Cauchy problem for the Hall-MHD system without resistivity: ill-posedness

In-Jee Jeong(KIAS)
with Sung-Jin Oh (UC Berkeley)
Inaugural France-Korea Conference

November 27, 2019

Outline

I. Intro. to Hall-MHD and main nonlinear results
II. Stationary solutions and main linear results
III. Formal discussions
IV. Ideas of the linear proof
V. Linear to nonlinear

I. Introduction

(1) The systems: Hall-MHD and electron-MHD
(2) Main results: ill-posedness vs. well-posedness

Magnetohydrodynamic (MHD) systems

- MHD $=$ Euler/Navier-Stokes + Maxwell (Alfven 1942):

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla \mathbf{p}-\nu \Delta \mathbf{u}=\mathbf{J} \times \mathbf{B} \tag{MHD}\\
\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0 \\
\nabla \cdot \mathbf{u}=\nabla \cdot \mathbf{B}=0
\end{array}\right.
$$

Magnetohydrodynamic (MHD) systems

- MHD $=$ Euler/Navier-Stokes + Maxwell (Alfven 1942):

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla \mathbf{p}-\nu \Delta \mathbf{u}=\mathbf{J} \times \mathbf{B} \tag{MHD}\\
\partial_{t} \mathbf{B}+\nabla \times \mathbf{E}=0, \\
\nabla \cdot \mathbf{u}=\nabla \cdot \mathbf{B}=0,
\end{array}\right.
$$

- $\mathbf{u}(t): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathbf{p}(t): \mathbb{R}^{3} \rightarrow \mathbb{R}$ are the bulk plasma velocity field and pressure,
- $\mathbf{B}(t), \mathbf{E}(t): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are the magnetic and electric fields, and
- $\mathbf{J}(t): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the current density.

The usual MHD system

- Close the system in terms of \mathbf{u} and \mathbf{B} with

$$
\mathbf{J}=\nabla \times \mathbf{B}
$$

(Ampere's law)
and

$$
\mathbf{E}+\mathbf{u} \times \mathbf{B}=\eta \mathbf{J},
$$

(Ohm's law)
where $\eta>0$ is magnetic resistivity.

Hall-MHD system (more realistic)

- Actual plasmas consist of at least two species: electrons and ions (heavier).

Hall-MHD system (more realistic)

- Actual plasmas consist of at least two species: electrons and ions (heavier).
- When the motion of electrons is much faster than the others, Ohm's law obtains a correction of the form

$$
\mathbf{E}+\mathbf{u} \times \mathbf{B}=\eta \mathbf{J}+\epsilon \mathbf{J} \times \mathbf{B} .
$$

Hall-MHD system (more realistic)

- Actual plasmas consist of at least two species: electrons and ions (heavier).
- When the motion of electrons is much faster than the others, Ohm's law obtains a correction of the form

$$
\mathbf{E}+\mathbf{u} \times \mathbf{B}=\eta \mathbf{J}+\epsilon \mathbf{J} \times \mathbf{B} .
$$

- The resulting system:

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla \mathbf{p}-\nu \Delta \mathbf{u}=(\nabla \times \mathbf{B}) \times \mathbf{B}, \\
\partial_{t} \mathbf{B}-\nabla \times(\mathbf{u} \times \mathbf{B})+\epsilon \nabla \times((\nabla \times \mathbf{B}) \times \mathbf{B})=\eta \Delta \mathbf{B}, \\
\nabla \cdot \mathbf{u}=\nabla \cdot \mathbf{B}=0
\end{array}\right.
$$

(Hall-MHD)

Electron-MHD system

- Formally take $\mathbf{u}=0$:

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{B}+\nabla \times((\nabla \times \mathbf{B}) \times \mathbf{B})=0 \\
\nabla \cdot \mathbf{B}=0
\end{array}\right.
$$

(E-MHD)

Electron-MHD system

- Formally take $\mathbf{u}=0$:

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{B}+\nabla \times((\nabla \times \mathbf{B}) \times \mathbf{B})=0 \tag{E-MHD}\\
\nabla \cdot \mathbf{B}=0
\end{array}\right.
$$

- Idea: the bulk plasma is essentially at rest compared to the motion of the electrons.

Electron-MHD system

- Formally take $\mathbf{u}=0$:

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{B}+\nabla \times((\nabla \times \mathbf{B}) \times \mathbf{B})=0 \tag{E-MHD}\\
\nabla \cdot \mathbf{B}=0
\end{array}\right.
$$

- Idea: the bulk plasma is essentially at rest compared to the motion of the electrons.

Some previous works

- Suggested by Lighthill in 1960 (cf. textbook by Pecseli).

Some previous works

- Suggested by Lighthill in 1960 (cf. textbook by Pecseli).
- Formal derivations: Lighthill, Jang-Masmoudi, Acheritogaray-Degond-Frouvelle-Liu.

Some previous works

- Suggested by Lighthill in 1960 (cf. textbook by Pecseli).
- Formal derivations: Lighthill, Jang-Masmoudi, Acheritogaray-Degond-Frouvelle-Liu.
- Mathematical work: mostly in the resistive case (loss of one derivative due to the Hall term).

Some previous works

- Suggested by Lighthill in 1960 (cf. textbook by Pecseli).
- Formal derivations: Lighthill, Jang-Masmoudi, Acheritogaray-Degond-Frouvelle-Liu.
- Mathematical work: mostly in the resistive case (loss of one derivative due to the Hall term).
- Chae-Weng: finite time blow-up under LWP assumption.

