## On an Initial-Boundary Value Problem for the Landau Equation

Jin Woo Jang (IBS - Center for Geometry and Physics)

Inaugural France-Korea Conference on Algebraic Geometry, Number Theory, and Partial Differential Equations

Tuesday, November 26, 2019 Institute of Mathematics, University of Bordeaux
arXiv:1905.00173

## The Boltzmann equation (1872)

- Electrically neutral, single-species, and rarefied gases.
- The Boltzmann equation

$$
\partial_{t} F+v \cdot \nabla_{x} F=Q(F, F), \quad x \in \Omega, \quad v \in \mathbb{R}^{3}, \quad t \geq 0
$$

- $F=F(t, x, v)$ : probability density in (position, velocity)
- $\Omega \subset \mathbb{R}^{3}$ : domain in space
- $v \cdot \nabla_{x} F$ : free transport term
- $Q(F, F)$ : collision operator, local in ( $\mathrm{t}, \mathrm{x}$ ), quadratic integral operator

$$
\begin{aligned}
& Q(F, G)(v)=\int_{\mathbb{R}^{3}} d v_{*} \int_{\mathbb{S}^{2}} d \sigma B\left(v-v_{*}, \sigma\right) \\
& \times\left[F\left(v_{*}^{\prime}\right) G\left(v^{\prime}\right)-F\left(v_{*}\right) G(v)\right]
\end{aligned}
$$

## A binary collision



Figure: A binary collision of particles (special thanks to Hyunwoo Kwon, Sogang Univ.)

## Derivation of the Boltzmann equation

- The Liouville equation (microscopic dynamics, time-reversible)
- Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy
- Boltzmann-Grad limit
- The Boltzmann equation (time-irreversible)
- Poincaré Recurrence Theorem?


## Boltzmann's H-functional and H-Theorem

- The Entropy functional is defined as

$$
S(f)=-H(f) \stackrel{\text { def }}{=}-\int_{\Omega \times \mathbb{R}^{3}} F(x, v) \log F(x, v) d v d x
$$

- Boltzmann identifies $S$ with the entropy of the gas and proves that $S$ can only increase in time. More precisely, we have

$$
\frac{d}{d t} S(t) \geq 0
$$

- Entropy production and the time-irreversibility.
- Any rigorous proof?


## Global Maxwellian steady-state

- These equlibrium states are characterized as a particle distribution which maximizes the entropy subject to constant mass density $\rho$, mean velocity $u$, and the temperature $T$, given by

$$
\mu(v)=\rho \frac{e^{-\frac{|v-u|^{2}}{2 T}}}{(2 \pi T)^{3 / 2}},
$$

- $\rho=T=1$ and $u=0$ gives

$$
\mu(v)=\frac{e^{-\frac{|v|^{2}}{2}}}{(2 \pi)^{3 / 2}}
$$

## The aftermath of a binary collision

A complete description of the aftermath of collisions requires more precise physics.

- Hard spheres: Here the particles are assumed to be literally billiard balls of vanishingly small diameter in the continuum limit.
- Inverse power-law interactions $\phi(r)=\frac{1}{r^{p-1}}$ : Here the particles are assumed to interact pairwise through inverse power law potentials, $\phi(r)=\frac{1}{r^{p-1}}$ for some $p>2$. In this case, the preferred consequence of a collision is a glancing or grazing collision.
- The Coulomb potential $\phi(r)=\frac{1}{r}$ : this requires some additional limiting arguments and leads to what is called the Landau equation. Good physical model for the dynamics of plasma.


## Special cases of collisional kernels

- For the inverse power law $\phi(r)=\frac{1}{r^{p-1}}$ (Maxwell 1867):

$$
B\left(\left|v-v_{*}\right|, \sigma\right)=C\left|v-v_{*}\right|^{\gamma} \theta^{-\gamma^{\prime}} b_{0}(\theta),
$$

where $s>1, \gamma=\frac{p-5}{p-1}, \gamma^{\prime}=\frac{2 p}{p-1}, b_{0}$ is bounded, and

$$
\cos \theta=\frac{v-v_{*}}{\left|v-v_{*}\right|} \cdot \sigma
$$

with $0<\theta \leq \frac{\pi}{2}$.

