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1. Introduction



Fluids and Partial Differential Equations

Dynamics of fluids is governed by the Navier-Stokes equations.



Incompressible Navier-Stokes equations on R3 × [0,∞):

∂v

∂t
+ (v · ∇)v = −∇p + ν∆v ,

div v = 0,

where 
v = (v1, v2, v3) = v(x , t), velocity

p = p(x , t), pressure

ν > 0, viscosity

By writing the equations in “dimensionless form” we can
replace ν ⇒ 1

Re , the Reynolds number, which represents the
degree of turbulence.

“Turbulent limit” : Re → +∞ ⇐⇒ ν → 0+

Formally setting ν = 0(Re = +∞) :
“Navier-Stokes equations ⇒ Euler equations”



In this talk we concentrat on the Euler equations.

(E )

∂v

∂t
+ (v · ∇)v = −∇p,

div v = 0,

Figure: L. Euler (1707-1783), Switzerland



Local existence and blow up of smooth solutions

For given smooth initial data v(·, 0) = v0 ∈ Hm(R3),m > 5/2,
the existence and uniquenes of local in time smooth solution
v ∈ C ([0,T );Hm(R3)) is well-known(e.g. Kato[JFA,’72]).

We say a local in time smooth solution v blows up at
T < +∞ if

lim sup
t↗T
‖v(t)‖Hm = +∞.



Blow up criteria

The proof of local in time existence by Kato leads to the
estimate,

d

dt
‖v(t)‖Hm ≤ c‖∇v(t)‖L∞‖v(t)‖Hm , m >

5

2
,

which, by Gronwall’s lemma, provides us with

‖v(t)‖Hm ≤ ‖v0‖Hm exp

(
c

∫ t

0
‖∇v(t)‖L∞dt

)
.

Therefore, we have the following immediate blow up criteria,

blow-up atT ⇔
∫ T

0
‖∇v(s)‖L∞ds = +∞.



Beale-Kato-Majda BKM criterion[’84]; Using the logarithmic
Sobolev inequality, one can replace ‖∇v(s)‖L∞ → ‖ω(s)‖L∞
in the above criteria to have

blow-up atT ⇔
∫ T

0
‖ω(s)‖L∞ds = +∞, ω = curl v

Constantin-Fefferman-Majda CFM [’96]; blow up in terms of
the direction of vorticity;

blow-up at T ⇔
∫ T

0
‖∇ξ(s)‖2L∞ds = +∞, ξ =

ω

|ω|



In this talk we are trying to answer to the following question.

Question In the above blow up criteria can we replace∫ T

0
‖∇v(t)‖L∞dt ⇒ sup

0<t<T
(T − t)‖∇v(t)‖L∞?

In other words,

sup
0<t<T

(T − t)‖∇v(t)‖L∞ < +∞ ⇒ no blow up at T?

Note that above quantities are “scaling invariant” as will be
explained below.



The scaling property of the Euler system

The Euler system (E) has scaling property that if (v , p) is a
solution, then for any λ > 0 and α ∈ R the functions

vλ,α(x , t) = λαv(λx , λα+1t), pλ,α(x , t) = λ2αp(λx , λα+1t)

are also solutions.

The case α =
3

2
is important for our analysis, since in this

case the energy is scaling invariant.

Indeed, by the energy conservation we have for vλ = vλ,
3
2 ,

‖vλ(t)‖L2 = ‖v(λ
5
2 t)‖L2 = ‖v(t)‖L2 .



Type I blow-up

Hereafter, for convenience we consider (E) in R3 × (−1, 0)
and T = 0 is the possible first blow-up time, and t = −1 is
the initial time .

We say solution v blowing up at t = 0 is of Type I if

sup
−1<t<0

(−t)‖∇v(t)‖L∞ < +∞.

The quantity is independent of scalings with α, λ.

Self-similar singularity is a special case of Type I blow up.

If
sup
−1<t<0

(−t)‖∇v(t)‖L∞ = +∞,

then we say it is of Type II .



Exclusion of small Type I blow up in R3

Type I blow up under ‘global’ smallness condition is easily
excluded.

Theorem (DC, JFA’07)

Let v ∈ C ([−1, 0);Hm(R3)),m > 5/2, be a solution to the Euler
equations. Then,

lim sup
t↗0

(−t)‖∇v(t)‖L∞(R3) < 1

⇒ lim sup
t↗0

‖v(t)‖Hm < +∞

and t = 0 is no blow-up time.



Outline of the proof

Small Type I condition implies there exists t0 ∈ (−1, 0) and
0 < c0 < 1 such that

sup
t0<s<0

(−s)‖∇v(s)‖L∞ ≤ c0.