III-posedness: nonexistence

In the end, we have proved the following:

III-posedness: nonexistence

In the end, we have proved the following:
Theorem (Nonexistence)
For any $\epsilon>0$ and $s>3+1 / 2$, there is a data with compact support in $\left(\mathbf{u}_{0}, \mathbf{B}_{0}\right) \in H^{s-1} \times H^{s}(M)$ for which there is no solution in the space $(\mathbf{u}, \mathbf{B}) \in L^{\infty}\left([0, \delta] ; H^{s-1} \times H^{s}(M)\right)$ for any $\delta>0$.

III-posedness: nonexistence

In the end, we have proved the following:
Theorem (Nonexistence)
For any $\epsilon>0$ and $s>3+1 / 2$, there is a data with compact support in $\left(\mathbf{u}_{0}, \mathbf{B}_{0}\right) \in H^{s-1} \times H^{s}(M)$ for which there is no solution in the space $(\mathbf{u}, \mathbf{B}) \in L^{\infty}\left([0, \delta] ; H^{s-1} \times H^{s}(M)\right)$ for any $\delta>0$.

- The situation is not better for data in C^{∞} or even in analytic (any Gevrey) regularity.

III-posedness: nonexistence

In the end, we have proved the following:
Theorem (Nonexistence)
For any $\epsilon>0$ and $s>3+1 / 2$, there is a data with compact support in $\left(\mathbf{u}_{0}, \mathbf{B}_{0}\right) \in H^{s-1} \times H^{s}(M)$ for which there is no solution in the space $(\mathbf{u}, \mathbf{B}) \in L^{\infty}\left([0, \delta] ; H^{s-1} \times H^{s}(M)\right)$ for any $\delta>0$.

- The situation is not better for data in C^{∞} or even in analytic (any Gevrey) regularity.
- Domain: $M=\mathbb{R}^{k} \times \mathbb{T}^{3-k}$ (weaker result in the \mathbb{T}^{3}-case).

III-posedness: nonexistence

In the end, we have proved the following:
Theorem (Nonexistence)
For any $\epsilon>0$ and $s>3+1 / 2$, there is a data with compact support in $\left(\mathbf{u}_{0}, \mathbf{B}_{0}\right) \in H^{s-1} \times H^{s}(M)$ for which there is no solution in the space $(\mathbf{u}, \mathbf{B}) \in L^{\infty}\left([0, \delta] ; H^{s-1} \times H^{s}(M)\right)$ for any $\delta>0$.

- The situation is not better for data in C^{∞} or even in analytic (any Gevrey) regularity.
- Domain: $M=\mathbb{R}^{k} \times \mathbb{T}^{3-k}$ (weaker result in the \mathbb{T}^{3}-case).
- Norm inflation for perturbations near degenerate stationary magnetic fields \rightarrow Nonexistence by superposition.

II. Stationary solutions and main linear results

(1) Stationary solutions and linearized systems
(2) Main linear result

Basic properties of the system

- Energy is conserved: for a solution (\mathbf{u}, \mathbf{B}), we have formally

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} \int_{M}\left(|\mathbf{u}|^{2}+|\mathbf{B}|^{2}\right)(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z\right)=-\nu \int_{M}|\nabla \mathbf{u}|^{2}(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& M=\mathbb{R}^{k} \times \mathbb{T}^{3-k}
\end{aligned}
$$

Basic properties of the system

- Energy is conserved: for a solution (\mathbf{u}, \mathbf{B}), we have formally

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} \int_{M}\left(|\mathbf{u}|^{2}+|\mathbf{B}|^{2}\right)(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z\right)=-\nu \int_{M}|\nabla \mathbf{u}|^{2}(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& M=\mathbb{R}^{k} \times \mathbb{T}^{3-k}
\end{aligned}
$$

- Situation is different for higher norms: we have

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{M}\left|\partial^{(N)} \mathbf{B}\right|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& \quad=-\int_{M}\left(\nabla \times \partial^{(N)} \mathbf{B}\right) \cdot\left((\nabla \times \mathbf{B}) \times \partial^{(N)} \mathbf{B}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z+O . K .
\end{aligned}
$$

A class of stationary magnetic field

- The first step is to understand the linearized dynamics around stationary magnetic fields.

A class of stationary magnetic field

- The first step is to understand the linearized dynamics around stationary magnetic fields.
- A time-independent magnetic field Bi defines a stationary solution (with zero velocity field) if $\operatorname{div} \mathbf{B}=0$ and $\nabla \times(\nabla \times \mathbf{B})$ is a pure gradient.

A class of stationary magnetic field

- The first step is to understand the linearized dynamics around stationary magnetic fields.
- A time-independent magnetic field \mathbf{B} defines a stationary solution (with zero velocity field) if $\operatorname{div} \mathbf{B}=0$ and $\nabla \times(\nabla \times \mathbf{B})$ is a pure gradient.
- We impose further conditions on B: assume planarity as well as invariance with respect to a 1-parameter family of isometries of the plane.

A class of stationary magnetic field

- The first step is to understand the linearized dynamics around stationary magnetic fields.
- A time-independent magnetic field \mathbf{B} defines a stationary solution (with zero velocity field) if $\operatorname{div} \mathbf{B}=0$ and $\nabla \times(\nabla \times \mathbf{B})$ is a pure gradient.
- We impose further conditions on B: assume planarity as well as invariance with respect to a 1-parameter family of isometries of the plane.
- Then, essentially we have

$$
\dot{\mathbf{B}}=f(y) \partial_{x} \quad \text { or } \quad g(r) \partial_{\theta} .
$$

Energy identities for the linearization

- The linearization around $(0, \mathbf{B})$ takes the following form:

$$
\left\{\begin{array}{l}
\partial_{t} u-\nu \Delta u=\mathbb{P}((\nabla \times \stackrel{\circ}{\mathbf{B}}) \times b+(\nabla \times b) \times \stackrel{\circ}{\mathbf{B}}) \\
\partial_{t} b+\nabla \times(u \times \mathbf{B}) \\
\quad+\nabla \times((\nabla \times b) \times \mathbf{B})+\nabla \times((\nabla \times \stackrel{\circ}{\mathbf{B}}) \times \\
\nabla \cdot u=\nabla \cdot b=0,
\end{array}\right.
$$