- For the hard spheres in the limit $p \rightarrow \infty$ :

$$
B\left(\left|v-v_{*}\right|, \sigma\right)=C\left|v-v_{*}\right| \frac{b_{0}(\theta)}{\theta^{2}}
$$

where $b_{0}$ is bounded.

## Mathematical difficulties: lack of a priori estimates

- Even if we do not take into account the integrability of $B\left(\left|v-v_{*}\right|, \sigma\right)$, the only simple bound one can expect on $Q$ is

$$
|Q(F, F)|_{L^{1}\left(\mathbb{R}_{v}^{n}\right)} \leq C|F|_{L^{1}\left(\mathbb{R}_{v}^{n}\right)}^{2}
$$

- Therefore, it is reasonable to ask for an esimate of the following form

$$
F \in L_{l o c}^{2}\left((0, \infty) \times \mathbb{R}_{x}^{n} ; L^{1}\left(\mathbb{R}_{v}^{n}\right)\right)
$$

and such an estimate does not seem to be available in general.

- This lack of estimates has been the major obstruction to a complete understanding of the Boltzmann equation.


## Plasma Physics and the kinetic theory



Figure: ITER Tokamak, picture from American Institute of Physics.

## A Remedy: screening and the Debye potential



Figure: Coulomb potential vs. Debye potential

## A Remedy: screening and the Debye potential

- To ease the strong angular singularity from the slow decay of Coulomb potential $1 / r$, we instead consider so-called Debye (or Yukawa) potential:

$$
\phi(r)=\frac{e^{-r / \lambda_{D}}}{4 \pi \epsilon_{0} r},
$$

where $\lambda_{D}$ is the Debye length (i.e., screening distance) and $\epsilon_{0}$ is the permittivity of vacuum.

- In the classical theory of plasmas,

$$
\lambda_{D}=\sqrt{\frac{k T}{\rho}},
$$

where $k$ is Boltzmann's constant, $T$ is the temperature, $\rho$ is its mean density.

- In most of the cases of interest,

$$
r_{0} \ll \rho^{-1 / 3} \ll \lambda_{D},
$$

where

$$
r_{0}=\frac{1}{4 \pi k T}
$$

is the Landau length for collisions.

- By a formal procedure, Landau (in 1936) showed that, as the ratio

$$
\Lambda=2 \frac{\lambda_{D}}{r_{0}} \rightarrow \infty
$$

the Boltzmann collision operator for Debye potential behaves as

$$
\frac{\log \Lambda}{2 \pi \Lambda} Q_{L}(f, f)
$$

where the $Q_{L}$ is the so-called Landau collision operator.

## The Landau equation (1936)

The equation takes the form of

$$
\partial_{t} F+v \cdot \nabla_{x} F=Q_{L}(F, F),
$$

where $F=F(t, x, v)$ for $x \in \Omega \subset \mathbb{R}^{3}, v \in \mathbb{R}^{3}$ is the probability density function, and the Landau collision operator $Q_{L}$ is defined as

$$
Q_{L}(F, G)(v) \stackrel{\text { def }}{=} \nabla_{v} \cdot \int_{\mathbb{R}^{3}} \phi\left(v-v^{\prime}\right)\left[F\left(v^{\prime}\right) \nabla_{v} G(v)-G(v) \nabla_{v} F\left(v^{\prime}\right)\right] d v^{\prime}
$$

and the collision kernel

$$
\phi(z) \stackrel{\text { def }}{=}\left\{I-\frac{z}{|z|} \otimes \frac{z}{|z|}\right\} \cdot|z|^{-1}
$$

is a symmetric and non-negative matrix such that $\phi_{i j}(z) z_{i} z_{j}=0$.

