## Inaugural France-Korea Conference on

Algebraic Geometry, Number Theory, and Partial Differential Equations

November 25 -27, 2019

Title : On the rank of quadratic equations of projective varieties

Park, Euisung (Korea University)
※ Rank of Homogeneous Quadratic Polynomials
※ Rank of Homogeneous Quadratic Polynomials

- $K$ : an algebraically closed field of characteristic $\neq 2$
※ Rank of Homogeneous Quadratic Polynomials
- $K$ : an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]$ : the homogeneous coordinate ring of $\mathbb{P}^{r}$
※ Rank of Homogeneous Quadratic Polynomials
- $K$ : an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]$ : the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

※ Rank of Homogeneous Quadratic Polynomials

- $K$ : an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]:$ the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

Example : (1) $\operatorname{rank}\left(x_{0} x_{1}\right)=2$

$$
\text { since } x_{0} x_{1}=\left(\frac{x_{0}+x_{1}}{2}\right)^{2}+\left(i \frac{x_{0}-x_{1}}{2}\right)^{2}
$$

※ Rank of Homogeneous Quadratic Polynomials

- $K$ : an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]:$ the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

Example : (1) $\operatorname{rank}\left(x_{0} x_{1}\right)=2$
(2) $\operatorname{rank}\left(x_{0} x_{1}-x_{2}^{2}\right)=3$
※ Rank of Homogeneous Quadratic Polynomials

- $K$ : an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]:$ the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

Example : (1) $\operatorname{rank}\left(x_{0} x_{1}\right)=2$
(2) $\operatorname{rank}\left(x_{0} x_{1}-x_{2}^{2}\right)=3$
(3) $\operatorname{rank}\left(x_{0} x_{1}-x_{2} x_{3}\right)=4$
※ Rank of Homogeneous Quadratic Polynomials

- $K$ : an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]$ : the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

Example :
(1) $\operatorname{rank}\left(x_{0} x_{1}\right)=2$
(2) $\operatorname{rank}\left(x_{0} x_{1}-x_{2}^{2}\right)=3$
(3) $\operatorname{rank}\left(x_{0} x_{1}-x_{2} x_{3}\right)=4$
(4) For any $h_{1}, h_{2}, h_{3}, h_{4} \in S_{1}$, we have

$$
\operatorname{rank}\left(\left|\begin{array}{ll}
h_{1} & h_{2} \\
h_{3} & h_{4}
\end{array}\right|\right)=\operatorname{rank}\left(h_{1} h_{4}-h_{2} h_{3}\right) \leq 4
$$

※ Rank of Homogeneous Quadratic Polynomials

- $K$ : an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]$ : the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

Example :
(1) $\operatorname{rank}\left(x_{0} x_{1}\right)=2$
(2) $\operatorname{rank}\left(x_{0} x_{1}-x_{2}^{2}\right)=3$
(3) $\operatorname{rank}\left(x_{0} x_{1}-x_{2} x_{3}\right)=4$
(4) For any $h_{1}, h_{2}, h_{3}, h_{4} \in S_{1}$, we have

$$
\operatorname{rank}\left(\left|\begin{array}{ll}
h_{1} & h_{2} \\
h_{3} & h_{4}
\end{array}\right|\right)=\operatorname{rank}\left(h_{1} h_{4}-h_{2} h_{3}\right) \leq 4
$$

Remark: (1) $1 \leq \operatorname{rank}(Q) \leq r+1$
※ Rank of Homogeneous Quadratic Polynomials

- $K:$ an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]$ : the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

Example :
(1) $\operatorname{rank}\left(x_{0} x_{1}\right)=2$
(2) $\operatorname{rank}\left(x_{0} x_{1}-x_{2}^{2}\right)=3$
(3) $\operatorname{rank}\left(x_{0} x_{1}-x_{2} x_{3}\right)=4$
(4) For any $h_{1}, h_{2}, h_{3}, h_{4} \in S_{1}$, we have

$$
\operatorname{rank}\left(\left|\begin{array}{ll}
h_{1} & h_{2} \\
h_{3} & h_{4}
\end{array}\right|\right)=\operatorname{rank}\left(h_{1} h_{4}-h_{2} h_{3}\right) \leq 4
$$

Remark: (1) $1 \leq \operatorname{rank}(Q) \leq r+1$
(2) Let $X \subset \mathbb{P}^{r}$ be a non-degenerate irreducible projective variety.
※ Rank of Homogeneous Quadratic Polynomials

