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FLKS : Why ?

• Adler’s famous experiment for E. Coli (1966)

• Curie institute : Buguin, Saragosti, Silberzan,

• Explained by the Flux Limited Keller-Segel system



FLKS : Why ?

Robust traveling pulses have been explained using the
Flux-Limited-Keller-Segel system

∂n(x ,t)
∂t −∆n + div(nφ(|∇c |)∇c) = 0, x ∈ Rd , t > 0,

τ ∂c(x ,t)∂t = ∆c + n − αc.

φ(|∇c |) ≈ 1√
1 + δ|∇c |2

Saragosti-Calvez et al, Calvez-Schmeiser,...

Dolak-Schmeiser, Erban-Othmer, Chertock et al., Bellomo-Winkler,

Emako et al., James-Vauchelet, BP-Vauchelet-Wang



FLKS : Why ?

We consider the chemotactic background is imposed.

∂n(x , t)

∂t
−∆n + div(nφ(|∇c |)∇c) = 0, x ∈ Rd , t > 0,

φ(|∇c |) |∇c | ≤ Cst

Existence and uniform bounds follow from Nash-Alikakos iterations.

Interest is more about relations to run and tumble



Method

1. Cell scale. Boltzman’s kinetic theory describes run-tumble
phenomena at individual cell scale

2. Multiscale analysis. Derive FLKS macroscopic from
mesoscopic

3. Pattern formation ability. Stiffness-related instabillities for
FLKS model

4. Biochemical pathways. Explain the cell behaviour



Kinetic models

E. Coli is known (since the 80’s) to move by run and tumble Alt,
Dunbar, Othmer, Stevens, Hillen...

                                 

Mittal et al Cluster of bacteria Tumbling frequency/function of cell position



A beautiful example of multiscale motion

V. Calvez Part B2 MESOPROBIO
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Figure 1: Concentration waves of bacteria in a microchannel [71]. (Left) A band of bacteria travels in the channel from left
to right at constant speed and with an almost constant profile. Massive tracking experiments enable to unravel the mesoscopic
structure of the wave. (Right) Agreement between experimental data (blue) and numerical simulations of the model (1)-(2)
(resp. green and purple): (Top) cell density, (Bottom) distribution of the runs with respect to the orientation in the channel.

function of the time derivative of S along the pre-tumble trajectory: T[S ](v, v0) =  S
⇣

DS
Dt

���
v0
⌘
. A sti↵ response

function of the form  S (z) =  0 � �S sign (z) is a good option at first order, where  0 is the mean tumbling
frequency and �S is the chemotactic bias. Indeed bacteria have their own amplification machinery, that enables
them to sense small variations of S disregarding their amplitude. It is postulated in [72] that bacteria react at
least to two attractants for the population to move collectively as a solitary wave: an amino-acid produced by
the bacteria, S (t, x), and a nutrient consumed by the bacteria, N(t, x). They evolve following two basic reaction-
di↵usion equations,

@S
@t

(t, x) = DS�S (t, x) � ↵S (t, x) + �⇢(t, x) ,
@N
@t

(t, x) = DN�N(t, x) � �⇢(t, x)N(t, x) . (2)

The analysis of (1)-(2) is one of the objective of the current proposal. In order to simplify the analysis it is
possible to scale (1) down to a macroscopic advection-di↵usion equation for ⇢(t, x) =

R
V f (t, x, v) dv, under suitable

assumptions. The key hypothesis is that the chemotactic bias is small, i.e. �S ⌧  0. I refer to [72] for a complete
description of the macroscopic model and the parameters, along with the validation of the model on biological
experiments. Interestingly enough, our approach is able to predict the propagation speed since the two unknown
parameters �S and �N (chemotactic bias) are obtained from the measurement of the shape of the density profile. I
emphasize that hydrodynamical interactions between the fluid and the bacteria play no major role here, since the
cell density is low. On the other hand, growth of the population can be ignored over the time of the experiment, as
opposed to the celebrated experiments of Budrene and Berg.

However it is clearly not possible to scale down from the mesoscopic to the macroscopic level in all experimen-
tal settings, especially when �S ⇠  0 [71]. There, it is of paramount importance to capture the heterogeneity of the
cell density with respect to velocity. Moreover, tracking experimental data inform us about this heterogeneity. In
collaboration with a team of biophysicists we have successfully put together the kinetic mathematical framework
and massive tracking experiments to unravel the travelling bands of bacteria at the mesoscopic scale (Fig. 1).