- The global equilibrium $\mu(v)=\frac{1}{4 \pi} e^{-\frac{|v|^{2}}{2}}$.
- H-functional $H(f)=\int F \log F d x d v$.
- Entropy production

$$
\frac{d}{d t} S(f)=-\frac{d}{d t} H(f)=-\int Q(F, F) \log F \geq 0 .
$$

## First wellposedness for the Boltzmann and the Landau equations in the perturbation framework

- The global-in-time existence theory in the perturbation framework for the Landau equation has been well established for suitably small initial data in smooth Sobolev spaces.
- Landau equation in a periodic box with $\gamma \geq-3$ :

Guo (CMP, 2002), $f(t, x, v) \in L^{\infty}\left(0, \infty ; H_{x, v}^{8}\right)$.

## Any $L^{\infty}$ solutions?

- Collision operators for the Landau equation: the velocity diffusion property
- It is very difficult to apply the characteristic approach to obtain the $L_{x, v}^{\infty}$ bounds for the solutions.


## $L^{\infty}$ $t, x, v$ solutions to the Landau equation in a periodic box

- Kim-Guo-Hwang (Peking Math. Journal, 2019) developed an $L^{2}$ to $L^{\infty}$ approach to the Landau equation in the torus domain
- The initial data are required to be small in $L_{x, v}^{\infty}$ but additionally belong to $H_{x, v}^{1}$.
- Doesn't use the Sobolev embedding
- A key point of the proof is to control the $L^{\infty}$ bound by the $L^{2}$ estimates via De Giorgi-Nash-Moser's method, and also to control the velocity derivatives to ensure uniqueness by the Hölder estimates again via De Giorgi's method.


## Initial-boudary value problem for kinetic equations

- Boltzmann equation with Grad's angular cutoff: Shizuta and Asano (Proc. Japan Acad., 1977), Guo (ARMA, 2010), Kim (CMP, 2011), Guo, Kim, Tonon, Trescases (Invent. Math. 2016, ARMA 2016), Kim and Lee (CPAM 2018, ARMA 2019), etc.
- Vlasov(-Poisson)-Fokker-Planck equation:

Bonilla-Carrillo-Soler (JFA, 1993), Carrillo (Math. Methods Appl. Sci., 1998), Hwang-Jang-Velazquez (ARMA 2014, ARMA 2019), Cesbron (CMP, 2018), etc.

- Boltzmann equation without angular cutoff:

Duan-Liu-Sakamoto-Strain (arXiv, 2019) in a finite channel $\Omega=(-1,1) \times \mathbb{T}^{2}$.

- Landau equation: Duan-Liu-Sakamoto-Strain (arXiv, 2019) in a finite channel $\Omega=(-1,1) \times \mathbb{T}^{2}$.


## Nash-Moser iteration

## Lemma (Imbert-Mouhot (2016))

Let $h$ be a nonnegative periodic function in $x$ satisfying $\left(\partial_{t}+v \cdot \nabla_{x}-A\right) h \leq 0$. Then $h$ satisfies

$$
\begin{aligned}
\int_{Q_{1}}\left|\nabla_{v} h\right|^{2} & \leq C \int_{Q_{0}} h^{2} \\
\|h\|_{L_{t}^{2} L_{x}^{2} L_{v}^{q}\left(Q_{1}\right)}^{2} & \leq C \int_{Q_{0}} h^{2} \\
\|h\|_{L_{t}^{\infty} L_{x}^{2} L_{v}^{2}\left(Q_{1}\right)}^{2} & \leq C \int_{Q_{0}} h^{2} .
\end{aligned}
$$

for some $q>2$ and $C=\bar{C}\left(R_{0}\right)\left(1+\frac{1}{t_{0}-t_{1}}+\frac{1}{R_{0}-R_{1}}+\frac{1}{\left(R_{0}-R_{1}\right)^{2}}\right)$, $\bar{C}\left(R_{0}\right)=C^{\prime}\left(1+R_{0}\right)^{3}$.

