

Bacterial movement by run and tumble : models, patterns, pathways, scales

Benoît Perthame

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

FLKS : Why?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- Adler's famous experiment for E. Coli (1966)
- Curie institute : Buguin, Saragosti, Silberzan,
- Explained by the Flux Limited Keller-Segel system

Robust traveling pulses have been explained using the Flux-Limited-Keller-Segel system

 $\begin{cases} \frac{\partial n(x,t)}{\partial t} - \Delta n + \operatorname{div}(n\phi(|\nabla c|) \nabla c) = 0, \quad x \in \mathbb{R}^{d}, \ t > 0, \\ \tau \frac{\partial c(x,t)}{\partial t} = \Delta c + n - \alpha c. \end{cases}$ $\phi(|\nabla c|) \approx \frac{1}{\sqrt{1 + \delta |\nabla c|^{2}}} \end{cases}$

Saragosti-Calvez et al, Calvez-Schmeiser,...

Dolak-Schmeiser, Erban-Othmer, Chertock et al., Bellomo-Winkler, Emako et al., James-Vauchelet, BP-Vauchelet-Wang

FLKS : Why?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We consider the chemotactic background is imposed.

$$\frac{\partial n(x,t)}{\partial t} - \Delta n + \operatorname{div}(n\phi(|\nabla c|) \nabla c) = 0, \quad x \in \mathbb{R}^d, \ t > 0,$$

$\phi(|\nabla c|) |\nabla c| \leq \mathsf{Cst}$

Existence and uniform bounds follow from Nash-Alikakos iterations.

Interest is more about relations to run and tumble

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1. Cell scale. Boltzman's kinetic theory describes run-tumble phenomena at individual cell scale

2. Multiscale analysis. Derive FLKS macroscopic from mesoscopic

3. Pattern formation ability. Stiffness-related instabillities for FLKS model

4. Biochemical pathways. Explain the cell behaviour

E. Coli is known (since the 80's) to move by run and tumble Alt, Dunbar, Othmer, Stevens, Hillen...

Mittal et al Cluster of bacteria

Tumbling frequency/function of cell position

175

A beautiful example of multiscale motion

メロト メロト メヨト メヨト

Kinetic models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Denote by $f(t, x, \xi)$ the density of cells moving with the velocity ξ

$$\frac{\partial}{\partial t}f(t,x,\xi) + \underbrace{\xi \cdot \nabla_{x}f}_{\text{run}} = \underbrace{\mathcal{K}[c,f]}_{\text{tumble}},$$

$$\mathcal{K}[c,f] = \int_{B} \mathcal{K}(c;\xi,\xi')f(\xi')d\xi' - \int_{B} \mathcal{K}(c;\xi',\xi)d\xi' f,$$

- Boltzmann formalism for molecular collisions/scattering;
- There are now TWO variables x, ξ (difficult to compute)
- Used to derive macroscopic models (Boltzmann \rightarrow Navier-Stokes)

Kinetic models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Simplest example of tumbling kernel

$$\frac{\partial}{\partial t}f(t,x,\xi) + \underbrace{\xi \cdot \nabla_{x}f}_{\text{run}} = \underbrace{\mathcal{K}[c,f]}_{\text{tumble}},$$
$$\mathcal{K}[c,f] = \int_{B} \mathcal{K}(c;\xi,\xi')f(\xi')d\xi' - \int_{B} \mathcal{K}(c;\xi',\xi)d\xi' f,$$
$$\mathcal{K}(c;\xi,\xi') = k_{-}(c(x-\varepsilon\xi')) + k_{+}(c(x+\varepsilon\xi)).$$

Related to linear scattering with a changing background.

