Pen) and set the ansatz:

$$\begin{cases} f(t, x, v) = \mu(v) + \delta \Re \left(\frac{in \cdot \nabla_v \mu(v)}{\lambda + in \cdot v} \exp(\lambda t + in \cdot x) \right) + R^{\delta}(t, x, v), \\ R^{\delta}|_{t=0} = 0. \end{cases}$$

<u>Main question</u>: Up to which time T_{δ} and in which norm $\| \bullet \|$ can you justify:

$$orall t \in [0, T_{\delta}], \quad \|R^{\delta}(t)\| \ll \delta \exp\left(\Re(\lambda)t\right)?$$

(We say that we justify the linear approximation in $\| \bullet \|$ up to time T_{δ} .) <u>Ideal case</u>: $T_{\delta} = |\log \delta| / \Re(\lambda) - C$ where C does not depend on δ .

Problem

$$\mu(\mathbf{v}) + \delta \Re \left(\frac{i\mathbf{n} \cdot \nabla_{\mathbf{v}} \mu(\mathbf{v})}{\lambda + i\mathbf{n} \cdot \mathbf{v}} \exp(i\mathbf{n} \cdot \mathbf{x}) \right)$$

needs to be sufficiently regular and nonnegative. It is hence needed to add assumptions on μ (regularity + cancellation conditions).

This question has been widely studied, see e.g. [Guo, Strauss 95; Han-Kwan, Hauray 15; Han-Kwan, Nguyen 16].

Theorem (Han-Kwan, Nguyen 16)

Let μ be smooth, Penrose unstable and satisfying cancellation conditions. For all $s, m \in \mathbb{N}$, there exist solutions f^{δ} up to time $T_{\delta} > 0$ of (VP) such that:

• Convergence at the initial time:

$$\left| \left(1 + |v|^2 \right)^{m/2} \left\{ f_0^{\delta} - \mu \right\} \right|_{H^s(\mathbb{T}^d \times \mathbb{R}^d)} = \mathcal{O}(\delta),$$

• No convergence at time $T_{\delta} = \mathcal{O}(|\log \delta|)$:

$$\liminf_{\delta\to 0} \|f^{\delta}(T_{\delta}) - \mu\|_{L^{2}(\mathbb{T}^{d}\times\mathbb{R}^{d})} > 0.$$

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for (kEu) and if $k \in \mathbb{N}^*$, then $(kn, k\lambda)$ also satisfies (Pen).

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for (kEu) and if $k \in \mathbb{N}^*$, then $(kn, k\lambda)$ also satisfies (Pen).

As a consequence, we define:

$$\gamma_0 := \sup_{(n,\lambda) \text{ satisfying } (Pen)} \frac{\Re(\lambda)}{|n|}.$$

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for (kEu) and if $k \in \mathbb{N}^*$, then $(kn, k\lambda)$ also satisfies (Pen).

As a consequence, we define:

$$\gamma_0 := \sup_{(n,\lambda) \text{ satisfying } (Pen)} rac{\Re(\lambda)}{|n|}.$$

 \rightsquigarrow EGMs of frequency *n* grow like $\exp(\gamma_0|n|t)$.

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for (kEu) and if $k \in \mathbb{N}^*$, then $(kn, k\lambda)$ also satisfies (Pen).

As a consequence, we define:

$$\gamma_0 := \sup_{(n,\lambda) \text{ satisfying } (Pen)} rac{\Re(\lambda)}{|n|}.$$

- \rightsquigarrow EGMs of frequency *n* grow like $\exp(\gamma_0|n|t)$.
- \rightsquigarrow The linear equation (L) is ill-posed in Sobolev spaces.

Proposition

If μ is unstable, if (n, λ) satisfies (Pen) for (kEu) and if $k \in \mathbb{N}^*$, then $(kn, k\lambda)$ also satisfies (Pen).

As a consequence, we define:

$$\gamma_0 := \sup_{(n,\lambda) \text{ satisfying } (Pen)} rac{\Re(\lambda)}{|n|}.$$

 \rightsquigarrow EGMs of frequency *n* grow like $\exp(\gamma_0|n|t)$.