(Hall-MHD-lin)

Energy identities for the linearization

- The linearization around $(0, \mathbf{B})$ takes the following form:

$$
\left\{\begin{array}{l}
\partial_{t} u-\nu \Delta u=\mathbb{P}((\nabla \times \stackrel{\circ}{\mathbf{B}}) \times b+(\nabla \times b) \times \stackrel{\circ}{\mathbf{B}}) \\
\partial_{t} b+\nabla \times(u \times \mathbf{B}) \\
\quad \quad+\nabla \times((\nabla \times b) \times \mathbf{B})+\nabla \times((\nabla \times \mathbf{B}) \times b)=0 \\
\nabla \cdot u=\nabla \cdot b=0
\end{array}\right.
$$

(Hall-MHD-lin)

- Formally taking $u \equiv 0$, we obtain the linearization around B for the E-MHD system.

Energy identities for the linearization

- We have the following linearized energy identity:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} \int_{M}|u|^{2}(t)+|b|^{2}(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z\right)+\nu \int_{M}|\nabla u|^{2}(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{M}\left((b \cdot \nabla) \stackrel{\circ}{\mathbf{B}}_{j}\right) u^{j}-\left((u \cdot \nabla) \stackrel{\circ}{\mathbf{B}}_{j}\right) b^{j} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z+\int_{M}\left((b \cdot \nabla)(\nabla \times \stackrel{\circ}{\mathbf{B}})_{j}\right)
\end{aligned}
$$

Energy identities for the linearization

- We have the following linearized energy identity:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{2} \int_{M}|u|^{2}(t)+|b|^{2}(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z\right)+\nu \int_{M}|\nabla u|^{2}(t) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{M}\left((b \cdot \nabla) \stackrel{\circ}{\mathbf{B}}_{j}\right) u^{j}-\left((u \cdot \nabla) \stackrel{\circ}{\mathbf{B}}_{j}\right) b^{j} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z+\int_{M}\left((b \cdot \nabla)(\nabla \times \stackrel{\circ}{\mathbf{B}})_{j}\right)
\end{aligned}
$$

- Gives an L^{2} a priori estimate for the perturbation (u, b).

Main ill-posedness statement for the linearization

- (Translationally symmetric case.) Assume that

$$
\stackrel{\circ}{\mathbf{B}}=f(y) \partial_{x}
$$

with linearly degenerate profile:

$$
\exists y_{0}, \quad f^{\prime}\left(y_{0}\right) \neq 0, f\left(y_{0}\right)=0
$$

Main ill-posedness statement for the linearization

- (Translationally symmetric case.) Assume that

$$
\stackrel{\circ}{\mathbf{B}}=f(y) \partial_{x}
$$

with linearly degenerate profile:

$$
\exists y_{0}, \quad f^{\prime}\left(y_{0}\right) \neq 0, f\left(y_{0}\right)=0
$$

- Then, there exists a profile $\mathfrak{b}(x, y) \in C_{c}^{\infty}$ and $G(y) \in C^{\infty}$ such that with initial data

$$
u_{0}=0, b_{(\lambda), 0}=\operatorname{Re}\left(e^{i \lambda(x+G(y))} \mathfrak{b}(x, y)\right)
$$

Main ill-posedness statement for the linearization

- (Translationally symmetric case.) Assume that

$$
\stackrel{\circ}{\mathbf{B}}=f(y) \partial_{x}
$$

with linearly degenerate profile:

$$
\exists y_{0}, \quad f^{\prime}\left(y_{0}\right) \neq 0, f\left(y_{0}\right)=0
$$

- Then, there exists a profile $\mathfrak{b}(x, y) \in C_{c}^{\infty}$ and $G(y) \in C^{\infty}$ such that with initial data

$$
u_{0}=0, b_{(\lambda), 0}=\operatorname{Re}\left(e^{i \lambda(x+G(y))} \mathfrak{b}(x, y)\right)
$$

any L^{2}-solution for the linearization satisfies the following norm growth:

$$
\left\|b_{(\lambda)}(t)\right\|_{H^{s}(M)} \gtrsim_{s, \mathbf{B}} \lambda^{s} e^{\left|f^{\prime}\left(y_{0}\right)\right| s \lambda t}\left\|b_{(\lambda), 0}\right\|_{L^{2}}
$$

Main ill-posedness statement for the linearization

- (Axi-symmetric case.) We assume that

$$
\stackrel{\circ}{\mathbf{B}}=g(r) \partial_{\theta}
$$

and

$$
\exists r_{0}>0 \quad g^{\prime}\left(r_{0}\right) \neq 0, g\left(r_{0}\right)=0
$$

Main ill-posedness statement for the linearization

- (Axi-symmetric case.) We assume that

$$
\stackrel{\circ}{\mathbf{B}}=g(r) \partial_{\theta}
$$

and

$$
\exists r_{0}>0 \quad g^{\prime}\left(r_{0}\right) \neq 0, g\left(r_{0}\right)=0
$$

- Then, there exists a profile $\mathfrak{b}(r) \in C_{c}^{\infty}(0, \infty)$ and $G(r) \in C^{\infty}(0, \infty)$ such that with initial data

$$
u_{0}=0, b_{(\lambda), 0}=\operatorname{Re}\left(e^{i \lambda(\theta+G(r))} \mathfrak{b}\right)
$$

any L^{2}-solution for the linearization satisfies:

$$
\left\|b_{(\lambda)}(t)\right\|_{H^{s}(M)} \gtrsim_{s, \dot{\mathbf{B}}, r_{0}} \lambda^{s} e^{\left|g^{\prime}\left(r_{0}\right)\right| s \lambda t}\left\|b_{0}\right\|_{L^{2}}
$$

Comments

- The growth rate $\|b(t)\|_{H^{s}} \gtrsim \lambda^{s} e^{c_{0} s \lambda t}$ is sharp.

