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Generalized MHD equations

• Consider the Cauchy problem for the generalized MHD equations:

ut + (u · ∇)u+ νΛ2αu+∇p = (b · ∇)b in Rd × (0,∞)

bt + (u · ∇)b+ ηΛ2βb = (b · ∇)u in Rd × (0,∞)

div u = div b = 0 in Rd × (0,∞)

u(0) = u0, b(0) = b0 in Rd.

(1)

• Notations:

- d ≥ 2: the spacial dimension, α, β: nonnegative constants

- ν ≥ 0: the viscosity constant, η ≥ 0; the magnetic diffusivity

- u : Rd × [0,∞)→ Rd: the velocity field, b : Rd × [0,∞)→ Rd: the magnetic field

- p : Rd × (0,∞)→ R: a scalar pressure

- Λs = (−∆)s/2: the fractional Laplacian of order s ∈ R, defined via the Fourier
transform by

Λ̂sf(ξ) = |ξ|sf̂(ξ)
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Sobolev spaces Hs

• Sobolev spaces Hs: For s ∈ R,

Hs = Hs(Rd) =
{
f ∈ S′ | Jsf ∈ L2

}
,

where Js = (I −∆)s/2 is defined by

Ĵsf(ξ) =
(
1 + |ξ|2

)s/2
f̂(ξ) (f ∈ S′).

• Hs is a Hilbert space equipped with the inner product

(u, v)Hs = (Jsu, Jsv) =

∫
Rd

(
1 + |ξ|2

)s
û(ξ)v̂(ξ) dξ,

with (·, ·) denoting the inner product on L2.

• For s ≥ 0, Hs may be equipped with the following equivalent norm:

‖u‖Hs =
(
‖u‖2 + ‖Λsu‖2

)1/2
=

[∫
Rd

(
1 + |ξ|2s

)
|û(ξ)|2 dξ

]1/2
,

where ‖ · ‖ denotes the usual L2-norm.
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Energy identities

• Energy identities in L2:

Multiplying the equations in (1) by u and b, respectively, and using the divergence-free
condition on u, we derive

d

dt

(
1

2
‖u‖2

)
+ ν‖Λαu‖2 = ((b · ∇)b, u)

and
d

dt

(
1

2
‖b‖2

)
+ η‖Λβb‖2 = ((b · ∇)u, b) .

Since b is divergence-free,

1

2

d

dt

(
‖u‖2 + ‖b‖2

)
+ ν‖Λαu‖2 + η‖Λβb(t)‖2 = 0.

Hence setting M0 =
(
‖u0‖2 + ‖b0‖2

)1/2
, we derive a global energy estimate

‖u(t)‖2 + ‖b(t)‖2 + 2ν

∫ t

0
‖Λαu(τ)‖2 dτ + 2η

∫ t

0
‖Λβb(τ)‖2 dτ ≤M2

0

for all t ≥ 0.
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Energy identities

• Energy identities in higher norms:

Multiplying the equations in (1) by Λ2s1u and Λ2s2b, respectively, we have

1

2

d

dt

(
‖Λs1u‖2

)
+ ν‖Λs1+αu‖2 = − (Λs1 [(u · ∇)u],Λs1u) + (Λs1 [(b · ∇)b],Λs1u)

and

1

2

d

dt

(
‖Λs2b‖2

)
+ η‖Λs2+βb‖2 = − (Λs2 [(u · ∇)b],Λs2b) + (Λs2 [(b · ∇)u],Λs2b) .

Combining these with the L2-energy identities, we obtain

1

2

d

dt

(
‖u‖2Hs1

)
+ ν‖Λαu‖2Hs1

= ((b · ∇)b, u)− (Λs1 [(u · ∇)u],Λs1u) + (Λs1 [(b · ∇)b],Λs1u) ,

1

2

d

dt

(
‖b‖2Hs2

)
+ η‖Λβb‖2Hs2

= ((b · ∇)u, b)− (Λs2 [(u · ∇)b],Λs2b) + (Λs2 [(b · ∇)u],Λs2b) ,
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Energy identities

and

1

2

d

dt

(
‖u‖2Hs1 + ‖b‖2Hs2

)
+ ν‖Λαu‖2Hs1 + η‖Λβb‖2Hs2

= − (Λs1 [(u · ∇)u],Λs1u) + (Λs1 [(b · ∇)b],Λs1u)

− (Λs2 [(u · ∇)b],Λs2b) + (Λs2 [(b · ∇)u],Λs2b) .

