On local existence results for generalized MHD equations

Hyunseok Kim

Department of Mathematics, Sogang University, Korea

2019 Inaugural Conference in Algebraic Geometry, Number Theory and Partial Differential Equations

November 25-27, 2019
Institut of Mathematics, University of Bordeaux, France

Joint work with Yong Zhou (Sun Yat-Sen University, Zhuhai)

Generalized MHD equations

- Consider the Cauchy problem for the generalized MHD equations:

$$
\left\{\begin{array}{cl}
u_{t}+(u \cdot \nabla) u+\nu \Lambda^{2 \alpha} u+\nabla p=(b \cdot \nabla) b & \text { in } \mathbb{R}^{d} \times(0, \infty) \tag{1}\\
b_{t}+(u \cdot \nabla) b+\eta \Lambda^{2 \beta} b=(b \cdot \nabla) u & \text { in } \mathbb{R}^{d} \times(0, \infty) \\
\operatorname{div} u=\operatorname{div} b=0 & \text { in } \mathbb{R}^{d} \times(0, \infty) \\
u(0)=u_{0}, \quad b(0)=b_{0} & \text { in } \mathbb{R}^{d} .
\end{array}\right.
$$

- Notations:
- $d \geq 2$: the spacial dimension, α, β : nonnegative constants
- $\nu \geq 0$: the viscosity constant, $\eta \geq 0$; the magnetic diffusivity
- $u: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}^{d}$: the velocity field, $b: \mathbb{R}^{d} \times[0, \infty) \rightarrow \mathbb{R}^{d}$: the magnetic field
- $p: \mathbb{R}^{d} \times(0, \infty) \rightarrow \mathbb{R}$: a scalar pressure
- $\Lambda^{s}=(-\Delta)^{s / 2}$: the fractional Laplacian of order $s \in \mathbb{R}$, defined via the Fourier transform by

$$
\widehat{\Lambda^{s} f}(\xi)=|\xi|^{s} \hat{f}(\xi)
$$

Sobolev spaces H^{s}

- Sobolev spaces $H^{s}:$ For $s \in \mathbb{R}$,

$$
H^{s}=H^{s}\left(\mathbb{R}^{d}\right)=\left\{f \in \mathcal{S}^{\prime} \mid J^{s} f \in L^{2}\right\},
$$

where $J^{s}=(I-\Delta)^{s / 2}$ is defined by

$$
\widehat{J^{s} f}(\xi)=\left(1+|\xi|^{2}\right)^{s / 2} \hat{f}(\xi) \quad\left(f \in \mathcal{S}^{\prime}\right)
$$

- H^{s} is a Hilbert space equipped with the inner product

$$
(u, v)_{H^{s}}=\left(J^{s} u, J^{s} v\right)=\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2}\right)^{s} \hat{u}(\xi) \overline{\hat{v}(\xi)} d \xi
$$

with (\cdot, \cdot) denoting the inner product on L^{2}.

- For $s \geq 0, H^{s}$ may be equipped with the following equivalent norm:

$$
\|u\|_{H^{s}}=\left(\|u\|^{2}+\left\|\Lambda^{s} u\right\|^{2}\right)^{1 / 2}=\left[\int_{\mathbb{R}^{d}}\left(1+|\xi|^{2 s}\right)|\hat{u}(\xi)|^{2} d \xi\right]^{1 / 2}
$$

where $\|\cdot\|$ denotes the usual L^{2}-norm.

Energy identities

- Energy identities in L^{2} :

Multiplying the equations in (1) by u and b, respectively, and using the divergence-free condition on u, we derive

$$
\frac{d}{d t}\left(\frac{1}{2}\|u\|^{2}\right)+\nu\left\|\Lambda^{\alpha} u\right\|^{2}=((b \cdot \nabla) b, u)
$$

and

$$
\frac{d}{d t}\left(\frac{1}{2}\|b\|^{2}\right)+\eta\left\|\Lambda^{\beta} b\right\|^{2}=((b \cdot \nabla) u, b) .
$$

Since b is divergence-free,

Hence setting $M_{0}=\left(\left\|u_{0}\right\|^{2}+\left\|b_{0}\right\|^{2}\right)^{1 / 2}$, we derive a global energy estimate

Energy identities

- Energy identities in L^{2} :

Multiplying the equations in (1) by u and b, respectively, and using the divergence-free condition on u, we derive

$$
\frac{d}{d t}\left(\frac{1}{2}\|u\|^{2}\right)+\nu\left\|\Lambda^{\alpha} u\right\|^{2}=((b \cdot \nabla) b, u)
$$

and

$$
\frac{d}{d t}\left(\frac{1}{2}\|b\|^{2}\right)+\eta\left\|\Lambda^{\beta} b\right\|^{2}=((b \cdot \nabla) u, b) .
$$

Since b is divergence-free,

$$
\frac{1}{2} \frac{d}{d t}\left(\|u\|^{2}+\|b\|^{2}\right)+\nu\left\|\Lambda^{\alpha} u\right\|^{2}+\eta\left\|\Lambda^{\beta} b(t)\right\|^{2}=0
$$

Hence setting $M_{0}=\left(\left\|u_{0}\right\|^{2}+\left\|b_{0}\right\|^{2}\right)^{1 / 2}$, we derive a global energy estimate

$$
\|u(t)\|^{2}+\|b(t)\|^{2}+2 \nu \int_{0}^{t}\left\|\Lambda^{\alpha} u(\tau)\right\|^{2} d \tau+2 \eta \int_{0}^{t}\left\|\Lambda^{\beta} b(\tau)\right\|^{2} d \tau \leq M_{0}^{2}
$$

for all $t \geq 0$.

Energy identities

- Energy identities in higher norms:

Multiplying the equations in (1) by $\Lambda^{2 s_{1}} u$ and $\Lambda^{2 s_{2}}$ b, respectively, we have

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|\Lambda^{s_{1}} u\right\|^{2}\right)+\nu\left\|\Lambda^{s_{1}+\alpha} u\right\|^{2}=-\left(\Lambda^{s_{1}}[(u \cdot \nabla) u], \Lambda^{s_{1}} u\right)+\left(\Lambda^{s_{1}}[(b \cdot \nabla) b], \Lambda^{s_{1}} u\right)
$$

and

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|\Lambda^{s_{2}} b\right\|^{2}\right)+\eta\left\|\Lambda^{s_{2}+\beta} b\right\|^{2}=-\left(\Lambda^{s_{2}}[(u \cdot \nabla) b], \Lambda^{s_{2}} b\right)+\left(\Lambda^{s_{2}}[(b \cdot \nabla) u], \Lambda^{s_{2}} b\right)
$$