Comments

- The growth rate $\|b(t)\|_{H^{s}} \gtrsim \lambda^{s} e^{c_{0} s \lambda t}$ is sharp.
- Gives nonexistence in Sobolev spaces higher than L^{2} by Frequency superposition.

Comments

- The growth rate $\|b(t)\|_{H^{s}} \gtrsim \lambda^{s} e^{c_{0} s \lambda t}$ is sharp.
- Gives nonexistence in Sobolev spaces higher than L^{2} by Frequency superposition.
- The fact that rate depends on s suggests ill-posedness at the level of any Gevrey regularity. (Just need to make sure the initial data can be chosen to be Gevrey.)

Comments

- The growth rate $\|b(t)\|_{H^{s}} \gtrsim \lambda^{s} e^{c_{0} s \lambda t}$ is sharp.
- Gives nonexistence in Sobolev spaces higher than L^{2} by Frequency superposition.
- The fact that rate depends on s suggests ill-posedness at the level of any Gevrey regularity. (Just need to make sure the initial data can be chosen to be Gevrey.)
- Not simple amplitude growth in Fourier, but transfer of energy to higher Fourier modes with speed proportional to the initial frequency (contrast with backwards heat).

Comments

- The growth rate $\|b(t)\|_{H^{s}} \gtrsim \lambda^{s} e^{c_{0} s \lambda t}$ is sharp.
- Gives nonexistence in Sobolev spaces higher than L^{2} by Frequency superposition.
- The fact that rate depends on s suggests ill-posedness at the level of any Gevrey regularity. (Just need to make sure the initial data can be chosen to be Gevrey.)
- Not simple amplitude growth in Fourier, but transfer of energy to higher Fourier modes with speed proportional to the initial frequency (contrast with backwards heat).
- Seems to be a general feature for degenerate dispersive equations. c.f. Craig-Goodman: ill-posedness for

$$
\partial_{t} u \pm x \partial_{x}^{3} u=0
$$

III. Formal discussions

(1) Whistler waves
(2) Bicharacteristics
(3) A formal model equation

Linearization around a constant magnetic field

- Take E-MHD for simplicity and $\overline{\mathbf{B}}=\overline{\mathbf{B}} \partial_{x}$.

Linearization around a constant magnetic field

- Take E-MHD for simplicity and $\overline{\mathbf{B}}=\overline{\mathbf{B}} \partial_{x}$.
- Then the linear system becomes

$$
\partial_{t} b+\overline{\mathbf{B}} \partial_{x} \nabla \times b=0, \quad \nabla \cdot b=0
$$

Linearization around a constant magnetic field

- Take E-MHD for simplicity and $\overline{\mathbf{B}}=\overline{\mathbf{B}} \partial_{x}$.
- Then the linear system becomes

$$
\partial_{t} b+\overline{\mathbf{B}} \partial_{x} \nabla \times b=0, \quad \nabla \cdot b=0
$$

- This system can be diagonalized;

$$
\partial_{t} b_{ \pm} \pm \overline{\mathbf{B}} \partial_{x}|\nabla| b_{ \pm}=0, \quad \omega=\overline{\mathbf{B}} \xi_{x}|\xi|
$$

where

$$
b_{ \pm}:=b \mp|\nabla|^{-1} \nabla \times b .
$$

Linearization around a constant magnetic field

- Take E-MHD for simplicity and $\overline{\mathbf{B}}=\overline{\mathbf{B}} \partial_{x}$.
- Then the linear system becomes

$$
\partial_{t} b+\overline{\mathbf{B}} \partial_{x} \nabla \times b=0, \quad \nabla \cdot b=0
$$

- This system can be diagonalized;

$$
\partial_{t} b_{ \pm} \pm \overline{\mathbf{B}} \partial_{x}|\nabla| b_{ \pm}=0, \quad \omega=\overline{\mathbf{B}} \xi_{x}|\xi|
$$

where

$$
b_{ \pm}:=b \mp|\nabla|^{-1} \nabla \times b .
$$

- The group velocity $\pm \nabla_{\xi} \omega$ shows dispersion.

Linearization around a constant magnetic field

- Take E-MHD for simplicity and $\overline{\mathbf{B}}=\overline{\mathbf{B}} \partial_{x}$.
- Then the linear system becomes

$$
\partial_{t} b+\overline{\mathbf{B}} \partial_{x} \nabla \times b=0, \quad \nabla \cdot b=0
$$

- This system can be diagonalized;

$$
\partial_{t} b_{ \pm} \pm \overline{\mathbf{B}} \partial_{x}|\nabla| b_{ \pm}=0, \quad \omega=\overline{\mathbf{B}} \xi_{x}|\xi|
$$

where

$$
b_{ \pm}:=b \mp|\nabla|^{-1} \nabla \times b .
$$

- The group velocity $\pm \nabla_{\xi} \omega$ shows dispersion.
- Comparison with Alfven waves.

Linearization around a non-constant magnetic field

- For a general stationary Bi, we have

$$
\partial_{t} b+(\mathbf{B} \cdot \nabla) \nabla \times b=\text { l.o.t. }
$$

Linearization around a non-constant magnetic field

- For a general stationary \mathbf{B}, we have

$$
\partial_{t} b+\left(\AA_{\mathbf{B}} \cdot \nabla\right) \nabla \times b=\text { l.o.t. }
$$

- After diagonalizing the principal symbol $-($ B $\cdot \xi) \xi \times$, the analogue of the group velocity is given by the Hamiltonian vector field

$$
\left(\nabla_{\xi} p,-\nabla_{x} p\right) \text { on } T^{*} M
$$

with associated ODE

$$
\begin{array}{r}
\dot{X}=\nabla_{\xi} p(X, \text { 三 }) \\
\dot{\bar{\Xi}}=-\nabla_{x} p(X, \text { 三 })
\end{array}
$$

where $p= \pm \dot{\mathbf{B}}(x) \cdot \xi|\xi|$.

