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More Examples : (1) Rational Normal Scrolls

                 (2) Segre Embedding ℙ×ℙ ⊂ ℙ
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ℙ  ℙ satisfies property  for all ≥  and ≥ .

Sketch of the Proof : Step 1. (-map) : Let      and    ℙ  →  ℙ.
             ℙ × ℙ × ℙ →  ℙ
                                              ↦     
It suffices to show that  spans  ℙ.
Step 2. : The case    is proved by using the above -map.

Step 3. : The case    case is proved by using the above -map and an induction on .

Step 4. : Double induction on   ℙ  ℙ                                     ■ 
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Corollary 3. : Let  be an ample line bundle on a projective variety . Then there is a positive 

integer  such that   satisfies property  for all even ≥ .
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(1) (B. Saint-Donat, 1972) If ≥ , then ℒ satisfies property .
(2) (M. Green, 1984) Suppose that  is a smooth curve and  ≥ . For   

 ⊂ℙ, 

the degree 2 part of  is spanned by quadrics of rank ≤ .

※ So, if  is not hyperelliptic and trigonal, then  satisfies property .
(3) (Eisenbud-Koh-Stillman, 1988) If ≥ , then ℒ is determinantally presented.

Theorem (Park, 2019) : If    and ≥  or  ≥  and ≥ , then 

ℒ satisfies property .


