Asymptotic stability of homogeneous equilibria for screened Vlasov-Poisson systems

Daniel Han-Kwan

CNRS \& École polytechnique
Palaiseau, France

Bordeaux
French-Korean conference
Nov 272019

Introduction

We consider the following Vlasov-Poisson system with screening :

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{x} f+E \cdot \nabla_{v} f=0, \quad t \geq 0,(x, v) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \\
E=-\nabla_{x} \phi, \\
\phi-\Delta_{x} \phi=\rho-1, \quad \rho=\int_{\mathbb{R}^{3}} f d v \\
\left.f\right|_{t=0}=f_{0} \geq 0 .
\end{array}\right.
$$

- Dynamics of charged particles (ions) in a plasma.
$f(t, x, v) \geq 0$: distribution function in phase space $\mathbb{R}^{3} \times \mathbb{R}^{3}$
$\rho(t, x)$: density of ions
$E(t, x)$: electric field
- Screening : Coulomb potential $\frac{1}{r} \hookrightarrow$ Yukawa potential $\frac{e^{-r}}{r}$.
- Equivalently, in Fourier space, low frequency regularization : $\frac{1}{|\xi|^{2}} \hookrightarrow \frac{1}{1+|\xi|^{2}}$.

The question of stability of homogeneous equilibria

Any $\mu(v) \geq 0$ (with the normalization $\int_{\mathbb{R}^{3}} \mu d v=1$) is a trivial stationary solution of the system (with $E=0$).

Main Question :

Asymptotic Stability of such homogeneous equilibria $\mu(v)$?

Remarks :

- There exist (linearly) unstable equilibria [Penrose, 1960].
- As $\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \mu d v d x=+\infty$: infinite mass solution.

Stability of the equilibrium $\mu=0$

Theorem 1 ([Bardos, Degond 1985])
Consider Vlasov-Poisson without the -1 . Assume f_{0} is compactly supported and

$$
\left\|f_{0}\right\|_{L_{x, v}^{\infty}}+\left\|\nabla_{x, v} f_{0}\right\|_{L_{x, v}^{\infty}} \ll 1
$$

Then there exists a unique global solution to the Vlasov-Poisson system, satisfying

$$
\|\rho(t)\|_{L_{x}^{\infty}}+\left\|\nabla_{x} \rho(t)\right\|_{L_{x}^{\infty}}+\|E(t)\|_{L_{x}^{\infty}} \searrow_{t t \rightarrow+\infty} 0,
$$

with algebraic decay.

Remarks :

- Originally written for Vlasov-Poisson without screening.
- Mainly based on dispersion for the free transport operator on \mathbb{R}^{3}.
- Higher derivatives : [Hwang, Rendall, Velázquez 2011], [Smulevici 2016] .
- In the screened case, works as well in 2D [Choi, Ha, Lee 2011].

Dispersion for the free transport equation

Lemma 1

Let f be the solution to

$$
\partial_{t} f+v \cdot \nabla_{x} f=0,\left.\quad f\right|_{t=0}=f_{0} \geq 0 .
$$

Then $\rho=\int_{\mathbb{R}^{3}} f d v$ satisfies for all $t>0$

$$
\begin{aligned}
\|\rho(t)\|_{L_{x}^{\infty}} & \leq \frac{1}{t^{3}}\left\|f_{0}\right\|_{L_{x}^{1} L_{v}^{\infty}}, \\
\|\rho(t)\|_{L_{x}^{p}} & \leq \frac{1}{t^{\frac{3}{p}}}\left\|f_{0}\right\|_{L_{x}^{1} L_{v}^{p}}, \\
\left\|\nabla_{x}^{k} \rho(t)\right\|_{L_{x}^{p}} & \lesssim \frac{1}{t^{k+\frac{3}{p^{p}}}}\left\|\nabla_{\psi}^{k} f_{0}\right\|_{L_{x}^{1} L_{v}^{p}} .
\end{aligned}
$$

Based on

$$
f(t, x, v)=f_{0}(x-t v, v) .
$$

Lagrangian structure of the Vlasov-Poisson system

- Introduce the characteristics curves $\left(X_{s, t}, V_{s, t}\right)$ solving

$$
\left\{\begin{aligned}
\frac{d}{d s} X_{s, t}(x, v) & =V_{s, t}(x, v), & & X_{t, t}(x, v)=x, \\
\frac{d}{d s} V_{s, t}(x, v) & =E\left(s, X_{s, t}(x, v)\right), & & V_{t, t}(x, v)=v .
\end{aligned}\right.
$$

- The solution to the Vlasov-Poisson system satisfies

$$
f(t, x, v)=f_{0}\left(X_{0, t}(x, v), V_{0, t}(x, v)\right)
$$

Ensuring that ($X_{0, t}, V_{0, t}$) is a small perturbation of the free flow yields the dispersive estimate

$$
\|\rho(t)\|_{L_{x}^{\infty}} \lesssim 1 / t^{3}
$$

hence the theorem (prove this by bootstrap).

