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Three questions to be addressed

• (Q1): Is there any "universal design principle" for
collective dynamics?

• (Q3): Can we design an aggregation model on the
space of tensors?

• (Q3): Can we use aggregation models for
optimization?
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The first story

Is there any possible universal design principle
for collective dynamics?
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Collective behaviors of biological systems

• Aggregation, flocking and synchronization



THE FIRST STORY THE SECOND STORY THE THIRD STORY

Aggregation of bacteria
The Keller-Segel model :Patlak (1953), E. Keller and L. Segel (1970s)

∂tρ+∇ · (ρ∇c) = σ∆ρ, −∆c = ρ,

ρ = ρ(t , x) : local mass density of bacteria,
c = c(t , x) : density of chemotactic substance.

Paricle Keller-Segel model:

dxi(t) = − κ
N

N∑
j 6=i

∇φ(xj(t)− xi(t))dt +
√

2σdBi(t),

xi(t) : Position process of the i-th bacteria at time t ,

F = −∇φ : Couloumb’s force, e.g., φ(x) =
1
|x |
, for d = 3.
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In the absence of stochastic noise σ = 0, particle Keller-Segel
model becomes

ẋi =
κ

N

N∑
j 6=i

xj − xi

|xj − xi |3
.

cf. N-body system under gravitational force in R3:

ẍi =
κ

N

N∑
j 6=i

xj − xi

|xj − xi |3
.
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Flocking of Cucker-Smale particles

• Dynamics observables:

xi : position, vi : velocity.

The Cucker-Smale model (2007) IEEE Trans. Automat. Control
(2007):

dxi

dt
= vi ,

dvi

dt
=
κ

N

N∑
j=1

ψ(|xj − xi |)(vj − vi).

where ψ is a communication rate (modeling issue), e.g.,

ψ(|xi − xj |) =
1

(1 + |xi − xj |2)β
, β ≥ 0.
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Synchronization of Kuramoto oscillators

• Dynamic observables:

θi : phase, θ̇i : frequency.

The Kuramoto model (1975):

dθi

dt
= νi +

κ

N

N∑
j=1

sin(θj − θi), i = 1, · · · ,N.
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Corresponding PDE models
• The Keller-Segel model

∂tρ+∇ · (ρ∇c) = σ∆ρ, −∆c = ρ,

• The hydrodynamic Cucker-Smale model

∂tρ+∇x · (ρu) = 0,
∂t (ρu) +∇x · (ρu ⊗ u)

= −κ
∫

Rd
ψ(|x − y |)(u(y)− u(x))ρ(x)ρ(y)dy .

• The kinetic Kuramoto model

∂tF + ∂θ(ω[F ]F ) = 0,

ω[F ](θ, ν, t) := ν − κ
∫ 2π

0

∫
R

sin(θ∗ − θ)F (θ∗, ν∗, t)dν∗dθ.

At PDE level, PDE models look different.
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Particle models

• The Keller-Segel model in R3

ẋi =
κ

N

∑
k 6=i

xk − xi

|xk − xi |3
.

• The Cucker-Smale model

ẋi = vi , v̇i =
κ

N

N∑
k=1

ψcs(xk − xi )(vk − vi ).

• The Kuramoto model

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi ).
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First-order formulation of the C-S model on a line

• The C-S model in 1D: H-Kim-Park-Zhang ’19 ARMA

ẋi = vi , v̇i =
κ

N

N∑
k=1

ψ(xk − xi)(vk − vi).

Idea

ψ(xk − xi)(vk − vi) =
d
dt

∫ xk−xi

0
ψ(s)ds =:

d
dt

Ψcs(xk − xi).
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Then, C-S flocking becomes a first-order consensus model:

ẋi = νi(X 0,V 0) +
κ

N

N∑
k=1

Ψcs(xk − xi),

νi(X 0,V 0) := v0
i −

κ

N

N∑
j=1

ψ(x0
k − x0

i ).

cf. KM =⇒ CS: H-Lattanzio-Rubino-Slemrod ’11.
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Particle Pictures

qi : generalized position of the i-th particle.

• The deterministic Keller-Segel model in 3d

q̇i = νi +
κ

N

N∑
k=1

Ψa(qk − qi ), Ψa(q) =
q
|q|3

.

