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A probabilistic approach to dilute particle systems

Phase space : Particles move in a bounded domain Ω ⊂ R3

with velocities in R3 ;

Mescopic viewpoint : Focus on the mean behaviour of a
random particle

Study the equation of the resulting density function

F : [0,T ]× Ω× Rd −→ R+

(t, x , v) 7−→ F (t, x , v)

F (t, x , v)dxdv represents the probability of having at time t a
particle inside B(x , dx) with a velocity in B(v , dv)

⇒ Minimal Requirement :
∀t ∈ [0,T ], F (t, ·, ·) ∈ L1

loc

(
Ω, L1

v

(
Rd
))
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The collisional Process

1 Binary collisions : Two particles sufficiently closed are
deviated

2 Localised collisions : Trajectories changes are immediate
and on the spot

3 Elastic collisions : One particle of mass mi and one of
mass mj

miv
′ + mjv

′
∗ = miv + mjv∗

mi

∣∣v ′∣∣2 + mj

∣∣v ′∗∣∣2 = mi |v |2 + mj |v∗|2

4 Microreversible collisions : microscopic dynamics are
reversible in time

5 Molecular chaos : particles evolve independently (before
colliding)
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Boltzmann equation

Only one species.

∀t > 0, ∀(x , v) ∈ Ω× Rd , ∂tF + v · ∇xF = Q(F ,F )

The collision operator :

Q(F ,F ) =

∫
S2×R3

b(cos θ) |v − v∗|γ
[
F ′F ′∗ − FF∗

]
dσdv∗

 v ′ = v+v∗
2 + |v−v∗|

2 σ

v ′∗ = v+v∗
2 − |v−v∗|2 σ

, and cos θ = 〈 v−v∗
|v−v∗| , σ〉.

Boundary conditions : None (torus) or : Specular, Diffuse,
Maxwell (convex combination)
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Boltzmann equation for mixture

N species non chemically reacting with potentially different masses
(mi )16i6N .

∀1 6 i 6 N, ∀t > 0, ∀(x , v) ∈ Ω×Rd , ∂tFi +v ·∇xFi = Qi (F,F)

The collision operators : Cross-interactions play a central
role

Qi (F ,F ) = Qii (Fi ,Fi ) +
N∑
j=1
j 6=i

Qij(Fi ,Fj)
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Entropy and global equilibria

A priori properties of solutions

Conservation laws : mass, momentum and energy

Boltzmann’s H-theorem : entropy
S(F )(t) =

∫
Td×Rd F ln(F )dxdv

d

dt
S(F ) = −

∫
Td

D(F )dx 6 0.

Equilibrium state

Equilibria : M(ρ,u,T )(t, x , v) = ρ(t,x)

(2πT (t,x))
d
2
e
− |v−u(t,x)|2

2T (t,x)

Under conditions on Ω, a unique stationary equilibrium

µ(v) = M(1,0,1) =
1

(2π)
d
2

e−
|v|2

2
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Quantifying the trend to equilibrium

Convergence to equilibrium

weak convergence by compactness : Arkeryd, Lions (torus) ;

Desvillettes, Arkeryd, Bose, Grzegorczyk, Nouri (bdd)

Entropy dissipation inequalities : DiPerna, Lions, Carlen,

Carvalho, Alexandre, Wennberg, Desvillettes-Villani ’05

Perturbative setting

Looking at convergence at a linearised level

Construct solutions F (t, x , v) = µ(v) + f (t, x , v)

Perturbed equation

∂t f + v · ∇x f = L[f ] + Q(f , f )
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A bit of litterature

Existing Cauchy theories for hard potentials with cutoff, small
perturbations

On the torus

Sobolev with expo. weights : Grad 1958, Ukai, Guo, Yu, Mouhot,

Neumann, MB

Lebesgue with poly. weights : Gualdani-Mischler-Mouhot ’17,

Merino-Aceituno, MB

With boundary conditions

L∞ with expo. weights for specular and diffuse : Guo, Esposito,

Kim, Marra, Tonon, Trescases, Lee

L∞ with poly. weights for Maxwell : Guo, MB

Multi-species case on the torus

Lebesgue with ploy. weights : Daus, MB

Sobolvec with expo. weights (hydro. limit) : Bondesan, MB
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The linear collisional operator