• To estimate each term of the right hand sides in the energy identities, we need to
estimate the trilinear form

(Λs[(u · ∇)v],Λsw)

under various assumptions on vector fields u, v, w, and a nonnegative number s.

An obvious way is to derive some product estimates, since

(Λs[(u · ∇)v],Λsw) ≤ ‖Λs[(u · ∇)v]‖‖Λsw‖.

If u is divergence-free and w = v, then we may need commutator estimates, since

[(Λs[(u · ∇)v],Λsv) = (Λs[(u · ∇)v]− (u · ∇)Λsv,Λsv)

≤ ‖Λs[(u · ∇)v]− (u · ∇)Λsv‖‖Λsv‖.

Hyunseok Kim Generalized MHD equations



Energy identities

and

1

2

d

dt

(
‖u‖2Hs1 + ‖b‖2Hs2

)
+ ν‖Λαu‖2Hs1 + η‖Λβb‖2Hs2

= − (Λs1 [(u · ∇)u],Λs1u) + (Λs1 [(b · ∇)b],Λs1u)

− (Λs2 [(u · ∇)b],Λs2b) + (Λs2 [(b · ∇)u],Λs2b) .

• To estimate each term of the right hand sides in the energy identities, we need to
estimate the trilinear form

(Λs[(u · ∇)v],Λsw)

under various assumptions on vector fields u, v, w, and a nonnegative number s.

An obvious way is to derive some product estimates, since

(Λs[(u · ∇)v],Λsw) ≤ ‖Λs[(u · ∇)v]‖‖Λsw‖.

If u is divergence-free and w = v, then we may need commutator estimates, since

[(Λs[(u · ∇)v],Λsv) = (Λs[(u · ∇)v]− (u · ∇)Λsv,Λsv)

≤ ‖Λs[(u · ∇)v]− (u · ∇)Λsv‖‖Λsv‖.

Hyunseok Kim Generalized MHD equations



Some known results in Hs

• Assuming that ν > 0, η > 0, α > 0, and β > 0, J. Wu (2003) proved global
existence of a solution

u ∈ L∞(0, T ;L2) ∩ L2(0, T ;Hα), b ∈ L∞(0, T ;L2) ∩ L2(0, T ;Hβ)

for any divergence-free (u0, b0) ∈ L2 × L2, where T is any finite time.

Moreover, if α, β ≥ 1/2 + d/4 and (u0, b0) ∈ Hs ×Hs with s ≥ max{2α, 2β}, then

u ∈ L∞(0, T ;Hs) ∩ L2(0, T ;Hs+α), b ∈ L∞(0, T ;Hs) ∩ L2(0, T ;Hs+β).

• Assuming that ν = η = 0, P. G. Schmidt (1988) proved local existence of a unique
solution

(u, b) ∈ L∞(0, T∗;H
m)

for m ∈ N with m > 1 + d/2.

Remark. (i) The integer m can be replaced by any real s > 1 + d/2.

(ii) A key tool is the following product estimate:

‖Λs[(u · ∇)v]‖ ≤ C‖u‖Hs‖∇v‖Hs if s >
d

2
.
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Some known results in Hs

• Assuming that ν > 0, η = 0, and α = 1, C. Fefferman, D.S. McCormick, J.C.
Robinson, and J.L. Rodrigo (2014) proved local existence of a unique solution

u ∈ L∞(0, T∗;H
s) ∩ L2(0, T∗;H

s+1), b ∈ L∞(0, T∗;H
s)

for s > d/2.

Remark. A key tool is the following commutator estimate:

‖Λs[(u · ∇)v]− (u · ∇)(Λsv)‖ ≤ C‖∇u‖Hs‖v‖Hs if s >
d

2
,

which refines the classical one due to T. Kato and G. Ponce (1988):

‖Λs[(u · ∇)v]− (u · ∇)(Λsv)‖ ≤ C (‖∇u‖Hs‖v‖Hs + ‖u‖Hs‖∇v‖Hs )

for s > d
2

.