• The Cucker-Smale model in 1d

q̇i = νi (q0,p0) +
κ

N

N∑
k=1

Ψcs(qj − qi ), Ψcs(q) =

∫ q

ψcs(y)dy .

• The Kuramoto model

q̇i = νi +
κ

N

N∑
k=1

Ψk (qk − qi ), Ψk (q) = sin q.
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Summary

• Master Particle model for collective dynamics

q̇i = νi+
κ

N

N∑
k=1

Ψ(qk−qi), i = 1, · · ·N, qi ∈M.

In other words, there exists a kind of triality relation:

Keller-Segel aggregation
⇐⇒ 1D CS flocking
⇐⇒ Kuramoto synchronization.



THE FIRST STORY THE SECOND STORY THE THIRD STORY

Outline

The first Story
Nonlinear Consensus Model

The second story
Aggregation of tensors

The third story
Consensus-based optimization algorithm



THE FIRST STORY THE SECOND STORY THE THIRD STORY

The second story

Can we design an aggregation model on the
space of tensors ?
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There are several first-order aggregation models for the
collections of real numbers, real vectors in Rd and unitary

matrices U(d).

• Are there aggregation models for non square
matrices, for example Rn×m with n 6= m?

• Can we design a first-order aggregation model on a
space of tensors ?



THE FIRST STORY THE SECOND STORY THE THIRD STORY

Lohe Hiearchy

An aggregation model for an ensemble of
tensors

This is a joint project with Hansol Park (Ph.D. student in SNU).
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What is a tensor?

In high school or linear algebra class in college, you might learn
"matrix" as a rectangular array of (real or complex) numbers.
Note that 1× 1 matrix is simply a number and n × 1 matrix can
be interpreted as a vector in Rn or Cn depending on your scalar

field. Thus matrix includes numbers and vectors.

Then you also might have a chance to think of the following
question what is a high-dimensional generalization

of a matrix?
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� Mathematical Definition: Let V and V ∗ be a vector space and
dual spacer over a scalar field F . Then, a tensor is a scalar
valued multi-linear map with variables in both V and V ∗.

� Physical Definition: Tensor is a multi-dimensional array of
scalar values, and the rank of a tensor is the number of indices.

� Remark: We denote a set of all rank-m tensors with size
d1 × · · · × dm by Tm(C; d1 × · · · dm). Then, the set
Tm(C; d1 × · · · dm) is a vector space over C.
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Pictorial representation for tensors

Scalar: rank-0 tensor, Vector: rank-1tensor, Matrix: rank-2
tensor

Thus, a tensor is a multi-dimensional
generalization of a scalar value, vector and

matrix
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Goal of the second story

In this talk, I would like to propose a new
aggregation model on Tm(C; d1 × · · ·dm)

The Kuramoto model =⇒ The Lohe sphere model =⇒
The Lohe matrix model =⇒ The Lohe tensor model
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Existing aggregation models for low-rank tensors
• The Lohe matrix model for complex-valued rank-2 tensors:

Ui : d × d unitary matrix, Hi : d × d Hermitian matrix.

iU̇iU†i = Hi +
iκ
2N

N∑
k=1

(
UiU†j − UjU†i

)
.

• The Lohe sphere model for real-valued rank-1 tensors:

xi : a real vector in Rd , Ωi : d × d skew-symmetric matrix.

ẋi = Ωixi +
κ

N

N∑
k=1

(〈xi , xi〉xk − 〈xk , xi〉xi ),

• The Kuramoto model for real-valued rank-0 tensors:

θi : real number, νi : real number.

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi ).
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Hierarchy relations

• Lohe matrix model =⇒ Lohe sphere model: For d = 2, we
set

Ui := i
3∑

k=1

xk
i σk + x4

i I2 =

(
x4

i + ix1
i x2

i + ix3
i

−x2
i + ix3

i x4
i − ix1

i

)
,

Hi =
3∑

k=1

ωk
i σk + νi I2,

where

I2 :=

(
1 0
0 1

)
, σ1 :=

(
1 0
0 −1

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
0 1
1 0

)
.