Combining these with the L^{2}-energy identities, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left(\|u\|_{\left.H^{s_{1}}\right)+\nu\left\|\Lambda^{\alpha} u\right\|_{H^{s_{1}}}^{2}}\right. \\
& \quad=((b \cdot \nabla) b, u)-\left(\Lambda^{s_{1}}[(u \cdot \nabla) u], \Lambda^{s_{1}} u\right)+\left(\Lambda^{s_{1}}[(b \cdot \nabla) b], \Lambda^{s_{1}} u\right) \\
& \\
& \begin{aligned}
\frac{1}{2} \frac{d}{d t} & \left(\|b\|_{H^{s_{2}}}^{2}\right)+\eta\left\|\Lambda^{\beta} b\right\|_{H^{s_{2}}}^{2} \\
& =((b \cdot \nabla) u, b)-\left(\Lambda^{s_{2}}[(u \cdot \nabla) b], \Lambda^{s_{2}} b\right)+\left(\Lambda^{s_{2}}[(b \cdot \nabla) u], \Lambda^{s_{2}} b\right)
\end{aligned}
\end{aligned}
$$

Energy identities

and

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} & \left(\|u\|_{H^{s_{1}}}^{2}+\|b\|_{H^{s_{2}}}^{2}\right)+\nu\left\|\Lambda^{\alpha} u\right\|_{H^{s_{1}}}^{2}+\eta\left\|\Lambda^{\beta} b\right\|_{H^{s_{2}}}^{2} \\
= & -\left(\Lambda^{s_{1}}[(u \cdot \nabla) u], \Lambda^{s_{1}} u\right)+\left(\Lambda^{s_{1}}[(b \cdot \nabla) b], \Lambda^{s_{1}} u\right) \\
& -\left(\Lambda^{s_{2}}[(u \cdot \nabla) b], \Lambda^{s_{2}} b\right)+\left(\Lambda^{s_{2}}[(b \cdot \nabla) u], \Lambda^{s_{2}} b\right) .
\end{aligned}
$$

- To estimate each term of the right hand sides in the energy identities, we need to estimate the trilinear form

under various assumptions on vector fields u, v, w, and a nonnegative number s. An obvious way is to derive some product estimates, since

$$
\left(\Lambda^{s}[(u \cdot \nabla) v], \Lambda^{s} w\right) \leq\left\|\Lambda^{s}[(u \cdot \nabla) v]\right\|\left\|\Lambda^{s} w\right\|
$$

If u is divergence-free and $w=v$, then we may need commutator estimates, since

Energy identities

and

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} & \left(\|u\|_{H^{s_{1}}}^{2}+\|b\|_{H^{s_{2}}}^{2}\right)+\nu\left\|\Lambda^{\alpha} u\right\|_{H^{s_{1}}}^{2}+\eta\left\|\Lambda^{\beta} b\right\|_{H^{s_{2}}}^{2} \\
= & -\left(\Lambda^{s_{1}}[(u \cdot \nabla) u], \Lambda^{s_{1}} u\right)+\left(\Lambda^{s_{1}}[(b \cdot \nabla) b], \Lambda^{s_{1}} u\right) \\
& \quad-\left(\Lambda^{s_{2}}[(u \cdot \nabla) b], \Lambda^{s_{2}} b\right)+\left(\Lambda^{s_{2}}[(b \cdot \nabla) u], \Lambda^{s_{2}} b\right) .
\end{aligned}
$$

- To estimate each term of the right hand sides in the energy identities, we need to estimate the trilinear form

$$
\left(\Lambda^{s}[(u \cdot \nabla) v], \Lambda^{s} w\right)
$$

under various assumptions on vector fields u, v, w, and a nonnegative number s.
An obvious way is to derive some product estimates, since

$$
\left(\Lambda^{s}[(u \cdot \nabla) v], \Lambda^{s} w\right) \leq\left\|\Lambda^{s}[(u \cdot \nabla) v]\right\|\left\|\Lambda^{s} w\right\| .
$$

If u is divergence-free and $w=v$, then we may need commutator estimates, since

$$
\begin{aligned}
{\left[\left(\Lambda^{s}[(u \cdot \nabla) v], \Lambda^{s} v\right)\right.} & =\left(\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla) \Lambda^{s} v, \Lambda^{s} v\right) \\
& \leq\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla) \Lambda^{s} v\right\|\left\|\Lambda^{s} v\right\| .
\end{aligned}
$$

Some known results in H^{s}

- Assuming that $\nu>0, \eta>0, \alpha>0$, and $\beta>0$, J. Wu (2003) proved global existence of a solution

$$
u \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{\alpha}\right), \quad b \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{\beta}\right)
$$

for any divergence-free $\left(u_{0}, b_{0}\right) \in L^{2} \times L^{2}$, where T is any finite time.
Moreover, if $\alpha, \beta \geq 1 / 2+d / 4$ and $\left(u_{0}, b_{0}\right) \in H^{s} \times H^{s}$ with $s \geq \max \{2 \alpha, 2 \beta\}$, then

$$
u \in L^{\infty}\left(0, T ; H^{s}\right) \cap L^{2}\left(0, T ; H^{s+\alpha}\right), \quad b \in L^{\infty}\left(0, T ; H^{s}\right) \cap L^{2}\left(0, T ; H^{s+\beta}\right)
$$

- Assuming that $\nu=\eta=0$, P. G. Schmidt (1988) proved local existence of a unique solution
for $m \in \mathbb{N}$ with $m>1+d / 2$.
nemark. (i) The integen man be replaced by any real $s>1+d / 2$.
(ii) A key tool is the following product estimate:

Some known results in H^{s}

- Assuming that $\nu>0, \eta>0, \alpha>0$, and $\beta>0$, J. Wu (2003) proved global existence of a solution

$$
u \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{\alpha}\right), \quad b \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{\beta}\right)
$$

for any divergence-free $\left(u_{0}, b_{0}\right) \in L^{2} \times L^{2}$, where T is any finite time.
Moreover, if $\alpha, \beta \geq 1 / 2+d / 4$ and $\left(u_{0}, b_{0}\right) \in H^{s} \times H^{s}$ with $s \geq \max \{2 \alpha, 2 \beta\}$, then

$$
u \in L^{\infty}\left(0, T ; H^{s}\right) \cap L^{2}\left(0, T ; H^{s+\alpha}\right), \quad b \in L^{\infty}\left(0, T ; H^{s}\right) \cap L^{2}\left(0, T ; H^{s+\beta}\right)
$$

- Assuming that $\nu=\eta=0$, P. G. Schmidt (1988) proved local existence of a unique solution

$$
(u, b) \in L^{\infty}\left(0, T_{*} ; H^{m}\right)
$$

for $m \in \mathbb{N}$ with $m>1+d / 2$.
Remark. (i) The integer m can be replaced by any real $s>1+d / 2$.
(ii) A key tool is the following product estimate:

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]\right\| \leq C\|u\|_{H^{s}}\|\nabla v\|_{H^{s}} \quad \text { if } s>\frac{d}{2}
$$

Some known results in H^{s}

- Assuming that $\nu>0, \eta=0$, and $\alpha=1$, C. Fefferman, D.S. McCormick, J.C. Robinson, and J.L. Rodrigo (2014) proved local existence of a unique solution

$$
u \in L^{\infty}\left(0, T_{*} ; H^{s}\right) \cap L^{2}\left(0, T_{*} ; H^{s+1}\right), \quad b \in L^{\infty}\left(0, T_{*} ; H^{s}\right)
$$

for $s>d / 2$.
Remark. A key tool is the following commutator estimate:

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla)\left(\Lambda^{s} v\right)\right\| \leq C\|\nabla u\|_{H^{s}}\|v\|_{H^{s}} \quad \text { if } s>\frac{d}{2}
$$

which refines the classical one due to T. Kato and G. Ponce (1988):

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla)\left(\Lambda^{s} v\right)\right\| \leq C\left(\|\nabla u\|_{H^{s}}\|v\|_{H^{s}}+\|u\|_{H^{s}}\|\nabla v\|_{H^{s}}\right)
$$

for $s>\frac{d}{2}$.

- C. Fefferman, D.S. McCormick, J.C. Robinson, and J.L. Rodrigo (2017) also proved local existence of a solution
\qquad

Some known results in H^{s}

- Assuming that $\nu>0, \eta=0$, and $\alpha=1$, C. Fefferman, D.S. McCormick, J.C. Robinson, and J.L. Rodrigo (2014) proved local existence of a unique solution

$$
u \in L^{\infty}\left(0, T_{*} ; H^{s}\right) \cap L^{2}\left(0, T_{*} ; H^{s+1}\right), \quad b \in L^{\infty}\left(0, T_{*} ; H^{s}\right)
$$

for $s>d / 2$.
Remark. A key tool is the following commutator estimate:

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla)\left(\Lambda^{s} v\right)\right\| \leq C\|\nabla u\|_{H^{s}}\|v\|_{H^{s}} \quad \text { if } s>\frac{d}{2}
$$

which refines the classical one due to T. Kato and G. Ponce (1988):

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla)\left(\Lambda^{s} v\right)\right\| \leq C\left(\|\nabla u\|_{H^{s}}\|v\|_{H^{s}}+\|u\|_{H^{s}}\|\nabla v\|_{H^{s}}\right)
$$

for $s>\frac{d}{2}$.

- C. Fefferman, D.S. McCormick, J.C. Robinson, and J.L. Rodrigo (2017) also proved local existence of a solution

$$
u \in L^{\infty}\left(0, T_{*} ; H^{s_{1}}\right) \cap L^{2}\left(0, T_{*} ; H^{s_{1}+1}\right), \quad b \in L^{\infty}\left(0, T_{*} ; H^{s_{2}}\right)
$$

for $s_{2}>d / 2$ and $s_{2}-1<s_{1} \leq s_{2}$, using the parabolicity of the equation for the velocity field u.

Some known results in H^{s}

Remark. A key tool is the following estimate: if u is a solution of the heat equation

$$
u_{t}-\nu \Delta u=g \quad \text { in } \mathbb{R}^{d} \times(0, T), \quad u(0)=u_{0} \quad \text { in } \mathbb{R}^{d},
$$

then

$$
\int_{0}^{T}\|u(t)\|_{H^{s_{2}+1}} d t \leq C T^{\frac{s_{1}+1-s_{2}}{2}}\left\|u_{0}\right\|_{H^{s_{1}}}+C T^{1-\frac{1}{r}}\|g\|_{L^{r}\left(0, T ; H^{s_{2}-1}\right)}
$$

for $1<r<\infty$, provided that $s_{2}>d / 2$ and $s_{2}-1<s_{1} \leq s_{2}$.

- Assuming that $\nu>0$ and $\eta>0$, J. Jiang, C. Ma, and Y. Zhou (preprint) proved local existence of a unique solution

$$
(u, b) \in L^{\infty}\left(0, T_{*} ; H^{s}\right)
$$

for $s>\max \{d / 2+1-\alpha, 1\}$.
Remark. A kev tool is the following commutator estimate:
for $\gamma>\frac{d}{2}$ and $1<s \leq \gamma$; the case $\gamma=s$ was due to Fefferman et al. (2014).

Some known results in H^{s}

Remark. A key tool is the following estimate: if u is a solution of the heat equation

$$
u_{t}-\nu \Delta u=g \quad \text { in } \mathbb{R}^{d} \times(0, T), \quad u(0)=u_{0} \quad \text { in } \mathbb{R}^{d}
$$

then

$$
\int_{0}^{T}\|u(t)\|_{H^{s_{2}+1}} d t \leq C T^{\frac{s_{1}+1-s_{2}}{2}}\left\|u_{0}\right\|_{H^{s_{1}}}+C T^{1-\frac{1}{r}}\|g\|_{L^{r}\left(0, T ; H^{s_{2}-1}\right)}
$$

for $1<r<\infty$, provided that $s_{2}>d / 2$ and $s_{2}-1<s_{1} \leq s_{2}$.

- Assuming that $\nu>0$ and $\eta>0$, J. Jiang, C. Ma, and Y. Zhou (preprint) proved local existence of a unique solution

$$
(u, b) \in L^{\infty}\left(0, T_{*} ; H^{s}\right)
$$

for $s>\max \{d / 2+1-\alpha, 1\}$.
Remark. A key tool is the following commutator estimate:

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla)\left(\Lambda^{s} v\right)\right\| \leq C\|u\|_{H^{\gamma+1}}\|v\|_{H^{s}}
$$

for $\gamma>\frac{d}{2}$ and $1<s \leq \gamma$; the case $\gamma=s$ was due to Fefferman et al. (2014).

Our result for $\nu>0$ and $\eta=0$

Theorem [K.-Zhou]. Let $\nu>0$ and $\eta=0$. Suppose that $\alpha \geq 0, s_{1} \geq 0$, and $s_{2}>0$ satisfy one of the following conditions:
(i) $\alpha \geq 1, s_{2}>d / 2$, and $s_{2}-\alpha<s_{1} \leq s_{2}$.
(ii) $\alpha>1, s_{1}+\alpha>d / 2+1$, and $s_{1} \leq s_{2} \leq s_{1}+\alpha-1$.
(iii) $0 \leq \alpha<1$ and $s_{1}=s_{2}>d / 2+1-\alpha$.