∂t f + v · ∇x f = L[f ]

Properties of the linear operator :

Local in time and space

L is unbounded and self-adjoint in L2
v (µ−

1
2 )

L = −ν(v) + K

ν(v) ∼ 1 + |v |γ
K compact in L2

v and kernel operator
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The linear collisional operator

Fluid part of the solution f

Ker(L) = Span
(

1, v , |v |2
)
µ(v)

Fluid part = projection onto Ker(L)

πL(f )(t, x , v) =
(
ρ(t, x) + u(t, x) · v + e(t, x) |v |2

)
µ(v)

Microscopic part and spectral gap

π⊥L (f ) = f − πL(f )
Carleman, Grad, Bobylev, Baranger, Mouhot

〈L[f ], f 〉
L2
v (µ−

1
2 )

6 −λL
∥∥∥π⊥L (f )

∥∥∥2

L2
v (νµ−

1
2 )

[Same kind of properties for multi-species : Daus, Jüngel, Mouhot, Zamponi (mi = mj ) ;

Daus, MB (general) ]
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Call for hypocoercivity

Natural space associated to L is L2
x ,v

(
µ−

1
2

)
First a priori estimate

1

2

d

dt
‖f ‖2

L2
x,v (µ−

1
2 )

6 −λL
∥∥∥π⊥L (f )

∥∥∥2

L2
x,v (νµ−

1
2 )

Main issue

How to recover the full norm ?
Control of πL by π⊥L in the set of solutions ?
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Hypocoercivity : abstract framework

Parallel with hypoellipticity ∂t f + T [f ] = D∗D[f ]

D ∗ D is elliptic degenerate differential operator
T is skew-symmetric
A fully elliptic operator can be recovered from the mixing
effects between T and D : Hörmander [D,T ]∗[T ,D] + D∗D

Hypocoercivity

L has a dissipative property but a large kernel
T = v · ∇x is skew-symmetric so non-dissipative but mixes
position and velocity
Understand how the interactions between L and T generates a
full coercivity
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Hypocoercivity : our framework

What we want ‖πL(f )‖
L2
v (µ−

1
2 )

6
∥∥π⊥L (f )

∥∥
L2
v (µ−

1
2 )

Three different spirits

Contradiction : Guo

Micro-Macro decomposition : Liu, Yu, Guo

Constructing new Lyapunov functionals : Mouhot, Neumann,

Dolbeaut, Schmeiser
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The mixing of transport in Sobolev spaces

[v · ∇x ,∇v ] = −∇x

Spatial derivatives commute with L

Velocity derivatives still generate a negative feedback

〈∇vL[f ],∇v f 〉
L2
v (µ−

1
2
6 −λ ‖f ‖2

L2
v (νµ−

1
2 )

+ C ‖f ‖2

L2
v (µ−

1
2 )

New H1 functional

‖f ‖2
H1

x,v
=a ‖f ‖2

L2
µ

+ b ‖∇x f ‖2
L2
µ

+ c ‖∇v f ‖2
L2
µ

+ d〈∇x f ,∇v f 〉L2
µ
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Weak elliptic regularity

The mixing of transport in Sobolev spaces

[v · ∇x ,∇v ] = −∇x

Spatial derivatives commute with L

Velocity derivatives still generate a negative feedback

〈∇vL[f ],∇v f 〉
L2
v (µ−

1
2
6 −λ ‖f ‖2

L2
v (νµ−

1
2 )

+ C ‖f ‖2

L2
v (µ−

1
2 )

New H1 functional

‖f ‖2
H1

x,v
=a ‖f ‖2

L2
µ

+ b ‖∇x f ‖2
L2
µ

+ c ‖∇v f ‖2
L2
µ

+ d〈∇x f ,∇v f 〉L2
µ

Marc Briant Hypocoercive Techniques in Collisional Kinetic Theory



default Collisional Kinetic Theory
The Linear equation and hypocoercivity

Hypocoercive techniques in the space of linearisation
Hypocoercive techniques to change functional space

Commutators and Poincaré
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Closing estimates : Poincaré and conservation laws

