Mathematical models of self-organization

Pierre Degond

Imperial College London

pdegond@imperial.ac.uk (see http://sites.google.com/site/degond/)

- 1. Introduction
- 2. Directional coordination: the Vicsek model
- 3. Body attitude coordination
- 4. Reflection: network formation models
- 5. Conclusion

 \downarrow

1. Introduction

Emergence

Emergence is the phenomenon by which: interacting many-particle (or agent) systems exhibit large-scale self-organized structures not explicitly encoded in the agents' interaction rules

Typical emergent phenomena are

pattern formation ex: a biological tissue

coordination ex: a bird flock

self-organization ex: pedestrian lanes

Emergence is a key process of life and social systems by which they self-organize into functional systems

Questions

Understand link between:

individual behavior (micro model: ODE or SDE)
& large-scale structure (macro model: PDE)
Requires rigorous passage "micro → macro"

Why macro models ?

Computational time Analysis: stability, bifurcations, ... Data (images) inform on the macro scale

What is special about emergent systems ? "micro \rightarrow macro" Boltzmann, Hilbert, ... Lions (94), Villani (10), Hairer (14), Figalli (18) ...

Unusual features

Lack of propagation of chaos Lack of conservations: particles are "active" Coexistence of ≠ phases Complex underlying geometrical structures ⇒ revisit classical concepts

2. Directional coordination: the Vicsek model

2.1 Presentation

2.2 Space-homogeneous case: phase transitions2.3 Space-inhomogeneous case: macroscopic limit

 \downarrow

Directional coordination: the Vicsek model

2.1 Presentation

Tamàs Vicsek (Budapest)

Vicsek model [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

Individual-Based (i.e. particle) model self-propelled \Rightarrow all particles have same constant speed = 1 align with their neighbors up to some noise Particle q: position $X_q(t) \in \mathbb{R}^n$, velocity direction $V_q(t) \in \mathbb{S}^{n-1}$

$$\begin{split} \dot{X}_q(t) &= V_q(t) \\ dV_q(t) &= P_{V_q^{\perp}} \circ \left(\frac{k}{U_q} dt + \sqrt{2} dB_t^q \right) \\ U_q &= \frac{J_q}{|J_q|}, \quad J_q = \sum_{j, |X_j - X_q| \le R} V_j \end{split}$$

R =interaction range $k = k(|J_q|) =$ alignment frequency

 $J_q = \text{local particle flux in interaction disk}$ $U_q = \text{neighbors' average direction}$ $P_{V_q^{\perp}} = \text{Id} - V_q \otimes V_q = \text{orth. proj. on } V_q^{\perp}$ $\circ = \text{Stratonovitch: guarantees } |V_q(t)| = 1, \forall t$

"Minimal model" for collective dynamics

Phase transition in Vicsek model

Pierre Degond - Mathematical models of self-organization - Bordeaux 27/11/2019

f(x, v, t) = particle probability density with $(x, v) \in \mathbb{R}^n \times \mathbb{S}^{n-1}$ satisfies a Fokker-Planck equation

$$\begin{aligned} \partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (F_f f) &= \Delta_v f \\ F_f(x, v, t) &= P_{v^{\perp}}(k u_f(x, t)), \quad P_{v^{\perp}} = \mathsf{Id} - v \otimes v \\ u_f(x, t) &= \frac{J_f(x, t)}{|J_f(x, t)|}, \quad J_f(x, t) = \int_{|y-x| < R} \int_{\mathbb{S}^{n-1}} f(y, w, t) \, w \, dw \, dy \end{aligned}$$

$$\begin{split} J_f(x,t) &= \text{particle flux in a neighborhood of } x \\ u_f(x,t) &= \text{direction of this flux} \\ ku_f(x,t) &= \text{alignment force (with } k = k(|J_f|)) \\ F_f(x,v,t)) &= \text{projection of alignment force on } \{v\}^{\perp} \\ P_{v^{\perp}} &= \text{Id} - v \otimes v = \text{projection on } \{v\}^{\perp} \\ \nabla_v \cdot, \nabla_v \text{: div and grad on } \mathbb{S}^{n-1} \text{; } \Delta_v = \text{Laplace-Beltrami on } \mathbb{S}^{n-1} \end{split}$$

Remarks

From particle to mean-field

Requires number of particles $N \to \infty$

Define empirical measure:

$$f^{N}(x,v,t) = N^{-1} \sum_{q=1}^{N} \delta_{(X_{q}(t),V_{q}(t))}(x,v)$$

 $f^N \rightarrow f$ where f satisfies Fokker-Planck

Formal derivation in [D., Motsch: M3AS 18 (2008) 1193]