• C. Fefferman, D.S. McCormick, J.C. Robinson, and J.L. Rodrigo (2017) also proved
local existence of a solution

u ∈ L∞(0, T∗;H
s1 ) ∩ L2(0, T∗;H

s1+1), b ∈ L∞(0, T∗;H
s2 )

for s2 > d/2 and s2 − 1 < s1 ≤ s2, using the parabolicity of the equation for the
velocity field u.
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Some known results in Hs

Remark. A key tool is the following estimate: if u is a solution of the heat equation

ut − ν∆u = g in Rd × (0, T ), u(0) = u0 in Rd,

then ∫ T

0
‖u(t)‖Hs2+1 dt ≤ CT

s1+1−s2
2 ‖u0‖Hs1 + CT 1− 1

r ‖g‖Lr(0,T ;Hs2−1).

for 1 < r <∞, provided that s2 > d/2 and s2 − 1 < s1 ≤ s2.

• Assuming that ν > 0 and η > 0, J. Jiang, C. Ma, and Y. Zhou (preprint) proved
local existence of a unique solution

(u, b) ∈ L∞(0, T∗;H
s)

for s > max{d/2 + 1− α, 1}.

Remark. A key tool is the following commutator estimate:

‖Λs[(u · ∇)v]− (u · ∇)(Λsv)‖ ≤ C‖u‖Hγ+1‖v‖Hs

for γ > d
2

and 1 < s ≤ γ; the case γ = s was due to Fefferman et al. (2014).
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Our result for ν > 0 and η = 0

Theorem [K.-Zhou]. Let ν > 0 and η = 0. Suppose that α ≥ 0, s1 ≥ 0, and s2 > 0
satisfy one of the following conditions:

(i) α ≥ 1, s2 > d/2, and s2 − α < s1 ≤ s2.
(ii) α > 1, s1 + α > d/2 + 1, and s1 ≤ s2 ≤ s1 + α− 1.

(iii) 0 ≤ α < 1 and s1 = s2 > d/2 + 1− α.

Then for every (u0, b0) ∈ Hs1 ×Hs2 with div u0 = div b0 = 0, there exists T∗ > 0
such that the Cauchy problem (1) has a solution

u ∈ L∞(0, T∗;H
s1 ) ∩ L2(0, T∗;H

s1+α), b ∈ L∞(0, T∗;H
s2 ).

Remark. The conditions of the theorem are satisfied, in particular, for each of the
following cases:

(i) If α > d/2 + 1, then s1 ≥ 0, s2 > 0, and s1 ≤ s2 ≤ s1 + α− 1.

(ii) If d/2 < α ≤ d/2 + 1, then 1 ≤ s1 ≤ s2 ≤ s1 +α− 1 or 0 ≤ s1 ≤ d/2 < s2 < α.

(iii) If 1 < α ≤ d/2, then d/2 ≤ s1 ≤ s2 ≤ s1 + α− 1 or
d/2− 1 ≤ s1 ≤ d/2 < s2 < d/2 + α− 1.

(iv) If α = 1, then d/2− 1 < s1 ≤ d/2 < s2 < s1 + 1.
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Our result for ν > 0 and η > 0

Theorem [K.-Zhou]. Let ν > 0 and η > 0. Suppose that α ≥ 0, β ≥ 0, s1 ≥ 0, and
s2 ≥ 0 satisfy one of the following conditions:

(i) α ≥ 1, s2 > d/2, and s2 − α < s1 ≤ s2.
(ii) α ≥ 1, β > 1, s2 + β > d/2 + 1, and s2 + β − 1− α < s1 ≤ s2 + β − 1.

(iii) α ≥ 1, (α, β) 6= (1, 0), s1 + α > d/2 + 1, and s1 − β/2 < s2 ≤ s1 + α− 1.

(iv) α+ β ≥ 2, s1 + α > d/2 + 1, s2 + β > d/2 + 1, and
s1 + 1− β ≤ s2 ≤ s1 + α− 1.

(v) β ≥ 1, α+ β ≥ 2, s1 + α > d/2 + 1, and s1 + α− 1 < s2 < s1 + α.

(vi) β ≥ 1, 1 < α+ β < 2, s1 + α > d/2 + 1, and s1 + 1− β ≤ s2 < s1 + α.

(vii) 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, (α, β) 6= (1, 1), and s1 = s2 > d/2 + 1− α.

Then for every (u0, b0) ∈ Hs1 ×Hs2 with div u0 = div b0 = 0, there exists T∗ > 0
such that the Cauchy problem (1) has a solution

u ∈ L∞(0, T∗;H
s1 ) ∩ L2(0, T∗;H

s1+α),

b ∈ L∞(0, T∗;H
s2 ) ∩ L2(0, T∗;H

s2+β).
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Our result for ν > 0 and η > 0

Remark. Assume that ν > 0, η > 0, and β = 1. Then the conditions of the theorem
are reduced as follows:

(i) α ≥ 1, s2 > d/2, and s2 − α < s1 ≤ s2.