- $K:$ an algebraically closed field of characteristic $\neq 2$
- $S=K\left[x_{0}, x_{1}, \ldots, x_{r}\right]$ : the homogeneous coordinate ring of $\mathbb{P}^{r}$

Definition : The rank of $Q \in S_{2}-\{0\}$ is defined as

$$
\operatorname{rank}(Q)=\min \left\{\ell \mid Q=h_{1}^{2}+\cdots+h_{\ell}^{2} \text { for } h_{1}, \ldots, h_{\ell} \in S_{1}\right\}
$$

Example
(1) $\operatorname{rank}\left(x_{0} x_{1}\right)=2$
(2) $\operatorname{rank}\left(x_{0} x_{1}-x_{2}^{2}\right)=3$
(3) $\operatorname{rank}\left(x_{0} x_{1}-x_{2} x_{3}\right)=4$
(4) For any $h_{1}, h_{2}, h_{3}, h_{4} \in S_{1}$, we have

$$
\operatorname{rank}\left(\left|\begin{array}{ll}
h_{1} & h_{2} \\
h_{3} & h_{4}
\end{array}\right|\right)=\operatorname{rank}\left(h_{1} h_{4}-h_{2} h_{3}\right) \leq 4
$$

Remark: (1) $1 \leq \operatorname{rank}(Q) \leq r+1$
(2) Let $X \subset \mathbb{P}^{r}$ be a non-degenerate irreducible projective variety. Then

$$
3 \leq \operatorname{rank}(Q) \leq r+1 \text { for all } Q \in I(X)_{2}
$$

※ Veronese Variety
※ Veronese Variety
For $A_{d}:=\left\{I=\left(i_{0}, i_{1}, \ldots, i_{r}\right) \mid i_{j} \in \mathbb{Z}, i_{j} \geq 0, i_{0}+i_{1}+\cdots+i_{r}=d\right\}$, let
$M_{d}:=\left\{x^{I}=x_{0}^{i_{0}} x_{1}^{i_{1}} \cdots x_{r}^{i_{r}} \in S \mid I \in A_{d}\right\}$ be the set of all monomials of degree $d$ in $S$ and

$$
\left\{z_{I} \mid I \in A_{d}\right\} \text { the set of homogeneous coordinates on } \mathbb{P}^{\binom{r+d}{d}-1}
$$

※ Veronese Variety
For $A_{d}:=\left\{I=\left(i_{0}, i_{1}, \ldots, i_{r}\right) \mid i_{j} \in \mathbb{Z}, i_{j} \geq 0, i_{0}+i_{1}+\cdots+i_{r}=d\right\}$, let

$$
M_{d}:=\left\{x^{I}=x_{0}^{i_{0}} x_{1}^{i_{1}} \cdots x_{r}^{i_{r}} \in S \mid I \in A_{d}\right\} \text { be the set of all monomials of degree } d \text { in } S
$$ and

$$
\left\{z_{I} \mid I \in A_{d}\right\} \text { the set of homogeneous coordinates on } \mathbb{P}^{\binom{r+d}{d}-1}
$$

(1) The map $\nu_{d}: \mathbb{P}^{r} \rightarrow \mathbb{P}^{\binom{r+d}{d}-1}, P \mapsto\left[\cdots, x^{I}(P), \cdots\right]$ is called the Veronese embedding.

For $A_{d}:=\left\{I=\left(i_{0}, i_{1}, \ldots, i_{r}\right) \mid i_{j} \in \mathbb{Z}, i_{j} \geq 0, i_{0}+i_{1}+\cdots+i_{r}=d\right\}$, let

$$
M_{d}:=\left\{x^{I}=x_{0}^{i_{0}} x_{1}^{i_{1}} \cdots x_{r}^{i_{r}} \in S \mid I \in A_{d}\right\} \text { be the set of all monomials of degree } d \text { in } S
$$

and

$$
\left\{z_{I} \mid I \in A_{d}\right\} \text { the set of homogeneous coordinates on } \mathbb{P}^{\binom{r+d}{d}-1}
$$

(1) The map $\nu_{d}: \mathbb{P}^{r} \rightarrow \mathbb{P}^{\binom{r+d}{d}-1}, P \mapsto\left[\cdots, x^{I}(P), \cdots\right]$ is called the Veronese embedding.
(2) For any $I, J, K, L \in A_{d}$ satisfying $I+J=K+L$, we have

$$
x^{I} x^{J}-x^{K} x^{L}=0 \text { and hence } z_{I} z_{J}-z_{K} z_{L} \in I\left(\nu_{d}\left(\mathbb{P}^{r}\right)\right)
$$