## Nash-Moser iteration

## Lemma (Imbert-Mouhot (2016))

$$
\begin{aligned}
&\left\|D_{x}^{1 / 3} h\right\|_{L^{2}\left(Q_{1}\right)}^{2} \leq C\|h\|_{L^{2}\left(Q_{0}\right)}^{2} \\
&\left\|D_{t}^{1 / 3} h\right\|_{L^{2}\left(Q_{1}\right)}^{2} \leq C\|h\|_{L^{2}\left(Q_{0}\right)}^{2} \\
& \text { for some } C=\bar{C}\left(R_{0}\right)\left(1+\frac{1}{t_{0}-t_{1}}+\frac{1}{R_{0}-R_{1}}+\frac{1}{\left(R_{0}-R_{1}\right)^{2}}\right) .
\end{aligned}
$$

## Nash-Moser iteration

## Lemma (Imbert-Mouhot (2016))

There exists $p>2$ such that

$$
\|h\|_{L_{t}^{2} L_{x}^{p} L_{v}^{2}\left(Q_{1}\right)}^{2} \leq C\|h\|_{L^{2}\left(Q_{0}\right)}^{2}
$$

## Lemma (Imbert-Mouhot (2016))

We have

$$
\|h\|_{H_{x, v, t}^{s}\left(Q_{1}\right)} \leq C\|h\|_{L^{2}\left(Q_{0}\right)}
$$

where $s=1 / 3$.

Lemma (Imbert-Mouhot (2016))
There exists $q>2$ such that

$$
\|h\|_{L^{q}\left(Q_{1}\right)}^{2} \leq C\|h\|_{L^{2}\left(Q_{0}\right)}^{2}
$$

## De Giorgi lemma

## Lemma (Golse et al. (2016))

Let $\hat{Q}:=Q_{1 / 4}(0,0,-1)$. For any (universal) constants $\delta_{1} \in(0,1)$ and $\delta_{2} \in(0,1)$ there exist $\nu>0$ and $\vartheta \in(0,1)$ (both universal) such that for any solution $f$ in $Q_{2}$ with $|f| \leq 1$ and

$$
\begin{aligned}
\left|\{f \geq 1-\vartheta\} \cap Q_{1 / 4}\right| & \geq \delta_{1}\left|Q_{1 / 4}\right| \\
|\{f \leq 0\} \cap \hat{Q}| & \geq \delta_{2}|\hat{Q}|
\end{aligned}
$$

we have

$$
\left|\{0<f<1-\vartheta\} \cap B_{1} \times B_{1} \times(-2,0]\right| \geq \nu
$$

## De Giorgi Lemma

Lemma (Golse et al. (2016))
Let $\hat{Q}:=Q_{1 / 4}(0,0,-1)$ and $f$ be a weak solution in $Q_{2}$ with $|f| \leq 1$. If

$$
|\{f \leq 0\} \cap \hat{Q}| \geq \delta_{2}|\hat{Q}|
$$

then

$$
\sup _{Q_{1 / 8}} f \leq 1-\lambda
$$

for some $\lambda \in(0,1)$, depending only on dimension and the eigenvalue of $\sigma$.

## $S^{p}$ estimates

## Theorem (Bramanti et al. (1994))

Let $\Omega$ be a bounded open set in $\mathbb{R}^{7}$ and let $f$ be a strong solution in $\Omega$ to the equation

$$
\sum_{i, j=1}^{3} \sigma^{i j}(t, x, v) \partial_{v_{i}, v_{j}} f+Y f=h
$$

where $Y=-\partial_{t}-v \cdot \nabla_{x}$. Suppose that $\sigma$ is uniformly elliptic, $\left\|\sigma^{i j}\right\|_{C^{\alpha}(\Omega)} \leq C$, and $f, h \in L^{p}$.
Then $\partial_{v_{i}, v_{j}} f \in L_{\text {loc }}^{p}, Y f \in L_{\text {loc }}^{p}$ and for every open set $\Omega^{\prime} \subset \subset \Omega$ there exists a positive constant $c_{1}$ depending only on $p, \Omega^{\prime}, \Omega, \alpha, C$ and elliptic constant of $\sigma$ such that

$$
\begin{aligned}
\left\|\partial_{v_{i}, v_{j}} f\right\|_{L^{p}\left(\Omega^{\prime}\right)} & \leq c_{1}\left(\|f\|_{L^{p}(\Omega)}+\|h\|_{L^{p}(\Omega)}\right) \\
\|Y f\|_{L^{p}\left(\Omega^{\prime}\right)} & \leq c_{1}\left(\|f\|_{L^{p}(\Omega)}+\|h\|_{L^{p}(\Omega)}\right)
\end{aligned}
$$