The vorticity form of the Euler equations

∂tω + v · ∇ω = ω · ∇v

This gives us immediately the estimate

‖ω(t)‖L∞ ≤ ‖ω(t0)‖L∞ exp

(∫ t

t0

‖∇v(s)‖L∞ds
)

≤ ‖ω(t0)‖L∞ exp

(
c0

∫ t

t0

(−s)−1ds

)
= ‖ω(t0)‖L∞

( t0
t

)c0
∀t ∈ (t0, 0).

Since 0 < c0 < 1, we have
∫ 0
t0
‖ω(t)‖L∞dt < +∞, and by

BKM no blow up at 0. �



Exclusion of local small Type I blow up

The following is a recent localized version of the above
theorem.

Theorem (with J. Wolf, ARMA’18)

Let v ∈ L∞(−1, 0; L2(B(r))) ∩ C ([−1, 0);W 2,q(B(r))), q > 3 be a
solution to the Euler equations with for some 3 < q < +∞. Then,

lim sup
t↗0

(−t)‖∇v(t)‖L∞(B(r)) < 1

⇒ lim sup
t↗0

‖v(t)‖W 2, q(B(ρ)) < +∞

for all ρ ∈ (0, r). Namely, local small Type I implies non blow up.



Key idea of the proof:

In order to have estimates for ‖D2v(t)‖Lq(B(r)), q > 3 we
introduce the transform,

w(y , t) := v(y + (−t)θy , t), 0 < θ < 1

Then the new vorticity Ω = ∇× w solves the equation

∂tΩ +
θ(−t)θ−1

1 + (−t)θ
Ω +

θ(−t)θ−1

1 + (−t)θ
y · ∇Ω +

1

1 + (−t)θ
(w · ∇)Ω

=
1

1 + (−t)θ
Ω · ∇w in R3 × (−1, 0).

Choice of small θ is essential to obtain right sign condition to
ignore terms generated by y · ∇Ω.



2. Energy concentration and Type I blow up



Energy concentration and Type I blow up

Here we consider possibility of Type I blow up without
smallness condition.

We shall show that under Type I condition the energy
concentration in atomic form cannot happen at the blow-up
time.

Energy concentration in atomic form means that there exists
an atomic measure µ (i.e. µ({x}) > 0 for some x ∈ R3) such
that

|v(·, t)|2dx ⇀ µ as t → 0−

in the sense of measure.

Typical example is

|v(·, t)|2dx ⇀
∞∑
k=1

Ckδxk



Motivations for the study of energy concentration

Self-similar singularity in the energy conserving scale is an
example of Type I blow-up with one point energy
concentration. Removing this scenario has been open.

Concentration phenomena in the other equations:

Nonlinear Schödinger equations : blow-up with L2 norm
concentration [Merle-Tsutsumi’90, Merle’90]
Chemotaxis equations: blow-up with L1 norm concentration
[Herrero-Velázquez’96]



(i) Removing one point energy concentration

We first remove one point energy concentration under Type I.

Later, using the blow-up argument we remove general atomic
concentration.

Theorem (with J. Wolf, CMP’20)

Let v ∈ L∞(−1, 0; L2(R3)) ∩ L∞loc([−1, 0),W 1,∞(R3)) be a
solution to the Euler system, satisfying the following Type I
blow-up condition at t = 0, i.e.

lim sup
t→0

(−t)‖∇v(t)‖L∞ < +∞.

Suppose there happens:

|v(t)|2dx ⇀ cδ0 as t → 0,

Then v ≡ 0 and c = 0.



Outline of the Proof of the theorem

STEP 1 Decay estimates for the velocity

Lemma (A)

Let v ∈ L∞(−1, 0; L2(R3)) ∩ L∞loc([−1, 0),W 1,∞(R3)) be a
solution to the Euler equations satisfying the Type I condition,

lim sup
t→0

(−t)‖∇v(t)‖L∞ < +∞

and the energy concentrates at one point, i.e

|v(t)|2dx ⇀ cδ0 as t → 0.

Then for every 0 < β < 5 and t ∈ (−1, 0) it holds∫
R3

|v(t)|2|x |βdx ≤ c(−t)
2β
5 .



STEP 2 Fast decay estimates for the Helmholtz projection

Lemma (B)

Let v be a local smooth solution to the Euler equation on
R3 × [−1, 0) satisfying Type I condition and the energy
concentration at one point (x , t) = (0, 0).
Let Pr : L2(B(r)c) 7→ L2σ(B(r)c) be the Helmholtz projection.
Then, for all k ∈ N and for all r > 0 there exists c = c(k) such
that the following decay estimate holds

‖Prv(t)‖2L2(B(r)c ) ≤ c(k)(−t)
2k
5 r−k ∀ t ∈ (−1, 0)

The proof is more technical than Lemma (A).



