Hypocoercive Techniques in Collisional Kinetic Theory

Marc Briant

Laboratoire MAP5, University of Paris - Paris Descartes (Paris 5)

France-Korea Conference on PDEs Institute of Mathematics, University of Bordeaux November 26th 2019

同下 イヨト イヨ

Collisional Kinetic Theory

- 2 The Linear equation and hypocoercivity
- 3 Hypocoercive techniques in the space of linearisation
- 4 Hypocoercive techniques to change functional space

・ 同 ト ・ ヨ ト ・ ヨ

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

Collisional Kinetic Theory

<ロト <同ト < 国ト < 国ト

A probabilistic approach to dilute particle systems

- PHASE SPACE : Particles move in a bounded domain $\Omega\subset \mathbb{R}^3$ with velocities in \mathbb{R}^3 ;
- MESCOPIC VIEWPOINT : Focus on the mean behaviour of a random particle
- Study the equation of the resulting density function

$$\begin{array}{c|cccc} F: & [0,T] \times \Omega \times \mathbb{R}^d & \longrightarrow & \mathbb{R}^+ \\ & (t,x,v) & \longmapsto & F(t,x,v) \end{array}$$

• F(t, x, v)dxdv represents the probability of having at time t a particle inside B(x, dx) with a velocity in B(v, dv)

 $\Rightarrow \mathsf{Minimal Requirement}: \\ \forall t \in [0, T], \quad F(t, \cdot, \cdot) \in L^{1}_{\mathit{loc}}\left(\Omega, L^{1}_{v}\left(\mathbb{R}^{d}\right)\right)$

伺下 イヨト イヨト

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

The collisional Process

- BINARY COLLISIONS : Two particles sufficiently closed are deviated
- LOCALISED COLLISIONS : Trajectories changes are immediate and on the spot
- ELASTIC COLLISIONS : One particle of mass m_i and one of mass m_j

$$m_{i}v' + m_{j}v'_{*} = m_{i}v + m_{j}v_{*}$$
$$m_{i}|v'|^{2} + m_{j}|v'_{*}|^{2} = m_{i}|v|^{2} + m_{j}|v_{*}|^{2}$$

- MICROREVERSIBLE COLLISIONS : microscopic dynamics are reversible in time
- MOLECULAR CHAOS : particles evolve independently (before colliding)

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

Boltzmann equation

Only one species.

$$\forall t \ge 0, \ \forall (x, v) \in \Omega \times \mathbb{R}^d, \quad \partial_t F + v \cdot \nabla_x F = Q(F, F)$$

The collision operator :

$$Q(F,F) = \int_{\mathbb{S}^2 \times \mathbb{R}^3} b(\cos \theta) |v - v_*|^{\gamma} \left[F'F'_* - FF_* \right] \, d\sigma dv_*$$

•
$$\begin{cases} v' = \frac{v + v_*}{2} + \frac{|v - v_*|}{2}\sigma \\ v'_* = \frac{v + v_*}{2} - \frac{|v - v_*|}{2}\sigma \end{cases}, \text{ and } \cos \theta = \langle \frac{v - v_*}{|v - v_*|}, \sigma \rangle.$$

BOUNDARY CONDITIONS : None (torus) or : Specular, Diffuse, Maxwell (convex combination)

Some Boltzmann-type models Trend to equilibrium and perturbative framework

Boltzmann equation for mixture

N species non chemically reacting with potentially different masses $(m_i)_{1 \le i \le N}$.

$$\forall 1 \leqslant i \leqslant \mathsf{N}, \forall t \geq 0, \forall (x, v) \in \Omega \times \mathbb{R}^{\mathsf{d}}, \quad \partial_t F_i + v \cdot \nabla_x F_i = Q_i(\mathsf{F}, \mathsf{F})$$

$$egin{aligned} \mathcal{Q}_i(\mathcal{F},\mathcal{F}) &= \mathcal{Q}_{ii}(\mathcal{F}_i,\mathcal{F}_i) + \sum_{\substack{j=1\j
eq i}}^N \mathcal{Q}_{ij}(\mathcal{F}_i,\mathcal{F}_j) \end{aligned}$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

