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1. Introduction
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4Emergence

Emergence is the phenomenon by which:
interacting many-particle (or agent) systems

exhibit large-scale self-organized structures
not explicitly encoded in the agents’ interaction rules

Typical emergent phenomena are

pattern formation
ex: a biological tissue

coordination
ex: a bird flock

self-organization
ex: pedestrian lanes

Emergence is a key process
of life and social systems by which

they self-organize into functional systems
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5Questions

Understand link between:
individual behavior (micro model: ODE or SDE)
& large-scale structure (macro model: PDE)

Requires rigorous passage “micro → macro”

Why macro models ?
Computational time
Analysis: stability, bifurcations, . . .
Data (images) inform on the macro scale

What is special about emergent systems ?
“micro → macro” Boltzmann, Hilbert, . . .

Lions (94), Villani (10), Hairer (14), Figalli (18) . . .

Unusual features
Lack of propagation of chaos
Lack of conservations: particles are “active”
Coexistence of 6= phases
Complex underlying geometrical structures

⇒ revisit classical concepts
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2. Directional coordination: the Vicsek model

2.1 Presentation

2.2 Space-homogeneous case: phase transitions

2.3 Space-inhomogeneous case: macroscopic limit
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Directional coordination: the Vicsek model

2.1 Presentation

Tamàs Vicsek (Budapest)
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8Vicsek model [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

Individual-Based (i.e. particle) model
self-propelled ⇒ all particles have same constant speed = 1
align with their neighbors up to some noise
Particle q: position Xq(t) ∈ R

n, velocity direction Vq(t) ∈ S
n−1

Ẋq(t) = Vq(t)

dVq(t) = PV ⊥
q

◦ (kUqdt+
√
2 dBq

t )

Uq =
Jq
|Jq|

, Jq =
∑

j, |Xj−Xq|≤R

Vj

R = interaction range

k = k(|Jq|) = alignment frequency
Jq = local particle flux in interaction disk
Uq = neighbors’ average direction
PV ⊥

q
= Id− Vq ⊗ Vq = orth. proj. on Vq

⊥

◦ = Stratonovitch: guarantees |Vq(t)| = 1, ∀t

“Minimal model” for collective dynamics

R

Xk

Vk
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9Phase transition in Vicsek model
Phase transition

symmetry breaking
disordered → aligned

Order parameter measures alignment

c1 =
∣

∣

∣
N−1

∑

q Vq

∣

∣

∣
, 0 ≤ c1 ≤ 1

c1 vs 1/k c1 vs density band formation

small k large k
Simulations by A. Frouvelle

c1 ∼ 1

Vk Vk

c1 ≪ 1

after [Chaté et al, PRE 2008]
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10Mean-field model

f(x, v, t) = particle probability density with (x, v) ∈ R
n × S

n−1

satisfies a Fokker-Planck equation

∂tf + v · ∇xf +∇v · (Fff) = ∆vf

Ff (x, v, t) = Pv⊥(kuf (x, t)), Pv⊥ = Id− v ⊗ v

uf (x, t) =
Jf (x, t)

|Jf (x, t)|
, Jf (x, t) =

∫

|y−x|<R

∫

Sn−1

f(y, w, t)w dw dy

Jf (x, t) = particle flux in a neighborhood of x

uf (x, t) = direction of this flux

kuf (x, t) = alignment force (with k = k(|Jf |))
Ff (x, v, t)) = projection of alignment force on {v}⊥
Pv⊥ = Id− v ⊗ v = projection on {v}⊥
∇v·, ∇v: div and grad on S

n−1; ∆v = Laplace-Beltrami on S
n−1
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11Remarks

From particle to mean-field
Requires number of particles N → ∞
Define empirical measure:

fN (x, v, t) = N−1
∑N

q=1 δ(Xq(t),Vq(t))(x, v)

fN → f where f satisfies Fokker-Planck

Formal derivation in [D., Motsch: M3AS 18 (2008) 1193]

Rigorous convergence proof:
Classical: particle models with smooth interaction e.g. [Spohn]

Difficulty here is handling constraint |v| = 1

Done for k(|Jf |) = |Jf | in [Bolley Canizo Carrillo: AML 25 (2012) 339]

Open for k(|Jf |) = 1 (difficulty: controling singularity at Jf = 0)

Existence and uniqueness of solutions to Fokker-Planck
[Gamba, Kang: ARMA 222 (2016) 317]

Other collective dynamics models do not normalize velocities
e.g. Cucker-Smale, Motsch-Tadmor → huge literature
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Directional coordination: the Vicsek model