 \rightsquigarrow The linear equation (L) is ill-posed in Sobolev spaces.

Theorem (Han-Kwan, Nguyen 16)

Let μ be analytic, Penrose unstable and satisfying cancellation conditions. For all $s \in \mathbb{N}$, $\alpha \in (0, 1]$, there exist solutions f^{δ} up to T_{δ} with $T_{\delta} \to 0$ and

$$\frac{\|f^{\delta} - \mu\|_{L^{2}([0, \mathcal{T}_{\delta}) \times \mathbb{T}^{d})}}{\left\|\left(1 + |v|^{2}\right)^{m/2} \left\{f_{0}^{\delta} - \mu\right\}\right\|_{H^{s}(\mathbb{T}^{d} \times \mathbb{R}^{d})}^{\alpha}} \xrightarrow{\delta \to 0} + \infty$$

New results: the measure-valued setting and the multiphase formulation

The measure-valued setting

We call a **measure-valued solution** of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}(\mathbb{R}^d)$ in such a way that:

The measure-valued setting

We call a **measure-valued solution** of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}(\mathbb{R}^d)$ in such a way that:

• for all $\varphi \in C_c^{\infty}(\mathbb{R}^d) \cup \{v \mapsto |v|^2\}$, the macroscopic observable $\langle f, \varphi \rangle : (t, x) \longmapsto \int \varphi(v) f(t, x, dv)$ is smooth,

The measure-valued setting

We call a **measure-valued solution** of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}(\mathbb{R}^d)$ in such a way that:

• for all $\varphi \in C_c^{\infty}(\mathbb{R}^d) \cup \{v \mapsto |v|^2\}$, the macroscopic observable $\langle f, \varphi \rangle : (t, x) \longmapsto \int \varphi(v) f(t, x, dv)$ is smooth,

• for all $\varphi \in C_c^{\infty}(\mathbb{R}^d)$, $\begin{cases}
\partial_t \langle f, \varphi \rangle + \operatorname{div}_x \langle f, v\varphi \rangle + \nabla_x p \cdot \langle f, \nabla_v \varphi \rangle = 0, \\
-\Delta_x p(t, x) = \operatorname{div} \operatorname{div} \int v \otimes v f(t, x, dv), \\
f|_{t=0} = f_0.
\end{cases}$
The measure-valued setting

We call a **measure-valued solution** of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}(\mathbb{R}^d)$ in such a way that:

• for all $\varphi \in C_c^{\infty}(\mathbb{R}^d) \cup \{v \mapsto |v|^2\}$, the macroscopic observable $\langle f, \varphi \rangle : (t, x) \longmapsto \int \varphi(v) f(t, x, dv)$ is smooth,

for all
$$\varphi \in C_c^{\infty}(\mathbb{R}^d)$$
,

$$\begin{cases}
\partial_t \langle f, \varphi \rangle + \operatorname{div}_x \langle f, v\varphi \rangle + \nabla_x p \cdot \langle f, \nabla_v \varphi \rangle = 0, \\
-\Delta_x p(t, x) = \operatorname{div} \operatorname{div} \int v \otimes v f(t, x, dv), \\
f|_{t=0} = f_0.
\end{cases}$$

Any $\mu \in \mathcal{P}(\mathbb{R}^d)$ with $\int |v|^2 d\mu(v) < +\infty$ is a stationary measure-valued solution.

The measure-valued setting

We call a **measure-valued solution** of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}(\mathbb{R}^d)$ in such a way that:

• for all $\varphi \in C_c^{\infty}(\mathbb{R}^d) \cup \{v \mapsto |v|^2\}$, the macroscopic observable $\langle f, \varphi \rangle : (t, x) \mapsto \int \varphi(v) f(t, x, dv)$ is smooth,

for all
$$\varphi \in C_c^{\infty}(\mathbb{R}^d)$$
,

$$\begin{cases}
\partial_t \langle f, \varphi \rangle + \operatorname{div}_x \langle f, v\varphi \rangle + \nabla_x p \cdot \langle f, \nabla_v \varphi \rangle = 0, \\
-\Delta_x p(t, x) = \operatorname{div} \operatorname{div} \int v \otimes v f(t, x, dv), \\
f|_{t=0} = f_0.
\end{cases}$$

Any $\mu \in \mathcal{P}(\mathbb{R}^d)$ with $\int |v|^2 d\mu(v) < +\infty$ is a stationary measure-valued solution. We say that μ is **Penrose unstable** if there exists (n, λ) with $\Re(\lambda) > 0$ satisfying (Pen) (*e.g.* superposition of Diracs are unstable).