Reaction-transport equations. Propagation of solitary pulse waves in (1)-(2) is di�cult to analyse. Therefore
it is appealing to study simpler models sharing similar features. A large class of kinetic models exhibiting front
propagation is provided by kinetic variants of reaction di↵usion equations, also called reaction-transport equations
[27, 43, 74]. Recall that the Fisher-KPP equation (FKPP) reads as follows,

@⇢

@t
(t, x) = ✓

@2⇢

@x2 (t, x) + r⇢(t, x)(1 � ⇢(t, x)) , (3)

where ✓ > 0, r > 0 denote respectively the di↵usion coe�cient and the growth rate of the population. Modelling
assumptions at the mesoscopic level are the following: individuals perform a velocity-jump process with constant

2



Kinetic models

Denote by f (t, x , ξ) the density of cells moving with the velocity ξ

∂

∂t
f (t, x , ξ) + ξ · ∇x f︸ ︷︷ ︸

run

= K[c , f ]︸ ︷︷ ︸
tumble

,

K[c , f ] =

∫
B
K (c ; ξ, ξ′)f (ξ′)dξ′ −

∫
B
K (c ; ξ′, ξ)dξ′ f ,

• Boltzmann formalism for molecular collisions/scattering ;

• There are now TWO variables x , ξ (difficult to compute)

• Used to derive macroscopic models (Boltzmann → Navier-Stokes)



Kinetic models

Simplest example of tumbling kernel

∂

∂t
f (t, x , ξ) + ξ · ∇x f︸ ︷︷ ︸

run

= K[c , f ]︸ ︷︷ ︸
tumble

,

K[c , f ] =

∫
B
K (c ; ξ, ξ′)f (ξ′)dξ′ −

∫
B
K (c ; ξ′, ξ)dξ′ f ,

K (c ; ξ, ξ′) = k−(c(x − εξ′)) + k+(c(x + εξ)).

Related to linear scattering with a changing background.



Kinetic models : diffusion limit

Multiscale analysis based on the memory time scale
∂
∂t f (t, x , ξ) + ξ·∇x f

ε = K[c,f ]
ε2

,

K[f ] =
∫
K (c ; ξ, ξ′)f ′dξ′ −

∫
K (c; ξ′, ξ)dξ′ f ,

K (c ; ξ, ξ′) = k−
(
c(x − εξ′)

)
+ k+

(
c(x + εξ)

)
.

Theorem As ε→ 0, then for short times,

fε(t, x , ξ)→ n(t, x),

∂
∂t n(t, x)− div[D∇n(t, x)] + div(nχ∇c) = 0,



Kinetic models : diffusion limit

Multiscale analysis based on the memory time scale
∂
∂t f (t, x , ξ) + ξ·∇x f

ε = K[c,f ]
ε2

,

K[f ] =
∫
K (c ; ξ, ξ′)f ′dξ′ −

∫
K (c; ξ′, ξ)dξ′ f ,

K (c ; ξ, ξ′) = k−
(
c(x − εξ′)

)
+ k+

(
c(x + εξ)

)
.

Theorem As ε→ 0, then for short times,

fε(t, x , ξ)→ n(t, x),

∂
∂t n(t, x)− div[D∇n(t, x)] + div(nχ∇c) = 0,

D(c) = D0
1

k−(c) + k+(c)
, χ(c) = χ0

k ′−(c) + k ′+(c)

k−(c) + k+(c)
.



Pulse waves

                                                                  

When c increases, jumps are longer



Pulse waves

∂

∂t
f (t, x , ξ) + ξ · ∇x f =

∫
K (c ; ξ′)f (ξ′)dξ′−

∫
K (c ; ξ)dξ′ f (ξ)

This leads Dolak and Schmeiser to choose

K (c ; ξ′) = K
( ∂c
∂t

+ ξ′.∇c︸ ︷︷ ︸
Dtc

)

With
K(·) decreasing and stiff



Pulse waves

∂

∂t
f (t, x , ξ) + ξ · ∇x f =

∫
K (c ; ξ′)f (ξ′)dξ′−

∫
K (c ; ξ)dξ′ f (ξ)

This leads Dolak and Schmeiser to choose

K (c ; ξ′) = K
( ∂c
∂t

+ ξ′.∇c︸ ︷︷ ︸
Dtc

)

Example (very stiff)

K(Dtc) =

{
k− for Dtc < 0,

k+ < k− for Dtc > 0.