Entropy and global equilibria

A priori properties of solutions

- Conservation laws : mass, momentum and energy
- Boltzmann's H-theorem : entropy $S(F)(t) = \int_{\mathbb{T}^d \times \mathbb{R}^d} F \ln(F) dx dv$

$$\frac{d}{dt}S(F)=-\int_{\mathbb{T}^d}D(F)dx\leqslant 0$$

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

Entropy and global equilibria

A priori properties of solutions

- Conservation laws : mass, momentum and energy
- Boltzmann's H-theorem : entropy $S(F)(t) = \int_{\mathbb{T}^d \times \mathbb{R}^d} F \ln(F) dx dv$

$$\frac{d}{dt}S(F)=-\int_{\mathbb{T}^d}D(F)dx\leqslant 0.$$

Equilibrium state

• Equilibria :
$$M_{(\rho,u,T)}(t,x,v) = \frac{\rho(t,x)}{(2\pi T(t,x))^{\frac{d}{2}}} e^{-\frac{|v-u(t,x)|^2}{2T(t,x)}}$$

 \bullet Under conditions on $\Omega,$ a unique stationary equilibrium

$$\mu(v) = M_{(1,0,1)} = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{|v|^2}{2}}$$

- 4 同 1 - 4 回 1 - 4 回 1

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

Quantifying the trend to equilibrium

CONVERGENCE TO EQUILIBRIUM

- weak convergence by compactness : Arkeryd, Lions (torus); Desvillettes, Arkeryd, Bose, Grzegorczyk, Nouri (bdd)
- Entropy dissipation inequalities : DiPerna, Lions, Carlen, Carvalho, Alexandre, Wennberg, **Desvillettes-Villani '05**

- 4 同 ト 4 ヨ ト

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

Quantifying the trend to equilibrium

CONVERGENCE TO EQUILIBRIUM

- weak convergence by compactness : Arkeryd, Lions (torus); Desvillettes, Arkeryd, Bose, Grzegorczyk, Nouri (bdd)
- Entropy dissipation inequalities : DiPerna, Lions, Carlen, Carvalho, Alexandre, Wennberg, **Desvillettes-Villani '05**

Perturbative setting

- Looking at convergence at a linearised level
- Construct solutions $F(t, x, v) = \mu(v) + f(t, x, v)$
- Perturbed equation

$$\partial_t f + v \cdot \nabla_x f = L[f] + Q(f, f)$$

<ロト < 同ト < ヨト < ヨト

The Linear equation and hypocoercivity Hypocoercive techniques in the space of linearisation Hypocoercive techniques to change functional space Some Boltzmann-type models Trend to equilibrium and perturbative framework

A bit of litterature

Existing Cauchy theories for hard potentials with cutoff, small perturbations

- On the torus
 - Sobolev with expo. weights : Grad 1958, Ukai, Guo, Yu, Mouhot, Neumann, MB
 - Lebesgue with poly. weights : Gualdani-Mischler-Mouhot '17, Merino-Aceituno, MB
- WITH BOUNDARY CONDITIONS
 - L^{∞} with expo. weights for specular and diffuse : Guo, Esposito, Kim, Marra, Tonon, Trescases, Lee
 - L^{∞} with poly. weights for Maxwell : Guo, MB
- Multi-species case on the torus
 - Lebesgue with ploy. weights : Daus, MB
 - Sobolvec with expo. weights (hydro. limit) : Bondesan, MB

イロト イポト イヨト イヨト

Fluid and Microscopic parts The Linear equation : lack of coercivity Hypocoercivity

The Linear equation and hypocoercivity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fluid and Microscopic parts The Linear equation : lack of coercivity Hypocoercivity

The linear collisional operator

$$\partial_t f + \mathbf{v} \cdot \nabla_x f = L[f]$$

PROPERTIES OF THE LINEAR OPERATOR :

- Local in time and space
- *L* is unbounded and self-adjoint in $L^2_{\nu}(\mu^{-\frac{1}{2}})$