THE FIRST STORY THE SECOND STORY THE THIRD STORY

||xi ||2ẋi = Ωixi +
K
N

N∑
k=1

(||xi ||2xk − 〈xi , xk 〉xi),

where Ωi is a real 4× 4 antisymmetric matrix:

Ωi :=


0 −ω3

i ω2
i −ω1

i
ω3

i 0 −ω1
i −ω2

i
−ω2

i ω1
i 0 −ω3

i
ω1

i ω2
i ω3

i 0

 .
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• Lohe sphere model =⇒ Kuramoto model:
We set

d = 2, xi =

[
cos θi
sin θi

]
,Ωi =

[
0 −νi
νi 0

]
,

Then, x1 and x2 components of

ẋi = Ωixi +
κ

N

N∑
k=1

(〈xi , xi〉xk − 〈xk , xi〉xi),

reduce to

θ̇i = νi +
κ

N

N∑
k=1

sin(θk − θi).
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Problem statement

On the space of rank-m tensors Tm(C), we would like to design
a new aggregation model with the following two minimal
properties:

• Emergent collective behavior under suitable conditions
• Reductions to Lohe type low-rank aggregation models for

special cases



THE FIRST STORY THE SECOND STORY THE THIRD STORY

Lessons from existing models

For a given tensor T ∈ Tm(C; d1 × · · ·dm) and α ∈ Πm
i=1{1, · · · ,di}, we

denote [T ]α to be the α-th component of T .

• The Lohe sphere model in vector form

ẋi = Ωixi +
κ

N

N∑
k=1

(〈xi , xi〉xk − 〈xi , xk 〉xi ).

� The Lohe sphere model in component form

d
dt

[xi ]α = [Ωixi ]α + κ([xi ]β[xi ]β[xc ]α − [xi ]β[xc ]β[xi ]α)

= [Ωi ]αβ[xi ]β + κ([xi ]β[xi ]β[xc ]α − [xi ]β[xc ]β[xi ]α)

where xc = 1
N
∑N

k=1 xk .
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• The Lohe matrix model in matrix form

iU̇jU∗j = Hj +
iκ
2N

N∑
k=1

(Uk U∗j − UjU∗k ).

or equivalently

U̇j = −iHjUj +
κ

2
(Uc − UjU∗c Uj ).

or
U̇j = −iHjUj +

κ

2
(UjU∗j Uc − UjU∗c Uj ).
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� The Lohe matrix model in component form

d
dt

[Uj ]αβ = [−iHiUj ]αβ+
κ

2
([Uj ]αγ ¯[Uj ]δγ [Uc]δβ−[Uj ]αγ ¯[Uc]δγ [Uj ]δβ)

Next, we interpret the free flow term [−iHjUj ]αβ as a contraction
of rank-4 tensor Aj and rank-2 tensor Uj . For this, we define
rank-4 tensor Aj as follows:

[Aj ]αβγδ := [−iHj ]αγδβδ and δβδ :=

{
1, β = δ,

0, β 6= δ.
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• Lemma: Let Aj be a rank-4 tensor defined in previous slide.
Then, the following relations hold:

¯[Aj ]γδαβ = −[Aj ]αβγδ and [Aj ]αβγδ[Uj ]γδ = [−iHjUj ]αβ.

Proof: For the first identity, we use defining relation for a rank-4
tensor Aj , H∗j = Hj and δδβ = δβδ to get

¯[Aj ]γδαβ = [iH̄j ]γαδδβ = [iHj ]αγδδβ = −[−iHj ]αγδβδ = −[Aj ]αβγδ.

For the second identity, one has

[Aj ]αβγδ[Uj ]γδ = [−iHj ]αγδβδ[Uj ]γδ = [−iHj ]αγ [Uj ]γβ = [−iHjUj ]αβ.
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Finally, one has

d
dt

[Uj ]αβ = [Aj ]αβγδ[Uj ]γδ+
κ

2

[
[Uc]αγ [U∗j ]γδ[Uj ]δβ − [Uj ]αγ [U∗c ]γδ[Uj ]δβ

]
.
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Lesson from previous models

Consider an ensemble {Tj}Nj=1 of rank-m tensors over complex
field C, and for notational simplicity, we set

α∗ = (α1, · · · , αm), β∗ = (β1, · · · , βm).