Rigorous convergence proof:

Classical: particle models with smooth interaction e.g. [Spohn] Difficulty here is handling constraint |v| = 1Done for $k(|J_f|) = |J_f|$ in [Bolley Canizo Carrillo: AML 25 (2012) 339] Open for $k(|J_f|) = 1$ (difficulty: controling singularity at $J_f = 0$)

Existence and uniqueness of solutions to Fokker-Planck

[Gamba, Kang: ARMA 222 (2016) 317]

Other collective dynamics models do not normalize velocities e.g. Cucker-Smale, Motsch-Tadmor \rightarrow huge literature

Directional coordination: the Vicsek model

2.2 Space-homogeneous case: phase transitions

[A. Frouvelle, Jian-Guo Liu, SIMA 44 (2012) 791] [PD., A. Frouvelle, Jian-Guo Liu, JNLS 23 (2013), 427] [PD., A. Frouvelle, Jian-Guo Liu, ARMA 216 (2015) 63-115]

Amic Frouvelle (Dauphine)

Jian-Guo Liu (Duke)

Spatially homogeneous case

Forget the space-variable: $\nabla_x \equiv 0$: f(v,t), $v \in \mathbb{S}^{n-1}$

$$\partial_t f = -\nabla_v \cdot (F_f f) + \Delta_v f := Q(f) = \text{ collision operator}$$
$$F_f = k(|J_f|) P_{v^{\perp}} u_f, \quad u_f = \frac{J_f}{|J_f|}, \quad J_f = \int_{\mathbb{S}^{n-1}} f(v', t) v' \, dv'$$

Set: $\rho(t) = \int f(v,t) dv$. Then $\partial_t \rho = 0$. So, $\rho(t) = \rho = \text{Constant}$

Global existence results

for $k(|J_f|)/|J_f|$ smooth: [Frouvelle Liu: SIMA 44 (2012) 791] & [D. Frouvelle Liu: JNLS 23 (2013) 427 & ARMA 216 (2015) 63] for $k(|J_f|) = 1$: [Figalli Kang Morales: ARMA 227 (2018) 869]

Equilibria: solutions of Q(f) = 0

Simulation of convergence to equilibrium

Histogram of velocity directions in $(-\pi,\pi)$

positions and velocity vectors of particles in periodic box

14

Simulation by S. Motsch

Pierre Degond - iviatnematication of seit-organization - Bordeaux 27/11/2019

Equilibria are VMF distributions

(VMF = Von Mises-Fisher) given by $f(v) = \rho M_{\kappa u}(v), \quad M_{\kappa u}(v) = \frac{e^{\kappa u \cdot v}}{\int e^{\kappa u \cdot v} dv}$

where orientation $u \in \mathbb{S}^{n-1}$ is arbitrary and concentration parameter $\kappa = k(|J_f|)$

15

Order parameter: $c_1(\kappa) = \int M_{\kappa u}(v) \, u \cdot v \, dv \in [0, 1]$, $c_1(\kappa) \nearrow$

Compatibility equation: $|J_f| = \rho c_1(\kappa) = \rho c_1(k(|J_f|))$

introducing $j(\kappa) =$ inverse function of $k(|J_f|)$, can be recast in

$$\kappa = 0$$
 or $\rho = rac{j(\kappa)}{c_1(\kappa)}$

Number of roots and local monotony of $\frac{j(\kappa)}{c_1(\kappa)}$ determine number of equilibria and their stability

Examples

Ex. 1: $k(|J|) = \frac{|J|}{1+|J|}$: continuous phase transition Ex. 2: $k(|J|) = |J| + |J|^2$: discontinuous phase transition

Pierre Degond - Mathematical models of self-organization - Bordeaux 27/11/2019

 \downarrow

Free energy

Free energy: $\mathcal{F}(f) = \int f \ln f \, dv - \Phi(|J_f|)$ with $\Phi' = k$ Free energy dissipation: $\frac{d}{dt}\mathcal{F}(f) = -\mathcal{D}(f) \leq 0$ $\mathcal{D}(f) = \tau(|J_f|) \int f \left| \nabla_v f - k(|J_f|)(v \cdot u_f) \right|^2 dv$

f is an equilibrium iff $\mathcal{D}(f) = 0$ Free energy decays with time towards an equilibrium

Unstable VMF are local max or saddle-points of ${\cal F}$

Stable VMF are local min of ${\cal F}$

 \mathcal{F} estimates L^2 -distance to local equilibrium:

 $\|f(t) - \rho M_{\kappa u_f(t)}\|_{L^2}^2 \sim \mathcal{F}(f(t)) - \mathcal{F}(\rho M_{\kappa u_f(t)}) \searrow$

Convergence to equilibrium with explicit rate relies on entropy-entropy dissipation estimates:cf Villani, ... $\mathcal{D}(f) \ge 2\lambda_{\kappa}(\mathcal{F}(f) - \mathcal{F}(M_{\kappa u})) + \text{"small"}$

 \downarrow

Directional coordination: the Vicsek model

2.3 Space-inhomogeneous case: macroscopic limit

[PD, S. Motsch: M3AS 18 Suppl. (2008) 1193][PD., A. Frouvelle, Jian-Guo Liu, JNLS 23 (2013), 427][PD., A. Frouvelle, Jian-Guo Liu, ARMA 216 (2015) 63-115]

Sebastien Motsch (Arizona State)

Space-inhomogeneous model

Restore *x*-dependence:

$$\partial_t f + v \cdot \nabla_x f + \nabla_v \cdot (F_f f) = \Delta_v f, \quad F_f(x, v, t) = P_{v^\perp}(k u_f(x, t)),$$
$$u_f(x, t) = \frac{J_f(x, t)}{|J_f(x, t)|}, \quad J_f(x, t) = \int_{|y-x| < R} \int_{\mathbb{S}^{n-1}} f(y, w, t) w \, dw \, dy$$

Macroscopic scaling: change variables to $x' = \varepsilon x$, $t' = \varepsilon t$ (x', t') = macroscopic space and time variables

Scaled model (dropping primes): $\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} Q(f^{\varepsilon})$ where Q(f) collision operator studied above limit $\varepsilon \to 0$ leads to macroscopic model

When $\varepsilon \to 0$, $f^{\varepsilon} \to f$ s. t. $Q(f) = 0 \Rightarrow f$ is an equilibrium Hypothesis: $k = \text{Constant} \Rightarrow \text{only}$ equilibria are VMF ρM_{ku} \exists unique VMF equilibrium ; \nexists isotropic equilibrium No phase transition

Macroscopic model

When $\varepsilon \to 0$ $f^{\varepsilon}(x, v, t) \to \rho(x, t) M_{ku(x,t)}(v)$ space non-homogeneous $\Rightarrow \rho(x, t)$ and u(x, t) are not constant ρ and u determined by macroscopic equations

Resulting system is Self-Organized Hydrodynamics (SOH)

$$\partial_t \rho + c_1 \nabla_x \cdot (\rho u) = 0$$

$$\rho \left(\partial_t u + c_2 (u \cdot \nabla_x) u \right) + P_{u^{\perp}} \nabla_x \rho = 0$$

$$|u| = 1$$

Classically: use collision invariants: $\psi(v) \mid \int Q(f)\psi \, dv = 0, \, \forall f$ Requires dimension { Cl } = number of equations Here dimension { Cl } = 1 < number of equations (= n)

Generalized collision invariants (GCI) overcome the problem first proposed in [PD, S. Motsch: M3AS 18 Suppl. (2008) 1193] GCI ψ satisfies CI property with smaller class of fFinding ψ involves inverting the "adjoint" of Q c_2 is found as a moment of GCI ψ ; c_1 = order parameter 2(

Remarks

21

SOH is similar to Compressible Euler eqs. of gas dynamics Continuity eq. for ρ

Material derivative of u balanced by pressure force $-\nabla_x \rho$

But with major differences:

geometric constraint |u| = 1 (ensured by projection operator $P_{u^{\perp}}$) $c_2 \neq c_1$: loss of Galilean invariance

Hyperbolic system

but not in conservative form: shock solutions not well-defined

Local existence of smooth solutions in 2D and 3D

[PD Liu Motsch Panferov, MAA 20 (2013) 089] Existence / uniqueness of non-smooth solutions open Rigorous limit $\varepsilon \rightarrow 0$ proved:

[N Jiang, L Xiong, T-F Zhang, SIMA 48 (2016) 3383]

Differences (but also similarities) with the Toner-Tu model [J Toner, Y Tu, PRL 75 (1995) 4326] built on symmetry considerations

Comparison between micro and macro

Macro at

t = 0.00

t = 0.00

Micro at

0.04 .035 0.03 0.025 0.02 .015 0.01 .005 0 Micro at t = 1.60t =1.60 Macro at 0.04 .035 0.03 .025 0.02 .015 0.01 M .005 0 t = 2.94t = 2.94Micro at Macro at 0.04 E .035 0.03 .025 0.02 .015 0.01 .005