## Specular reflection boundary conditions

- Denote the phase boundary of $\Omega \times \mathbb{R}^{3}$ as $\gamma \stackrel{\text { def }}{=} \partial \Omega \times \mathbb{R}^{3}$.
- Then we now split this boundary into an outgoing boundary $\gamma_{+}$, an incoming boundary $\gamma_{-}$, and a singular boundary $\gamma_{0}$ for grazing velocities, defined as

$$
\begin{aligned}
& \gamma_{+} \stackrel{\text { def }}{=}\left\{(x, v) \in \Omega \times \mathbb{R}^{3}: n_{x} \cdot v>0\right\}, \\
& \gamma_{-} \stackrel{\text { def }}{=}\left\{(x, v) \in \Omega \times \mathbb{R}^{3}: n_{x} \cdot v<0\right\}, \\
& \gamma_{0} \stackrel{\text { def }}{=}\left\{(x, v) \in \Omega \times \mathbb{R}^{3}: n_{x} \cdot v=0\right\} .
\end{aligned}
$$

- In terms of the probability density function $F$, we formulate the specular reflection boundary condition as

$$
\left.F(t, x, v)\right|_{\gamma_{-}}=F\left(t, x, v-2 n_{x}\left(n_{x} \cdot v\right)\right)=F\left(t, x, R_{x} v\right)
$$

for all $x \in \partial \Omega$ where

$$
R_{x} v \stackrel{\text { def }}{=} v-2 n_{x}\left(n_{x} \cdot v\right)
$$

## Main theorem

## Theorem (Guo-Hwang-J.-Ouyang, 2019)

There exist $\vartheta^{\prime}$ and $0<\varepsilon_{0} \ll 1$ such that for some $\vartheta \geq \vartheta^{\prime}$ if $f_{0}$ satisfies $\left\|f_{0}\right\|_{\infty, \vartheta} \leq \varepsilon_{0}, \quad\left\|f_{0 t}\right\|_{\infty, \vartheta}+\left\|D_{v} f_{0}\right\|_{\infty, \vartheta}<\infty$, where $f_{0 t} \stackrel{\text { def }}{=}-v \cdot \nabla_{x} f_{0}+\bar{A}_{f_{0}} f_{0}$.

- (Existence and Uniqueness) Then there exists a unique weak solution $f$ to the initial-boundary value problem on $(0, \infty) \times \Omega \times \mathbb{R}^{3}$.
- (Decay of solutions in $L^{2}$ and $L^{\infty}$ ) Moreover, for any $t>0$, $\vartheta_{0} \in \mathbb{N}$, and $\vartheta \geq \vartheta^{\prime}$, there exist $C_{\vartheta, \vartheta_{0}}>0$ and $I_{0}\left(\vartheta_{0}\right)>0$ such that $f$ satisfies

$$
\begin{gathered}
\|f(t)\|_{2, \vartheta} \leq C_{\vartheta, \vartheta_{0}} \mathcal{E}_{\vartheta+\vartheta_{0} / 2}(0)^{1 / 2}\left(1+\frac{t}{\vartheta_{0}}\right)^{-\vartheta_{0} / 2} \text { and } \\
\|f(t)\|_{\infty, \vartheta} \leq C_{\vartheta, \vartheta_{0}}(1+t)^{-\vartheta_{0}}\left\|f_{0}\right\|_{\infty, \vartheta+I_{0}}
\end{gathered}
$$

## Main theorem

## Theorem (Guo-Hwang-J.-Ouyang, arXiv 2019)

- (Boundedness in $C^{0, \alpha}$ and $W^{1, \infty}$ ) In addition, there exist $C>0$ and $0<\alpha<1$ such that $f$ satisfies

$$
\|f\|_{\left.C^{0, \alpha}\left((0, \infty) \times \Omega \times \mathbb{R}^{3}\right)\right)} \leq C\left(\left\|f_{0 t}\right\|_{\infty, \vartheta}+\left\|f_{0}\right\|_{\infty, \vartheta}\right)
$$

and

$$
\begin{aligned}
& \left.\left\|D_{v} f\right\|_{L^{\infty}\left((0, \infty) \times \Omega \times \mathbb{R}^{3}\right)}\right) \\
& \quad \leq C\left(\left\|f_{0 t}\right\|_{\infty, \vartheta}+\left\|D_{v} f_{0}\right\|_{\infty, \vartheta}+\left\|f_{0}\right\|_{\infty, \vartheta}\right)
\end{aligned}
$$

- (Positivity) Let $F(t, x, v)=\mu(v)+\sqrt{\mu}(v) f(t, x, v)$. If $F(0) \geq 0$, then $F(t) \geq 0$ for every $t \geq 0$.