Full energy estimate

1

2

d

dt
‖f ‖2
H1

x,v
6 −λ−L

[∥∥∥π⊥L (f )
∥∥∥2

L2
νµ

+ ‖∇x f ‖2
L2
νµ

+ ‖∇v f ‖2
L2
νµ

]
Mass, momentum and energy preservation∫

Ω
πL(f )(t, x , v)dx =

∫
Ω
πL(f )(0, x , v)dx = 0

Poincaré inequality∥∥∥π⊥L (f )
∥∥∥2

L2
νµ

.
∥∥∥∇xπ

⊥
L (f )

∥∥∥2

L2
νµ

. ‖∇x f ‖2
L2
νµ
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Exponential convergence to equilibrium

1

2

d

dt
‖f ‖2
H1

x,v
6 −λ−L ‖f ‖

2
H1

x,v

Generation of a C 0-semigroup with exponential
decay

In Hs(µ−
1
2 ) : Mouhot-Neumann

In Hs(µ−
1
2 ) with external force : Debussche, Vovelle, MB

Similar result in other settings
In Hs(µ−

1
2 ) in the incompressible Navier-Stokes limit : MB

In Hs(µ−
1
2 ) for multi-species in the Maxwell-Stefan or Fick

limit : Bondesan, Grec, MB

With micro-macro decomposition
Recall πL(f ) =

(
ρ(t, x) + u(t, x) · v + e(t, x) |v |2

)
µ(v)

Find PDE satisfied by ρ, u, e and π⊥L (f ) and close estimates
Same results mono species : Guo, Liu, Yu
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Staying in Lebesgue space

πL(f ) =
(
ρ(t, x) + u(t, x) · v + e(t, x) |v |2

)
µ(v)

Control micro-fluid Elliptic regularity for ρ, u, e Guo

∆πL(f ) ∼ ∂2π⊥L (f ) + h.o.t.

Problems in bounded domain

Usually no preservation of momentum nor energy (no Poincaré)
Appearance of singularities/discontinuities due to grazing set :
Guo, Kim, Tonon, Trescases

No regularity higher than H1 !

Need of a micro-fluid control directly in L2
x ,v (µ−1

2 ).
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Recovering the coercivity in L2

Weakening elliptic regularity

Method introduced for diffuse b.c. :Esposito, Guo, Kim, Marra

Recovering estimates on ρ, u and e by integrating against test
fonctions.

ψρ(t, x , v) =
(
|v |2 − αρ

)√
µv · ∇xφρ(t, x)

where −∆xφρ(t, x) = ρ(t, x); ∂nφρ|∂Ω = 0

Laplacian is recovered via the transport operator
Need of elliptic estimates in negative Sobolev spaces

Generation of C 0-semigroup in L2
x ,v (µ−

1
2 )

Diffusive and Maxwell b.c. : Esposito, Guo, Kim, Marra, MB

Multi-species Boltzmann equation on torus : Daus, MB
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Some details

We rewrite the solution f̃ = eλt f : ∂t f̃ + v · ∇x f̃ = L[f̃ ] + λf̃

Estimate with spectral gap :∥∥∥f̃ ∥∥∥2

L2
µ

+ λL

∫ t

0

∥∥∥π⊥L (f̃ )
∥∥∥2

L2
νµ

ds 6
∥∥∥f̃ (0)

∥∥∥2

L2
µ

+ λ

∫ t

0

∥∥∥f̃ ∥∥∥2

L2
µ

ds

Micro-fluid control with weak regularity∫ t

0

∥∥∥πL(f̃ )
∥∥∥2

L2
µ

ds .
∥∥∥f̃ ∥∥∥2

L2
µ

−
∥∥∥f̃ (0)

∥∥∥2

L2
µ

+

∫ t

0

∥∥∥π⊥L (f̃ )
∥∥∥2

L2
µ

ds

Summing with weights :
∥∥∥f̃ ∥∥∥2

L2
µ

is bounded so ‖f ‖2
L2
µ

decays exponentially.
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default Collisional Kinetic Theory
The Linear equation and hypocoercivity

Hypocoercive techniques in the space of linearisation
Hypocoercive techniques to change functional space

Why a need to change space ?
Space decrease : L2 − L∞ method
Space enlargement : decrease and weight and Lebesgue spaces