Then for every $\left(u_{0}, b_{0}\right) \in H^{s_{1}} \times H^{s_{2}}$ with $\operatorname{div} u_{0}=\operatorname{div} b_{0}=0$, there exists $T_{*}>0$ such that the Cauchy problem (1) has a solution

$$
u \in L^{\infty}\left(0, T_{*} ; H^{s_{1}}\right) \cap L^{2}\left(0, T_{*} ; H^{s_{1}+\alpha}\right), \quad b \in L^{\infty}\left(0, T_{*} ; H^{s_{2}}\right) .
$$

Remark. The conditions of the theorem are satisfied, in particular, for each of the following cases:

Our result for $\nu>0$ and $\eta=0$

Theorem [K.-Zhou]. Let $\nu>0$ and $\eta=0$. Suppose that $\alpha \geq 0, s_{1} \geq 0$, and $s_{2}>0$ satisfy one of the following conditions:
(i) $\alpha \geq 1, s_{2}>d / 2$, and $s_{2}-\alpha<s_{1} \leq s_{2}$.
(ii) $\alpha>1, s_{1}+\alpha>d / 2+1$, and $s_{1} \leq s_{2} \leq s_{1}+\alpha-1$.
(iii) $0 \leq \alpha<1$ and $s_{1}=s_{2}>d / 2+1-\alpha$.

Then for every $\left(u_{0}, b_{0}\right) \in H^{s_{1}} \times H^{s_{2}}$ with $\operatorname{div} u_{0}=\operatorname{div} b_{0}=0$, there exists $T_{*}>0$ such that the Cauchy problem (1) has a solution

$$
u \in L^{\infty}\left(0, T_{*} ; H^{s_{1}}\right) \cap L^{2}\left(0, T_{*} ; H^{s_{1}+\alpha}\right), \quad b \in L^{\infty}\left(0, T_{*} ; H^{s_{2}}\right) .
$$

Remark. The conditions of the theorem are satisfied, in particular, for each of the following cases:
(i) If $\alpha>d / 2+1$, then $s_{1} \geq 0, s_{2}>0$, and $s_{1} \leq s_{2} \leq s_{1}+\alpha-1$.
(ii) If $d / 2<\alpha \leq d / 2+1$, then $1 \leq s_{1} \leq s_{2} \leq s_{1}+\alpha-1$ or $0 \leq s_{1} \leq d / 2<s_{2}<\alpha$.
(iii) If $1<\alpha \leq d / 2$, then $d / 2 \leq s_{1} \leq s_{2} \leq s_{1}+\alpha-1$ or $d / 2-1 \leq s_{1} \leq d / 2<s_{2}<d / 2+\alpha-1$.
(iv) If $\alpha=1$, then $d / 2-1<s_{1} \leq d / 2<s_{2}<s_{1}+1$.

Our result for $\nu>0$ and $\eta>0$

Theorem [K.-Zhou]. Let $\nu>0$ and $\eta>0$. Suppose that $\alpha \geq 0, \beta \geq 0, s_{1} \geq 0$, and $s_{2} \geq 0$ satisfy one of the following conditions:
(i) $\alpha \geq 1, s_{2}>d / 2$, and $s_{2}-\alpha<s_{1} \leq s_{2}$.
(ii) $\alpha \geq 1, \beta>1, s_{2}+\beta>d / 2+1$, and $s_{2}+\beta-1-\alpha<s_{1} \leq s_{2}+\beta-1$.
(iii) $\alpha \geq 1,(\alpha, \beta) \neq(1,0), s_{1}+\alpha>d / 2+1$, and $s_{1}-\beta / 2<s_{2} \leq s_{1}+\alpha-1$.
(iv) $\alpha+\beta \geq 2, s_{1}+\alpha>d / 2+1, s_{2}+\beta>d / 2+1$, and $s_{1}+1-\beta \leq s_{2} \leq s_{1}+\alpha-1$.
(v) $\beta \geq 1, \alpha+\beta \geq 2, s_{1}+\alpha>d / 2+1$, and $s_{1}+\alpha-1<s_{2}<s_{1}+\alpha$.
(vi) $\beta \geq 1,1<\alpha+\beta<2, s_{1}+\alpha>d / 2+1$, and $s_{1}+1-\beta \leq s_{2}<s_{1}+\alpha$.
(vii) $0 \leq \alpha \leq 1,0 \leq \beta \leq 1,(\alpha, \beta) \neq(1,1)$, and $s_{1}=s_{2}>d / 2+1-\alpha$.

Then for every $\left(u_{0}, b_{0}\right) \in H^{s_{1}} \times H^{s_{2}}$ with $\operatorname{div} u_{0}=\operatorname{div} b_{0}=0$, there exists $T_{*}>0$ such that the Cauchy problem (1) has a solution

$$
\begin{aligned}
& u \in L^{\infty}\left(0, T_{*} ; H^{s_{1}}\right) \cap L^{2}\left(0, T_{*} ; H^{s_{1}+\alpha}\right) \\
& b \in L^{\infty}\left(0, T_{*} ; H^{s_{2}}\right) \cap L^{2}\left(0, T_{*} ; H^{s_{2}+\beta}\right)
\end{aligned}
$$

Our result for $\nu>0$ and $\eta>0$

Remark. Assume that $\nu>0, \eta>0$, and $\beta=1$. Then the conditions of the theorem are reduced as follows:
(i) $\alpha \geq 1, s_{2}>d / 2$, and $s_{2}-\alpha<s_{1} \leq s_{2}$.
(ii) $\alpha \geq 1, s_{1}+\alpha>d / 2+1$, and $s_{1}-1 / 2<s_{2}<s_{1}+\alpha$.
(iii) $0<\alpha<1, s_{1}+\alpha>d / 2+1$, and $s_{1} \leq s_{2}<s_{1}+\alpha$.
(iv) $\alpha=0$ and $s_{1}=s_{2}>d / 2+1$.

In addition, if $\alpha=1$, then these conditions are reduced as:
(i) $s_{2}>d / 2$ and $s_{2}-1<s_{1} \leq s_{2}$.
(ii) $s_{1}>d / 2$ and $s_{1}-1 / 2<s_{2}<s_{1}+1$

Note that the condition (i) is exactly the same as the case $\eta=0$ and (ii) is a new one, due to the parabolicity of the equation for the magnetic field b.

Our result for $\nu>0$ and $\eta>0$

Remark. Assume that $\nu>0, \eta>0$, and $\beta=1$. Then the conditions of the theorem are reduced as follows:
(i) $\alpha \geq 1, s_{2}>d / 2$, and $s_{2}-\alpha<s_{1} \leq s_{2}$.
(ii) $\alpha \geq 1, s_{1}+\alpha>d / 2+1$, and $s_{1}-1 / 2<s_{2}<s_{1}+\alpha$.
(iii) $0<\alpha<1, s_{1}+\alpha>d / 2+1$, and $s_{1} \leq s_{2}<s_{1}+\alpha$.
(iv) $\alpha=0$ and $s_{1}=s_{2}>d / 2+1$.