•
$$L = -\nu(v) + K$$

•
$$\nu(\mathbf{v}) \sim 1 + |\mathbf{v}|^{\gamma}$$

• K compact in L_v^2 and kernel operator

< □ > < □ > < □ >

Fluid and Microscopic parts The Linear equation : lack of coercivity Hypocoercivity

The linear collisional operator

• Fluid part of the solution f

• Ker(L) = Span
$$(1, v, |v|^2) \mu(v)$$

• Fluid part = projection onto Ker(L)

$$\pi_{L}(f)(t,x,v) = \left(\rho(t,x) + u(t,x) \cdot v + e(t,x) |v|^{2}\right) \mu(v)$$

- 4 同 ト 4 ヨ ト

Fluid and Microscopic parts The Linear equation : lack of coercivity Hypocoercivity

The linear collisional operator

• FLUID PART OF THE SOLUTION f

• Ker(L) = Span
$$(1, v, |v|^2) \mu(v)$$

• Fluid part = projection onto Ker(L)

$$\pi_L(f)(t,x,v) = \left(\rho(t,x) + u(t,x) \cdot v + e(t,x) |v|^2\right) \mu(v)$$

• MICROSCOPIC PART AND SPECTRAL GAP

•
$$\pi_L^\perp(f) = f - \pi_L(f)$$

• Carleman, Grad, Bobylev, Baranger, Mouhot

$$\langle L[f], f \rangle_{L^2_{\nu}(\mu^{-\frac{1}{2}})} \leqslant -\lambda_L \left\| \pi_L^{\perp}(f) \right\|_{L^2_{\nu}(\nu\mu^{-\frac{1}{2}})}^2$$

[Same kind of properties for multi-species : Daus, Jüngel, Mouhot, Zamponi $(m_i = m_j)$; Daus, MB (general)]

イロト イポト イヨト イヨト

Fluid and Microscopic parts The Linear equation : lack of coercivity Hypocoercivity

Call for hypocoercivity

- Natural space associated to L is $L^2_{x,v}\left(\mu^{-\frac{1}{2}}\right)$
- FIRST A PRIORI ESTIMATE

$$\frac{1}{2}\frac{d}{dt}\left\|f\right\|_{L^{2}_{x,v}(\mu^{-\frac{1}{2}})}^{2} \leqslant -\lambda_{L}\left\|\pi_{L}^{\perp}(f)\right\|_{L^{2}_{x,v}(\nu\mu^{-\frac{1}{2}})}^{2}$$

- MAIN ISSUE
 - How to recover the full norm?
 - Control of π_L by π_L^{\perp} in the set of solutions?

- 4 同 1 - 4 回 1 - 4 回 1

Fluid and Microscopic parts The Linear equation : lack of coercivity Hypocoercivity

Hypocoercivity : abstract framework

• PARALLEL WITH HYPOELLIPTICITY $\partial_t f + T[f] = D^*D[f]$

- D * D is elliptic degenerate differential operator
- T is skew-symmetric
- A fully elliptic operator can be recovered from the mixing effects between T and D : Hörmander $[D, T]^*[T, D] + D^*D$

• Hypocoercivity

- L has a dissipative property but a large kernel
- $T = v \cdot \nabla_x$ is skew-symmetric so non-dissipative but mixes position and velocity
- $\bullet\,$ Understand how the interactions between L and T generates a full coercivity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fluid and Microscopic parts The Linear equation : lack of coercivity Hypocoercivity

Hypocoercivity : our framework

- WHAT WE WANT $\|\pi_L(f)\|_{L^2_v(\mu^{-\frac{1}{2}})} \leq \|\pi_L^{\perp}(f)\|_{L^2_v(\mu^{-\frac{1}{2}})}$
- Three different spirits
 - Contradiction : Guo
 - Micro-Macro decomposition : Liu, Yu, Guo
 - Constructing new Lyapunov functionals : Mouhot, Neumann, Dolbeaut, Schmeiser