Singuler hyperbolic limit (James-Vauchelet)



Kinetic models : diffusion limit

∂

∂t
f (t, x , ξ) + ξ · ∇x f =

∫
K (c ; ξ′)f (ξ′)dξ′−

∫
K (c ; ξ)dξ′ f (ξ)

With

K (c ; ξ, ξ′) = Kε

( ∂c
∂t

+ ξ′.∇c︸ ︷︷ ︸
Dtc

)

the diffusion limit is the Flux Limited Keller-Segel system (BP,
Vauchelet and Z. A. Wang

∂
∂t n(t, x)−∆n(t, x) + div(nU) = 0,

U = φ(|∇c|) ∇c

and φ(|∇c|) is smooth



FLKS : instability

∂

∂t
f (t, x , ξ) + ξ · ∇x f︸ ︷︷ ︸

run

= Kδ[c , f ]︸ ︷︷ ︸
tumble

+ r(1− n(x , t))f (t, x , ξ)︸ ︷︷ ︸
cell division/death

,

Numerical observation with a Monte-Carlo code (S. Yasuda)
The steady state n ≡ 1 is not obeserved



FLKS : instability


∂
∂t n(t, x)−∆n(t, x) + div(nUδ) = r(1− n)n,

Uδ = φδ(|∇c |) ∇c , −∆c + αc = n,

Numerical observation : forward left-center, backward-right



FLKS : instability


∂
∂t n(t, x)−∆n(t, x) + div(nUδ) = r(1− n)n,

Uδ = φδ(|∇c |) ∇c , −∆c + αc = n,

Numerical observation : forward-left, backward-right

Competition between
Fisher-KPP type of wave (propagating in the empty region)
attraction where cells emit the chemoattractant



FLKS : instability

∂

∂t
f (t, x , ξ) + ξ · ∇x f︸ ︷︷ ︸

run

= Kδ[c , f ]︸ ︷︷ ︸
tumble

+ r(1− n(x , t))f (t, x , ξ)︸ ︷︷ ︸
cell division/death

,


∂
∂t n(t, x)−∆n(t, x) + div(nUδ) = r(1− n)n,

Uδ = φδ(|∇c |) ∇c , −∆c + αc = n,

Theorem (BP, S. Yasuda)

• Both for the kinetic and FLKS models,
• for stiff response (δ small)
we have

the steady state n ≡ 1 is linearly unstable
in the sense of Turing (only bounded wave length)



FLKS : instability

Proof{ ∂
∂t n(t, x)−∆n(t, x) + div(nφδ(|∇c |) ∇c) = r(1− n)n,

−∆c + αc = n,

Consider a perturbation

n = 1 + δne
ix .keλt , c = 1 + δce

ix .keλt



FLKS : instability

Proof{ ∂
∂t n(t, x)−∆n(t, x) + div(nφδ(|∇c |) ∇c) = r(1− n)n,

−∆c + αc = n,

Consider a perturbation

n = 1 + δne
ix .keλt , c = 1 + δce

ix .keλt

One finds {
λδn + |k |2δn − φ(0)|k|2δc = −rδn

|k |2δc + αδc = δn



FLKS : instability

Proof{ ∂
∂t n(t, x)−∆n(t, x) + div(nφδ(|∇c |) ∇c) = r(1− n)n,

−∆c + αc = n,

Consider a perturbation

n = 1 + δne
ix .keλt , c = 1 + δce

ix .keλt

One finds {
λδn + |k |2δn − φ(0)|k|2δc = −rδn

|k |2δc + αδc = δn

λ = −(|k|2 + r) + φ(0)
|k|2

α + |k|2
> 0 for |k | moderate, φ(0) large



Biochemical pathways

Can one explain the tumbling rate

K (c ; ξ, ξ′) = K
(∂c
∂t

+ ξ′.∇c
)
?

Extracellular medium

——membrane——

Cytosol



Biochemical pathways

Can one explain the tumbling rate

K (c ; ξ, ξ′) = K
(∂c
∂t

+ ξ′.∇c
)
?