(ii) α ≥ 1, s1 + α > d/2 + 1, and s1 − 1/2 < s2 < s1 + α.

(iii) 0 < α < 1, s1 + α > d/2 + 1, and s1 ≤ s2 < s1 + α.

(iv) α = 0 and s1 = s2 > d/2 + 1.

In addition, if α = 1, then these conditions are reduced as:

(i) s2 > d/2 and s2 − 1 < s1 ≤ s2.

(ii) s1 > d/2 and s1 − 1/2 < s2 < s1 + 1.

Note that the condition (i) is exactly the same as the case η = 0 and (ii) is a new one,
due to the parabolicity of the equation for the magnetic field b.
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Tools of the proof: embedding results

• Sobolev embedding results:

Lemma.

(i) If 0 ≤ s < d/2, then Hs ↪→ L2d/(d−2s).

(ii) If s > d/2, then Hs ↪→ L∞.

(iii) If s > 0, 2 ≤ p <∞, and 1/p ≥ 1/2− s/d, then Hs ↪→ Lp.

Proof of (iii). Suppose that s > 0, 2 ≤ p <∞, and 1/p ≥ 1/2− s/d.

If s < d/2, then

‖u‖Lp ≤ ‖u‖1−θL2 ‖u‖θ
L

2d
d−2s

≤ C‖u‖Hs ,

where 0 ≤ θ ≤ 1 is defined by 1/p = 1/2− θs/d.

If s ≥ d/2, then choosing 0 ≤ s0 < d/2 with 1/p = 1/2− s0/d, we have

‖u‖Lp ≤ C‖u‖Hs0 ≤ C‖u‖Hs .
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Tools of the proof: embedding results

• A joint embedding result:

Lemma. Suppose that s1 ≥ 0, s2 ≥ 0, and s1 + s2 > d/2. Then there exists a pair
(p, q) with 2 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1/2 such that

Hs1 ↪→ Lp and Hs2 ↪→ Lq .

Proof. If s1 = 0 or s2 = 0, then the lemma follows from the previous embedding
lemma (ii) by taking (p, q) = (2,∞) or (p, q) = (∞, 2).

Suppose that s1 > 0 and s2 > 0. Then since d/2 < s1 + s2, there exists 2 < p <∞
such that

max

{
1

2
−
s1

d
, 0

}
<

1

p
< min

{
1

2
,
s2

d

}
.

If q = 2p/(p− 2), then

2 < q <∞ and
1

q
=

1

2
−

1

p
>

1

2
−
s2

d
.

Hence the desired estimates immediately follow from the embedding lemma (iii).
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}
<

1

p
< min

{
1

2
,
s2

d

}
.

If q = 2p/(p− 2), then

2 < q <∞ and
1

q
=

1

2
−

1

p
>

1

2
−
s2

d
.

Hence the desired estimates immediately follow from the embedding lemma (iii).
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Tools of the proof: product and commutator estimates

• The classical estimates due to Kato and Ponce (1988, 1991):

Theorem. Let s ≥ 0 and 1 < p <∞. Suppose that 1 < p1, p2, q1, q2 ≤ ∞ satisfy

1

p
=

1

p1
+

1

q1
=

1

p2
+

1

q2
.

Then for all f, g ∈ S,

‖Λs(fg)‖Lp ≤ C (‖f‖Lp1 ‖Jsg‖Lq1 + ‖Jsf‖Lp2 ‖g‖Lq2 )

and

‖Λs(fg)− fΛsg‖Lp ≤ C
(
‖∇f‖Lp1 ‖Js−1g‖Lq1 + ‖Jsf‖Lp2 ‖g‖Lq2

)
,

where C = C(d, s, p, p1, p2).

Remark. Assume that s = γ > d/2. Then since Hγ ↪→ L∞, we have

‖Λγ(fg)‖ ≤ C (‖f‖L∞‖Jγg‖L2 + ‖Jγf‖L2‖g‖L∞ ) ≤ C‖f‖Hγ ‖g‖Hγ

and
‖Λγ(fg)− fΛγg‖ ≤ C (‖∇f‖Hγ ‖g‖Hγ−1 + ‖f‖Hγ ‖g‖Hγ ) .
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Tools of the proof: product and commutator estimates

• Our product and commutator estimates:

Lemma. Let γ > d/2

(i) Assume that 0 ≤ s ≤ γ. Then for all f ∈ Hs and g ∈ Hγ ,

‖Λs(fg)‖ ≤ C‖f‖Hs‖g‖Hγ ,

where C = C(d, γ, s).