<ロト <同ト < 国ト < 国ト

Commutators and Poincaré Weak elliptic regularity

HYPOCOERCIVE TECHNIQUES IN THE SPACE OF LINEARISATION

Marc Briant Hypocoercive Techniques in Collisional Kinetic Theory

イロト イポト イヨト イヨト

Commutators and Poincaré Weak elliptic regularity

The mixing of transport in Sobolev spaces

$[\mathbf{v}\cdot\nabla_{\mathbf{x}},\nabla_{\mathbf{v}}]=-\nabla_{\mathbf{x}}$

• Spatial derivatives commute with L

・ 同 ト ・ ヨ ト ・ ヨ

Commutators and Poincaré Weak elliptic regularity

The mixing of transport in Sobolev spaces

$$[\mathbf{v}\cdot\nabla_{\mathbf{x}},\nabla_{\mathbf{v}}]=-\nabla_{\mathbf{x}}$$

- Spatial derivatives commute with L
- Velocity derivatives still generate a negative feedback

$$\left\langle \nabla_{\mathbf{v}} \mathcal{L}[f], \nabla_{\mathbf{v}} f \right\rangle_{L^{2}_{\mathbf{v}}(\mu^{-\frac{1}{2}})} \leq -\lambda \left\| f \right\|^{2}_{L^{2}_{\mathbf{v}}(\nu\mu^{-\frac{1}{2}})} + C \left\| f \right\|^{2}_{L^{2}_{\mathbf{v}}(\mu^{-\frac{1}{2}})}$$

同下 イヨト イヨ

Commutators and Poincaré Weak elliptic regularity

The mixing of transport in Sobolev spaces

$$[\mathbf{v}\cdot\nabla_{\mathbf{x}},\nabla_{\mathbf{v}}]=-\nabla_{\mathbf{x}}$$

- Spatial derivatives commute with L
- Velocity derivatives still generate a negative feedback

$$\left\langle \nabla_{\mathbf{v}} \mathcal{L}[f], \nabla_{\mathbf{v}} f \right\rangle_{L^{2}_{\mathbf{v}}(\mu^{-\frac{1}{2}})} \leq -\lambda \left\| f \right\|^{2}_{L^{2}_{\mathbf{v}}(\nu\mu^{-\frac{1}{2}})} + C \left\| f \right\|^{2}_{L^{2}_{\mathbf{v}}(\mu^{-\frac{1}{2}})}$$

• New H^1 functional

$$\|f\|_{\mathcal{H}^{1}_{x,v}}^{2} = a \|f\|_{L^{2}_{\mu}}^{2} + b \|\nabla_{x}f\|_{L^{2}_{\mu}}^{2} + c \|\nabla_{v}f\|_{L^{2}_{\mu}}^{2} + d\langle\nabla_{x}f, \nabla_{v}f\rangle_{L^{2}_{\mu}}$$

同下 イヨト イヨ

Commutators and Poincaré Weak elliptic regularity

Closing estimates : Poincaré and conservation laws

• Full energy estimate

$$\frac{1}{2}\frac{d}{dt} \|f\|_{\mathcal{H}^{1}_{x,v}}^{2} \leqslant -\lambda_{L}^{-} \left[\left\| \pi_{L}^{\perp}(f) \right\|_{L^{2}_{\nu\mu}}^{2} + \|\nabla_{x}f\|_{L^{2}_{\nu\mu}}^{2} + \|\nabla_{v}f\|_{L^{2}_{\nu\mu}}^{2} \right]$$

• Mass, momentum and energy preservation

$$\int_{\Omega} \pi_L(f)(t,x,v) dx = \int_{\Omega} \pi_L(f)(0,x,v) dx = 0$$

• Poincaré inequality

$$\left\|\pi_L^{\perp}(f)\right\|_{L^2_{\nu\mu}}^2 \lesssim \left\|\nabla_x \pi_L^{\perp}(f)\right\|_{L^2_{\nu\mu}}^2 \lesssim \left\|\nabla_x f\right\|_{L^2_{\nu\mu}}^2$$