Use the internal biochemical pathway controling tumbling,

f (t, x , ξ,m) m= receptor methylation level (internal state)

c = external concentration

See Erban-Othmer, Dolak-Schmeiser, Zhu et al, Jiang et al



Biochemical pathways

∂

∂t
f (t, x , ξ,m) + ξ · ∇x f +

∂

∂m
[R(m, c)f ] =︸ ︷︷ ︸

Change in methylation level

K[m, c][f ]

K[m, c][f ]=

∫ [
K (m, c , ξ, ξ′)f (t, x , ξ′,m)− K (m, c , ξ′, ξ)f (t, x , ξ,m)

]
dξ′

Question : Can it be related to the tumbling kernel

K (c; ξ, ξ′) = K
(∂c
∂t

+ ξ′.∇c
)



Biochemical pathways

∂

∂t
f (t, x , ξ,m) + ξ · ∇x f +

1

ε

∂

∂m
[R̄(m −M(c))f ] = Kε[m, c][f ]

(fast adaptation)

Kε[m, c][f ]=

∫
ξ′

[
K (

m −M(c)

ε
, ξ, ξ′)f (t, x , ξ′,m)−K (..., ξ′, ξ)f (t, x , ξ,m)

]
(stiff response)

Theorem : As ε→ 0, fε(t, x , ξ,m)→ f̄ (t, x , ξ) δ
(
m −M(c)

)
and the tumbling kernel for f̄ (t, x , ξ) is K

(
∂c
∂t + ξ′.∇c

)
.



Biochemical pathways

∂

∂t
f (t, x , ξ,m) + ξ · ∇x f +

1

ε

∂

∂m
[R(m, c)f ] =∫ [

K (
m −M(c)

ε
, ξ, ξ′)f (t, x , ξ′,m)− K (..., ξ′, ξ)f (t, x , ξ,m)

]
dξ′



Biochemical pathways

∂

∂t
f (t, x , ξ,m) + ξ · ∇x f +

1

ε

∂

∂m
[R(m, c)f ] =∫ [

K (
m −M(c)

ε
, ξ, ξ′)f (t, x , ξ′,m)− K (..., ξ′, ξ)f (t, x , ξ,m)

]
dξ′

f (t, x , ξ,m) = εq(t, x , ξ,
m −M(c)

ε
), y =

m −M(c)

ε



Biochemical pathways

∂

∂t
f (t, x , ξ,m) + ξ · ∇x f +

1

ε

∂

∂m
[R(m, c)f ] =∫ [

K (
m −M(c)

ε
, ξ, ξ′)f (t, x , ξ′,m)− K (..., ξ′, ξ)f (t, x , ξ,m)

]
dξ′

f (t, x , ξ,m) = εq(t, x , ξ,
m −M(c)

ε
), y =

m −M(c)

ε

∂

∂t
q(t, x , ξ, y) + ξ · ∇x f +

1

ε

∂

∂y
[yG (y)− DtM]q =∫ [

K (y , , ξ, ξ′)q(t, x , ξ′, y)− K (y , ξ′, ξ)q(t, x , ξ, y)
]
dξ′



Biochemical pathways

∂

∂t
f (t, x , ξ,m) + ξ · ∇x f +

1

ε

∂

∂m
[R(m, c)f ] =∫ [

K (
m −M(c)

ε
, ξ, ξ′)f (t, x , ξ′,m)− K (..., ξ′, ξ)f (t, x , ξ,m)

]
dξ′

f (t, x , ξ,m) = εq(t, x , ξ,
m −M(c)

ε
), y =

m −M(c)

ε

∂

∂t
q(t, x , ξ, y) + ξ · ∇x f +

1

ε

∂

∂y
[yG (y)− DtM]q =∫ [

K (y , , ξ, ξ′)q(t, x , ξ′, y)− K (y , ξ′, ξ)q(t, x , ξ, y)
]
dξ′

Forces q −→ δ(y − DtM
G(0))



Biochemical pathways
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bacterial population inside the observation channel sepa-
rates into two groups centered near the two control points.
The migration of cells between the two groups is signifi-
cant when the period is longer than 200 s [Figs. 2(b)–2(d)],
and it is much reduced for higher driving frequencies
[Fig. 2(a)]. Our experiments clearly show that for fast-
varying gradients, the cell population cannot follow the
attractant and exhibits oscillatory behaviors out of phase
with the stimulus waveform, in contrast to its responses to
slowly varying gradients.

The average motion of the bacterial population can be
characterized by the center of mass (c.m.) of the bacteria
within the observation window ½"300 !m; 300 !m#. In
Fig. 3(a), we show the c.m. position versus time for
different driving period T. Both the amplitude (A) of the
c.m. and the phase difference (!") between the c.m.
oscillation and the attractant oscillation change signifi-
cantly with T. A increases with T and saturates when
T $ 600 s. Conversely, !" increases with decreasing T,
from ð0:12& 0:02Þ# at T ¼ 1200 s to ð0:74& 0:22Þ# at
T ¼ 80 s, as shown in Figs. 3(b) and 3(c).