The measure-valued setting

We call a **measure-valued solution** of (kEu) any f associating to (t, x) a probability measure $f(t, x, \bullet) \in \mathcal{P}(\mathbb{R}^d)$ in such a way that:

 for all φ ∈ C[∞]_c(ℝ^d) ∪ {v ↦ |v|²}, the macroscopic observable
 ⟨f, φ⟩: (t, x) ↦ ∫ φ(v)f(t, x, dv) is smooth,

 for all φ ∈ C[∞]_c(ℝ^d),

$$\begin{cases} \partial_t \langle f, \varphi \rangle + \operatorname{div}_x \langle f, v\varphi \rangle + \nabla_x p \cdot \langle f, \nabla_v \varphi \rangle = 0, \\ -\Delta_x p(t, x) = \operatorname{div} \operatorname{div} \int v \otimes v f(t, x, dv), \\ f|_{t=0} = f_0. \end{cases}$$

Any $\mu \in \mathcal{P}(\mathbb{R}^d)$ with $\int |v|^2 d\mu(v) < +\infty$ is a stationary measure-valued solution. We say that μ is **Penrose unstable** if there exists (n, λ) with $\Re(\lambda) > 0$ satisfying (Pen) (*e.g.* superposition of Diracs are unstable). Do there exist unstable solutions in the neighbourhood of these unstable measures?

Take μ an unstable **measure**, $\varphi_1, \ldots, \varphi_N \in C_c^{\infty}(\mathbb{R}^d)$, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$.

Take μ an unstable **measure**, $\varphi_1, \ldots, \varphi_N \in C_c^{\infty}(\mathbb{R}^d)$, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$. Then there exists, $(T_{\delta})_{\delta>0}$ tending to 0 and $(f_0^{\delta})_{\delta>0}$ a family of measure-valued initial data such that:

Take μ an unstable **measure**, $\varphi_1, \ldots, \varphi_N \in C_c^{\infty}(\mathbb{R}^d)$, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$. Then there exists, $(T_{\delta})_{\delta>0}$ tending to 0 and $(f_0^{\delta})_{\delta>0}$ a family of measure-valued initial data such that:

 for all δ, there is a measure-valued solution (f^δ, p_δ) of (kEu) starting from f₀^δ up to time T_δ,

Take μ an unstable **measure**, $\varphi_1, \ldots, \varphi_N \in C_c^{\infty}(\mathbb{R}^d)$, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$. Then there exists, $(T_{\delta})_{\delta>0}$ tending to 0 and $(f_0^{\delta})_{\delta>0}$ a family of measure-valued initial data such that:

- for all δ, there is a measure-valued solution (f^δ, p_δ) of (kEu) starting from f₀^δ up to time T_δ,
- we have:

$$\frac{\|\boldsymbol{p}_{\delta}\|_{L^{1}([0,T_{\delta})\times\mathbb{T}^{d})}}{\sum_{i=1}^{N}\|\langle f_{0}^{\delta},\varphi_{i}\rangle-\langle\mu,\varphi_{i}\rangle\|_{W^{s,\infty}(\mathbb{T}^{d})}^{\alpha}}\xrightarrow{\delta\to 0}+\infty.$$

We look for solutions of the form:

$$f(t,x,v) = \int \delta_{v=u^w(t,x)} \rho^w(t,x) \,\mathrm{d}\mu(w).$$

We look for solutions of the form:

$$f(t,x,v) = \int \delta_{v=u^w(t,x)} \rho^w(t,x) \,\mathrm{d}\mu(w)$$

We look for solutions of the form:

$$f(t, x, v) = \int \delta_{v=u^w(t,x)} \rho^w(t, x) d\mu(w).$$

If $\rho^w \equiv 1$, $u^w \equiv w$, $w \in \mathbb{R}^d$, we get $f(t, x, \bullet) = \mu$.