(ii) Assume that 0 ≤ s ≤ γ + 1. Then for all f ∈ Hs and g ∈ Hγ ,

‖Λs(fg)− fΛsg‖ ≤ C‖f‖Hs‖g‖Hγ ,

where C = C(d, γ, s).

(iii) Assume that 1 ≤ s ≤ γ + 1. Then for all f ∈ Hγ+1 and g ∈ Hs−1,

‖Λs(fg)− fΛsg‖ ≤ C‖f‖Hγ+1‖g‖Hs−1 ,

where C = C(d, γ, s).

Remark. Taking s = γ in (ii) and (iii), respectively, we obtain

‖Λγ(fg)− fΛγg‖ ≤ C min {‖f‖Hγ ‖g‖Hγ , ‖f‖Hγ+1‖g‖Hγ−1} .
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Tools of the proof: product and commutator estimates

Proof of (iii): Assume that 1 ≤ s ≤ γ + 1.

If 2 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1/2, then by the Kato-Ponce commutator estimate,

‖Λs(fg)− fΛsg‖ ≤ C
(
‖∇f‖L∞‖Js−1g‖+ ‖Jsf‖Lq‖g‖Lp

)
≤ C (‖f‖Hγ+1‖g‖Hs−1 + ‖Jsf‖Lq‖g‖Lp ) .

Applying the joint embedding lemma to s1 = s− 1 and s2 = γ + 1− s, we can find
2 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1/2 such that

Hs−1 ↪→ Lp and Hγ+1−s ↪→ Lq .

Then
‖g‖Lp ≤ C‖g‖Hs−1

and
‖Jsf‖Lq ≤ C‖Jsf‖Hγ+1−s ≤ C‖f‖Hγ+1 .
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Tools of the proof: product and commutator estimates

Lemma. Let γ > d/2.

(i) Assume that 0 ≤ s ≤ γ. Then for all u ∈ Hγ and v ∈ Hs+1,

‖Λs[(u · ∇)v]‖ ≤ C‖u‖Hγ ‖∇v‖Hs .

(ii) Assume that 0 ≤ s ≤ γ. Then for all u ∈ Hs and v ∈ Hγ+1,

‖Λs[(u · ∇)v]‖ ≤ C‖u‖Hs‖∇v‖Hγ .

(iii) Assume that 0 ≤ s ≤ γ + 1. Then for all u ∈ Hs and v ∈ Hγ+1,

‖Λs[(u · ∇)v]− (u · ∇)(Λsv)‖ ≤ C‖u‖Hs‖∇v‖Hγ .

(iv) Assume that 1 ≤ s ≤ γ + 1. Then for all u ∈ Hγ+1 and v ∈ Hs,

‖Λs[(u · ∇)v]− (u · ∇)(Λsv)‖ ≤ C‖u‖Hγ+1‖∇v‖Hs−1 .

Remark. Essentially the same estimates as (iv) has been obtained by Fefferman et al.
(2014) for s = γ and by Jiang et al. (preprint) for 1 < s ≤ γ. In fact, the estimate
can be proved for all 0 ≤ s ≤ γ + 1.

Hyunseok Kim Generalized MHD equations



Tools of the proof: estimates for the fractional heat equation

• Using the Leray projection, we can remove the pressure term in the Navier-Stokes
equations. We then need to consider the following Cauchy problem for the fractional
heat equation: {

ut + νΛ2αu = g in Rd × (0, T )
u(0) = u0 in Rd, (2)

where ν > 0, α > 0, and 0 < T <∞.

• The solution formula via the Fourier transform:

A regular function u = u(x, t) is a solution of (2) if and only if its Fourier transform
û = û(ξ, t) satisfies {

ût + ν|ξ|2αû = ĝ in Rd × (0, T )
û(0) = û0 in Rd.