Model example: bicharacteristics for $\mathbf{B}=y \partial_{x}$

- Conservation: Ξ_{x} and Ξ_{z} due to translation invariance, and $p(X, \equiv)=y(X) \bar{\Xi}_{x}|\equiv|$ which is just the Hamiltonian.

Model example: bicharacteristics for $\mathbf{B}=y \partial_{x}$

- Conservation: Ξ_{x} and Ξ_{z} due to translation invariance, and $p(X, \equiv)=y(X) \Xi_{x}|\equiv|$ which is just the Hamiltonian.
- That is, the Hamiltonian ODE is completely integrable.

Model example: bicharacteristics for $\mathbf{B}=y \partial_{x}$

- Conservation: Ξ_{x} and Ξ_{z} due to translation invariance, and $p(X, \equiv)=y(X) \Xi_{x}|\equiv|$ which is just the Hamiltonian.
- That is, the Hamiltonian ODE is completely integrable.
- Take for instance $X(0)=(0,1,0)$ and $\equiv(0)=(\lambda,-\lambda, 0)$ for $\lambda>0$;

Model example: bicharacteristics for $\mathbf{B}=y \partial_{x}$

- Conservation: Ξ_{x} and Ξ_{z} due to translation invariance, and $p(X, \equiv)=y(X) \Xi_{x}|\equiv|$ which is just the Hamiltonian.
- That is, the Hamiltonian ODE is completely integrable.
- Take for instance $X(0)=(0,1,0)$ and $\equiv(0)=(\lambda,-\lambda, 0)$ for $\lambda>0$; explicit integration gives

$$
\begin{gathered}
\Xi_{y}=-\lambda \sinh (\lambda t+\ln (1+\sqrt{2})) \simeq \lambda e^{\lambda t} \\
y=\frac{\cosh (\ln (1+\sqrt{2}))}{\cosh (\lambda t+\ln (1+\sqrt{2}))} \simeq e^{-\lambda t} .
\end{gathered}
$$

A formal model equation

- Take on \mathbb{R}^{2} the following scalar equation:

$$
\partial_{t} b+i f(y) \partial_{x} \partial_{y} b=0,
$$

whose principal symbol is similar to that for linearized E-MHD.

A formal model equation

- Take on \mathbb{R}^{2} the following scalar equation:

$$
\partial_{t} b+i f(y) \partial_{x} \partial_{y} b=0,
$$

whose principal symbol is similar to that for linearized E-MHD.

- Explicitly solvable: first separate x-dependence by taking the Fourier transform in x, and then change coordinates

$$
\partial_{\tau}=\xi_{x} \partial_{t}, \partial_{\eta}=f(y) \partial_{y} \text { to get }\left(\partial_{\tau}-\partial_{\eta}\right) \tilde{b}=0
$$

IV. Ideas of the proof

"Construction of approximate solutions + generalized energy estimate"

IV. Ideas of the proof

"Construction of approximate solutions + generalized energy estimate"
(1) $2+1 / 2$ dimensional reduction
(2) Degenerating wave packets
(3) Generalized energy identities
(4) Incorporating the velocity field

$2+1 / 2$ dimensional reduction

- We take advantage of the $2+1 / 2 \mathrm{~d}$ reduction (z-invariance): it is natural then to introduce ψ and ω by

$$
(\nabla \times b)^{z}=-\Delta \psi, \quad(\nabla \times u)^{z}=\omega .
$$

$2+1 / 2$ dimensional reduction

- We take advantage of the $2+1 / 2 \mathrm{~d}$ reduction (z-invariance): it is natural then to introduce ψ and ω by

$$
(\nabla \times b)^{z}=-\Delta \psi, \quad(\nabla \times u)^{z}=\omega
$$

- For $\mathbf{B}=f(y) \partial_{x}$, the linearized system in terms of ($u^{z}, \omega, b^{z}, \psi$) is given by

$$
\left\{\begin{array}{l}
\partial_{t} u^{z}-f(y) \partial_{x} b^{z}-\nu \Delta u^{z}=0 \\
\partial_{t} \omega-f^{\prime \prime}(y) \partial_{x} \psi+f(y) \partial_{x} \Delta \psi-\nu \Delta \omega=0 \\
\partial_{t} b^{z}-f(y) \partial_{x} u^{z}+f^{\prime \prime}(y) \partial_{x} \psi-f(y) \partial_{x} \Delta \psi=0 \\
\partial_{t} \psi-f(y) \partial_{x}(-\Delta)^{-1} \omega+f(y) \partial_{x} b^{z}=0
\end{array}\right.
$$

$2+1 / 2$ dimensional reduction

- In the E-MHD case,

$$
\left\{\begin{array}{l}
\partial_{t} b^{z}-f(y) \partial_{x} \Delta \psi+f^{\prime \prime}(y) \partial_{x} \psi=0 \\
\partial_{t} \psi+f(y) \partial_{x} b^{z}=0
\end{array}\right.
$$

$2+1 / 2$ dimensional reduction

- In the E-MHD case,

$$
\left\{\begin{array}{l}
\partial_{t} b^{z}-f(y) \partial_{x} \Delta \psi+f^{\prime \prime}(y) \partial_{x} \psi=0 \\
\partial_{t} \psi+f(y) \partial_{x} b^{z}=0
\end{array}\right.
$$