< 同 > < 回 > < 回 >

Commutators and Poincaré Weak elliptic regularity

Exponential convergence to equilibrium

$$\frac{1}{2}\frac{d}{dt}\left\|f\right\|_{\mathcal{H}^{1}_{x,v}}^{2} \leqslant -\lambda_{L}^{-}\left\|f\right\|_{\mathcal{H}^{1}_{x,v}}^{2}$$

- GENERATION OF A C^0 -SEMIGROUP WITH EXPONENTIAL DECAY
 - In $H^{s}(\mu^{-\frac{1}{2}})$: Mouhot-Neumann
 - In $H^{s}(\mu^{-rac{1}{2}})$ with external force : Debussche, Vovelle, MB

Commutators and Poincaré Weak elliptic regularity

Exponential convergence to equilibrium

$$\frac{1}{2}\frac{d}{dt}\left\|f\right\|_{\mathcal{H}^{1}_{\mathbf{x},\mathbf{v}}}^{2} \leqslant -\lambda_{L}^{-}\left\|f\right\|_{\mathcal{H}^{1}_{\mathbf{x},\mathbf{v}}}^{2}$$

- GENERATION OF A C^0 -SEMIGROUP WITH EXPONENTIAL DECAY
 - In $H^{s}(\mu^{-\frac{1}{2}})$: Mouhot-Neumann
 - In $H^{s}(\mu^{-\frac{1}{2}})$ with external force : Debussche, Vovelle, MB
- Similar result in other settings
 - In $H^{s}(\mu^{-\frac{1}{2}})$ in the incompressible Navier-Stokes limit : MB
 - In H^s(μ^{-1/2}) for multi-species in the Maxwell-Stefan or Fick limit : Bondesan, Grec, MB

・ 母 ト ・ ヨ ト ・ ヨ ト

Commutators and Poincaré Weak elliptic regularity

Exponential convergence to equilibrium

$$\frac{1}{2}\frac{d}{dt} \|f\|_{\mathcal{H}^{1}_{x,v}}^{2} \leqslant -\lambda_{L}^{-} \|f\|_{\mathcal{H}^{1}_{x,v}}^{2}$$

- GENERATION OF A C^0 -SEMIGROUP WITH EXPONENTIAL DECAY
 - In $H^{s}(\mu^{-\frac{1}{2}})$: Mouhot-Neumann
 - In $H^{s}(\mu^{-rac{1}{2}})$ with external force : Debussche, Vovelle, MB
- Similar result in other settings
 - In $H^{s}(\mu^{-\frac{1}{2}})$ in the incompressible Navier-Stokes limit : MB
 - In H^s(µ^{-1/2}) for multi-species in the Maxwell-Stefan or Fick limit : Bondesan, Grec, MB
- WITH MICRO-MACRO DECOMPOSITION
 - Recall $\pi_L(f) = (\rho(t, x) + u(t, x) \cdot v + e(t, x) |v|^2) \mu(v)$
 - Find PDE satisfied by ρ , u, e and $\pi_L^{\perp}(f)$ and close estimates
 - Same results mono species : Guo, Liu, Yu

Commutators and Poincaré Weak elliptic regularity

Staying in Lebesgue space

$$\pi_L(f) = \left(\rho(t,x) + u(t,x) \cdot v + e(t,x) |v|^2\right) \mu(v)$$

• CONTROL MICRO-FLUID Elliptic regularity for ρ, u, e Guo

$$\Delta \pi_L(f) \sim \partial^2 \pi_L^{\perp}(f) + \text{h.o.t.}$$

- PROBLEMS IN BOUNDED DOMAIN
 - Usually no preservation of momentum nor energy (no Poincaré)
 - Appearance of singularities/discontinuities due to grazing set : Guo, Kim, Tonon, Trescases
 - No regularity higher than H^1 !