Figure: $L^{2} \rightarrow L^{\infty}$ approach.

## Main strategy: Step 1. Linear problem

- Write the linearized equation as

$$
\partial_{t} f+v \cdot \nabla_{x} f=\bar{A}_{g} f+\bar{K}_{g} f,
$$

for some given function $g$, where $\bar{A}_{g} f$ consists of the terms which contain at least one momentum-derivative of $f$ while $\bar{K}_{g} f$ consists of the rest.

- Then, we first consider constructing weak solutions for the linearized equation

$$
\partial_{t} f+v \cdot \nabla_{x} f=\bar{A}_{g} f
$$

where the wellposedness is then obtained via regularizing the problem, constructing approximate solutions, and showing $L^{1}$ and $L^{\infty}$ estimates for the adjoint problem to the approximate problem.

## Step 1. Linear problem

- Once we are equipped the wellposedness of the reduced equation, we may associate a continuous semigroup of linear and bounded operators $U(t)$ such that $f(t)=U(t) f_{0}$ is the unique weak solution of the reduced equation.
- Then by the Duhamel principle, the solution $\bar{f}$ of the whole linearized equation can further be written as

$$
\bar{f}(t)=U(t) \bar{f}_{0}+\int_{0}^{t} U(t-s) \bar{K}_{g} \bar{f}(s) d s
$$

## Step 2. $L^{2}$ decay estimates: Hypocoercivity

- Key point: $L$ has a null space and is coercive:

$$
\langle L f, f\rangle_{v} \gtrsim|(I-P) f|_{\sigma}^{2} .
$$

- Macro-micro decomposition and the dissipation.
- The following polynomial decay follows from the energy inequality:

$$
\|f(t)\|_{2, \vartheta} \leq C_{\vartheta, \vartheta_{0}} \mathcal{E}_{\vartheta+\vartheta_{0} / 2}(0)^{1 / 2}\left(1+\frac{t}{\vartheta_{0}}\right)^{-\vartheta_{0} / 2}
$$

## Step 3. boundary-flattening transformation

- Let

$$
\begin{aligned}
\vec{\Phi}: \bar{\Omega} \times \mathbb{R}^{3} & \rightarrow \overline{\mathbb{H}}_{-} \times \mathbb{R}^{3} \\
(x, v) & \mapsto(y, w) \stackrel{\text { def }}{=}(\vec{\phi}(x), A v)
\end{aligned}
$$

be the (local) transformation that flattens the boundary, where

$$
A \stackrel{\text { def }}{=}\left[\frac{\partial y}{\partial x}\right]=D \vec{\phi}
$$

is a non-degenerate $3 \times 3$ Jacobian matrix, and the explicit definition of $y=\vec{\phi}(x)$ will be given below. Let
$\tilde{f}(t, y, w) \stackrel{\text { def }}{=} f\left(t, \vec{\Phi}^{-1}(y, w)\right)=f\left(t, \vec{\phi}^{-1}(y), A^{-1} w\right)=f(t, x, v)$.
denote the solution under the new coordinates.