Stability for non-trivial μ

Theorem 2 ([Bedrossian, Masmoudi, Mouhot 2018])
Assume μ satisfies the Penrose stability condition. Let $n \gg 1$. Let $k>\frac{3}{2}$. Assume

$$
\left\|\langle v\rangle^{k}\left(f_{0}-\mu\right)\right\|_{L_{x, v}^{2}}+\left\|\langle v\rangle^{k} \nabla_{x, v}^{n}\left(f_{0}-\mu\right)\right\|_{L_{x, v}^{2}} \ll 1 .
$$

Then there exists a unique global solution to the Vlasov-Poisson system, satisfying

$$
\begin{array}{rr}
\|\rho(t)-1\|+\|E(t)\| \searrow \backslash t \rightarrow+\infty \\
& 0, \\
\exists g_{\infty}(x, v), & \left\|(f-\mu)(t, x+t v, v)-g_{\infty}(x, v)\right\| \searrow \backslash t \rightarrow+\infty
\end{array}
$$

with algebraic decay.
Penrose stability condition : $\exists \kappa>0$,

$$
\inf _{\gamma \geq 0} \inf _{\tau \in \mathbb{R}, \xi \in \mathbb{R}^{3}}\left|1-\int_{0}^{+\infty} e^{i \tau t-\gamma t} \frac{i \xi}{1+|\xi|^{2}} \cdot \widehat{\nabla_{v} \mu}(\xi t) d t\right| \geq \kappa .
$$

Any radial and positive equilibrium μ satisfies the Penrose stability condition.

Remarks on the paper of Bedrossian-Masmoudi-Mouhot

- The proof is mainly based on Fourier analysis and inspired by the study of Landau damping (same stability problem set on $\mathbb{T}^{d} \times \mathbb{R}^{d}$) [Mouhot, Villani 2011], [Bedrossian, Masmoudi, Mouhot 2016].
- On \mathbb{T}^{d}, dispersion is replaced by phase mixing.
- On \mathbb{T}^{d}, the main obstruction to asymptotic stability are the so-called "plasma echoes" that correspond to certain resonances appearing in the study of nonlinearities. Their effect is tamed using high regularity solutions (Gevrey or analytic spaces).
- On \mathbb{R}^{d}, dispersion is used to show that these resonances are very rare.
- The proof is not simpler in the case $\mu=0$ or in higher dimensions.

Main result

Theorem 3 ([HK, Nguyen, Rousset])

Assume μ satisfies the Penrose stability condition.
Let $k>3$. Assume

$$
\left\|\langle v)^{k}\left(f_{0}-\mu\right)\right\|_{W^{1, \infty}}+\left\|f_{0}-\mu\right\|_{W^{1,1}}+\left\|f_{0}-\mu\right\|_{L_{x}^{1} L_{v}^{\infty}}+\left\|\nabla_{x, v}\left(f_{0}-\mu\right)\right\|_{L_{x}^{1} L_{v}^{\infty}} \ll 1 .
$$

Then there exists a unique global solution such that

$$
\|\rho(t)-1\|_{L^{1}}+\langle t\rangle\left\|\nabla_{x} \rho(t)\right\|_{L^{1}}+\langle t\rangle^{3}\|\rho(t)-1\|_{L^{\infty}}+\langle t\rangle^{4}\left\|\nabla_{x} \rho(t)\right\|_{L^{\infty}} \ll \log (2+t),
$$

and

$$
\exists g_{\infty}(x, v), \quad\left\|(f-\mu)(t, x+t v, v)-g_{\infty}(x, v)\right\|_{L^{\infty}} \ll \frac{\log (2+t)}{t^{2}} .
$$

Remarks on the result

- The strategy of the proof is based on the lagrangian structure of the Vlasov-Poisson system. It can be seen as a generalization of the Bardos-Degond result for $\mu=0$.
- It does not rely on the strategy developed for Landau damping on the torus. We completely avoid the study of plasma echoes.
- We only ask for an initial control of one derivative as in the Bardos-Degond result.