< □ > < □ > < □ >

Commutators and Poincaré Weak elliptic regularity

Staying in Lebesgue space

$$\pi_L(f) = \left(\rho(t,x) + u(t,x) \cdot v + e(t,x) |v|^2\right) \mu(v)$$

• CONTROL MICRO-FLUID Elliptic regularity for ρ, u, e Guo

$$\Delta \pi_L(f) \sim \partial^2 \pi_L^{\perp}(f) + \text{h.o.t.}$$

- PROBLEMS IN BOUNDED DOMAIN
 - Usually no preservation of momentum nor energy (no Poincaré)
 - Appearance of singularities/discontinuities due to grazing set : Guo, Kim, Tonon, Trescases
 - No regularity higher than H^1 !
- Need of a micro-fluid control directly in $L^2_{x,v}(\mu-\frac{1}{2})$.

Commutators and Poincaré Weak elliptic regularity

Recovering the coercivity in L^2

- Weakening elliptic regularity
 - Method introduced for diffuse b.c. :Esposito, Guo, Kim, Marra
 - Recovering estimates on ρ , u and e by integrating against test fonctions.

$$\psi_{
ho}(t, x, v) = \left(|v|^2 - \alpha_{
ho} \right) \sqrt{\mu} v \cdot \nabla_x \phi_{
ho}(t, x)$$

where
$$-\Delta_x \phi_
ho(t,x) =
ho(t,x); \quad \partial_n \phi_
ho|_{\partial\Omega} = 0$$

- Laplacian is recovered via the transport operator
- Need of elliptic estimates in negative Sobolev spaces

・ 同 ト ・ ヨ ト ・ ヨ

Commutators and Poincaré Weak elliptic regularity

Recovering the coercivity in L^2

- Weakening elliptic regularity
 - Method introduced for diffuse b.c. :Esposito, Guo, Kim, Marra
 - Recovering estimates on ρ , u and e by integrating against test fonctions.

$$\psi_{
ho}(t, x, v) = \left(|v|^2 - \alpha_{
ho} \right) \sqrt{\mu} v \cdot \nabla_x \phi_{
ho}(t, x)$$

where
$$-\Delta_x \phi_
ho(t,x) =
ho(t,x); \quad \partial_n \phi_
ho|_{\partial\Omega} = 0$$

- Laplacian is recovered via the transport operator
- Need of elliptic estimates in negative Sobolev spaces
- GENERATION OF C^0 -SEMIGROUP IN $L^2_{x,v}(\mu^{-\frac{1}{2}})$
 - Diffusive and Maxwell b.c. : Esposito, Guo, Kim, Marra, MB
 - Multi-species Boltzmann equation on torus : Daus, MB

イロト イポト イラト イラト

Commutators and Poincaré Weak elliptic regularity

Some details

We rewrite the solution $\tilde{f} = e^{\lambda t} f : \partial_t \tilde{f} + v \cdot \nabla_x \tilde{f} = L[\tilde{f}] + \lambda \tilde{f}$

• Estimate with spectral gap :

$$\left\|\tilde{f}\right\|_{L^2_{\mu}}^2 + \lambda_L \int_0^t \left\|\pi_L^{\perp}(\tilde{f})\right\|_{L^2_{\nu\mu}}^2 ds \leqslant \left\|\tilde{f}(0)\right\|_{L^2_{\mu}}^2 + \lambda \int_0^t \left\|\tilde{f}\right\|_{L^2_{\mu}}^2 ds$$

• Micro-fluid control with weak regularity

$$\int_0^t \left\| \pi_L(\tilde{f}) \right\|_{L^2_{\mu}}^2 ds \lesssim \left\| \tilde{f} \right\|_{L^2_{\mu}}^2 - \left\| \tilde{f}(0) \right\|_{L^2_{\mu}}^2 + \int_0^t \left\| \pi_L^{\perp}(\tilde{f}) \right\|_{L^2_{\mu}}^2 ds$$

• SUMMING WITH WEIGHTS : $\|\tilde{f}\|_{L^2_{\mu}}^2$ is bounded so $\|f\|_{L^2_{\mu}}^2$ decays exponentially.