Solving this ODE problem, we derive

û(ξ, t) = e−ν|ξ|
2αtû0(ξ) +

∫ t

0
e−ν|ξ|

2α(t−τ) ĝ(ξ, τ) dτ.
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Tools of the proof: estimates for the fractional heat equation

• Our estimates for solutions:

Lemma. Assume that u0 = 0, g ∈ Lr(0, T ;Hs−α), s ∈ R, and 1 < r <∞. Then the
Cauchy problem (2) has a unique solution u ∈ Lr(0, T ;Hs+α). Moreover, we have

‖u‖Lr(0,T ;Hs+α) ≤ C (1 + T ) ‖g‖Lr(0,T ;Hs−α).

Proof. Define

Φ(ξ, t) =

{
|ξ|2αe−ν|ξ|2αt if t > 0

0 if t ≤ 0.

Then

Λ̂2αu(ξ, t) =

∫
R

Φ(ξ, t− τ)ĝ(ξ, τ) dτ

and

Λ2αu(x, t) =

∫
R

∫
Rd
K(x− y, t− τ)g(y, τ) dydτ,

where K(·, t) is the inverse Fourier transform of Φ(·, t). By the parabolic
Calderon-Zygmund result due to I. Kim, S. Lim, and K. Kim (2016),

‖Λ2αu‖Lr(0,T ;L2) ≤ C(d, ν, α, r)‖g‖Lr(0,T ;L2).
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Tools of the proof: estimates for the fractional heat equation

Lemma. Assume that u0 ∈ Hs, g = 0, and s ∈ R. Then the Cauchy problem (2) has
a unique solution

u ∈ L2(0, T ;Hs+α) with
√
tu ∈ L2(0, T ;Hs+2α).

Moreover, we have∫ T

0

(
‖u(t)‖2

Hs+α
+ t‖u(t)‖2

Hs+2α

)
dt ≤ C (1 + T )2 ‖u0‖2Hs .

In addition, if 0 < ε < α, then

u ∈ L1
(
0, T ;Hs+2α−ε)

and ∫ T

0
‖u(t)‖Hs+2α−ε dt ≤ C(1 + T )T

ε
2α ‖u0‖Hs .

Proof. A smooth solution u is given via the Fourier transform by

û(ξ, t) = e−ν|ξ|
2αtû0(ξ).
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Tools of the proof: estimates for the fractional heat equation

Hence ∫ T

0
‖Λαu(t)‖2 dt =

∫ T

0

∫
Rd
|ξ|2α|û(ξ, t)|2 dξdt

=

∫
Rd

∫ T

0
|ξ|2αe−2ν|ξ|2αt|û0(ξ)|2 dtdξ

≤
1

2ν

∫
Rd
|û0(ξ)|2 dξ

=
1

2ν
‖u0‖2.

Moreover, ∫ T

0
t‖Λ2αu(t)‖2 dt =

∫ T

0

∫
Rd
t|ξ|4α|û(ξ, t)|2 dξdt

=

∫
Rd

∫ T

0
t|ξ|4αe−2ν|ξ|2αt|û0(ξ)|2 dtdξ

≤
1

2ν

∫
Rd

∫ T

0
|ξ|2αe−2ν|ξ|2αt|û0(ξ)|2 dtdξ

≤
1

(2ν)2
‖u0‖2.
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Tools of the proof: estimates for the fractional heat equation

Suppose that 0 < ε < α. Then by an interpolation inequality for Hs,

‖w‖Hs+2α−ε ≤ C‖w‖θHs+α‖w‖
1−θ
Hs+2α

= C‖w‖θ
Hs+α

(√
t‖w‖Hs+2α

)1−θ
t−(1−θ)/2,

where 0 < θ = ε/α < 1. Hence by Hölder’s inequality,∫ T

0
‖w‖Hs+2α−ε dt ≤ C

(∫ T

0
‖w(t)‖2

Hs+α
dt

) θ
2

×
(∫ T

0
t‖w(t)‖2

Hs+2α dt

) 1−θ
2
(∫ T

0
t−(1−θ) dt

) 1
2

≤ C(1 + T )‖u0‖HsT
θ
2 .

Lemma. Assume that u0 ∈ Hs1 , g ∈ Lr(0, T ;Hs2−α), s1 ≤ s2 < s1 + α, and
1 < r <∞. Then the Cauchy problem (2) has a unique solution

u ∈ L1
(
0, T ;Hs2+α

)
.

Moreover, we have

1

1 + T

∫ T

0
‖u(t)‖Hs2+α dt ≤ CT

s1+α−s2
2α ‖u0‖Hs1 + CT 1− 1

r ‖g‖Lr(0,T ;Hs2−α).
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Local existence results for generalized MHD equations

Thank you very much for your attention!
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