For $A_{d}:=\left\{I=\left(i_{0}, i_{1}, \ldots, i_{r}\right) \mid i_{j} \in \mathbb{Z}, i_{j} \geq 0, i_{0}+i_{1}+\cdots+i_{r}=d\right\}$, let

$$
M_{d}:=\left\{x^{I}=x_{0}^{i_{0}} x_{1}^{i_{1}} \cdots x_{r}^{i_{r}} \in S \mid I \in A_{d}\right\} \text { be the set of all monomials of degree } d \text { in } S
$$ and

$$
\left\{z_{I} \mid I \in A_{d}\right\} \text { the set of homogeneous coordinates on } \mathbb{P}^{\binom{r+d}{d}-1}
$$

(1) The map $\nu_{d}: \mathbb{P}^{r} \rightarrow \mathbb{P}^{\binom{r+d}{d}-1}, P \mapsto\left[\cdots, x^{I}(P), \cdots\right]$ is called the Veronese embedding.
(2) For any $I, J, K, L \in A_{d}$ satisfying $I+J=K+L$, we have

$$
x^{I} x^{J}-x^{K} x^{L}=0 \text { and hence } z_{I} z_{J}-z_{K} z_{L} \in I\left(\nu_{d}\left(\mathbb{P}^{r}\right)\right)
$$

Indeed,

$$
\left\{z_{z_{J}}-z_{K^{2}} z_{L} \mid I, J, K, L \in A_{d}, I+J=K+L\right\} \text { generates the homogeneous ideal } I\left(\nu_{d}\left(\mathbb{P}^{r}\right)\right)
$$

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$.

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

$$
\begin{array}{ccc}
\nu_{\ell}\left(\mathbb{P}^{r}\right) & \subset & \mathbb{P}^{\binom{r+\ell}{r}-1} \\
\cup & & \cup \\
\nu_{\ell}(X) & \subset & \left\langle\nu_{\ell}(X)\right\rangle
\end{array}
$$

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

$$
\begin{array}{ccc}
\nu_{\ell}\left(\mathbb{P}^{r}\right) & \subset & \mathbb{P}^{\binom{r+\ell}{r}-1} \\
\cup & \cup & \Rightarrow
\end{array} \quad \nu_{\ell}(X)=\nu_{\ell}\left(\mathbb{P}^{r}\right) \cap\left\langle\nu_{\ell}(X)\right\rangle
$$

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

$$
\begin{array}{ccc}
\nu_{\ell}\left(\mathbb{P}^{r}\right) & \subset & \mathbb{P}^{\binom{r+\ell}{r}-1} \\
\cup & \cup & \Longrightarrow
\end{array}
$$

- $I\left(\nu_{\ell}\left(\mathbb{P}^{r}\right)\right)$ is generated by quadrics of rank $\leq 4$.

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

$$
\begin{array}{lcc}
\nu_{\ell}\left(\mathbb{P}^{r}\right) & \subset & \mathbb{P}^{\binom{r+\ell}{r}-1} \\
\cup & \cup & \\
\nu_{\ell}(X) & \subset & \left\langle\nu_{\ell}(X)\right\rangle
\end{array}
$$

- $I\left(\nu_{\ell}\left(\mathbb{P}^{r}\right)\right)$ is generated by quadrics of rank $\leq 4$.
- $\nu_{\ell}(X)$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$
since $X \subset \mathbb{P}^{r}$ is cut out by forms of degree $\leq d$.

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that $\operatorname{char}(K) \neq 2,3$. Then

$$
I\left(\nu_{\ell}\left(\mathbb{P}^{r}\right)\right) \text { is generated by quadrics of rank } 3 \text { for all } r \geq 1 \text { and } \ell \geq 2
$$

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that $\operatorname{char}(K) \neq 2,3$. Then

$$
I\left(\nu_{\ell}\left(\mathbb{P}^{r}\right)\right) \text { is generated by quadrics of rank } 3 \text { for all } r \geq 1 \text { and } \ell \geq 2
$$

Corollary 1. : For $X \subset \mathbb{P}^{r}$, let $m$ be an integer such that

$$
X \text { is } j \text {-normal for all } j \geq m \text { and } I(X)=\left\langle I(X)_{\leq m}\right\rangle \text { (e.g., } m=\operatorname{reg}(X) \text { ). }
$$

Then for all $\ell \geq m$,
the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is ideal-theoretically a linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.
In particular, $I\left(\nu_{\ell}(X)\right)$ is generated by quadrics of rank 3.

Definition : Let $(X, L)$ be a projective variety and a very ample line bundle on $X$.