## Step 3. boundary-flattening transformation

- Suppose the boundary $\partial \Omega$ is (locally) given by the graph $x_{3}=\rho\left(x_{1}, x_{2}\right)$, and $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}<\rho\left(x_{1}, x_{2}\right)\right\} \subseteq \Omega$.
- Define $y=\vec{\phi}(x)$ explicitly as follows:

$$
\begin{aligned}
\vec{\phi}^{-1}:\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) & \mapsto \vec{\eta}\left(y_{1}, y_{2}\right)+y_{3} \cdot \vec{n}\left(y_{1}, y_{2}\right) \\
& \stackrel{\text { def }}{=}\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\rho\left(y_{1}, y_{2}\right)
\end{array}\right)+y_{3} \cdot\left(\begin{array}{c}
-\rho_{1} \\
-\rho_{2} \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
y_{1}-y_{3} \cdot \rho_{1} \\
y_{2}-y_{3} \cdot \rho_{2} \\
\rho+y_{3}
\end{array}\right)=:\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

## Step 3. boundary-flattening transformation

$$
\begin{gathered}
\vec{\eta}\left(y_{1}, y_{2}\right) \stackrel{\text { def }}{=}\left(y_{1}, y_{2}, \rho\left(y_{1}, y_{2}\right)\right) \in \partial \Omega \\
\partial_{1} \vec{\eta} \stackrel{\text { def }}{=} \frac{\partial \vec{\eta}}{\partial y_{1}}=\left\langle 1,0, \rho_{1}\right\rangle \\
\partial_{2} \vec{\eta} \stackrel{\text { def }}{=} \frac{\partial \vec{\eta}}{\partial y_{2}}=\left\langle 0,1, \rho_{2}\right\rangle,
\end{gathered}
$$

then the (outward) normal vector at the point $\vec{\eta}\left(y_{1}, y_{2}\right) \in \partial \Omega$ is chosen to be

$$
\vec{n}\left(y_{1}, y_{2}\right) \stackrel{\text { def }}{=} \partial_{1} \vec{\eta} \times \partial_{2} \vec{\eta}=\left\langle-\rho_{1},-\rho_{2}, 1\right\rangle .
$$

We also remark that the map is locally well-defined and is a smooth homeomorphism in a tubular neighborhood of the boundary.

## Step 3. boundary-flattening transformation

Directly we compute the Jacobian matrix

$$
\begin{aligned}
& A^{-1}=D \vec{\phi}^{-1}=\left[\frac{\partial x}{\partial y}\right]=\left[\partial_{1} \vec{\eta}+y_{3} \cdot \partial_{1} \vec{n} ; \partial_{2} \vec{\eta}+y_{3} \cdot \partial_{2} \vec{n} ; \vec{n}\right] \\
&=\left(\begin{array}{ccc}
1-y_{3} \cdot \rho_{11} & -y_{3} \cdot \rho_{12} & -\rho_{1} \\
-y_{3} \cdot \rho_{12} & 1-y_{3} \cdot \rho_{22} & -\rho_{2} \\
\rho_{1} & \rho_{2} & 1
\end{array}\right) \\
& \xrightarrow{\text { on } \partial \Omega: y_{3}=0} \\
&=\left(\begin{array}{ccc}
\left.\partial_{1} \vec{\eta} ; \partial_{2} \vec{\eta} ; \vec{n}\right] \\
0 & 0 & -\rho_{1} \\
\rho_{1} & \rho_{2} & -\rho_{2}
\end{array}\right) .
\end{aligned}
$$

## Step 3. boundary-flattening transformation

So we can write out $\vec{\Phi}^{-1}$ as

$$
\begin{aligned}
& \vec{\Phi}^{-1}:(y, w) \mapsto(x, v) \stackrel{\text { def }}{=}\left(\vec{\phi}^{-1}(y), A^{-1} w\right) \\
&\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) \mapsto\left(\begin{array}{ccc}
1-y_{3} \cdot \rho_{11} & -y_{3} \cdot \rho_{12} & -\rho_{1} \\
-y_{3} \cdot \rho_{12} & 1-y_{3} \cdot \rho_{22} & -\rho_{2} \\
\rho_{1} & \rho_{2} & 1
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) \\
&=\left(\begin{array}{c}
\left(1-y_{3} \rho_{11}\right) \cdot w_{1}-y_{3} \rho_{12} \cdot w_{2}-\rho_{1} \cdot w_{3} \\
-y_{3} \rho_{12} \cdot w_{1}+\left(1-y_{3} \rho_{22}\right) \cdot w_{2}-\rho_{2} \cdot w_{3} \\
\rho_{1} \cdot w_{1}+\rho_{2} \cdot w_{2}+w_{3}
\end{array}\right)=:\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
\end{aligned}
$$