STEP 3 Assuming Lemma (A), (B) to prove the theorem

We choose θ so that 0 < θ < 1
5 .

For a solution v to the Euler equations we transform:
v 7→ w ,

w(x , t) = v((−t)θx , t)

Then, w solves the transformed Euler system,

∂w

∂t
+ θ(−t)−1x · ∇w + (−t)−θ(w · ∇)w = −∇π,

∇ · w = 0.



Using the decay Lemma (A), (B), one can show that there
exists t0 ∈ (−1, 0) such that

∇× w(t) = 0 on B(1)c ∀t0 < t < 0.

Transforming back to the original vorticity, ω(t) = ∇× v(t) ,

suppω(t) ⊂ B((−t)θ) ∀t0 < t < 0.



Since the measure of suppω(t) is preserved due to the
Helmholtz formula for the vorticity,

ω(X (a, t), t) = ∇aX (a, t)ω0(a) ,

we have

meas{suppω(t0)} = meas{suppω(t)} ≤ c(−t)3θ → 0

as t → 0.

This is possible only if ω(t0) ≡ 0, and v(t0) is harmonic.

Since v(t0) ∈ L2(R3), we conclude that v(t0) ≡ 0 by the
Liouville theorem for harmonic function, and hence v ≡ 0.
Namely, one point energy concentration + Type I is
impossible! �



(ii) Exclusion of atomic concentration of energy

We use the blow-up argument to remove more general form of
atomic concentration under local Type I condition.

Theorem

Let v ∈ L∞(−1, 0; L2(R3)) ∩ L∞loc([−1, 0);W 1,∞(R3)) be a
solution of the Euler equations satisfying the Type I condition,

sup
t∈(−1,0)

(−t)‖∇v(t)‖L∞ < +∞ .

Suppose there exists σ0 ∈M(R3) such that

|v(t)|2dx → σ0 as t → 0−.

Then, σ0 is a non-atomic.



Outline of the proof

STEP 1 Local condition of energy non-concentration

We introduce the notion of suitable weak solution (v , p) of
(E): a weak solution satisfying the local energy inequality:∫
R3

|v(t)|2φdx ≤
∫
R3

|v(s)|2φdx +

∫ t

s

∫
R3

(|v |2 + 2p)v · ∇φdxdτ.

for all φ ∈ C∞c (R3) and for a.e. −1 ≤ t < s < 0.

Below we denote the ‘parabolic cylinder’ consistent with the
energy conserving scale, Q(R) := B(R)× (−R5/2, 0).



Energy non-concentration criterion

We first establish the following criterion of energy
non-concentration in terms of a Morrey norm.

Lemma (A)

Let v ∈ L∞(−R5/2, 0; L2(B(R))) ∩ L3(Q(R)) be a suitable weak
solution to the Euler equations and satisfy

lim sup
r→0+

r−1‖v‖3L3(Q(r)) < +∞, lim inf
r→0+

r−1‖v‖3L3(Q(r)) = 0

Then, there is no energy concentration of energy at (0, 0).



STEP 2 Blow up argument

We will show by contradiction argument as follows:
Assume atomic concentration⇒ Blow-up w.r.t. one atomic
point⇒ One-point concentration in R3 ⇒ contradiction to
previous result

We first note the following interpolation inequality,

(I∗) r−1‖v‖3L3(Q(r)) ≤ cK0r
− 5

2 ‖v‖2L2(Q(r))

+ cK
1
2
0 K

3
2
1

(
r−

5
2 ‖v‖2L2(Q(r))

) 1
2
,

where we set K0 := ‖v(t)‖L∞(−R5/2,0);L2(B(R)),
K1 := sup

t∈(−R
5
2 ,0)

(−t)‖∇v(t)‖L∞(B(R)), which are bounded

constants by the hypothesis.

Note also that
r−

5
2 ‖v‖2L2(Q(r)) ≤ ‖v‖L∞(−r5/2,0;L2(B(0,r)) < +∞.



Suppose there exists an atomic concentration, then Lemma
(A)-�, combined with the above interpolation inequality (I)
implies that there exists ε > 0 and a sequence rk → 0 such
that

lim inf
k→∞

r
− 5

2
k ‖v‖

2
L2(Q(rk ))

≥ ε.

Otherwise, contradiction to Lemma (A)-�!

We define a (blow-up) sequence

vk(x , t) = r
3
2
k v(rkx , r

5
2
k t).