Then, we begin with following structure:

d
dt

[Tj ]α∗ = free flow + cubic interactions.

• (Modeling of free flow)

Contraction of rank-2m tensor Aj and rank-m tensor Tj :

free flow part = [Aj ]α∗β∗ [Tj ]β∗ .
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• (Modeling of cubic interactions): for a dummy variable β,

[Tc]i1 [T̄j ]β[Tj ]i2 − [Tj ]i1 [T̄c]β[Tj ]i2 .

• Definition:
We define the inner product of size N1×N2× · · ·×Nm as follows.

〈Ti ,Tj〉F := [T̄i ]α∗ [Tj ]α∗ , i , j = 1, · · · ,N.
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Generalized Lohe tensor model

d
dt

[Ti ]α10α20···αm0 = [Ai ]α10α20···αm0β1β2···βm [Ti ]β1β2···βm

+
∑

(i1,i2,··· ,im)∈{0,1}m

κi1···im ([Tc ]α1i1 ···αmim
¯[Ti ]α11α21···αm1

[Ti ]α1(1−i1)···αm(1−im)

− [Ti ]α1i1α2i2 ···αmim
¯[Tc ]α11α21···αm1

[Ti ]α1(1−i1)α2(1−i2)···αm(1−im)
),

where Ai satisfies

¯[Ai ]α1α2···αmβ1β2···βm
= −[Ai ]β1β2···βmα1α2···αm .
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• α10, α20, · · · , αm0 are fixed indices.
• α11, α21, · · · , αm1 are dummy variables.
• Ai are generalization of skew-hermitian matrices.
• Ti have size d1 × d2 × · · · × dm.(Rank m-tensor)
• Ai has size d1 × d2 × · · · × dm × d1 × d2 × · · · × dm.(Rank

2m-tensor)
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Lohe tensor Model

For the handy notation, we define follows:

α∗0 = α10α20 · · ·αm0, α∗1 = α11α21 · · ·αm1,

α∗i∗ = α1i1α2i2 · · ·αmim , α∗(1−i∗) = α1(1−i1)α2(1−i2) · · ·αm(1−im),

β∗ = β1β2 · · ·βm, i∗ = i1i2 · · · im.

If we use above handy notation, we can obtain

d
dt

[Ti ]α∗0 = [Ai ]α∗0β∗ [Ti ]β∗︸ ︷︷ ︸
Free Flow

+
∑

i∗∈{0,1}m

κi∗([Tc ]α∗i∗
¯[Ti ]α∗1

[Ti ]α∗(1−i∗)
− [Ti ]α∗i∗

¯[Tc ]α∗1
[Ti ]α∗(1−i∗)

)

︸ ︷︷ ︸
Cubic coupling Terms
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Reduction of the Lohe tensor model
• Ensemble of rank-1 tensors

d
dt

[zi ]α10 =[Ωi ]α10β1 [zi ]β1 + κ0([zc ]α10
¯[zi ]α11

[zi ]α11︸ ︷︷ ︸
Contracted

−[zi ]α10
¯[zc ]α11

[zi ]α11︸ ︷︷ ︸
Contracted

)

+ κ1([zc ]α11
¯[zi ]α11︸ ︷︷ ︸

Contracted

[zi ]α10 − [zi ]α11
¯[zc ]α11︸ ︷︷ ︸

Contracted

[zi ]α10 ).

After contractions, one has the complex analog of the Lohe sphere
model:

żi = Ωizi︸︷︷︸
Free Flow

+κ0(〈zi , zi〉zc − 〈zc , zi〉zi )︸ ︷︷ ︸
Lohe sphere coupling

+κ1(〈zi , zc〉 − 〈zc , zi〉)zi︸ ︷︷ ︸
new coupling

,

where inner product 〈·, ·〉 defined as

〈u, v〉 := u∗v = ¯[u]α[v ]α.
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For real rank-1 tensors, the new coupling terms are zero, and
we obtain the Lohe sphere model for zi = xi :

ẋi = Ωixi + κ0(〈xi , xi〉xc − 〈xc , xi〉xi).
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• Ensemble of rank-2 tensors

˙[Ui ]α10α20
= [Ai ]α10α20β1β2 [Ui ]β1β2

+ κ00([Uc]α10α20
¯[Ui ]α11α21

[Ui ]α11α21 − [Ui ]α10α20
¯[Uc]α11α21

[Ui ]α11α21)