Kinetic models : diffusion limit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Multiscale analysis based on the memory time scale

$$\begin{cases} \frac{\partial}{\partial t}f(t,x,\xi) + \frac{\xi \cdot \nabla_x f}{\varepsilon} = \frac{\mathcal{K}[c,f]}{\varepsilon^2}, \\ \mathcal{K}[f] = \int \mathcal{K}(c;\xi,\xi')f'd\xi' - \int \mathcal{K}(c;\xi',\xi)d\xi' f, \\ \mathcal{K}(c;\xi,\xi') = k_-(c(x-\varepsilon\xi')) + k_+(c(x+\varepsilon\xi)). \end{cases}$$

Theorem As $\varepsilon \to 0$, then for short times,

 $f_{\varepsilon}(t,x,\xi)
ightarrow n(t,x),$

 $\frac{\partial}{\partial t}n(t,x) - \operatorname{div}[D\nabla n(t,x)] + \operatorname{div}(n\chi\nabla c) = 0,$

Kinetic models : diffusion limit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Multiscale analysis based on the memory time scale

$$\begin{cases} \frac{\partial}{\partial t}f(t,x,\xi) + \frac{\xi \cdot \nabla_x f}{\varepsilon} = \frac{\mathcal{K}[c,f]}{\varepsilon^2}, \\ \mathcal{K}[f] = \int \mathcal{K}(c;\xi,\xi')f'd\xi' - \int \mathcal{K}(c;\xi',\xi)d\xi' f, \\ \mathcal{K}(c;\xi,\xi') = k_-(c(x-\varepsilon\xi')) + k_+(c(x+\varepsilon\xi)). \end{cases}$$

Theorem As $\varepsilon \rightarrow 0$, then for short times,

$$\begin{split} f_{\varepsilon}(t,x,\xi) &\to n(t,x), \\ &\frac{\partial}{\partial t}n(t,x) - \operatorname{div}[D\nabla n(t,x)] + \operatorname{div}(n\chi\nabla c) = 0, \\ D(c) &= D_0 \; \frac{1}{k_-(c) + k_+(c)}, \quad \chi(c) = \chi_0 \; \frac{k'_-(c) + k'_+(c)}{k_-(c) + k_+(c)} \; . \end{split}$$

Pulse waves

When *c* increases, jumps are longer

Pulse waves

$$\frac{\partial}{\partial t}f(t,x,\xi) + \xi \cdot \nabla_x f = \int K(c;\xi')f(\xi')d\xi' - \int K(c;\xi)d\xi' f(\xi)$$

This leads Dolak and Schmeiser to choose

$$K(c;\xi') = \mathbf{K}\Big(\underbrace{\frac{\partial c}{\partial t} + \xi' \cdot \nabla c}_{D_t c}\Big)$$

With

 $K(\cdot)$ decreasing and stiff

Pulse waves

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\frac{\partial}{\partial t}f(t,x,\xi) + \xi \cdot \nabla_x f = \int K(c;\xi')f(\xi')d\xi' - \int K(c;\xi)d\xi' f(\xi)$$

This leads Dolak and Schmeiser to choose

$$\mathcal{K}(c;\xi') = \mathbf{K}\Big(\underbrace{\frac{\partial c}{\partial t} + \xi' \cdot \nabla c}_{D_t c}\Big)$$

Example (very stiff)

$$\mathbf{K}(D_t c) = \begin{cases} k_- & \text{for } D_t c < 0, \\ k_+ < k_- & \text{for } D_t c > 0. \end{cases}$$

Singuler hyperbolic limit (James-Vauchelet)

Kinetic models : diffusion limit

$$\frac{\partial}{\partial t}f(t,x,\xi) + \xi \cdot \nabla_x f = \int K(c;\xi')f(\xi')d\xi' - \int K(c;\xi)d\xi' f(\xi)$$

With

$$K(c;\xi,\xi') = \mathbf{K}_{\varepsilon} \left(\underbrace{\frac{\partial c}{\partial t} + \xi' \cdot \nabla c}_{D_{t}c} \right)$$

the diffusion limit is the Flux Limited Keller-Segel system (BP, Vauchelet and Z. A. Wang

$$\begin{cases} \frac{\partial}{\partial t}n(t,x) - \Delta n(t,x) + \operatorname{div}(nU) = 0, \\ U = \phi(|\nabla c|) \nabla c \end{cases}$$

and $\phi(|\nabla c|)$ is smooth

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

$$\begin{cases} \frac{\partial}{\partial t}n(t,x) - \Delta n(t,x) + \operatorname{div}(nU_{\delta}) = r(1-n)n, \\ U_{\delta} = \phi_{\delta}(|\nabla c|) \nabla c, \qquad -\Delta c + \alpha c = n, \end{cases}$$