Hypocoercive techniques to
change functional space
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Hypocoercive techniques in the space of linearisation
Hypocoercive techniques to change functional space

Why a need to change space ?
Space decrease : L2 − L∞ method
Space enlargement : decrease and weight and Lebesgue spaces

A need to work outside L2
x ,v(µ−

1
2 )

Mathematical reasons

Control the nonlinear remainder Q(f , f , )
Algebraic norms : L∞x,v , Hs

x,v for s large
Loss of weight : but gain of weight in spectral gap

Physical purposes

Larger spaces to obtain less regular solutions
Ultimately : L1

x,v (1 + |v |2)

Most optimal so far L1
vL
∞
x (1 + |v |2+0) for Botlzmann :

Gualdani-Mischler-Mouhot ’17
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default Collisional Kinetic Theory
The Linear equation and hypocoercivity

Hypocoercive techniques in the space of linearisation
Hypocoercive techniques to change functional space

Why a need to change space ?
Space decrease : L2 − L∞ method
Space enlargement : decrease and weight and Lebesgue spaces

A decomposition of L

New framework : L2 − L∞ theory “à la Guo”

Want to work in L∞x,v ((1 + |v |β)µ−
1
2 )

Link with L2-theory : f ∈ L∞β,µ =⇒ f (1 + |v |)−β ∈ L2
µ

Decomposition of L and collision frequency

L = −ν(v) + K
ν positive multiplicative
K kernel operator with kernel k(v , v∗)

Collision frequency semigroup

Gν = −ν(v)− v · ∇x generates a C 0 semigroup with expo
decay
Not direct with b.c. : Guo (SR, MD), Guo-MB (Maxwell)
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default Collisional Kinetic Theory
The Linear equation and hypocoercivity

Hypocoercive techniques in the space of linearisation
Hypocoercive techniques to change functional space

Why a need to change space ?
Space decrease : L2 − L∞ method
Space enlargement : decrease and weight and Lebesgue spaces

The key role of characteristics

Duhamel form
G = −ν − v · ∇x + K
Write the semigroup as

SG (t) = SGν (t)+

∫ t

0

SGν (t−s)

(∫
Rd

k(v , v∗)SG (s)(v∗)dv∗

)
ds

L2 − L∞ relationship
Characteristics variable inside the integral : x − (t − s)v
Change of variable y = x − (t − s)v gives an integral over Ω
In real life : iterated Duhamel, not explicit characteristics...

Results obtained with this method C 0-semigroup
with expo decay in L∞β,µ

Boltzmann with b.c. : Guo, Kim, Lee, MB

Boltzmann with non constant b.c. : Esposito, Guo, Kim, Marra

Multi-species Boltzmann on the torus : Daus, MB
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Hypocoercive techniques in the space of linearisation
Hypocoercive techniques to change functional space

Why a need to change space ?
Space decrease : L2 − L∞ method
Space enlargement : decrease and weight and Lebesgue spaces

From exponential Sobolev to polynomial Lebesgue

G = L− v · ∇x

Enlargement method : abstract formalism from
Gualdani-Mischler-Mouhot ’17

G generates SG with expo decay in E
We want to extend SG to E ⊃ E

Hierarchy of spaces E = E1 ⊂ · ⊂ En = E

Decomposition G = A + B

B dissipative in every Ei

A regularises from Ei+1 to Ei
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Space enlargement : decrease and weight and Lebesgue spaces

From exponential Sobolev to polynomial Lebesgue

Analytic viewpoint : Hierarchy of PDEs
∂t f1 = B(f1) , in E
∂t f2 = B(f2) + A(f1) , in En−1
...

...
∂t fn = G (fn) + A(fn−1) , in E

Results obtained with this method :

Boltzmann on torus in L1
vL
∞
x (1 + |v |2+0) :

Gualdani-Mischler-Mouhot

Boltzmann with b.c. in L∞x,v (1 + |v |5+γ+0)

Multi-species Boltzmann on torus in L1
vL
∞
x (1 + |v |k0+0) and

L∞x,v (1 + |v |k1+0) : Daus, MB
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That’s all folks ! !

THANK YOU FOR YOUR ATTENTION
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