+ κ01([Uc]α10α21
¯[Ui ]α11α21

[Ui ]α11α20 − [Ui ]α10α21
¯[Uc]α11α21

[Ui ]α11α20)

+ κ10([Uc]α11α20
¯[Ui ]α11α21

[Ui ]α10α21 − [Ui ]α11α20
¯[Uc]α11α21

[Ui ]α10α21)

+ κ11([Uc]α11α21
¯[Ui ]α11α21

[Ui ]α10α20 − [Ui ]α11α21
¯[Uc]α11α21

[Ui ]α10α20).

Where α11 and α21 are dummy variables.
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After simplification, one has

U̇i = AiUi︸︷︷︸
free flow

+κ00(tr(U∗i Ui )Uc − tr(U∗c Ui )Ui )︸ ︷︷ ︸
Lohe sphere coupling

+ κ01(UcU∗i Ui − UiU∗c Ui )︸ ︷︷ ︸
Lohe matrix coupling

+κ10(UiU∗i Uc − UiU∗c Ui )︸ ︷︷ ︸
Lohe matrix coupling

+ κ11(tr(U∗i Uc)− tr(U∗c Ui ))Ui︸ ︷︷ ︸
new coupling

.

• Remark If we put m = 2, κ00 = κ11 = 0, κ01 + κ10 = κ and
[Ai ]αβγε = [−iHi ]αγδβε then we can obtain “Lohe Matrix Model".
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Emergent aggregation estimates

Consider the Lohe tensor model.

d
dt

[Ti ]α∗0 = [Ai ]α∗0β∗ [Ti ]β∗︸ ︷︷ ︸
Free Flow

+
∑

i∗∈{0,1}m

([Tc ]α∗i∗
¯[Ti ]α∗1

[Ti ]α∗(1−i∗)
− [Ti ]α∗i∗

¯[Tc ]α∗1
[Ti ]α∗(1−i∗)

)

︸ ︷︷ ︸
Coupling Term

We set
||Ti ||F :=

√
[T̄i ]α∗ [Ti ]α∗ .

• Theorem: (Conservation law)

||Ti(t)||F = ||T in
i ||F , t ≥ 0.
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Emergent aggregation dynamics
We set

D(T ) := max
i,j
||Ti − Tj ||F , D(A) := max

i,j
||Ai − Aj ||F , κ̂0 := 2

∑
i∗ 6=0

κi∗ .

• Theorem: H-Park ’19

Suppose that the coupling strength and the initial data satisfy

Aj = 0, κ̂0 <
κ0

2||T in
c ||2F

, ||T in
j ||F = 1, 0 < D(T in) <

κ0 − 2κ̂0||T in
c ||2F

2κ0
.

Then, there exist positive constants C0 and C1 depending on κi∗ and T in such
that

C0e−(κ0+2κ̂0||T in
c ||F )t ≤ D(T (t)) ≤ C1e−(κ0−2κ̂0||T in

c ||F )t , t ≥ 0.

Proof: By direct estimates, one has Gronwall differential inequality:∣∣∣∣ d
dt
D(T ) + κ0D(T )

∣∣∣∣ ≤ 2κ0D(T )2 + κ̂0||T in
c ||FD(T ), a.e. t > 0.
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Let η be the largest root of the quadratic equation:

2κ0x2 + (κ0 − 2κ̂0||T in
c ||2F )x = D(A).

Then, the root η satisfies

0 < η <
κ0 − 2κ̂0||T in

c ||2F
2κ0

.

• Theorem: H-Park ’19
Suppose that coupling strength, initial data and frequency matrices satisfy

κ0 > 0, 0 ≤ D(T (0)) ≤ η and D(A) <
|κ0 − 2κ̂0||T in

c ||2F |2

8κ0
,

Then practical synchronization emerges:

lim
D(A)/κ0→0+

lim sup
t→∞

D(T (t)) = 0.