- Near $\mathrm{B}^{\circ}=g(r) \partial_{\theta}$, the system is essentially the same:

$$
\left\{\begin{array}{l}
\partial_{t} b^{z}-g(r) \partial_{\theta} \Delta \psi+\left(g^{\prime \prime}(r)+\frac{3}{r} g^{\prime}(r)\right) \partial_{\theta} \psi=0 \\
\partial_{t} \psi+g(r) \partial_{\theta} b^{z}=0
\end{array}\right.
$$

$2+1 / 2$ dimensional reduction

- In the E-MHD case,

$$
\left\{\begin{array}{l}
\partial_{t} b^{z}-f(y) \partial_{x} \Delta \psi+f^{\prime \prime}(y) \partial_{x} \psi=0 \\
\partial_{t} \psi+f(y) \partial_{x} b^{z}=0
\end{array}\right.
$$

- Near $\mathbf{B}^{\circ}=g(r) \partial_{\theta}$, the system is essentially the same:

$$
\left\{\begin{array}{l}
\partial_{t} b^{z}-g(r) \partial_{\theta} \Delta \psi+\left(g^{\prime \prime}(r)+\frac{3}{r} g^{\prime}(r)\right) \partial_{\theta} \psi=0 \\
\partial_{t} \psi+g(r) \partial_{\theta} b^{z}=0
\end{array}\right.
$$

- Here we have a gap.

Degenerating wave packets

- We construct approximate solutions to the linearized systems ("solve the illposed part").

Degenerating wave packets

- We construct approximate solutions to the linearized systems ("solve the illposed part").
- Pass to a second order system for ψ and write down the ansatz

$$
\psi \approx \lambda^{-1} e^{i \lambda(x+G(\lambda t, y))} H(\lambda t, x, y)
$$

(guided by the bicharacteristics).

Degenerating wave packets

- It is simpler to massage the system a bit to work in renormalized coordinates.

Degenerating wave packets

- It is simpler to massage the system a bit to work in renormalized coordinates.
- To this end, consider

$$
\partial_{\tau}=\lambda^{-1} \partial_{t}, \quad \partial_{\eta}=f(y) \partial_{y}
$$

and after conjugation $\varphi=f^{-\frac{1}{2}} \psi$, we obtain

$$
\partial_{\tau}^{2} \varphi+\left(\lambda^{-1} \partial_{x}\right)^{2} \partial_{\eta}^{2} \varphi+\lambda^{2} f^{2}\left(\lambda^{-1} \partial_{x}\right)^{4} \varphi=O . K
$$

Degenerating wave packets

- It is simpler to massage the system a bit to work in renormalized coordinates.
- To this end, consider

$$
\partial_{\tau}=\lambda^{-1} \partial_{t}, \quad \partial_{\eta}=f(y) \partial_{y}
$$

and after conjugation $\varphi=f^{-\frac{1}{2}} \psi$, we obtain

$$
\partial_{\tau}^{2} \varphi+\left(\lambda^{-1} \partial_{x}\right)^{2} \partial_{\eta}^{2} \varphi+\lambda^{2} f^{2}\left(\lambda^{-1} \partial_{x}\right)^{4} \varphi=O . K
$$

- In the case of \mathbb{T}_{x}, x-dependence can be separated and similarly θ-dependence in the axisymmetric case.

Degenerating wave packets

- Ansatz $\varphi=\lambda^{-1} e^{i \lambda(x+\Phi(\tau, \eta))} h(\tau, x, \eta)$ gives

$$
\begin{aligned}
& e^{-i \lambda(x+\Phi)}\left[\partial_{\tau}^{2}+\left(\lambda^{-1} \partial_{x}\right)^{2} \partial_{\eta}^{2}+\lambda^{2} f^{2}\left(\lambda^{-1} \partial_{x}\right)^{4}\right]\left(\lambda^{-1} e^{i \lambda(x+\Phi)} h\right) \\
& =\lambda\left(-\left(\partial_{\tau} \Phi\right)^{2}+\left(\partial_{\eta} \Phi\right)^{2}+f^{2}\right) h \\
& \quad+\left(2 i \partial_{\tau} \Phi \partial_{\tau}+i \partial_{\tau}^{2} \Phi-i \partial_{\eta}^{2} \Phi-2 i \partial_{\eta} \Phi \partial_{\eta}-2 i\left(\partial_{\eta} \Phi\right)^{2} \partial_{x}-4 i f^{2} \partial_{x}\right) h \\
& \quad+\lambda^{-1}(\cdots)
\end{aligned}
$$

Degenerating wave packets

- Ansatz $\varphi=\lambda^{-1} e^{i \lambda(x+\Phi(\tau, \eta))} h(\tau, x, \eta)$ gives

$$
\begin{aligned}
& e^{-i \lambda(x+\Phi)}\left[\partial_{\tau}^{2}+\left(\lambda^{-1} \partial_{x}\right)^{2} \partial_{\eta}^{2}+\lambda^{2} f^{2}\left(\lambda^{-1} \partial_{x}\right)^{4}\right]\left(\lambda^{-1} e^{i \lambda(x+\Phi)} h\right) \\
& =\lambda\left(-\left(\partial_{\tau} \Phi\right)^{2}+\left(\partial_{\eta} \Phi\right)^{2}+f^{2}\right) h \\
& \quad+\left(2 i \partial_{\tau} \Phi \partial_{\tau}+i \partial_{\tau}^{2} \Phi-i \partial_{\eta}^{2} \Phi-2 i \partial_{\eta} \Phi \partial_{\eta}-2 i\left(\partial_{\eta} \Phi\right)^{2} \partial_{x}-4 i f^{2} \partial_{x}\right) h \\
& \quad+\lambda^{-1}(\cdots)
\end{aligned}
$$

- Obtain a hierarchy of equations (general rule).