< ロ > < 同 > < 回 > < 回 >

Why a need to change space ? Space decrease : $L^2 - L^\infty$ method Space enlargement : decrease and weight and Lebesgue spaces

HYPOCOERCIVE TECHNIQUES TO CHANGE FUNCTIONAL SPACE

イロト イポト イヨト イヨト

Why a need to change space? Space decrease : L^2-L^∞ method Space enlargement : decrease and weight and Lebesgue spaces

A need to work outside $L^2_{x,v}(\mu^{-\frac{1}{2}})$

• MATHEMATICAL REASONS

- Control the nonlinear remainder Q(f, f,)
- Algebraic norms : $L_{x,v}^{\infty}$, $H_{x,v}^{s}$ for s large
- Loss of weight : but gain of weight in spectral gap

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Why a need to change space? Space decrease : $L^2 - L^{\infty}$ method Space enlargement : decrease and weight and Lebesgue spaces

A need to work outside $L^2_{x,v}(\mu^{-\frac{1}{2}})$

• MATHEMATICAL REASONS

- Control the nonlinear remainder Q(f, f,)
- Algebraic norms : $L_{x,v}^{\infty}$, $H_{x,v}^{s}$ for s large
- Loss of weight : but gain of weight in spectral gap

• Physical purposes

- Larger spaces to obtain less regular solutions
- Ultimately : $L_{x,v}^{1}(1+|v|^{2})$
- Most optimal so far $L_v^1 L_x^\infty (1+|v|^{2+0})$ for Botlzmann : Gualdani-Mischler-Mouhot '17

- (目) - (日) - (日)

Why a need to change space? **Space decrease** : $L^2 - L^{\infty}$ method Space enlargement : decrease and weight and Lebesgue spaces

A decomposition of L

- New FRAMEWORK : $L^2 L^{\infty}$ theory "à la Guo"
 - Want to work in $L^\infty_{x,\nu}((1+|
 u|^\beta)\mu^{-rac{1}{2}})$
 - Link with L^2 -theory : $f \in L^\infty_{eta,\mu} \Longrightarrow f(1+|
 u|)^{-eta} \in L^2_\mu$
- Decomposition of L and collision frequency

•
$$L = -\nu(v) + K$$

- ν positive multiplicative
- K kernel operator with kernel $k(v, v_*)$

- 4 同 ト 4 ヨ ト

Why a need to change space? **Space decrease** : $L^2 - L^{\infty}$ method Space enlargement : decrease and weight and Lebesgue spaces

A decomposition of L

- New FRAMEWORK : $L^2 L^\infty$ theory "à la Guo"
 - Want to work in $L^\infty_{x,v}((1+|v|^eta)\mu^{-rac{1}{2}})$
 - Link with L^2 -theory : $f \in L^\infty_{eta,\mu} \Longrightarrow f(1+|
 u|)^{-eta} \in L^2_\mu$
- Decomposition of L and collision frequency

•
$$L = -\nu(v) + K$$

- ν positive multiplicative
- K kernel operator with kernel $k(v, v_*)$
- Collision frequency semigroup
 - $G_{\nu} = -\nu(v) v \cdot \nabla_x$ generates a C^0 semigroup with expodecay
 - Not direct with b.c. : Guo (SR, MD), Guo-MB (Maxwell)

イロト イポト イラト イラト

Why a need to change space? **Space decrease** : $L^2 - L^{\infty}$ method Space enlargement : decrease and weight and Lebesgue spaces

The key role of characteristics

• Duhamel form

- $G = -\nu \mathbf{v} \cdot \nabla_{\mathbf{x}} + K$
- Write the semigroup as

$$S_G(t) = S_{G_{\nu}}(t) + \int_0^t S_{G_{\nu}}(t-s) \left(\int_{\mathbb{R}^d} k(v, v_*) S_G(s)(v_*) dv_* \right) ds$$

• $L^2 - L^\infty$ relationship

- Characteristics variable inside the integral : x (t s)v
- Change of variable y = x (t s)v gives an integral over Ω
- In real life : iterated Duhamel, not explicit characteristics...