In addition, if $\alpha=1$, then these conditions are reduced as:
(i) $s_{2}>d / 2$ and $s_{2}-1<s_{1} \leq s_{2}$.
(ii) $s_{1}>d / 2$ and $s_{1}-1 / 2<s_{2}<s_{1}+1$.

Note that the condition (i) is exactly the same as the case $\eta=0$ and (ii) is a new one, due to the parabolicity of the equation for the magnetic field b.

Tools of the proof: embedding results

- Sobolev embedding results:

Lemma.

(i) If $0 \leq s<d / 2$, then $H^{s} \hookrightarrow L^{2 d /(d-2 s)}$.
(ii) If $s>d / 2$, then $H^{s} \hookrightarrow L^{\infty}$.
(iii) If $s>0,2 \leq p<\infty$, and $1 / p \geq 1 / 2-s / d$, then $H^{s} \hookrightarrow L^{p}$.

Proof of (iii). Suppose that $s>0,2 \leq p<\infty$, and $1 / p \geq 1 / 2-s / d$.
If $s<d / 2$, then
where $0 \leq \theta \leq 1$ is defined by $1 / p=1 / 2-\theta s / d$.
If $s>d / 2$ then choosing $n<s_{0}<d / 2$ with $1 / n=1 / 2-s_{0} / d$, we have

Tools of the proof: embedding results

- Sobolev embedding results:

Lemma.

(i) If $0 \leq s<d / 2$, then $H^{s} \hookrightarrow L^{2 d /(d-2 s)}$.
(ii) If $s>d / 2$, then $H^{s} \hookrightarrow L^{\infty}$.
(iii) If $s>0,2 \leq p<\infty$, and $1 / p \geq 1 / 2-s / d$, then $H^{s} \hookrightarrow L^{p}$.

Proof of (iii). Suppose that $s>0,2 \leq p<\infty$, and $1 / p \geq 1 / 2-s / d$.
If $s<d / 2$, then

$$
\|u\|_{L^{p}} \leq\|u\|_{L^{2}}^{1-\theta}\|u\|_{L^{\frac{2 d}{d-2 s}}}^{\theta} \leq C\|u\|_{H^{s}}
$$

where $0 \leq \theta \leq 1$ is defined by $1 / p=1 / 2-\theta s / d$.
If $s \geq d / 2$, then choosing $0 \leq s_{0}<d / 2$ with $1 / p=1 / 2-s_{0} / d$, we have

$$
\|u\|_{L^{p}} \leq C\|u\|_{H^{s_{0}}} \leq C\|u\|_{H^{s}}
$$

Tools of the proof: embedding results

- A joint embedding result:

Lemma. Suppose that $s_{1} \geq 0, s_{2} \geq 0$, and $s_{1}+s_{2}>d / 2$. Then there exists a pair (p, q) with $2 \leq p, q \leq \infty$ and $1 / p+1 / q=1 / 2$ such that

$$
H^{s_{1}} \hookrightarrow L^{p} \quad \text { and } \quad H^{s_{2}} \hookrightarrow L^{q}
$$

Proof. If $s_{1}=0$ or $s_{2}=0$, then the lemma follows from the previous embedding lemma (ii) by taking $(p, q)=(2, \infty)$ or $(p, q)=(\infty, 2)$.

Suppose that $s_{1}>0$ and $s_{2}>0$. Then since $d / 2<s_{1}+s_{2}$, there exists $2<p<\infty$ such that

If $q=2 p /(p-2)$, then

Hence the desired estimates immediately follow from the embedding lemma (iii).

Tools of the proof: embedding results

- A joint embedding result:

Lemma. Suppose that $s_{1} \geq 0, s_{2} \geq 0$, and $s_{1}+s_{2}>d / 2$. Then there exists a pair (p, q) with $2 \leq p, q \leq \infty$ and $1 / p+1 / q=1 / 2$ such that

$$
H^{s_{1}} \hookrightarrow L^{p} \quad \text { and } \quad H^{s_{2}} \hookrightarrow L^{q}
$$

Proof. If $s_{1}=0$ or $s_{2}=0$, then the lemma follows from the previous embedding lemma (ii) by taking $(p, q)=(2, \infty)$ or $(p, q)=(\infty, 2)$.

Suppose that $s_{1}>0$ and $s_{2}>0$. Then since $d / 2<s_{1}+s_{2}$, there exists $2<p<\infty$ such that

$$
\max \left\{\frac{1}{2}-\frac{s_{1}}{d}, 0\right\}<\frac{1}{p}<\min \left\{\frac{1}{2}, \frac{s_{2}}{d}\right\} .
$$

If $q=2 p /(p-2)$, then

$$
2<q<\infty \quad \text { and } \quad \frac{1}{q}=\frac{1}{2}-\frac{1}{p}>\frac{1}{2}-\frac{s_{2}}{d}
$$

Hence the desired estimates immediately follow from the embedding lemma (iii).

Tools of the proof: product and commutator estimates

- The classical estimates due to Kato and Ponce (1988, 1991):

Theorem. Let $s \geq 0$ and $1<p<\infty$. Suppose that $1<p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$ satisfy

$$
\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}
$$

Then for all $f, g \in \mathcal{S}$,

$$
\left\|\Lambda^{s}(f g)\right\|_{L^{p}} \leq C\left(\|f\|_{L^{p_{1}}}\left\|J^{s} g\right\|_{L^{q_{1}}}+\left\|J^{s} f\right\|_{L^{p_{2}}}\|g\|_{L^{q_{2}}}\right)
$$

and

$$
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\|_{L^{p}} \leq C\left(\|\nabla f\|_{L^{p_{1}}}\left\|J^{s-1} g\right\|_{L^{q_{1}}}+\left\|J^{s} f\right\|_{L^{p_{2}}}\|g\|_{L^{q_{2}}}\right)
$$

where $C=C\left(d, s, p, p_{1}, p_{2}\right)$.

Remark. Assume that $s=\gamma>d / 2$. Then since $H^{\gamma} \hookrightarrow L^{\infty}$, we have
and

Tools of the proof: product and commutator estimates

- The classical estimates due to Kato and Ponce (1988, 1991):

Theorem. Let $s \geq 0$ and $1<p<\infty$. Suppose that $1<p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$ satisfy

$$
\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{q_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}
$$

Then for all $f, g \in \mathcal{S}$,

$$
\left\|\Lambda^{s}(f g)\right\|_{L^{p}} \leq C\left(\|f\|_{L^{p_{1}}}\left\|J^{s} g\right\|_{L^{q_{1}}}+\left\|J^{s} f\right\|_{L^{p_{2}}}\|g\|_{L^{q_{2}}}\right)
$$

and

$$
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\|_{L^{p}} \leq C\left(\|\nabla f\|_{L^{p_{1}}}\left\|J^{s-1} g\right\|_{L^{q_{1}}}+\left\|J^{s} f\right\|_{L^{p_{2}}}\|g\|_{L^{q_{2}}}\right)
$$

where $C=C\left(d, s, p, p_{1}, p_{2}\right)$.