Degenerating wave packets

- Hamilton-Jacobi equation for Φ : we may choose

$$
\Phi(\tau, \eta) \approx \tau+\eta, \quad \eta \ll-1
$$

Degenerating wave packets

- Hamilton-Jacobi equation for Φ : we may choose

$$
\Phi(\tau, \eta) \approx \tau+\eta, \quad \eta \ll-1
$$

- Transport equation for h : obtain global estimates

$$
\max _{0 \leq k, I \leq m}\left\|\partial_{\tau}^{k} \partial_{x}^{l} \partial_{\eta}^{m-k-1} h(\tau)\right\|_{L_{\tau}^{\infty} L_{x, \eta}^{2}} \lesssim m\left\|h_{0}\right\|_{H_{x, \eta}^{m}}
$$

and degeneration

$$
\operatorname{supp}_{\eta}(h(\tau)) \subset \operatorname{supp}_{\eta}\left(h_{0}\right)-\tau
$$

Degenerating wave packets

- Hamilton-Jacobi equation for Φ : we may choose

$$
\Phi(\tau, \eta) \approx \tau+\eta, \quad \eta \ll-1
$$

- Transport equation for h : obtain global estimates

$$
\max _{0 \leq k, l \leq m}\left\|\partial_{\tau}^{k} \partial_{x}^{l} \partial_{\eta}^{m-k-1} h(\tau)\right\|_{L_{\tau}^{\infty} L_{x, \eta}^{2}} \lesssim_{m}\left\|h_{0}\right\|_{H_{x, \eta}^{m}}
$$

and degeneration

$$
\operatorname{supp}_{\eta}(h(\tau)) \subset \operatorname{supp}_{\eta}\left(h_{0}\right)-\tau
$$

- The error in the φ-equation:

$$
\left\|\boldsymbol{e}_{\varphi}(\tau)\right\|_{L_{\chi, \eta}^{2}} \lesssim \lambda^{-1}\left\|h_{0}\right\|_{H^{4}}
$$

Degenerating wave packets

- Returning to the original coordinates, we obtain an approximate solution (for each $\lambda \in \mathbb{N}$)

$$
\tilde{b}=\left(\nabla^{\perp} \tilde{\psi}, \tilde{b}^{z}\right)
$$

satisfying

$$
\begin{gathered}
\|\tilde{b}\|_{L_{t}^{\infty} L_{x, y}^{2}} \approx 1 \\
\|\tilde{b}(t)\|_{L_{L}^{2} L_{y}^{1}} \lesssim e^{-\frac{f^{\prime}(0)}{2} \lambda t}
\end{gathered}
$$

and

$$
\left\|\boldsymbol{e}_{\tilde{b}}(t)\right\|_{L_{x, y}^{2}} \lesssim 1
$$

Generalized energy identities

- A remarkably simple way to show that $\tilde{b} \approx b$ is to utilize the generalized energy identity.

Generalized energy identities

- A remarkably simple way to show that $\tilde{b} \approx b$ is to utilize the generalized energy identity.
- GEI: let b be a solution and \tilde{b} be an approx. solution with $O(1)$ error, initially close to b_{0} and L^{2}-normalized. Then,

$$
\left\langle b_{0}, \tilde{b}_{0}\right\rangle \approx 1, \quad\left|\frac{d}{d t}\langle b, \tilde{b}\rangle\right| \lesssim 1
$$

Generalized energy identities

- A remarkably simple way to show that $\tilde{b} \approx b$ is to utilize the generalized energy identity.
- GEI: let b be a solution and \tilde{b} be an approx. solution with $O(1)$ error, initially close to b_{0} and L^{2}-normalized. Then,

$$
\left\langle b_{0}, \tilde{b}_{0}\right\rangle \approx 1, \quad\left|\frac{d}{d t}\langle b, \tilde{b}\rangle\right| \lesssim 1
$$

- But then, for some $t \in[0, T]$ we have

$$
\|b\|_{L_{x}^{2} L_{y}^{\infty}}\|\tilde{b}\|_{L_{x}^{2} L_{y}^{1}} \geq\langle b, \tilde{b}\rangle>\frac{1}{2}
$$

and degeneration of $\|\tilde{b}\|_{L_{x}^{2} L_{y}^{1}}$ gives growth for b.

Incorporating the velocity field

- Passing from E-MHD to Hall-MHD: treat \mathbf{u} as a perturbation.

Incorporating the velocity field

- Passing from E-MHD to Hall-MHD: treat \mathbf{u} as a perturbation.
- "Good variable" $\mathbf{B}+\nabla \times \mathbf{u}$: simple transport by \mathbf{u}.

Incorporating the velocity field

- Passing from E-MHD to Hall-MHD: treat \mathbf{u} as a perturbation.
- "Good variable" $\mathbf{B}+\nabla \times \mathbf{u}$: simple transport by \mathbf{u}.
- The choice for approx. sol. (from good variable):

$$
\tilde{u}^{z}=-\tilde{\psi}, \quad \tilde{\omega}=-\tilde{b}^{z}
$$

Incorporating the velocity field

- Passing from E-MHD to Hall-MHD: treat \mathbf{u} as a perturbation.
- "Good variable" $\mathbf{B}+\nabla \times \mathbf{u}$: simple transport by \mathbf{u}.
- The choice for approx. sol. (from good variable):

$$
\tilde{u}^{z}=-\tilde{\psi}, \quad \tilde{\omega}=-\tilde{b}^{z} .
$$

- Then we have a smoothing of order one: with $\tilde{u}=\left(\nabla^{\perp}\left(-\Delta^{-1}\right) \tilde{\omega}, \tilde{u}^{z}\right)$,

$$
\|\tilde{u}\|_{L_{t}^{\infty} L_{x, y}^{2}} \lesssim \lambda^{-1}, \quad\|\nabla \tilde{u}\|_{L_{t}^{\infty} L_{x, y}^{2}} \lesssim 1
$$