Numerical observation : forward left-center, backward-right

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

$$\begin{cases} \frac{\partial}{\partial t}n(t,x) - \Delta n(t,x) + \operatorname{div}(nU_{\delta}) = r(1-n)n, \\ U_{\delta} = \phi_{\delta}(|\nabla c|) \nabla c, \qquad -\Delta c + \alpha c = n, \end{cases}$$

Numerical observation : forward-left, backward-right

Competition between

- Fisher-KPP type of wave (propagating in the empty region)
- attraction where cells emit the chemoattractant

$$\frac{\partial}{\partial t}f(t,x,\xi) + \underbrace{\xi \cdot \nabla_x f}_{\text{run}} = \underbrace{\mathcal{K}_{\delta}[c,f]}_{\text{tumble}} + \underbrace{r(1 - n(x,t))f(t,x,\xi)}_{\text{cell division/death}},$$

$$\begin{cases} \frac{\partial}{\partial t}n(t,x) - \Delta n(t,x) + \operatorname{div}(nU_{\delta}) = r(1 - n)n, \\ U_{\delta} = \phi_{\delta}(|\nabla c|) \nabla c, \quad -\Delta c + \alpha c = n, \end{cases}$$

Theorem (BP, S. Yasuda)

- Both for the kinetic and FLKS models,
- for stiff response (δ small)

we have

- the steady state $n \equiv 1$ is linearly unstable
- in the sense of Turing (only bounded wave length)

Proof

$$\begin{cases} \frac{\partial}{\partial t}n(t,x) - \Delta n(t,x) + \operatorname{div}(n\phi_{\delta}(|\nabla c|) |\nabla c) = r(1-n)n, \\ -\Delta c + \alpha c = n, \end{cases}$$

Consider a perturbation

$$n = 1 + \delta_n e^{ix \cdot k} e^{\lambda t}, \qquad c = 1 + \delta_c e^{ix \cdot k} e^{\lambda t}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Proof

$$\begin{cases} \frac{\partial}{\partial t}n(t,x) - \Delta n(t,x) + \operatorname{div}(n\phi_{\delta}(|\nabla c|) |\nabla c) = r(1-n)n, \\ -\Delta c + \alpha c = n, \end{cases}$$

Consider a perturbation

$$n = 1 + \delta_n e^{i \times k} e^{\lambda t}, \qquad c = 1 + \delta_c e^{i \times k} e^{\lambda t}$$

One finds

$$\begin{cases} \lambda \delta_n + |k|^2 \delta_n - \phi(\mathbf{0})|k|^2 \delta_c = -r \delta_n \\ |k|^2 \delta_c + \alpha \delta_c = \delta_n \end{cases}$$

Proof

$$\begin{cases} \frac{\partial}{\partial t}n(t,x) - \Delta n(t,x) + \operatorname{div}(n\phi_{\delta}(|\nabla c|) |\nabla c) = r(1-n)n, \\ -\Delta c + \alpha c = n, \end{cases}$$

Consider a perturbation

$$n = 1 + \delta_n e^{i \times k} e^{\lambda t}, \qquad c = 1 + \delta_c e^{i \times k} e^{\lambda t}$$