Proof: By direct estimates, one has Gronwall differential inequality:

d
dt
D(T ) ≤ 2κ0D(T )2 − (κ0 − 2κ̂0||T in

c ||2F )D(T ) +D(A), a.e. t > 0.
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Summary

1. We have established Lohe Hierarchy:

2. As byproducts of our generalized approach, we have derived
complex analogue for the Lohe sphere model.
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Outline

The first Story
Nonlinear Consensus Model

The second story
Aggregation of tensors

The third story
Consensus-based optimization algorithm
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The third story

Application of nonlinear consensus models to
metaheuristic optimization algorithms
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This is a joint work with Doheon Kim (KIAS) and Shi Jin
(Shanghai Jiaotong Univ.)
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A typical optimization problem

For a given objective function L : S → R, we
would like to find a global minimum X ∗ ∈ S such
that

X ∗ ∈ argminX∈S L(X ),

where we do not assume L is neither convex
nor smooth, and β > 0
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Consensus-based optimization(CBO) algorithm

• Introduced by a series of papers: Pinnau-Totzeck-Tse-Martin (’17),

Carrillo-Choi-Totzeck-Tse (’18), Carrillo-Jin-Li-Zhu (’19)


dX i

t = −λ(X i
t − X̄ ∗t )dt + σ

d∑
l=1

(x i ,l
t − x̄∗,lt )dW l

t el ,

X̄ ∗t = (x∗,1t , · · · , x∗,dt ) :=

∑N
l=1 X l

t e
−βL(X l

t )∑N
l=1 e−βL(X l

t )
,
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• (Emergence of a global consensus): For a.s. ω ∈ Ω, is
there a global consensus state X∞(ω) ∈d such that

lim
t→∞
‖X i

t (ω)− X j
t (ω)‖`2 = 0, i , j = 1, · · · ,N,

?

• (Convergence of CBO algorithm): If the constant
consensus state X∞ exists, then under what condition how
the consensus state X∞ is close to the global minimum X ∗

of L?
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CBO as a nonlinear consensus model

dX i
t = λ

N∑
k=1

ψk
t (X k

t −X i
t )dt+σ

N∑
k=1

d∑
l=1

ψk
t (xk ,l

t −x i,l
t )dW l

t el , t > 0,

where ψk
t := ψk (X , t) is the communication weight function:

ψk
t :=

e−βL(X k
t )∑N

l=1 e−βL(X l
t )
, t ≥ 0, k = 1, · · · ,N.

Note that

(i) ψk
t ≥ 0, 1 ≤ k ≤ N,

N∑
k=1

ψk
t = 1 for all t ≥ 0,

(ii) Dependence only on the state of source sample point,
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Emergence of a global consensus

Note that x ij,l
t := x i,l

t − x j,l
t satisfiesdx ij,l

t = −λx ij,l
t dt − σx ij,l

t dW l
t , t > 0,

x ij,l
t

∣∣∣
t=0

= x i
0 − x j

0.

By Ito’s formula, one has

x ij,l
t = x ij,l

0 exp
[
−
(
λ+

σ2

2

)
t + σW l

t

]
, t ≥ 0.
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• Theorem: H-Jin-Kim ’19

Let {X i
t } be a solution process. Then,

lim
t→∞
|x i,k

t − x j,k
t | = 0, a.s.

lim
t→∞

P
(
|x i,k

t − x j,k
t |

2 > ε
)

= 0, for any ε > 0.

cf. No restrictions on initial data



THE FIRST STORY THE SECOND STORY THE THIRD STORY

Convergence Analysis of CBO
Recall that X i

t satisfies

dX i
t = −λ(X i

t − X̄ ∗t )dt + σ

d∑
l=1

(x i,l
t − x̄∗,lt )dW l

t el ,

and we introduce an ensemble average:

X̄t :=
1
N

N∑
i=1

X i
t = (x̄1

t , · · · , x̄d
t ).

• Lemma: Let {X i
t }1≤i≤N be a solution.

(i) |X i
t − X̄t |2 =

d∑
l=1

(x i,l
0 − x̄ l

0)2 exp
[
−
(

2λ+ σ2
)

t + 2σW l
t

]
.

(ii) |X̄t − X̄∗t |2 ≤ max
1≤i≤N

|X i
t − X̄t |2.