We look for solutions of the form:

$$f(t, x, v) = \int \delta_{v=u^w(t,x)} \rho^w(t, x) d\mu(w).$$

If $\rho^w \equiv 1$, $u^w \equiv w$, $w \in \mathbb{R}^d$, we get $f(t, x, \bullet) = \mu$
If $(\rho^w, u^w)_{w \in \mathbb{R}^d}$ is a classical solution of:

$$(MF) \begin{cases} \partial_t \rho^w + \operatorname{div}(\rho^w u^w) = 0, \\ \partial_t u^w + (u^w \cdot \nabla) u^w = -\nabla \rho, \\ -\Delta \rho = \operatorname{div} \operatorname{div} \int u^w \otimes u^w \rho^w \, \mathrm{d}\mu(w), \\ \rho^w|_{t=0} = \rho_0^w \text{ and } u^w|_{t=0} = u_0^w, \end{cases}$$

then f is a measure valued solution of (kEu).

We look for solutions of the form:

$$f(t, x, v) = \int \delta_{v=u^w(t,x)} \rho^w(t, x) d\mu(w).$$

If $\rho^w \equiv 1$, $u^w \equiv w$, $w \in \mathbb{R}^d$, we get $f(t, x, \bullet) = \mu$
If $(\rho^w, u^w)_{w \in \mathbb{R}^d}$ is a classical solution of:

$$(MF) \begin{cases} \partial_t \rho^w + \operatorname{div}(\rho^w u^w) = 0, \\ \partial_t u^w + (u^w \cdot \nabla) u^w = -\nabla p, \\ -\Delta p = \operatorname{div} \operatorname{div} \int u^w \otimes u^w \rho^w \, \mathrm{d}\mu(w), \\ \rho^w|_{t=0} = \rho_0^w \text{ and } u^w|_{t=0} = u_0^w, \end{cases}$$

then f is a measure valued solution of (kEu). See [Grenier 95; Brenier 97] for studies of this system.

We look for solutions of the form:

$$f(t, x, v) = \int \delta_{v=u^w(t,x)} \rho^w(t, x) \, d\mu(w).$$

If $\rho^w \equiv 1$, $u^w \equiv w$, $w \in \mathbb{R}^d$, we get $f(t, x, \bullet) = \mu$
If $(\rho^w, u^w)_{w \in \mathbb{R}^d}$ is a classical solution of:

$$(MF) \begin{cases} \partial_t \rho^w + \operatorname{div}(\rho^w u^w) = 0, \\ \partial_t u^w + (u^w \cdot \nabla) u^w = -\nabla p, \\ -\Delta p = \operatorname{div} \operatorname{div} \int u^w \otimes u^w \rho^w \, \mathrm{d}\mu(w), \\ \rho^w|_{t=0} = \rho_0^w \text{ and } u^w|_{t=0} = u_0^w, \end{cases}$$

then f is a measure valued solution of (kEu). See [Grenier 95; Brenier 97] for studies of this system.

The stationary solution $(1, w)_{w \in \mathbb{R}^d}$ is linearly unstable if and only if μ is **Penrose unstable**.

- Recap: 1. Each stationary profile is a multiphase solution;
 - 2. We can build measure-valued solutions as solutions of (MF);
 - 3. (MF) and (kEu) have the same linear instabilities.

Recap: 1. Each stationary profile is a multiphase solution;

- 2. We can build measure-valued solutions as solutions of (MF);
- 3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):

Theorem (B. 2019)

Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$.