Incorporating the velocity field

- Passing from E-MHD to Hall-MHD: treat \mathbf{u} as a perturbation.
- "Good variable" $\mathbf{B}+\nabla \times \mathbf{u}$: simple transport by \mathbf{u}.
- The choice for approx. sol. (from good variable):

$$
\tilde{u}^{z}=-\tilde{\psi}, \quad \tilde{\omega}=-\tilde{b}^{z}
$$

- Then we have a smoothing of order one: with

$$
\tilde{u}=\left(\nabla^{\perp}\left(-\Delta^{-1}\right) \tilde{\omega}, \tilde{u}^{z}\right)
$$

$$
\|\tilde{u}\|_{L_{t}^{\infty} L_{x, y}^{2}} \lesssim \lambda^{-1}, \quad\|\nabla \tilde{u}\|_{L_{t}^{\infty} L_{x, y}^{2}} \lesssim 1
$$

- We then proceed using the GEI. In the case $\nu>0$, we also utilize the a priori bound for $\nu\|\nabla u\|_{L^{2}}$.

V. Linear to nonlinear

(1) Unboundedness of the solution operator
(2) Nonexistence

Unboundedness of the solution operator

Theorem

Near $\mathbf{B}=f(y) \partial_{x}$ or $g(r) \partial_{\theta}$ (with degenerate profile), assume that the solution map is well-defined:

$$
\mathcal{B}_{\epsilon}\left((0, \mathbf{B}) ; H_{c o m p}^{r} \times H_{c o m p}^{s}\right) \rightarrow L_{t}^{\infty}\left([0, \delta] ; H^{s_{0}-1}\right) \times L_{t}^{\infty}\left([0, \delta] ; H^{s_{0}}\right)
$$

for some $\epsilon, \delta, r, s, s_{0}>0$. Then this solution map is unbounded for $s_{0} \geq 3$.

Unboundedness of the solution operator

Theorem

Near $\mathbf{B}=f(y) \partial_{x}$ or $g(r) \partial_{\theta}$ (with degenerate profile), assume that the solution map is well-defined:

$$
\mathcal{B}_{\epsilon}\left((0, \stackrel{\circ}{\mathbf{B}}) ; H_{c o m p}^{r} \times H_{c o m p}^{s}\right) \rightarrow L_{t}^{\infty}\left([0, \delta] ; H^{s_{0}-1}\right) \times L_{t}^{\infty}\left([0, \delta] ; H^{s_{0}}\right)
$$

for some $\epsilon, \delta, r, s, s_{0}>0$. Then this solution map is unbounded for $s_{0} \geq 3$.

Proof.

Contradiction argument and use the energy to handle the nonlinearity: take GEI for $\frac{d}{d t}\langle b, \tilde{b}\rangle$ where b is now viewed as a linear approx. solution with the nonlinearity as the RHS. Then take $\lambda \rightarrow \infty$ to derive a contradiction.

Nonexistence

- Idea: superposition of instabilities in physical space (c.f. Bourgain-Li).

Nonexistence

- Idea: superposition of instabilities in physical space (c.f. Bourgain-Li).
- Take stationary solution

$$
\begin{aligned}
& \stackrel{\circ}{\mathbf{B}}=\sum_{k=k_{0}}^{\infty} \stackrel{\circ}{\mathbf{B}}_{k}:=\sum_{k=k_{0}}^{\infty} a_{k} \widetilde{\mathbf{B}}\left(L_{k}^{-1} x, L_{k}^{-1}\left(y-y_{k}\right)\right), \\
& a_{k}=2^{-s k}, L_{k}=2^{-\frac{k}{2}} .
\end{aligned}
$$

Nonexistence

- Idea: superposition of instabilities in physical space (c.f. Bourgain-Li).
- Take stationary solution

$$
\begin{aligned}
& \stackrel{\circ}{\mathbf{B}}=\sum_{k=k_{0}}^{\infty} \stackrel{\circ}{\mathbf{B}}_{k}:=\sum_{k=k_{0}}^{\infty} a_{k} \widetilde{\mathbf{B}}\left(L_{k}^{-1} x, L_{k}^{-1}\left(y-y_{k}\right)\right), \\
& a_{k}=2^{-s k}, L_{k}=2^{-\frac{k}{2}} .
\end{aligned}
$$

- Initial data

$$
\mathbf{B}=\stackrel{\circ}{\mathbf{B}}+\sum_{k=k_{0}}^{\infty} 2^{-k} \lambda_{k}^{-s} \tilde{b}_{\left(\lambda_{k}\right)}(t=0), \quad \lambda_{k}=2^{N k}, N \gg 1
$$

Nonexistence

- Idea: superposition of instabilities in physical space (c.f. Bourgain-Li).
- Take stationary solution

$$
\begin{aligned}
& \stackrel{\circ}{\mathbf{B}}=\sum_{k=k_{0}}^{\infty} \stackrel{\circ}{\mathbf{B}}_{k}:=\sum_{k=k_{0}}^{\infty} a_{k} \widetilde{\mathbf{B}}\left(L_{k}^{-1} x, L_{k}^{-1}\left(y-y_{k}\right)\right), \\
& a_{k}=2^{-s k}, L_{k}=2^{-\frac{k}{2}}
\end{aligned}
$$

- Initial data

$$
\mathbf{B}=\stackrel{\circ}{\mathbf{B}}+\sum_{k=k_{0}}^{\infty} 2^{-k} \lambda_{k}^{-s} \tilde{b}_{\left(\lambda_{k}\right)}(t=0), \quad \lambda_{k}=2^{N k}, N \gg 1
$$

- Localize the GEI to derive contradiction. Here a significant technical difference between \mathbb{T}_{y} and \mathbb{R}_{y}.

Thanks!