2.2 Space-homogeneous case: phase transitions

[A. Frouvelle, Jian-Guo Liu, SIMA 44 (2012) 791]

[PD., A. Frouvelle, Jian-Guo Liu, JNLS 23 (2013), 427]

[PD., A. Frouvelle, Jian-Guo Liu, ARMA 216 (2015) 63-115]

Amic Frouvelle (Dauphine) Jian-Guo Liu (Duke)
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13Spatially homogeneous case

Forget the space-variable: ∇x ≡ 0: f(v, t), v ∈ S
n−1

∂tf = −∇v · (Fff) + ∆vf := Q(f) = collision operator

Ff = k(|Jf |)Pv⊥uf , uf =
Jf
|Jf |

, Jf =

∫

Sn−1

f(v′, t) v′ dv′

Set: ρ(t) =
∫

f(v, t) dv. Then ∂tρ = 0. So, ρ(t) = ρ = Constant

Global existence results

for k(|Jf |)/|Jf | smooth: [Frouvelle Liu: SIMA 44 (2012) 791]

& [D. Frouvelle Liu: JNLS 23 (2013) 427 & ARMA 216 (2015) 63]

for k(|Jf |) = 1: [Figalli Kang Morales: ARMA 227 (2018) 869]

Equilibria: solutions of Q(f) = 0
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14Simulation of convergence to equilibrium

Histogram of
velocity directions
in (−π, π)

positions and velocity
vectors of particles

in periodic box

Simulation by
S. Motsch



↑ ↓Pierre Degond - Mathematical models of self-organization - Bordeaux 27/11/2019

15Equilibria are VMF distributions

(VMF = Von Mises-Fisher) given by

f(v) = ρMκu(v), Mκu(v) =
eκu·v

∫

eκu·v dv

where orientation u ∈ S
n−1 is arbitrary

and concentration parameter κ = k(|Jf |)

Order parameter: c1(κ) =
∫

Mκu(v)u · v dv ∈ [0, 1], c1(κ) ր

Compatibility equation: |Jf | = ρc1(κ) = ρc1(k(|Jf |))
introducing j(κ) = inverse function of k(|Jf |), can be recast in

κ = 0 or ρ =
j(κ)

c1(κ)

Number of roots and local monotony of j(κ)
c1(κ)

determine
number of equilibria and their stability
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16Examples

Ex. 1: k(|J |) = |J |
1+|J | : continuous phase transition

Ex. 2: k(|J |) = |J |+ |J |2: discontinuous phase transition

Ex. 1 Ex.2
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17Free energy

Free energy: F(f) =

∫

f ln f dv − Φ(|Jf |) with Φ′ = k

Free energy dissipation:
d

dt
F(f) = −D(f) ≤ 0

D(f) = τ(|Jf |)
∫

f
∣

∣∇vf − k(|Jf |)(v · uf )
∣

∣

2
dv

f is an equilibrium iff D(f) = 0

Free energy decays with time towards an equilibrium

Unstable VMF are local max or saddle-points of F

Stable VMF are local min of F
F estimates L2-distance to local equilibrium:

‖f(t)− ρMκuf (t)‖2L2 ∼ F(f(t))−F(ρMκuf (t)) ց

Convergence to equilibrium with explicit rate

relies on entropy-entropy dissipation estimates:cf Villani, . . .

D(f) ≥ 2λκ(F(f)−F(Mκu))+ “small”
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Directional coordination: the Vicsek model

2.3 Space-inhomogeneous case: macroscopic limit

[PD, S. Motsch: M3AS 18 Suppl. (2008) 1193]

[PD., A. Frouvelle, Jian-Guo Liu, JNLS 23 (2013), 427]

[PD., A. Frouvelle, Jian-Guo Liu, ARMA 216 (2015) 63-115]

Sebastien Motsch (Arizona State)
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19Space-inhomogeneous model

Restore x-dependence:

∂tf + v · ∇xf +∇v · (Fff) = ∆vf, Ff (x, v, t) = Pv⊥(kuf (x, t)),

uf (x, t) =
Jf (x, t)

|Jf (x, t)|
, Jf (x, t) =

∫

|y−x|<R

∫

Sn−1

f(y, w, t)w dw dy

Macroscopic scaling: change variables to x′ = εx, t′ = εt

(x′, t′) = macroscopic space and time variables

Scaled model (dropping primes): ∂tf
ε + v · ∇xf

ε =
1

ε
Q(fε)

where Q(f) collision operator studied above

limit ε→ 0 leads to macroscopic model

When ε→ 0, fε → f s. t. Q(f) = 0 ⇒ f is an equilibrium

Hypothesis: k = Constant ⇒ only equilibria are VMF ρMku

∃ unique VMF equilibrium ; 6 ∃ isotropic equilibrium

No phase transition
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20Macroscopic model