Remark. Assume that $s=\gamma>d / 2$. Then since $H^{\gamma} \hookrightarrow L^{\infty}$, we have

$$
\left\|\Lambda^{\gamma}(f g)\right\| \leq C\left(\|f\|_{L^{\infty}}\left\|J^{\gamma} g\right\|_{L^{2}}+\left\|J^{\gamma} f\right\|_{L^{2}}\|g\|_{L^{\infty}}\right) \leq C\|f\|_{H^{\gamma}}\|g\|_{H^{\gamma}}
$$

and

$$
\left\|\Lambda^{\gamma}(f g)-f \Lambda^{\gamma} g\right\| \leq C\left(\|\nabla f\|_{H^{\gamma}}\|g\|_{H^{\gamma-1}}+\|f\|_{H^{\gamma}}\|g\|_{H^{\gamma}}\right)
$$

Tools of the proof: product and commutator estimates

- Our product and commutator estimates:

Lemma. Let $\gamma>d / 2$
(i) Assume that $0 \leq s \leq \gamma$. Then for all $f \in H^{s}$ and $g \in H^{\gamma}$,

$$
\left\|\Lambda^{s}(f g)\right\| \leq C\|f\|_{H^{s}}\|g\|_{H^{\gamma}}
$$

where $C=C(d, \gamma, s)$.
(ii) Assume that $0 \leq s \leq \gamma+1$. Then for all $f \in H^{s}$ and $g \in H^{\gamma}$,

$$
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\| \leq C\|f\|_{H^{s}}\|g\|_{H^{\gamma}}
$$

where $C=C(d, \gamma, s)$.
(iii) Assume that $1 \leq s \leq \gamma+1$. Then for all $f \in H^{\gamma+1}$ and $g \in H^{s-1}$,

$$
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\| \leq C\|f\|_{H^{\gamma+1}}\|g\|_{H^{s-1}}
$$

where $C=C(d, \gamma, s)$.

Remark. Taking $s=\gamma$ in (ii) and (iii), respectively, we obtain

Tools of the proof: product and commutator estimates

- Our product and commutator estimates:

Lemma. Let $\gamma>d / 2$
(i) Assume that $0 \leq s \leq \gamma$. Then for all $f \in H^{s}$ and $g \in H^{\gamma}$,

$$
\left\|\Lambda^{s}(f g)\right\| \leq C\|f\|_{H^{s}}\|g\|_{H^{\gamma}}
$$

where $C=C(d, \gamma, s)$.
(ii) Assume that $0 \leq s \leq \gamma+1$. Then for all $f \in H^{s}$ and $g \in H^{\gamma}$,

$$
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\| \leq C\|f\|_{H^{s}}\|g\|_{H^{\gamma}}
$$

where $C=C(d, \gamma, s)$.
(iii) Assume that $1 \leq s \leq \gamma+1$. Then for all $f \in H^{\gamma+1}$ and $g \in H^{s-1}$,

$$
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\| \leq C\|f\|_{H^{\gamma+1}}\|g\|_{H^{s-1}}
$$

where $C=C(d, \gamma, s)$.
Remark. Taking $s=\gamma$ in (ii) and (iii), respectively, we obtain

$$
\left\|\Lambda^{\gamma}(f g)-f \Lambda^{\gamma} g\right\| \leq C \min \left\{\|f\|_{H^{\gamma}}\|g\|_{H^{\gamma}},\|f\|_{H^{\gamma+1}}\|g\|_{H^{\gamma-1}}\right\}
$$

Tools of the proof: product and commutator estimates

Proof of (iii): Assume that $1 \leq s \leq \gamma+1$.
If $2 \leq p, q \leq \infty$ and $1 / p+1 / q=1 / 2$, then by the Kato-Ponce commutator estimate,

$$
\begin{aligned}
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\| & \leq C\left(\|\nabla f\|_{L^{\infty}}\left\|J^{s-1} g\right\|+\left\|J^{s} f\right\|_{L^{q}}\|g\|_{L^{p}}\right) \\
& \leq C\left(\|f\|_{H^{\gamma+1}}\|g\|_{H^{s-1}}+\left\|J^{s} f\right\|_{L^{q}}\|g\|_{L^{p}}\right) .
\end{aligned}
$$

Applying the joint embedding lemma to $s_{1}=s-1$ and $s_{2}=\gamma+1-s$, we can find $2 \leq p, q \leq \infty$ with $1 / p+1 / q=1 / 2$ such that

Then

$$
\|g\|_{L^{p}} \leq C\|g\|_{H^{s-1}}
$$

and

Tools of the proof: product and commutator estimates

Proof of (iii): Assume that $1 \leq s \leq \gamma+1$.
If $2 \leq p, q \leq \infty$ and $1 / p+1 / q=1 / 2$, then by the Kato-Ponce commutator estimate,

$$
\begin{aligned}
\left\|\Lambda^{s}(f g)-f \Lambda^{s} g\right\| & \leq C\left(\|\nabla f\|_{L^{\infty}}\left\|J^{s-1} g\right\|+\left\|J^{s} f\right\|_{L^{q}}\|g\|_{L^{p}}\right) \\
& \leq C\left(\|f\|_{H^{\gamma+1}}\|g\|_{H^{s-1}}+\left\|J^{s} f\right\|_{L^{q}}\|g\|_{L^{p}}\right.
\end{aligned}
$$

Applying the joint embedding lemma to $s_{1}=s-1$ and $s_{2}=\gamma+1-s$, we can find $2 \leq p, q \leq \infty$ with $1 / p+1 / q=1 / 2$ such that

$$
H^{s-1} \hookrightarrow L^{p} \quad \text { and } \quad H^{\gamma+1-s} \hookrightarrow L^{q}
$$

Then

$$
\|g\|_{L^{p}} \leq C\|g\|_{H^{s-1}}
$$

and

$$
\left\|J^{s} f\right\|_{L^{q}} \leq C\left\|J^{s} f\right\|_{H^{\gamma+1-s}} \leq C\|f\|_{H^{\gamma+1}}
$$

Tools of the proof: product and commutator estimates

Lemma. Let $\gamma>d / 2$.
(i) Assume that $0 \leq s \leq \gamma$. Then for all $u \in H^{\gamma}$ and $v \in H^{s+1}$,

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]\right\| \leq C\|u\|_{H^{\gamma}}\|\nabla v\|_{H^{s}}
$$

(ii) Assume that $0 \leq s \leq \gamma$. Then for all $u \in H^{s}$ and $v \in H^{\gamma+1}$,

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]\right\| \leq C\|u\|_{H^{s}}\|\nabla v\|_{H^{\gamma}} .
$$

(iii) Assume that $0 \leq s \leq \gamma+1$. Then for all $u \in H^{s}$ and $v \in H^{\gamma+1}$,

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla)\left(\Lambda^{s} v\right)\right\| \leq C\|u\|_{H^{s}}\|\nabla v\|_{H^{\gamma}}
$$

(iv) Assume that $1 \leq s \leq \gamma+1$. Then for all $u \in H^{\gamma+1}$ and $v \in H^{s}$,

$$
\left\|\Lambda^{s}[(u \cdot \nabla) v]-(u \cdot \nabla)\left(\Lambda^{s} v\right)\right\| \leq C\|u\|_{H^{\gamma+1}}\|\nabla v\|_{H^{s-1}} .
$$

Remark. Essentially the same estimates as (iv) has been obtained by Fefferman et al. (2014) for $s=\gamma$ and by Jiang et al. (preprint) for $1<s \leq \gamma$. In fact, the estimate can be proved for all $0 \leq s \leq \gamma+1$.