Bacterial chemotaxis motion follows a run and tumble
pattern with the tumbling frequency determined by the
chemoeffector concentration and the chemoreceptor

methylation level, which is controlled by the adaptation
process with a finite adaptation time $. The cell’s drift
velocity v, determined by the bias of the tumbling fre-
quency, should therefore also follow a relaxation dynamics
(see SM [15] for a detailed derivation). To capture this
relaxation dynamics of v in the simplest way possible,
we use a Langevin equation where v follows a linear
relaxation dynamics with a constant time $:

dx

dt
¼ v;

dv

dt
¼ "ðv" vdÞ=$þ %; (1)

where vd is the chemotaxis velocity. The Langevin equa-
tion is coarse grained in time beyond the average run time
$r of individual cells; therefore, the fluctuation in velocity
change %ðtÞ can be treated as a white noise: h%ðtÞ%ðt0Þi ¼
2!&ðt" t0Þ, with strength! ¼ !0v

2
0$r=$

2, where!0 is an
order unity constant and v0 is the average run speed. For
simulations of chemotaxis motions of individual cells, we
use the signaling pathway-based E. coli chemotaxis simu-
lator (SPECS) model [16], where the internal signaling
pathway dynamics is described by the interaction between
the average receptor methylation level and the kinase
activity which determines the switch probability of the
flagellar motor and eventually the cell motion. According
to the SPECS model simulations [16], the chemotaxis

velocity can be approximately expressed as vd *
C @Gð½L#Þ

@x ½1þG"1
c

@Gð½L#Þ
@x #"1, where [L] is the ligand con-

centration andGð½L#Þ¼ lnð1þ½L#=KiÞ" lnð1þ½L#=KaÞ is
the free-energy difference between active and inactive

100µm

A T=100s B T=200s

C T=400s D T=800sT
im

e
/T

0

0.5

1

x(µm)
200( )-200(  ) 0 RL 200(   )-200(  ) 0 RL

0

0.5

1

N
or

m
al

iz
ed

 C
el

l D
en

si
ty 1

0.5

0

0.25

0.75

1

0.5

0

0.25

0.75

N
or

m
al

iz
ed

 L
ig

an
d 

co
nc

en
tr

at
io

n

RL L R
x(µm)

FIG. 2 (color online). The spatiotemporal profiles of the cell
density for different driving periods. (a) T ¼ 100 s,
(b) T ¼ 200 s, (c) T ¼ 400 s, (d) T ¼ 800 s. The normalized
cell density at a given position x and time t (scaled by T) is
represented by the color (see color bar). L-aspartate concentra-
tions at the two source channels oscillate between 0.1 and
0.9 mM with opposite phases. The gray scale stripes at the
two sides of each panel show the normalized ligand concen-
trations at the left (L) and right (R) control point as a function of
time, t ¼ 0 is when ligand concentration is maximum at the right
control point. The cell density is measured 20 frames per period.
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FIG. 1 (color online). Experimental setup. (a) A panoramic
picture of the two-layer PDMS (polydimethylsiloxane) chip.
(b) A zoomed-in view of the observation channel. The time
lapse of the normalized E. coli density and attractant concentra-
tion at a control point is shown for periods T ¼ 800 s (c) and
100 s (d). The ligand concentration is measured by adding a
small amount of fluorescein into attractant stocks. Bacterial
densities are determined by averaging the fluorescence intensity
from the fluorescence-labeled cells in a region of &25 !m
around the control points.
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Biochemical pathways and FLKS

ε2
∂

∂t
f (t, x , ξ,m) + εξ · ∇x f + ε

∂

∂m
[m − ξ∇c]f =

K (m)

∫ [
f (t, x , ξ′,m)− f (t, x , ξ,m)

]
dξ′

Theorem. With this scaling, f converges and we obtain the FLKS
system.



Abnormal diffusions

ε1+µ
∂

∂t
g(t, x , ξ,m) + εξ · ∇xg + εs∆mg = K[m][g ]

When K[m][g ] degenerates,

K[m][g ] ≈ 0 as m→∞,

the limiting behaviour is Fractional Laplacian

∂n

∂t
−∆αn = 0



Conclusion

The FLKS is a macroscopic model founded on the individual
behaviour of E. coli

The FLKS exhibits robust traveling band solutions (inherited
from the kinetic)

Pattern formation ability and instabilities are observed, even
when including division/death terms
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