Recap: 1. Each stationary profile is a multiphase solution;

- 2. We can build measure-valued solutions as solutions of (MF);
- 3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):

Theorem (B. 2019)

Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$. There exist $(T_{\delta})_{\delta>0}$ tending to zero and $(\rho_0^{\delta}, \mathbf{u}_0^{\delta})_{\delta>0}$ a family of initial data such that:

Recap: 1. Each stationary profile is a multiphase solution;

- 2. We can build measure-valued solutions as solutions of (MF);
- 3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):

Theorem (B. 2019)

Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$. There exist $(T_{\delta})_{\delta>0}$ tending to zero and $(\rho_0^{\delta}, \mathbf{u}_0^{\delta})_{\delta>0}$ a family of initial data such that:

• for all δ , there is a solution $(\rho^{\delta}, \boldsymbol{u}^{\delta}, p_{\delta})$ to (MF) starting from $(\rho_{0}^{\delta}, \boldsymbol{u}_{0}^{\delta})$ up to time T_{δ} ,

Recap: 1. Each stationary profile is a multiphase solution;

- 2. We can build measure-valued solutions as solutions of (MF);
- 3. (MF) and (kEu) have the same linear instabilities.

Hence, it suffices to prove the ill-posedness at the level of (MF):

Theorem (B. 2019)

Take μ an unstable profile, $s \in \mathbb{N}$ and $\alpha \in (0, 1]$. There exist $(T_{\delta})_{\delta>0}$ tending to zero and $(\rho_0^{\delta}, \mathbf{u}_0^{\delta})_{\delta>0}$ a family of initial data such that:

- for all δ , there is a solution $(\rho^{\delta}, \boldsymbol{u}^{\delta}, p_{\delta})$ to (MF) starting from $(\rho_{0}^{\delta}, \boldsymbol{u}_{0}^{\delta})$ up to time T_{δ} ,
- we have:

$$\frac{\|P\delta\|_{L^1([0,T_{\delta})\times\mathbb{T}^d)}}{\sup_{w\in\mathbb{R}^d}\left\{\|\rho_0^{\delta,w}-1\|_{W^{s,\infty}}^{\alpha}+\|u_0^{\delta,w}-w\|_{W^{s,\infty}}^{\alpha}\right\}}\xrightarrow{\delta\to 0}+\infty.$$

Goal: Under constraints related to incompressibility and to endpoints:

 $\label{eq:Minimize} \text{Minimize} \quad \sum_{\omega \text{ path}} \frac{1}{2} \int_0^1 |\dot{\omega}_t|^2 \, \mathrm{d}t.$

<u>Goal</u>: Under constraints related to incompressibility and to endpoints:

Minimize

$$\sum_{\text{path}} \frac{1}{2} \int_0^1 |\dot{\omega}_t|^2 \,\mathrm{d}t.$$

<u>Formalisation</u>: The endpoints are prescribed by a **bistochastic measure** $\gamma \in \mathcal{P}(\mathbb{T}^d \times \mathbb{T}^d)$ and we look for a solution in the set of **generalized** flows $P \in \mathcal{P}(\mathcal{C}^0([0,1];\mathbb{T}^d))$ [Brenier 89].

<u>Goal</u>: Under constraints related to incompressibility and to endpoints:

Minimize

$$\sum_{\text{path}} \frac{1}{2} \int_0^1 |\dot{\omega}_t|^2 \,\mathrm{d}t.$$

Formalisation: The endpoints are prescribed by a **bistochastic measure** $\gamma \in \mathcal{P}(\mathbb{T}^d \times \mathbb{T}^d)$ and we look for a solution in the set of **generalized** flows $P \in \mathcal{P}(\mathcal{C}^0([0,1];\mathbb{T}^d))$ [Brenier 89].

<u>Motivation</u>: For a given P, if all the trajectories follow the same smooth vector field v, then P is a solution "iff" v is a solution of the incompressible Euler equation [Arnol'd 66; Brenier 89].

<u>Goal</u>: Under constraints related to incompressibility and to endpoints:

Minimize

$$\sum_{\text{path}} \frac{1}{2} \int_0^1 |\dot{\omega}_t|^2 \,\mathrm{d}t.$$

Formalisation: The endpoints are prescribed by a **bistochastic measure** $\gamma \in \mathcal{P}(\mathbb{T}^d \times \mathbb{T}^d)$ and we look for a solution in the set of **generalized** flows $P \in \mathcal{P}(\mathcal{C}^0([0,1];\mathbb{T}^d))$ [Brenier 89].