Tools of the proof: estimates for the fractional heat equation

- Using the Leray projection, we can remove the pressure term in the Navier-Stokes equations. We then need to consider the following Cauchy problem for the fractional heat equation:

$$
\left\{\begin{align*}
u_{t}+\nu \Lambda^{2 \alpha} u & =g & & \text { in } \mathbb{R}^{d} \times(0, T) \tag{2}\\
u(0) & =u_{0} & & \text { in } \mathbb{R}^{d}
\end{align*}\right.
$$

where $\nu>0, \alpha>0$, and $0<T<\infty$.

- The solution formula via the Fourier transform:

A regular function $u=u(x, t)$ is a solution of (2) if and only if its Fourier transform $\hat{u}=\hat{u}(\xi, t)$ satisfies

$$
\left\{\begin{aligned}
\hat{u}_{t}+\nu|\xi|^{2 \alpha} \hat{u} & =\hat{g} & & \text { in } \mathbb{R}^{d} \times(0, T) \\
\hat{u}(0) & =\hat{u}_{0} & & \text { in } \mathbb{R}^{d} .
\end{aligned}\right.
$$

Solving this ODE problem, we derive

$$
\hat{u}(\xi, t)=e^{-\nu|\xi|^{2 \alpha} t} \hat{u}_{0}(\xi)+\int_{0}^{t} e^{-\nu|\xi|^{2 \alpha}(t-\tau)} \hat{g}(\xi, \tau) d \tau
$$

Tools of the proof: estimates for the fractional heat equation

- Our estimates for solutions:

Lemma. Assume that $u_{0}=0, g \in L^{r}\left(0, T ; H^{s-\alpha}\right), s \in \mathbb{R}$, and $1<r<\infty$. Then the Cauchy problem (2) has a unique solution $u \in L^{r}\left(0, T ; H^{s+\alpha}\right)$. Moreover, we have

$$
\|u\|_{L^{r}\left(0, T ; H^{s+\alpha}\right)} \leq C(1+T)\|g\|_{L^{r}\left(0, T ; H^{s-\alpha}\right)}
$$

Proof. Define

Then

and

where $K(\cdot, t)$ is the inverse Fourier transform of $\Phi(\cdot, t)$. By the parabolic Calderon-Zygmund result due to I. Kim, S. Lim, and K. Kim (2016),

Tools of the proof: estimates for the fractional heat equation

- Our estimates for solutions:

Lemma. Assume that $u_{0}=0, g \in L^{r}\left(0, T ; H^{s-\alpha}\right), s \in \mathbb{R}$, and $1<r<\infty$. Then the Cauchy problem (2) has a unique solution $u \in L^{r}\left(0, T ; H^{s+\alpha}\right)$. Moreover, we have

$$
\|u\|_{L^{r}\left(0, T ; H^{s+\alpha}\right)} \leq C(1+T)\|g\|_{L^{r}\left(0, T ; H^{s-\alpha}\right)}
$$

Proof. Define

$$
\Phi(\xi, t)=\left\{\begin{array}{cl}
|\xi|^{2 \alpha} e^{-\nu|\xi|^{2 \alpha}} t & \text { if } t>0 \\
0 & \text { if } t \leq 0
\end{array}\right.
$$

Then

$$
\widehat{\Lambda^{2 \alpha} u}(\xi, t)=\int_{\mathbb{R}} \Phi(\xi, t-\tau) \hat{g}(\xi, \tau) d \tau
$$

and

$$
\Lambda^{2 \alpha} u(x, t)=\int_{\mathbb{R}} \int_{\mathbb{R}^{d}} K(x-y, t-\tau) g(y, \tau) d y d \tau
$$

where $K(\cdot, t)$ is the inverse Fourier transform of $\Phi(\cdot, t)$. By the parabolic Calderon-Zygmund result due to I. Kim, S. Lim, and K. Kim (2016),

$$
\left\|\Lambda^{2 \alpha} u\right\|_{L^{r}\left(0, T ; L^{2}\right)} \leq C(d, \nu, \alpha, r)\|g\|_{L^{r}\left(0, T ; L^{2}\right)}
$$

Tools of the proof: estimates for the fractional heat equation

Lemma. Assume that $u_{0} \in H^{s}, g=0$, and $s \in \mathbb{R}$. Then the Cauchy problem (2) has a unique solution

$$
u \in L^{2}\left(0, T ; H^{s+\alpha}\right) \quad \text { with } \quad \sqrt{t} u \in L^{2}\left(0, T ; H^{s+2 \alpha}\right)
$$

Moreover, we have

$$
\int_{0}^{T}\left(\|u(t)\|_{H^{s+\alpha}}^{2}+t\|u(t)\|_{H^{s+2 \alpha}}^{2}\right) d t \leq C(1+T)^{2}\left\|u_{0}\right\|_{H^{s}}^{2}
$$

In addition, if $0<\varepsilon<\alpha$, then

$$
u \in L^{1}\left(0, T ; H^{s+2 \alpha-\varepsilon}\right)
$$

and

$$
\int_{0}^{T}\|u(t)\|_{H^{s+2 \alpha-\varepsilon}} d t \leq C(1+T) T^{\frac{\varepsilon}{2 \alpha}}\left\|u_{0}\right\|_{H^{s}}
$$

Proof. A smooth solution u is given via the Fourier transform by

Tools of the proof: estimates for the fractional heat equation

Lemma. Assume that $u_{0} \in H^{s}, g=0$, and $s \in \mathbb{R}$. Then the Cauchy problem (2) has a unique solution

$$
u \in L^{2}\left(0, T ; H^{s+\alpha}\right) \quad \text { with } \quad \sqrt{t} u \in L^{2}\left(0, T ; H^{s+2 \alpha}\right)
$$