When ε→ 0 fε(x, v, t) → ρ(x, t)Mku(x,t)(v)

space non-homogeneous ⇒ ρ(x, t) and u(x, t) are not constant

ρ and u determined by macroscopic equations

Resulting system is Self-Organized Hydrodynamics (SOH)

∂tρ+ c1∇x · (ρu) = 0

ρ
(

∂tu+ c2(u · ∇x)u
)

+ Pu⊥∇xρ = 0

|u| = 1

Classically: use collision invariants: ψ(v) |
∫

Q(f)ψ dv = 0, ∀f
Requires dimension { CI } = number of equations

Here dimension { CI } = 1 < number of equations (= n)

Generalized collision invariants (GCI) overcome the problem
first proposed in [PD, S. Motsch: M3AS 18 Suppl. (2008) 1193]

GCI ψ satisfies CI property with smaller class of f

Finding ψ involves inverting the “adjoint” of Q

c2 is found as a moment of GCI ψ; c1 = order parameter
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21Remarks
SOH is similar to Compressible Euler eqs. of gas dynamics

Continuity eq. for ρ

Material derivative of u balanced by pressure force −∇xρ

But with major differences:
geometric constraint |u| = 1 (ensured by projection operator Pu⊥)

c2 6= c1: loss of Galilean invariance

Hyperbolic system
but not in conservative form: shock solutions not well-defined

Local existence of smooth solutions in 2D and 3D
[PD Liu Motsch Panferov, MAA 20 (2013) 089]

Existence / uniqueness of non-smooth solutions open

Rigorous limit ε→ 0 proved:
[N Jiang, L Xiong, T-F Zhang, SIMA 48 (2016) 3383]

Differences (but also similarities) with the Toner-Tu model
[J Toner, Y Tu, PRL 75 (1995) 4326]

built on symmetry considerations
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22Comparison between micro and macro

Micro (Vicsek)

Density (color code)
& velocity directions

Macro (SOH)

Density (color code)
& velocity directions

Simulation by
G. Dimarco,
TBN. Mac,

N. Wang
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3. Body attitude coordination

[PD, A. Frouvelle, S. Merino-Aceituno, M3AS 27 (2017) 1005]

[PD, A. Frouvelle, S. Merino-Aceituno, A. Trescases, MMS 16 (2018) 28]

Arianne Trescases (Toulouse) & Sara Merino-Aceituno (Sussex & Vienna)
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24A new alignment dynamics

Self-propelled agents which align with their neighbors
Vicsek model: Alignment of their directions of motion

New model: Alignment of their full body attitude

Vicsek model Body attitude alignment
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25Body attitude alignment model

Xq(t) ∈ R
n: position of the q-th subject at time t. q ∈ {1, . . . , N}

Aq(t) ∈ SO(n): rotation mapping reference frame (e1, . . . , en) to

subject’s body frame

Aq(t)e1 ∈ S
n−1: propulsion direction

Ẋq(t) = Aq(t)e1

dAq(t) = PTAq(t)SO(n) ◦ (kĀqdt+
√
2 dBq

t ),

Āq = PD(Mq(t)), Mq(t) =
∑

j, |Xj−Xq|≤R

Aj(t)

Mq arithmetic mean of neighbors’ A matrices

Āq = PD(Mq) ⇔ ∃Sq symmetric s.t. Mq = ĀqSq (polar decomp.)

PTAq(t)SO(n) projection on the tangent TAq(t)SO(n),

maintains Aq(t) ∈ SO(n)
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26Motivation and numerical result

Sperm observed through
microscope

positions and body
attitudes of
particles in

periodic cube

Simulation by
M. Biskupiak
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27Questions and methodology

Understand the differences between Vicsek and body alignment
do gradients of body frames genuinely influence motion ?