Lagrangian structure of the Vlasov-Poisson system

- Write $f(t, x, v)=\mu(v)+g(t, x, v)$. The perturbation satisfies

$$
\left\{\begin{array}{l}
\partial_{t} g+v \cdot \nabla_{x} g+E \cdot \nabla_{v} g=-E \cdot \nabla_{v} \mu, \\
E=-\nabla_{x} \phi, \\
\phi-\Delta_{x} \phi=\rho, \quad \rho=\int_{\mathbb{R}^{3}} g d v \\
\left.g\right|_{t=0}=g_{0} \quad\left(=f_{0}-\mu\right) .
\end{array}\right.
$$

- Duhamel formula :

$$
g(t, x, v)=g_{0}\left(X_{0, t}(x, v), V_{0, t}(x, v)\right)-\int_{0}^{t}\left(E \cdot \nabla_{v} \mu\right)\left(s, X_{s, t}(x, v), V_{s, t}(x, v)\right) d s
$$

- Compared to the case $\mu=0$, there is a source term. Rewrite this as

$$
\begin{aligned}
& \mathscr{L} g=g_{0}\left(X_{0, t}(x, v), V_{0, t}(x, v)\right) \\
& \quad+\int_{0}^{t} E(s, x-(t-s) v) \cdot \nabla_{v} \mu(v) d s-\int_{0}^{t}\left(E \cdot \nabla_{v} \mu\right)\left(s, X_{s, t}(x, v), V_{s, t}(x, v)\right) d s
\end{aligned}
$$

where \mathscr{L} is the linear operator defined as

$$
\mathscr{L} g:=g+\int_{0}^{t} E(s, x-(t-s) v) \cdot \nabla_{v} \mu(v) d s
$$

Comparison with Bedrossian-Masmoudi-Mouhot

$$
\mathscr{L} g:=g-\int_{0}^{t}\left[\nabla_{x}\left(1-\Delta_{x}\right)^{-1} \rho\right](s, x-(t-s) v) \cdot \nabla_{v} \mu(v) d s
$$

Whereas Bedrossian-Masmoudi-Mouhot rather see the Vlasov equation as

$$
\partial_{t} g+v \cdot \nabla_{x} g+E \cdot \nabla_{v} \mu=-E \cdot \nabla_{v} g
$$

getting

$$
\mathscr{L} g=g_{0}(x-t v, v)-\int_{0}^{t}\left(E \cdot \nabla_{v} g\right)(s, x-(t-s) v, v) d s
$$

we rely on the lagrangian structure of the system, yielding

$$
\begin{aligned}
\mathscr{L} g= & g_{0}\left(X_{0, t}(x, v), V_{0, t}(x, v)\right) \\
& +\int_{0}^{t} E(s, x-(t-s) v) \cdot \nabla_{v} \mu(v) d s-\int_{0}^{t}\left(E \cdot \nabla_{v} \mu\right)\left(s, X_{s, t}(x, v), V_{s, t}(x, v)\right) d s
\end{aligned}
$$

\rightarrow Same linearized operator, different way to write the source term.

Plan of the proof

The strategy is as follows :

- There is a preferred quantity in order to propagate global regularity for the Vlasov-Poisson system, that is the density

$$
\rho=\int_{\mathbb{R}^{3}} g d v
$$

- I) Obtain pointwise in time estimates on the L^{1} or L^{∞} norm of the density for the linear operator \mathscr{L}, saturating the dispersive estimates for the free flow.
- II) Bootstrap analysis
\rightarrow Prove that the characteristics are close to the free ones.
\rightarrow Use of elementary bilinear "dispersive" estimates to handle the nonlinear terms.

I) The linearized problem $(1 / 3)$

We study

$$
\mathscr{L} g=\mathscr{S}(t, x, v), \quad t>0 .
$$

Integrating in v and setting

$$
S(t, x):=\int_{\mathbb{R}^{3}} \mathscr{S}(t, x, v) d v,
$$

we obtain

$$
\rho(t, x)=\int_{0}^{t} \int_{\mathbb{R}^{d}}\left[\nabla_{x}\left(1-\Delta_{x}\right)^{-1} \rho\right](s, x-(t-s) v) \cdot \nabla_{v} \mu(v) d v d s+S(t, x), \quad t \geq 0
$$

with ρ and S extended by zero for $t<0$, so that we end up with

$$
\rho(t, x)=\int_{-\infty}^{+\infty} \int_{\mathbb{R}^{d}} \mathbb{1}_{(t-s) \geq 0}\left[\nabla_{x}\left(1-\Delta_{x}\right)^{-1} \rho\right](s, x-(t-s) v) \cdot \nabla_{v} \mu(v) d v d s+S(t, x),
$$

for all $t \in \mathbb{R}$.