Using Type I condition and the energy conservation, we can
deduce the following uniform bound for {vk},

‖vk‖L∞(−1,0;L2σ(R3)) + ‖vk‖L3([−1,0);Ẇ θ, 3(R3)) ≤ C

for all 0 < θ < 1
3 .



In the above we use the following norm for the fractional
derivatives(Sobolev-Slobodeckij semi-norm) in R3,

|f |Ẇ θ,p :=

(∫
R3

∫
R3

|f (x)− f (y)|p

|x − y |θp+3
dxdy

) 1
p

.

Taking the limit for a sub-sequence (by compactness lemma),

one can construct a non-trivial suitable weak solution to (E),

v∗ ∈ L∞(−1, 0; L2σ(R3)) ∩ L3([−1, 0); Ẇ θ, 3(R3)),.

satisfying the estimate

(∗) sup
r∈(0,R)

1

r1−3θ

0∫
−r

5
2

|v∗(t)|3
Ẇ θ, 3(B(r))

dt < +∞



Indeed, we have the following interpolation inequality:

sup
r∈(0,R)

1

r1−3θ

0∫
−r

5
2

|v(t)|3
Ẇ θ, 3(B(r))

dt

≤ c sup
r∈(0,R)

r−1‖v‖3L3(Q(r))

+c sup

−R
5
2<t<0

(−t)3‖∇v(t)‖3L∞(B(R)) < +∞

by the inequality (I∗) and Type I condition respectively, which
implies (*).



Moreover, for such limiting solution v∗ one can choose a
sequence of time tk ↗ 0 and a positive constant c0 > 0 such
that

|v∗(tk)|2dx ⇀ c0δ0 as k → +∞

in the sense of measure, namely one point concentration in R3

for the limiting solution!

Our previous exclusion theorem for one point energy
concentration in R3 with Type I blow-up condition implies
c0 = 0 , namely no atomic concentration .�



3. On Type I blow up for the axisymmetric
solutions



Axisymmetric Euler equations

We say v is an axisymmetric solution of the Euler equations if
it solves the Euler system, and can be written as

v = v r (r , x3, t)er + vθ(r , x3, t)eθ + v3(r , x3, t)e3,

where r =
√
x21 + x22 , and

er = (
x1
r
,
x2
r
, 0), eθ = (

x2
r
,
−x1
r
, 0), e3 = (0, 0, 1),

are the basis of the cylindrical coordinate system.



On Type I blow up for the axisymmetric solutions

Our theorem below is an improvement of the BKM theorem
off the axis local region.

Theorem (with J. Wolf [ARMA, ’19])

Let v ∈ C ([−1, 0);W 2, q(R3)) ∩ L∞(−1, 0; L2(R3)), q > 3 be an
axisymmetric solution to the Euler equations. If the following holds

0∫
−1

(−t)‖ω(t)‖L∞(B(x∗,R0))dt < +∞

for some ball B(x∗,R0), which is away from the axis, then there
exits no blow-up at t = 0 in the torus generated by the rotation of
B(x∗,R0) around the axis.



As an immediate consequence of this theorem we remove
some of Type II as well as Type I singularities in terms of the
vorticity blow-up rate off the axis .

Corollary

Let v ∈ C ([−1, 0);W 2, q(R3)) ∩ L∞(−1, 0; L2(R3)), 3 < q < +∞,
be an axisymmetric solution to the Euler equations. Suppose the
following vorticity blow-up rate condition holds

(∗) sup
t∈(−1,0)

(−t)2
[

log

(
1

−t

)]α
‖ω(t)‖L∞(B(x∗,R0)) < +∞

for some α > 1 and some ball B(x∗,R0). Then, no singularity at
t = 0 in the ball.

Indeed, if supt∈(−1,0)(−t)‖∇v(t)‖L∞(B(x∗,R0))<+∞(Type I),
then (*) is immediate, and no singularity in this case.



The Idea of the Proof:

The main task of proof is establishing local BKM type
criterion for the 2D Boussinesq system of (u, θ):

ut + u · ∇u = −∇p + θe2

θt + u · ∇θ = 0

∇ · u = 0

The vorticity form of which is
ωt + u · ∇ω = θx1 ,

θt + u · ∇θ = 0,

∇ · u = 0.



The 3D axisymmetric Euler system off the axis is equivalent
to the 2D Boussinesq system.

(Axisym. Euler)

 ∂tΩ + ṽ · ∇̃Ω =
∂3Θ

r4
,

∂tΘ + ṽ · ∇̃Θ = 0,

where

Θ = (rvθ)2, Ω =
ωθ

r
,

and
ṽ = v rer + v3e3, ∇̃ = er∂r + e3∂3.