Macro (SOH)

22

Density (color code) & velocity directions

Simulation by G. Dimarco, TBN. Mac, N. Wang

Micro (Vicsek)

Density (color code) & velocity directions

3. Body attitude coordination

[PD, A. Frouvelle, S. Merino-Aceituno, M3AS 27 (2017) 1005] [PD, A. Frouvelle, S. Merino-Aceituno, A. Trescases, MMS 16 (2018) 28]

Arianne Trescases (Toulouse) & Sara Merino-Aceituno (Sussex & Vienna)

A new alignment dynamics

Self-propelled agents which align with their neighbors Vicsek model: Alignment of their directions of motion New model: Alignment of their full body attitude

Vicsek model

24

Body attitude alignment

Body attitude alignment model

 $X_q(t) \in \mathbb{R}^n$: position of the q-th subject at time t. $q \in \{1, \ldots, N\}$

 $A_q(t) \in SO(n)$: rotation mapping reference frame (e_1, \ldots, e_n) to subject's body frame $A_q(t)e_1 \in \mathbb{S}^{n-1}$: propulsion direction

$$\begin{split} \dot{X}_q(t) &= A_q(t)e_1\\ dA_q(t) &= P_{T_{A_q(t)}}\mathsf{SO}(n) \circ (k\bar{A}_q dt + \sqrt{2} \, dB_t^q),\\ \bar{A}_q &= \mathsf{PD}(M_q(t)), \quad M_q(t) = \sum_{j, \, |X_j - X_q| \le R} A_j(t) \end{split}$$

25

 M_q arithmetic mean of neighbors' A matrices $\bar{A}_q = \mathsf{PD}(M_q) \Leftrightarrow \exists S_q$ symmetric s.t. $M_q = \bar{A}_q S_q$ (polar decomp.) $P_{T_{A_q(t)}\mathsf{SO}(n)}$ projection on the tangent $T_{A_q(t)}\mathsf{SO}(n)$, maintains $A_q(t) \in \mathsf{SO}(n)$

Ļ

Motivation and numerical result

Sperm observed through microscope

positions and body attitudes of particles in periodic cube

26

Simulation by M. Biskupiak

Questions and methodology

Understand the differences between Vicsek and body alignment do gradients of body frames genuinely influence motion ? \rightarrow use macroscopic model to shed light on this question

Main steps of derivation of macroscopic model:

(i) take $N \to \infty$ and obtain mean-field model (ii) rescale mean-field model by ε (micro to macro scales ratio)

(iii) take $\varepsilon \rightarrow 0$ and obtain macro model

Step (iii): $f^{\varepsilon} = f^{\varepsilon}(x, A, t)$ with $x \in \mathbb{R}^{n}$, $A \in SO(n)$ solves $\partial_{t}f^{\varepsilon} + (Ae_{1}) \cdot \nabla_{x}f^{\varepsilon} = \frac{1}{\varepsilon}Q(f^{\varepsilon}); \quad Q(f) = -\nabla_{A} \cdot (F_{f}f) + \Delta_{A}f$ $F_{f} = k P_{T_{A}}B_{f}, \quad B_{f} = PD(M_{f}), \quad M_{f} = \int_{SO(n)} f(x, A', t) A' dA'$ Equilibria are VMF-like: $Q(f) = 0 \Leftrightarrow \exists \rho > 0, B \in SO(n)$ s.t. $f(A) = \rho M_{kB}(A), \quad M_{kB}(A) = \frac{e^{k B \cdot A}}{\int e^{k B \cdot A} dA}$ ρ : density; B: mean body-frame. Depend on (x, t). Satisfy macro Eqs.

Macroscopic model (dimension n = 3) 28

 $\label{eq:self-Organized Hydrodynamics for Body orientation (SOHB) \\ \mbox{provide Eqs for density $\rho>0$ and mean body-frame $B\in SO(3)$ }$

$$\partial_t \rho + \nabla \cdot (c_1 \, \rho B_1) = 0$$

 $\partial_t B + c_2 (B_1 \cdot \nabla) B + \left[c_3 B \times \nabla \log \rho + c_4 (B_1 \times \operatorname{curl} B + (\operatorname{div} B) B_1) \right]_{\times} B = 0.$

with $B_1 = Be_1$ mean propagation direction $\forall w \in \mathbb{R}^3$, $[w]_{\times}$ is the matrix of $x \mapsto w \times x$. Define matrix $\mathcal{D}(B)$ by $(w \cdot \nabla)B = [\mathcal{D}(B)w]_{\times}B$, $\forall w \in \mathbb{R}^3$ $\operatorname{div} B = \operatorname{Tr} \{\mathcal{D}(B)\};$ curl B is s.t. $[\operatorname{curl} B]_{\times} = \mathcal{D}(B) - \mathcal{D}(B)^T$