I) The linearized problem ($2 / 3$)

Theorem 4

Assume μ satisfies the Penrose condition. Then, there exists $M>0$ such that for all $S \in L^{1}\left(\mathbb{R}, L^{1}\left(\mathbb{R}^{3}\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right)\right), \rho$ satisfies the estimates

$$
\begin{aligned}
\|\rho(t)\|_{L^{1}}+t^{3}\|\rho(t)\|_{L^{\infty}} & \leq M \log (1+t)\|S\|_{Y_{t}^{0}}, \\
t\|\nabla \rho(t)\|_{L^{1}}+t^{4}\|\nabla \rho(t)\|_{L^{\infty}} & \leq M \log (1+t)\|S\|_{Y_{t}^{1}},
\end{aligned}
$$

for $t \geq 1$, where

$$
\begin{aligned}
& \|S\|_{Y_{t}^{0}}=\sup _{[0, t]}\left(\|S(s)\|_{L^{1}}+(1+s)^{3}\|S(s)\|_{L^{\infty}}\right), \\
& \|S\|_{Y_{t}^{1}}=\sup _{[0, t]}\left(\|S(s)\|_{L^{1}}+(1+s)\|\nabla S(s)\|_{L^{1}}+(1+s)^{4}\|\nabla S(s)\|_{L^{\infty}}\right) .
\end{aligned}
$$

By-product : solutions to the linearized Vlasov-Poisson system

$$
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x}\left(1-\Delta_{x}\right)^{-1} \rho \cdot \nabla_{v} \mu=0,\left.\quad f\right|_{t=0}=f_{0}
$$

decay as solutions to free transport, up to a log loss.

I) The linearized problem (3/3)

Idea of the proof :

By the Penrose condition, we can rewrite the equation for ρ as

$$
\rho=S+G \star S,
$$

where \star denotes convolution in t and x, and

$$
\widehat{G}(\tau, \xi)=\frac{\int_{0}^{+\infty} e^{i \tau t} \frac{i \xi}{1+|\xi|^{2}} \cdot \widehat{\nabla_{v} \mu}(\xi t) d t}{1-\int_{0}^{+\infty} e^{i \tau t} \frac{i \xi}{1+|\xi|^{2}} \cdot \widehat{\nabla_{v} \mu}(\xi t) d t} .
$$

Prove pointwise in time decay estimates for the L^{1} or L^{∞} norm of G, using the fine properties of the symbols and Littlewood-Paley decomposition in time and space.

This allows to go "beyond" Hörmander-Mikhlin and Calderón-Zygmund theories for this operator (that would only yield $L_{t}^{p} L_{x}^{q}$ type estimates, for $1<p, q<+\infty$).

II) A glimpse of the Bootstrap analysis (1/2)

Set

$$
\mathscr{N}(t)=\sup _{[0, t]} \frac{1}{\log (2+s)}\left(\|\rho(s)\|_{L^{1}}+\langle s\rangle^{3}\|\rho(s)\|_{L^{\infty}}+\langle s\rangle\|\nabla \rho(s)\|_{L^{1}}+\langle s\rangle^{4}\|\nabla \rho(s)\|_{L^{\infty}}\right) .
$$

- Local well-posedness theory in Sobolev spaces for Vlasov-Poisson allows to set up a bootstrap analysis.
Let $T_{0}>0$ be the maximal existence time.
- For $\varepsilon>0$ small enough introduce

$$
T^{\star}:=\sup \left\{t \in\left(0, T_{0}\right), \mathscr{N}(t) \leq \varepsilon\right\}
$$

The goal is to show $T^{\star}=T_{0}=+\infty$.

II) A glimpse of the Bootstrap analysis (2/2)

Recall

$$
\begin{aligned}
\mathscr{L} g= & g_{0}\left(X_{0, t}(x, v), V_{0, t}(x, v)\right) \\
& \underbrace{\int_{0}^{t} E(s, x-(t-s) v) \cdot \nabla_{v} \mu(v) d s-\int_{0}^{t}\left(E \cdot \nabla_{v} \mu\right)\left(s, X_{s, t}(x, v), V_{s, t}(x, v)\right) d s}_{=: \mathscr{S}(t, x, v)}
\end{aligned}
$$

Thanks to the linear theorem

$$
\begin{aligned}
\mathscr{N}(t) & \lesssim \sup _{[0, t)}\|S\|_{Y_{s}^{0}}+\|S\|_{Y_{s}^{1}} \\
& \lesssim \varepsilon_{0}+\text { "what comes from the nonlinear term" } \\
& \lesssim \varepsilon_{0}+\varepsilon^{2} \quad \text {...hopefully... }
\end{aligned}
$$

To this end, prove that on $\left[0, T^{\star}\right)$, characteristics remain close to the free ones, and that they can be straightened up to a small error of order ε.

Thanks for your attention!