One finds

λ

$$\begin{cases} \lambda \delta_n + |k|^2 \delta_n - \phi(0)|k|^2 \delta_c = -r \delta_n \\ |k|^2 \delta_c + \alpha \delta_c = \delta_n \end{cases}$$
$$= -(|k|^2 + r) + \phi(0) \frac{|k|^2}{\alpha + |k|^2} > 0 \quad \text{for } |k| \text{ moderate, } \phi(0) \text{ large}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Can one explain the tumbling rate

$$K(c;\xi,\xi') = \mathbf{K} \big(\frac{\partial c}{\partial t} + \xi' \cdot \nabla c \big)?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Can one explain the tumbling rate

$$K(c;\xi,\xi') = \mathbf{K} \left(\frac{\partial c}{\partial t} + \xi' \cdot \nabla c \right)?$$

Use the internal biochemical pathway controling tumbling,

 $f(t, x, \xi, m)$ m= receptor methylation level (internal state) c = external concentration

See Erban-Othmer, Dolak-Schmeiser, Zhu et al, Jiang et al

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\frac{\partial}{\partial t}f(t, x, \xi, m) + \xi \cdot \nabla_{x}f \underbrace{+ \frac{\partial}{\partial m}[R(m, c)f]}_{\text{Change in methylation level}} \mathcal{K}[m, c][f]$$

$$\mathcal{K}[m,c][f] = \int [\mathcal{K}(m,c,\xi,\xi')f(t,x,\xi',m) - \mathcal{K}(m,c,\xi',\xi)f(t,x,\xi,m)]d\xi'$$

Question : Can it be related to the tumbling kernel

$$K(c;\xi,\xi') = \mathbf{K} \left(\frac{\partial c}{\partial t} + \xi' \cdot \nabla c \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\frac{\partial}{\partial t}f(t,x,\xi,m) + \xi \cdot \nabla_x f + \frac{1}{\varepsilon}\frac{\partial}{\partial m}[\bar{R}(m-M(c))f] = \mathcal{K}_{\varepsilon}[m,c][f]$$

(fast adaptation)

$$\mathcal{K}_{\varepsilon}[m,c][f] = \int_{\xi'} \left[\mathcal{K}(\frac{m - \mathcal{M}(c)}{\varepsilon}, \xi, \xi') f(t, x, \xi', m) - \mathcal{K}(..., \xi', \xi) f(t, x, \xi, m) \right]$$
(stiff response)

Theorem : As $\varepsilon \to 0$, $f_{\varepsilon}(t, x, \xi, m) \to \overline{f}(t, x, \xi) \, \delta(m - M(c))$ and the tumbling kernel for $\overline{f}(t, x, \xi)$ is $\mathbf{K}(\frac{\partial c}{\partial t} + \xi' . \nabla c)$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\frac{\partial}{\partial t}f(t,x,\xi,m) + \xi \cdot \nabla_x f + \frac{1}{\varepsilon}\frac{\partial}{\partial m}[R(m,c)f] = \int \left[K(\frac{m-M(c)}{\varepsilon},\xi,\xi')f(t,x,\xi',m) - K(...,\xi',\xi)f(t,x,\xi,m)\right]d\xi'$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\frac{\partial}{\partial t}f(t,x,\xi,m) + \xi \cdot \nabla_x f + \frac{1}{\varepsilon}\frac{\partial}{\partial m}[R(m,c)f] = \int \left[K(\frac{m-M(c)}{\varepsilon},\xi,\xi')f(t,x,\xi',m) - K(...,\xi',\xi)f(t,x,\xi,m)\right]d\xi'$$
$$f(t,x,\xi,m) = \varepsilon q(t,x,\xi,\frac{m-M(c)}{\varepsilon}), \qquad y = \frac{m-M(c)}{\varepsilon}$$

$$\frac{\partial}{\partial t}f(t,x,\xi,m) + \xi \cdot \nabla_{x}f + \frac{1}{\varepsilon}\frac{\partial}{\partial m}[R(m,c)f] =$$

$$\int \left[K(\frac{m-M(c)}{\varepsilon},\xi,\xi')f(t,x,\xi',m) - K(...,\xi',\xi)f(t,x,\xi,m)\right]d\xi'$$

$$f(t,x,\xi,m) = \varepsilon q(t,x,\xi,\frac{m-M(c)}{\varepsilon}), \qquad y = \frac{m-M(c)}{\varepsilon}$$