## Step 3. boundary-flattening transformation

Restricted on the boundary $\partial \Omega$ i.e., $\left\{y_{3}=0\right\}$, the map becomes

$$
\begin{aligned}
\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) & =w_{1} \cdot \partial_{1} \vec{\eta}+w_{2} \cdot \partial_{2} \vec{\eta}+w_{3} \cdot \vec{n} \\
& =\left(\begin{array}{ccc}
1 & 0 & -\rho_{1} \\
0 & 1 & -\rho_{2} \\
\rho_{1} & \rho_{2} & 1
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=\left(\begin{array}{c}
w_{1}-\rho_{1} \cdot w_{3} \\
w_{2}-\rho_{2} \cdot w_{3} \\
\rho_{1} \cdot w_{1}+\rho_{2} \cdot w_{2}+w_{3}
\end{array}\right)
\end{aligned}
$$

## Step 3. boundary-flattening transformation

- Key feature: $\vec{\Phi}$ preserves the "specular symmetry" on the boundary: it sends any two points $(x, v),\left(x, R_{x} v\right)$ on the phase boundary $\gamma=\partial \Omega \times \mathbb{R}^{3}$ with specular-reflection relation to two points on $\left\{y_{3}=0\right\} \times \mathbb{R}^{3}$ which are also specular-symmetric to each other.
- In other words, we have the following commutative diagram (when $x \in \partial \Omega$ i.e., $y_{3}=0$ ):

$$
\begin{gathered}
(y, w) \xrightarrow{\vec{\Phi}^{-1}}(x, v) \\
R_{y} \downarrow \\
\downarrow R_{x} \\
\left(y, R_{y} w\right) \xrightarrow{\vec{\Phi}^{-1}}\left(x, R_{x} v\right)
\end{gathered}
$$

using the definition $R_{x} v=v-2\left(n_{x} \cdot v\right) n_{x}$.

## Step 4: Mirror extension

- Having this property, the specular reflection boundary condition on the solutions is also preserved:

$$
\tilde{f}(t, y, w)=\tilde{f}(t, y, R w), \quad \text { on }\left\{y_{3}=0\right\}
$$

where $R \stackrel{\text { def }}{=} \operatorname{diag}\{1,1,-1\}$, which allows us to construct the mirror extension (as in the next subsection) that is consistent with this restriction (and thus is automatically satisfied).

- After flattening the boundary, we then "flip over" $\tilde{f}$ to the upper half space by setting

$$
\bar{f}\left(t, y^{\prime}, w^{\prime}\right) \stackrel{\text { def }}{=}\left\{\begin{aligned}
\tilde{f}\left(t, y^{\prime}, w^{\prime}\right), & \text { if } y^{\prime} \in \overline{\mathbb{H}}_{-} \\
\tilde{f}\left(t, R y^{\prime}, R w^{\prime}\right), & \text { if } y^{\prime} \in \overline{\mathbb{H}}_{+}
\end{aligned}\right.
$$

where $R \stackrel{\text { def }}{=} \operatorname{diag}\{1,1,-1\}$. Combined with the corresponding partition of unity, we are able to define our solutions in the whole space.

## Step 4: Mirror extension

Summing up the above computations, we now obtain that $\bar{f}$ satisfies (pointwisely) the following equation(s) in the lower and upper space, respectively:

$$
\partial_{t} \bar{f}+w^{\prime} \cdot \nabla_{y^{\prime}} \bar{f}=\nabla_{w^{\prime}} \cdot\left(\mathbb{A} \nabla_{w^{\prime}} \bar{f}\right)+\mathbb{B} \cdot \nabla_{w^{\prime}}, \bar{f}+\mathbb{C} \bar{f},
$$

where the coefficients $\mathbb{A}, \mathbb{B}$, and $\mathbb{C}$ are piecewise-defined and $\mathbb{A}$ is further Hölder continuous across the boundary.


Figure: $L^{2} \rightarrow L^{\infty}$ approach.

## Thank you for your attention.