The scaling property of the 2D Boussinesq system

In the 3D Euler eq the blow-up is controlled by the vorticity
ω, which has scaling

ω(x , t)→ λα+1ω(λx , λα+1t).

In the 2D Boussinesq eq the blow-up is controlled by ∇θ,
which has the scaling

∇θ(x , t)→ λ2α+2∇θ(λx , λα+1t).



Therefore the local ‘scaling invariant’ quantity to control the

blow-up off the axis region is ∇Θ ∼ ∇vθ ∼ ω̃
(Recall Θ = (rvθ)2 ), where

ω̃ = −∂3vθer + (∂rv
θ +

vθ

r
)e3.

One can actually observe∫ 0

−1
(−t)‖∇Θ(t)‖L∞(B(x0,R))dt ∼

∫ 0

−1
(−t)‖∇vθ(t)‖L∞(B(x0,R))dt

∼
∫ 0

−1
(−t)‖ω̃(t)‖L∞(B(x0,R))dt,



Global BKM-type criterion for the Boussinesq system

In the simpler case of the whole domain in R2, we have the
following global criterion.

Theorem (with J. Wolf [JNLS ’19])

Let q > 2, and (u, θ) ∈ C ([−1, 0);W 2,q(R2)) be a solution to the
Boussinesq system. If

0∫
−1

(−t)‖∇θ(t)‖L∞dt < +∞.

Then, no blow up at t = 0.



Local BKM type criterion for the Boussinesq system

In order to get the blow-up criterion in the axisymmetric Euler
equations off the axis region we need a localized BKM type
criterion of the Boussinesq system as follows.

Lemma (Local BKM type criterion for Boussinesq system)

Let q > 2, and
(u, θ) ∈ C ([−1, 0);W 2,q(B(1))), u ∈ Cw ([−1, 0]; L2(B(1))) be a
local classical solution to the 2D Boussinesq system.

If

∫ 0

−1
(−t)‖∇θ(t)‖L∞(B(1))dt +

∫ 0

−1
‖u(t)‖L∞(B(1))dt < +∞,

then, no blow-up at t = 0 on B(0, r) for all r < 1.

The proof uses the above idea, but is more technical.



4. Remarks on the discretely self-similar blow
up



We say v(x , t) is an (λ, α)−DSS function if
v(x , t) = λαv(λx , λα+1t) for all (x , t) ∈ R3 × (−∞, 0).

For (λ, α)−DSS function v(x , t) its profile V (y , s) is defined
by

v(x , t) = (−t)−
α

1+αV
(

(−t)−
1

1+α x ,− log(−t))
)
.

Previously the scenario of (λ, α)−DSS singularity is removed
for the Euler equations[DC, Math Ann.’15] for α > −1 under
the assumption,

sup
s∈R
|Ω(y , s)| = o(|y |−α−1), Ω = ∇× V ,



For one point DSS singularity the above decay is “almost
critical’, since for (λ, α)−DSS function v at singularity at
(0, 0), one can show that the curl of the profile satisfies

sup
s∈R
|Ω(y , s)| ≤ C

(|y |+ 1)α+1
.

In the previous part of the talk we removed (λ, 32)−DSS
singularity under the condition

V ∈ L∞(R; L2(R3)) ∩ L∞(R; Ẇ 1,∞(R3)).



The following is a substantial improvement of the above
results in the case α ≥ 3/2.

Theorem (with J. Wolf)

Let v be an (λ, α)−DSS solution of the Euler equations, and let
α ≥ 3

2 . If V satisfies the sub-linear growth condition,

sup
τ∈R
|V (y , τ)| = o(|y |) as |y | → +∞.

Then V (y , τ) = c(τ).

For the proof of the above theorem we establish new a priori
estimate for the solution of the Euler equations as follows.



Lemma

Let 0 < r < +∞. Let v ∈ C 1(R3 × [t0, t1)) be a solution to the
Euler equation. Then, there exists an harmonic function hr (·, t) on
B(r) and a constant c such that for all t0 < t < t1

r−5‖v(t)−∇hr (t)‖2L2(B(r))

≤ c‖v(t0)(r + |x |)−1‖2L∞(R3) exp

(
c

t∫
t0

‖v(s)(r + |x |)−1‖L∞(R3)ds

)
.

hr is the solution of the inhomogeneous Stokes system,{
−∆u +∇hr = v , ∇ · u = 0 in B(r)

u = 0 on ∂B(r)

In the case α > 3
2 the above theorem is an easy consequence

of the lemma, combined with the scaling argument.



Thank you!
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