$$\frac{\partial}{\partial t}q(t,x,\xi,y) + \xi \cdot \nabla_{x}f + \frac{1}{\varepsilon}\frac{\partial}{\partial y}[yG(y) - D_{t}M]q =$$

$$\int \left[K(y,\xi,\xi')q(t,x,\xi',y) - K(y,\xi',\xi)q(t,x,\xi,y)\right]d\xi'$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\frac{\partial}{\partial t}f(t,x,\xi,m) + \xi \cdot \nabla_x f + \frac{1}{\varepsilon}\frac{\partial}{\partial m}[R(m,c)f] =$$

$$\int \left[K(\frac{m-M(c)}{\varepsilon},\xi,\xi')f(t,x,\xi',m) - K(...,\xi',\xi)f(t,x,\xi,m)\right]d\xi'$$

$$f(t,x,\xi,m) = \varepsilon q(t,x,\xi,\frac{m-M(c)}{\varepsilon}), \qquad y = \frac{m-M(c)}{\varepsilon}$$

$$\frac{\partial}{\partial t}q(t,x,\xi,y) + \xi \cdot \nabla_x f + \frac{1}{\varepsilon}\frac{\partial}{\partial y}[yG(y) - D_tM]q =$$

$$\int \left[K(y,\xi,\xi')q(t,x,\xi',y) - K(y,\xi',\xi)q(t,x,\xi,y)\right]d\xi'$$
Forces $q \longrightarrow \delta(y - \frac{D_tM}{\varepsilon})$

Forces $q \longrightarrow o(y)$ $\overline{G(0)}$

m

ロト (四) (三) (三) (三) (三) (三) (二)

Biochemical pathways and FLKS

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\varepsilon^{2} \frac{\partial}{\partial t} f(t, x, \xi, m) + \varepsilon \xi \cdot \nabla_{x} f + \varepsilon \frac{\partial}{\partial m} [m - \xi \nabla c] f = K(m) \int [f(t, x, \xi', m) - f(t, x, \xi, m)] d\xi'$$

Theorem. With this scaling, f converges and we obtain the FLKS system.

Abnormal diffusions

ARTICLE

Received 28 Mar 2015 | Accepted 19 Aug 2015 | Published 25 Sep 2015

DOI: 10.1038/ncomms9396

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

OPEN

Swarming bacteria migrate by Lévy Walk

Gil Ariel¹, Amit Rabani², Sivan Benisty², Jonathan D. Partridge³, Rasika M. Harshey³ & Avraham Be'er²

$$\varepsilon^{1+\mu} \frac{\partial}{\partial t} g(t, x, \xi, m) + \varepsilon \xi \cdot \nabla_x g + \varepsilon^s \Delta_m g = \mathcal{K}[m][g]$$

When $\mathcal{K}[m][g]$ degenerates,

 $\mathcal{K}[m][g]\approx 0 \quad \text{as} \ m\rightarrow\infty,$

the limiting behaviour is Fractional Laplacian

$$\frac{\partial n}{\partial t} - \Delta^{\alpha} n = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The FLKS is a macroscopic model founded on the individual behaviour of *E. coli*

The FLKS exhibits robust traveling band solutions (inherited from the kinetic)

Pattern formation ability and instabilities are observed, even when including division/death terms

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thanks to :

- F. Chalub, P. Markowich, C. Schmeiser, N. Bournaveas, V. Calvez, S. Gutierrez
- A. Buguin, J. Saragosti, P. Silberzan (Curie Intitute)
- M. Tang, N. Vauchelet, Z. A. Wang
- S. Yasuda, W. Sun

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thanks to :

- F. Chalub, P. Markowich, C. Schmeiser, N. Bournaveas, V. Calvez, S. Gutierrez
- A. Buguin, J. Saragosti, P. Silberzan (Curie Intitute)
- M. Tang, N. Vauchelet, Z. A. Wang
- S. Yasuda, W. Sun

THANK YOU