→ use macroscopic model to shed light on this question

Main steps of derivation of macroscopic model:
(i) take N → ∞ and obtain mean-field model

(ii) rescale mean-field model by ε (micro to macro scales ratio)

(iii) take ε→ 0 and obtain macro model

Step (iii): fε = fε(x,A, t) with x ∈ R
n, A ∈ SO(n) solves

∂tf
ε + (Ae1) · ∇xf

ε =
1

ε
Q(fε); Q(f) = −∇A · (Fff) + ∆Af

Ff = k PTA
Bf , Bf = PD(Mf ), Mf =

∫

SO(n)
f(x,A′, t)A′ dA′

Equilibria are VMF-like: Q(f) = 0 ⇔ ∃ρ > 0, B ∈ SO(n) s.t.

f(A) = ρMkB(A), MkB(A) =
ekB·A

∫

ekB·A dA
ρ: density; B: mean body-frame. Depend on (x, t). Satisfy macro Eqs.
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28Macroscopic model (dimension n = 3)

Self-Organized Hydrodynamics for Body orientation (SOHB)
provide Eqs for density ρ > 0 and mean body-frame B ∈ SO(3)

∂tρ+∇ · (c1 ρB1) = 0

∂tB + c2(B1 · ∇)B +
[

c3B ×∇ log ρ+ c4(B1 × curlB + (divB)B1)
]

×
B = 0.

with B1 = Be1 mean propagation direction

∀w ∈ R
3, [w]× is the matrix of x 7→ w × x.

Define matrix D(B) by (w · ∇)B = [D(B)w]×B, ∀w ∈ R
3

divB = Tr{D(B)}; curlB is s.t. [curlB]× = D(B)−D(B)T

Derivation uses generalized collision invariants
c2, . . . , c4 are moments of GCI. c1 = “order parameter”
use of special parametrization of SO(3) ∼ quaternions

Remarks: formal derivation still unknown in dimension ≥ 4
derivation in 3D is formal; mathematical theory is empty
available: phase transitions in simpler model (w. A. Diez)

using quaternions, model ≡ polymer model in 4D
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29SOHB in frame representation

Define local frame B = [B1, B2, B3] Then, SOHB is written

∂tρ+∇x · (c1ρB1) = 0

ρ
(

∂tB1 + c2(B1 · ∇x)B1

)

+ PB⊥
1

(

c3∇xρ− c4ρ curlB
)

= 0

ρ
(

∂tB2 + c2(B1 · ∇x)B2

)

−
[

B2 ·
(

c3∇xρ− c4ρ curlB
)]

B1 + c4ρ (divB)B3 = 0

ρ
(

∂tB3 + c2(B1 · ∇x)B3

)

−
[

B3 ·
(

c3∇xρ− c4ρ curlB
)]

B1 − c4ρ (divB)B2 = 0

with

curlB = (B1 · ∇x)B1 + (B2 · ∇x)B2 + (B3 · ∇x)B3

divB =
[

(B1 · ∇x)B2

]

·B3 +
[

(B2 · ∇x)B3

]

·B1 +
[

(B3 · ∇x)B1

]

·B2

If c4 = 0, reduces to Vicsek-SOH model for ρ and u = B1:

∂tρ+∇x · (c1ρu) = 0

ρ
(

∂tu+ c2(u · ∇x)u
)

+ Pu⊥(c3∇xρ) = 0

But c4 6= 0 in general

gradients of body frames genuinely influence motion
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4. Reflection: network formation models
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31Models of network formation

Micro1 Macro2

Main difference: in order to produce the network structure:
macro (right) requires the presence of a nonlinear decay term
micro (left) does not require

1 [arxiv 1812.09992] with P. Aceves-Sanchez, B. Aymard (Nice), D. Peurichard
(INRIA Paris), L. Casteilla & A. Lorsignol (Stromalab, Toulouse), P. Kennel
& F. Plouraboué (Fluid Mech. Toulouse)

2 [ Hu & Cai, PRL 111 (2013) 138701 ], [Haskovec, Markowich, Perthame,
Schlottbom, NLA 138 (2016) 127]
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32Reflection on validity of macro models

Macro models seem less prone to pattern formation
than micro models

and require additional mechanisms

Are macroscopic models too deterministic ?
May require additional stochastic terms, leading to SPDE

How to rigorously derive such terms ?

Why is ability to pattern formation lost at coarse-graining ?
Breakdown of propagation of chaos at large time scales ?

Suggestion that this may be the case in

[E. Carlen, PD, B. Wennberg, M3AS 23 (2013) 1339]
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5. Conclusion
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34Summary / Perspectives

Emergence = development of large-scale structures
by agents interacting locally without leader

Modelling emergence presents new challenges:
- lack of conservations due to agents’ active character

- possible breakdown of propagation of chaos

Emergence = phase transition from disorder to patterns

analyzed through bifurcation theory

Agents may carry inner geometrical structures
which influence the large-scale structures

New models constructed by combining various
inner geometrical structures and interactions

Needed to describe living and social systems complexity
and are source of new fascinating mathematical questions
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