| 4 同 1 4 三 1 4 三 1

Why a need to change space? **Space decrease** : $L^2 - L^{\infty}$ method Space enlargement : decrease and weight and Lebesgue spaces

The key role of characteristics

• Duhamel form

- $G = -\nu \mathbf{v} \cdot \nabla_{\mathbf{x}} + K$
- Write the semigroup as

$$S_G(t) = S_{G_{\nu}}(t) + \int_0^t S_{G_{\nu}}(t-s) \left(\int_{\mathbb{R}^d} k(v,v_*) S_G(s)(v_*) dv_* \right) ds$$

• $L^2 - L^\infty$ relationship

- Characteristics variable inside the integral : x (t s)v
- Change of variable y = x (t s)v gives an integral over Ω
- In real life : iterated Duhamel, not explicit characteristics...
- **RESULTS OBTAINED WITH THIS METHOD** C^0 -semigroup with expo decay in $L^{\infty}_{\beta,\mu}$
 - Boltzmann with b.c. : Guo, Kim, Lee, MB
 - Boltzmann with non constant b.c. : Esposito, Guo, Kim, Marra
 - Multi-species Boltzmann on the torus : Daus, MB

Why a need to change space? Space decrease : L^2-L^∞ method Space enlargement : decrease and weight and Lebesgue spaces

From exponential Sobolev to polynomial Lebesgue

$$G = L - v \cdot \nabla_x$$

- ENLARGEMENT METHOD : abstract formalism from Gualdani-Mischler-Mouhot '17
 - G generates S_G with expo decay in E
 - We want to extend S_G to $\mathcal{E} \supset E$
 - Hierarchy of spaces $E = E_1 \subset \cdot \subset E_n = \mathcal{E}$
 - Decomposition G = A + B
 - B dissipative in every E_i
 - A regularises from E_{i+1} to E_i

・ 同 ト ・ ヨ ト ・ ヨ ト

Why a need to change space? Space decrease : L^2-L^∞ method Space enlargement : decrease and weight and Lebesgue spaces

From exponential Sobolev to polynomial Lebesgue

• ANALYTIC VIEWPOINT : Hierarchy of PDEs

$$\begin{cases} \partial_t f_1 = B(f_1) &, \text{ in } \mathcal{E} \\ \partial_t f_2 = B(f_2) + A(f_1) &, \text{ in } \mathcal{E}_{n-1} \\ \vdots & \vdots \\ \partial_t f_n = G(f_n) + A(f_{n-1}) &, \text{ in } \mathcal{E} \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Why a need to change space? Space decrease : L^2-L^∞ method Space enlargement : decrease and weight and Lebesgue spaces

From exponential Sobolev to polynomial Lebesgue

• ANALYTIC VIEWPOINT : Hierarchy of PDEs

$$\begin{cases} \partial_t f_1 = B(f_1) &, \text{ in } \mathcal{E} \\ \partial_t f_2 = B(f_2) + A(f_1) &, \text{ in } \mathcal{E}_{n-1} \\ \vdots & \vdots \\ \partial_t f_n = G(f_n) + A(f_{n-1}) &, \text{ in } \mathcal{E} \end{cases}$$

- Results obtained with this method :
 - Boltzmann on torus in $L_v^1 L_x^\infty (1 + |v|^{2+0})$: Gualdani-Mischler-Mouhot
 - Boltzmann with b.c. in $L^{\infty}_{x,v}(1+|v|^{5+\gamma+0})$
 - Multi-species Boltzmann on torus in $L_v^1 L_x^\infty(1+|v|^{k_0+0})$ and $L_{x,v}^\infty(1+|v|^{k_1+0})$: Daus, MB

- 4 同 1 - 4 回 1 - 4 回 1

That's all folks !!

Why a need to change space? Space decrease : $L^2 - L^{\infty}$ method Space enlargement : decrease and weight and Lebesgue spaces

THANK YOU FOR YOUR ATTENTION

Marc Briant Hypocoercive Techniques in Collisional Kinetic Theory

- 4 同 1 - 4 回 1 - 4 回 1