<u>Motivation</u>: For a given P, if all the trajectories follow the same smooth vector field v, then P is a solution "iff" v is a solution of the incompressible Euler equation [Arnol'd 66; Brenier 89].

In general: An incompressible generalized flow P is a solution "iff" all the trajectories are accelerated by the same scalar pressure field p.

<u>Goal</u>: Under constraints related to incompressibility and to endpoints:

Minimize

$$\sum_{\text{path}} \frac{1}{2} \int_0^1 |\dot{\omega}_t|^2 \,\mathrm{d}t.$$

Formalisation: The endpoints are prescribed by a **bistochastic measure** $\gamma \in \mathcal{P}(\mathbb{T}^d \times \mathbb{T}^d)$ and we look for a solution in the set of **generalized** flows $P \in \mathcal{P}(\mathcal{C}^0([0,1];\mathbb{T}^d))$ [Brenier 89].

<u>Motivation</u>: For a given P, if all the trajectories follow the same smooth vector field v, then P is a solution "iff" v is a solution of the incompressible Euler equation [Arnol'd 66; Brenier 89].

In general: An incompressible generalized flow P is a solution "iff" all the trajectories are accelerated by the same scalar pressure field p.

By our ill-posedness result: p is not a smooth function of γ [B. 2019].

The Vlasov-Poisson case

Ongoing work with D. Han-Kwan.

This time, the multiphase system is:

$$\begin{cases} \partial_t \rho^w + \operatorname{div}(\rho^w u^w) = 0, \\ \partial_t u^w + (u^w \cdot \nabla) u^w = -\nabla U, \\ -\Delta U = \int \rho^w \, \mathrm{d}\mu(w), \\ \rho^w|_{t=0} = \rho_0^w \text{ and } u^w|_{t=0} = u_0^w. \end{cases}$$

Ongoing work with D. Han-Kwan.

This time, the multiphase system is:

$$\begin{cases} \partial_t \rho^w + \operatorname{div}(\rho^w u^w) = 0, \\ \partial_t u^w + (u^w \cdot \nabla) u^w = -\nabla U, \\ -\Delta U = \int \rho^w \, \mathrm{d}\mu(w), \\ \rho^w|_{t=0} = \rho_0^w \text{ and } u^w|_{t=0} = u_0^w. \end{cases}$$

• Local existence is quite easy assuming one more derivative for u than for ρ .

Ongoing work with D. Han-Kwan.

This time, the multiphase system is:

$$\begin{cases} \partial_t \rho^w + \operatorname{div}(\rho^w u^w) = 0, \\ \partial_t u^w + (u^w \cdot \nabla) u^w = -\nabla U, \\ -\Delta U = \int \rho^w \, \mathrm{d}\mu(w), \\ \rho^w|_{t=0} = \rho_0^w \text{ and } u^w|_{t=0} = u_0^w. \end{cases}$$

- Local existence is quite easy assuming one more derivative for u than for ρ .
- If d = 1 and μ is is a superposition of 2 Diracs, this is exactly the framework of [Cordier, Grenier, Guo 2000] in which they prove non-linear instability.

Ongoing work with D. Han-Kwan.

This time, the multiphase system is:

$$\begin{cases} \partial_t \rho^w + \operatorname{div}(\rho^w u^w) = 0, \\ \partial_t u^w + (u^w \cdot \nabla) u^w = -\nabla U, \\ -\Delta U = \int \rho^w \, \mathrm{d}\mu(w), \\ \rho^w|_{t=0} = \rho_0^w \text{ and } u^w|_{t=0} = u_0^w. \end{cases}$$

- Local existence is quite easy assuming one more derivative for u than for ρ .
- If d = 1 and μ is is a superposition of 2 Diracs, this is exactly the framework of [Cordier, Grenier, Guo 2000] in which they prove non-linear instability.
- A generalization of their proof in higher dimension and general μ would provide a proof of non-linear instability for (VP) in a measure-valued setting.

Pictures from Frans Ebersohn, PEPL, University of Michigan.