(iii)
1
N

N∑
i=1

|X i
t − X̄∗t |2 ≤ 2

d∑
l=1

(
max

1≤i≤N
(x i,l

0 − x̄ l
0)2
)

exp
[
−
(

2λ+ σ2
)

t + 2σW l
t

]
.
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• Lemma: Let {X i
t }1≤i≤N be a solution.

(i)
1
N

N∑
i=1

E|X i
t − X̄ ∗t |2 ≤ 2e−(2λ−σ2)t

d∑
l=1

E
[

max
1≤i≤N

(x i,l
0 − x̄ l

0)2
]
.

(ii) If 2λ > σ2, then there exists a random vector X∞ such that
lim

t→∞
X i

t = X∞ a.s., 1 ≤ i ≤ N.

Proof. For i = 1, · · · ,N and l = 1, · · · ,d ,

x i,l
t = x i,l

0 −λ
∫ t

0
(x i,l

s −x̄∗,ls )ds+σ

∫ t

0
(x i,l

s −x̄∗,ls )dW l
s =: x i,l

0 −λI11+σI12.

Thus, it suffices to check that convergence of I11 and I12.
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• Case A (Almost sure convergence of I11): We first show that
there exist positive random functions Ci = Ci(ω), i = 1,2 such
that

|x i,l
t − x̄∗,lt | ≤ C1e−C2t , a.s. ω ∈ Ω,

where C1 and C2 are positive constants. We set

J11 := I11 −
∫ t

0
C1e−C2sds =

∫ t

0

(
x i,l

s − x̄∗,ls − C1e−C2s)︸ ︷︷ ︸
≤0

ds.

Since the integrand is nonpositive a.s., J11 is non-increasing in
t a.s. Then, we show

J11 ≥ −
2C1

C2
.
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• Case B (Almost sure convergence of I12): We show that the
term I12 is martingale and uniformly bounded in L2. By direct
calculation, one has

E
[∫ t

0

(
x i,l

s − x̄∗,ls

)
dW l

s

]2

= E
∫ t

0
(x i,l

s − x̄∗,ls )2ds ≤
∫ t

0

N∑
i=1

E|X i
s − X̄∗s |2ds

≤ 2N
(∫ t

0
e−(2λ−σ2)sds

) d∑
l=1

(
E max

1≤i≤N
(x i,l

0 − x̄ l
0)2
)

≤ 2N
2λ− σ2

d∑
l=1

(
E max

1≤i≤N
(x i,l

0 − x̄ l
0)2
)
.
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Let L = L(x) be a C2
b -objective function satisfying the following

relations:

Lm := inf
x∈Rd

L(x) > 0 and CL := max

{
sup
x∈Rd

‖∇2L(x)‖2, max
1≤l≤d

sup
x∈Rd

|∂2
l L(x)|

}
<∞,

where ‖ · ‖2 denotes the spectral norm.
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• Theorem: H-Jin-Kim ’19

Suppose that λ, σ and {X i
0} satisfy

2λ > σ2, X i
0 : i , i .d , , X i

0 ∼ X in for some random variable X in,

(1− ε)E
[
e−βL(X in)

]
≥ 2λ+ σ2

2λ− σ2 CLβe−βLm

d∑
l=1

E
[

max
1≤i≤N

(x i,l
0 − x̄ l

0)2
]
,

for some 0 < ε < 1. Then, one has

ess infω∈Ω L(X∞(ω)) ≤ ess infω∈Ω L(X in(ω)) +O
(1
β

)
, for β � 1.

Consequently, if the global minimizer X ∗ of L is contained in
supp law(X in), then

ess infω∈Ω L(X∞(ω)) ≤ Lm +O
(1
β

)
, for β � 1.
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Idea of Proof: By technical calculations, one can derive

−1
β

logEe−βL(X∞) ≤ −1
β

logEe−βL(X in) − 1
β

log ε.

Now we use Laplace’s principle in the limit β →∞ to get

ess infω∈Ω L(X∞(ω)) ≤ ess infω∈Ω L(X in(ω))+O
(1
β

)
for β � 1.
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Summary

1. We provided a convergence analysis for the CBO
algorithm under some conditions on system parameters
and initial data.

2. Our theoretical analysis might be used for the convergence
analysis for biologically motivated metaheuristic
algorithms, e.g., Particle Swarm Optimization.

Thank you for your attention !!!
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