Moreover, we have

$$
\int_{0}^{T}\left(\|u(t)\|_{H^{s+\alpha}}^{2}+t\|u(t)\|_{H^{s+2 \alpha}}^{2}\right) d t \leq C(1+T)^{2}\left\|u_{0}\right\|_{H^{s}}^{2}
$$

In addition, if $0<\varepsilon<\alpha$, then

$$
u \in L^{1}\left(0, T ; H^{s+2 \alpha-\varepsilon}\right)
$$

and

$$
\int_{0}^{T}\|u(t)\|_{H^{s+2 \alpha-\varepsilon}} d t \leq C(1+T) T^{\frac{\varepsilon}{2 \alpha}}\left\|u_{0}\right\|_{H^{s}}
$$

Proof. A smooth solution u is given via the Fourier transform by

$$
\hat{u}(\xi, t)=e^{-\nu|\xi|^{2 \alpha} t} \hat{u}_{0}(\xi) .
$$

Tools of the proof: estimates for the fractional heat equation

Hence

$$
\begin{aligned}
\int_{0}^{T}\left\|\Lambda^{\alpha} u(t)\right\|^{2} d t & =\int_{0}^{T} \int_{\mathbb{R}^{d}}|\xi|^{2 \alpha}|\hat{u}(\xi, t)|^{2} d \xi d t \\
& =\int_{\mathbb{R}^{d}} \int_{0}^{T}|\xi|^{2 \alpha} e^{-2 \nu|\xi|^{2 \alpha}}\left|\hat{u}_{0}(\xi)\right|^{2} d t d \xi \\
& \leq \frac{1}{2 \nu} \int_{\mathbb{R}^{d}}\left|\hat{u}_{0}(\xi)\right|^{2} d \xi \\
& =\frac{1}{2 \nu}\left\|u_{0}\right\|^{2}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\int_{0}^{T} t\left\|\Lambda^{2 \alpha} u(t)\right\|^{2} d t & =\int_{0}^{T} \int_{\mathbb{R}^{d}} t|\xi|^{4 \alpha}|\hat{u}(\xi, t)|^{2} d \xi d t \\
& =\left.\int_{\mathbb{R}^{d}} \int_{0}^{T} t|\xi|^{4 \alpha} e^{-2 \nu|\xi|^{2 \alpha}} t \hat{u}_{0}(\xi)\right|^{2} d t d \xi \\
& \leq \frac{1}{2 \nu} \int_{\mathbb{R}^{d}} \int_{0}^{T}|\xi|^{2 \alpha} e^{-2 \nu|\xi|^{2 \alpha} t}\left|\hat{u}_{0}(\xi)\right|^{2} d t d \xi \\
& \leq \frac{1}{(2 \nu)^{2}}\left\|u_{0}\right\|^{2} .
\end{aligned}
$$

Tools of the proof: estimates for the fractional heat equation

Suppose that $0<\varepsilon<\alpha$. Then by an interpolation inequality for H^{s},

$$
\begin{aligned}
\|w\|_{H^{s+2 \alpha-\varepsilon}} & \leq C\|w\|_{H^{s+\alpha}}^{\theta}\|w\|_{H^{s+2 \alpha}}^{1-\theta} \\
& =C\|w\|_{H^{s+\alpha}}^{\theta}\left(\sqrt{t}\|w\|_{H^{s+2 \alpha}}\right)^{1-\theta} t^{-(1-\theta) / 2}
\end{aligned}
$$

where $0<\theta=\varepsilon / \alpha<1$. Hence by Hölder's inequality,

$$
\begin{aligned}
\int_{0}^{T}\|w\|_{H^{s+2 \alpha-\varepsilon}} d t & \leq C\left(\int_{0}^{T}\|w(t)\|_{H^{s+\alpha}}^{2} d t\right)^{\frac{\theta}{2}} \\
& \times\left(\int_{0}^{T} t\|w(t)\|_{H^{s+2 \alpha}}^{2} d t\right)^{\frac{1-\theta}{2}}\left(\int_{0}^{T} t^{-(1-\theta)} d t\right)^{\frac{1}{2}} \\
& \leq C(1+T)\left\|u_{0}\right\|_{H^{s}} T^{\frac{\theta}{2}}
\end{aligned}
$$

Lemma. Assume that $u_{0} \in H^{s_{1}}, g \in L^{r}\left(0, T ; H^{s_{2}-\alpha}\right), s_{1} \leq s_{2}<s_{1}+\alpha$, and $1<r<\infty$. Then the Cauchy problem (2) has a unique solution

Moreover, we have

Tools of the proof: estimates for the fractional heat equation

Suppose that $0<\varepsilon<\alpha$. Then by an interpolation inequality for H^{s},

$$
\begin{aligned}
\|w\|_{H^{s+2 \alpha-\varepsilon}} & \leq C\|w\|_{H^{s+\alpha}}^{\theta}\|w\|_{H^{s+2 \alpha}}^{1-\theta} \\
& =C\|w\|_{H^{s+\alpha}}^{\theta}\left(\sqrt{t}\|w\|_{H^{s+2 \alpha}}\right)^{1-\theta} t^{-(1-\theta) / 2},
\end{aligned}
$$

where $0<\theta=\varepsilon / \alpha<1$. Hence by Hölder's inequality,

$$
\begin{aligned}
\int_{0}^{T}\|w\|_{H^{s+2 \alpha-\varepsilon}} d t & \leq C\left(\int_{0}^{T}\|w(t)\|_{H^{s+\alpha}}^{2} d t\right)^{\frac{\theta}{2}} \\
& \times\left(\int_{0}^{T} t\|w(t)\|_{H^{s+2 \alpha}}^{2} d t\right)^{\frac{1-\theta}{2}}\left(\int_{0}^{T} t^{-(1-\theta)} d t\right)^{\frac{1}{2}} \\
& \leq C(1+T)\left\|u_{0}\right\|_{H^{s} T^{\frac{\theta}{2}}}
\end{aligned}
$$

Lemma. Assume that $u_{0} \in H^{s_{1}}, g \in L^{r}\left(0, T ; H^{s_{2}-\alpha}\right), s_{1} \leq s_{2}<s_{1}+\alpha$, and $1<r<\infty$. Then the Cauchy problem (2) has a unique solution

$$
u \in L^{1}\left(0, T ; H^{s_{2}+\alpha}\right) .
$$

Moreover, we have

$$
\frac{1}{1+T} \int_{0}^{T}\|u(t)\|_{H^{s_{2}+\alpha}} d t \leq C T^{\frac{s_{1}+\alpha-s_{2}}{2 \alpha}}\left\|u_{0}\right\|_{H^{s_{1}}}+C T^{1-\frac{1}{r}}\|g\|_{L^{r}\left(0, T ; H^{s_{2}-\alpha}\right)}
$$

Local existence results for generalized MHD equations

Thank you very much for your attention!