Derivation uses generalized collision invariants c_2, \ldots, c_4 are moments of GCI. $c_1 =$ "order parameter" use of special parametrization of SO(3) ~ quaternions

Remarks: formal derivation still unknown in dimension ≥ 4 derivation in 3D is formal; mathematical theory is empty available: phase transitions in simpler model (w. A. Diez) using quaternions, model \equiv polymer model in 4D

SOHB in frame representation

29

Define local frame $B = [B_1, B_2, B_3]$ Then, SOHB is written

$$\begin{split} &\partial_t \rho + \nabla_x \cdot (c_1 \rho B_1) = 0 \\ &\rho \left(\partial_t B_1 + c_2 (B_1 \cdot \nabla_x) B_1 \right) + P_{B_1^\perp} \big(c_3 \nabla_x \rho - c_4 \rho \operatorname{curl} B \big) = 0 \\ &\rho \left(\partial_t B_2 + c_2 (B_1 \cdot \nabla_x) B_2 \right) - \big[B_2 \cdot \big(c_3 \nabla_x \rho - c_4 \rho \operatorname{curl} B \big) \big] B_1 + c_4 \rho \left(\operatorname{div} B \right) B_3 = 0 \\ &\rho \left(\partial_t B_3 + c_2 (B_1 \cdot \nabla_x) B_3 \right) - \big[B_3 \cdot \big(c_3 \nabla_x \rho - c_4 \rho \operatorname{curl} B \big) \big] B_1 - c_4 \rho \left(\operatorname{div} B \right) B_2 = 0 \\ &\text{with} \end{split}$$

 $\operatorname{curl} B = (B_1 \cdot \nabla_x) B_1 + (B_2 \cdot \nabla_x) B_2 + (B_3 \cdot \nabla_x) B_3$ $\operatorname{div} B = \left[(B_1 \cdot \nabla_x) B_2 \right] \cdot B_3 + \left[(B_2 \cdot \nabla_x) B_3 \right] \cdot B_1 + \left[(B_3 \cdot \nabla_x) B_1 \right] \cdot B_2$

If $c_4 = 0$, reduces to Vicsek-SOH model for ρ and $u = B_1$: $\partial_t \rho + \nabla_x \cdot (c_1 \rho u) = 0$ $\rho \left(\partial_t u + c_2 (u \cdot \nabla_x) u \right) + P_{u^{\perp}} (c_3 \nabla_x \rho) = 0$ But $c_4 \neq 0$ in general gradients of body frames genuinely influence motion

 \downarrow

 \downarrow

4. Reflection: network formation models

Models of network formation

 Micro^1

 Macro^2

- Main difference: in order to produce the network structure: macro (right) requires the presence of a nonlinear decay term micro (left) does not require
- ¹ [arxiv 1812.09992] with P. Aceves-Sanchez, B. Aymard (Nice), D. Peurichard (INRIA Paris), L. Casteilla & A. Lorsignol (Stromalab, Toulouse), P. Kennel & F. Plouraboué (Fluid Mech. Toulouse)
- ² [Hu & Cai, PRL 111 (2013) 138701], [Haskovec, Markowich, Perthame, Schlottbom, NLA 138 (2016) 127]

Reflection on validity of macro models

32

Macro models seem less prone to pattern formation than micro models and require additional mechanisms

Are macroscopic models too deterministic ? May require additional stochastic terms, leading to SPDE How to rigorously derive such terms ?

Why is ability to pattern formation lost at coarse-graining ? Breakdown of propagation of chaos at large time scales ? Suggestion that this may be the case in

[E. Carlen, PD, B. Wennberg, M3AS 23 (2013) 1339]

 \downarrow

5. Conclusion

Summary / Perspectives

Emergence = development of large-scale structures by agents interacting locally without leader

Modelling emergence presents new challenges:

- lack of conservations due to agents' active character
- possible breakdown of propagation of chaos

Emergence = phase transition from disorder to patterns analyzed through bifurcation theory

Agents may carry inner geometrical structures which influence the large-scale structures

New models constructed by combining various inner geometrical structures and interactions

Needed to describe living and social systems complexity and are source of new fascinating mathematical questions