Definition : Let $(X, L)$ be a projective variety and a very ample line bundle on $X$.
(1) We say that $(X, L)$ satisfies property $N_{1}$ if
$X \subset \mathbb{P} H^{0}(X, L)$ is projectively normal and its homogeneous ideal $I(X)$ is generated by quadrics.

Definition : Let $(X, L)$ be a projective variety and a very ample line bundle on $X$.
(1) We say that $(X, L)$ satisfies property $N_{1}$ if
$X \subset \mathbb{P} H^{0}(X, L)$ is projectively normal and its homogeneous ideal $I(X)$ is generated by quadrics.
(2) (Mark Green, 1984) We say that $(X, L)$ satisfies property $N_{p}$ for some $p \geq 2$ if the minimal free resolution of $I(X)$ is of the form

$$
\begin{aligned}
& S(-p-1)^{\beta_{p, 1}} \quad S(-3)^{\beta_{2,1}} S(-2)^{\beta_{1,1}} \quad \text { where } S=S_{y m} \cdot H^{0}(X, L)
\end{aligned}
$$

Definition : Let $(X, L)$ be a projective variety and a very ample line bundle on $X$.
(1) We say that $(X, L)$ satisfies property $N_{1}$ if
$X \subset \mathbb{P} H^{0}(X, L)$ is projectively normal and its homogeneous ideal $I(X)$ is generated by quadrics.
(2) (Mark Green, 1984) We say that $(X, L)$ satisfies property $N_{p}$ for some $p \geq 2$ if the minimal free resolution of $I(X)$ is of the form

$$
\begin{aligned}
\cdots \rightarrow F_{p+1} \rightarrow F_{p} \rightarrow \cdots & \rightarrow F_{2} \\
\| & \rightarrow F_{1} \rightarrow I(X) \rightarrow 0 \\
\| & \|
\end{aligned}
$$

(3) We say that $(X, L)$ satisfies property $Q R(k)$ if
$I(X)$ can be generated by quadratic equations of rank $\leq k$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

Example (Twisted Cubic Curve) :

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$.
Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $N_{2}$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$.
Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $N_{2}$.
(2) $\operatorname{rank}\left(Q_{1}\right)=\operatorname{rank}\left(Q_{3}\right)=3$ and $\operatorname{rank}\left(Q_{2}\right)=4$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, Q_{2}=x_{0} x_{3}-x_{1} x_{2}, Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$.
Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $N_{2}$.
(2) $\operatorname{rank}\left(Q_{1}\right)=\operatorname{rank}\left(Q_{3}\right)=3$ and $\operatorname{rank}\left(Q_{2}\right)=4$. Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $Q R(4)$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$.
Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $N_{2}$.
(2) $\operatorname{rank}\left(Q_{1}\right)=\operatorname{rank}\left(Q_{3}\right)=3$ and $\operatorname{rank}\left(Q_{2}\right)=4$. Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $Q R(4)$.
(3) On $C$, it holds that

$$
s^{2}(s+t) \times t^{2}(s+t)-\{s t(s+t)\}^{2}=\left(s^{3}+s^{2} t\right)\left(s t^{2}+t^{3}\right)-\left(s^{2} t+s t^{2}\right)^{2}=0
$$

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$.
Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $N_{2}$.
(2) $\operatorname{rank}\left(Q_{1}\right)=\operatorname{rank}\left(Q_{3}\right)=3$ and $\operatorname{rank}\left(Q_{2}\right)=4$. Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $Q R(4)$.
(3) On $C$, it holds that

$$
s^{2}(s+t) \times t^{2}(s+t)-\{s t(s+t)\}^{2}=\left(s^{3}+s^{2} t\right)\left(s t^{2}+t^{3}\right)-\left(s^{2} t+s t^{2}\right)^{2}=0
$$

This gives us the following quadratic equation of $C$.

$$
Q:=\left(x_{0}+x_{1}\right)\left(x_{2}+x_{3}\right)-\left(x_{1}+x_{2}\right)^{2} \in I(C)_{2} .
$$

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$.

Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$.
Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $N_{2}$.
(2) $\operatorname{rank}\left(Q_{1}\right)=\operatorname{rank}\left(Q_{3}\right)=3$ and $\operatorname{rank}\left(Q_{2}\right)=4$. Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $Q R(4)$.
(3) On $C$, it holds that

$$
s^{2}(s+t) \times t^{2}(s+t)-\{s t(s+t)\}^{2}=\left(s^{3}+s^{2} t\right)\left(s t^{2}+t^{3}\right)-\left(s^{2} t+s t^{2}\right)^{2}=0
$$

This gives us the following quadratic equation of $C$.

$$
Q:=\left(x_{0}+x_{1}\right)\left(x_{2}+x_{3}\right)-\left(x_{1}+x_{2}\right)^{2} \in I(C)_{2} .
$$

It holds that $\operatorname{rank}(Q)=3$ and $I(C)=\left\langle Q_{1}, Q_{3}, Q\right\rangle$.

$$
C=\left\{\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right] \mid[s: t] \in \mathbb{P}^{1}\right\} \quad \subset \mathbb{P}^{3}
$$

(1) Let $\Omega=\left[\begin{array}{lll}x_{0} & x_{1} & x_{2} \\ x_{1} & x_{2} & x_{3}\end{array}\right]$. Then $I(C)=I(\Omega, 2)=\left\langle Q_{1}=x_{0} x_{2}-x_{1}^{2}, \quad Q_{2}=x_{0} x_{3}-x_{1} x_{2}, \quad Q_{3}=x_{1} x_{3}-x_{2}^{2}\right\rangle$. Also the minimal free resolution of $I(C)$ is $0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow I(C) \rightarrow 0$. Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $N_{2}$.
(2) $\operatorname{rank}\left(Q_{1}\right)=\operatorname{rank}\left(Q_{3}\right)=3$ and $\operatorname{rank}\left(Q_{2}\right)=4$. Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $Q R(4)$.
(3) On $C$, it holds that

$$
s^{2}(s+t) \times t^{2}(s+t)-\{s t(s+t)\}^{2}=\left(s^{3}+s^{2} t\right)\left(s t^{2}+t^{3}\right)-\left(s^{2} t+s t^{2}\right)^{2}=0
$$

This gives us the following quadratic equation of $C$.

$$
Q:=\left(x_{0}+x_{1}\right)\left(x_{2}+x_{3}\right)-\left(x_{1}+x_{2}\right)^{2} \in I(C)_{2} .
$$

It holds that $\operatorname{rank}(Q)=3$ and $I(C)=\left\langle Q_{1}, Q_{3}, Q\right\rangle$.
Thus $\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$ satisfies property $Q R(3)$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(G. Castelnuovo, D. Mumford, T. Fujita) If $d \geq 2 g+1$, then $C \subset \mathbb{P} H^{0}(C, \mathscr{L})$ is projectively normal.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(G. Castelnuovo, D. Mumford, T. Fujita) If $d \geq 2 g+1$, then $C \subset \mathbb{P} H^{0}(C, \mathscr{L})$ is projectively normal.
(B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $N_{1}$ and property $Q R(4)$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(G. Castelnuovo, D. Mumford, T. Fujita) If $d \geq 2 g+1$, then $C \subset \mathbb{P} H^{0}(C, \mathscr{L})$ is projectively normal.
(B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $N_{1}$ and property $Q R(4)$.
(M. Green, 1984, Green-Lazarsfeld, 1988) If $d \geq 2 g+1+p$, then $(C, \mathscr{L})$ satisfies property $N_{p}$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(G. Castelnuovo, D. Mumford, T. Fujita) If $d \geq 2 g+1$, then $C \subset \mathbb{P} H^{0}(C, \mathscr{L})$ is projectively normal.
(B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $N_{1}$ and property $Q R(4)$.
(M. Green, 1984, Green-Lazarsfeld, 1988) If $d \geq 2 g+1+p$, then $(C, \mathscr{L})$ satisfies property $N_{p}$.
(M. Green, 1984) Suppose that $C$ is a smooth curve and $g \geq 5$. For $D:=\varphi_{K_{C}}(C) \subset \mathbb{P}^{g-1}$, the degree 2 part of $I(D)$ is spanned by quadrics of rank $\leq 4$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(G. Castelnuovo, D. Mumford, T. Fujita) If $d \geq 2 g+1$, then $C \subset \mathbb{P} H^{0}(C, \mathscr{L})$ is projectively normal.
(B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $N_{1}$ and property $Q R(4)$.
(M. Green, 1984, Green-Lazarsfeld, 1988) If $d \geq 2 g+1+p$, then $(C, \mathscr{L})$ satisfies property $N_{p}$.
(M. Green, 1984) Suppose that $C$ is a smooth curve and $g \geq 5$. For $D:=\varphi_{K_{C}}(C) \subset \mathbb{P}^{g-1}$, the degree 2 part of $I(D)$ is spanned by quadrics of rank $\leq 4$.
※ So, if $C$ is not hyperelliptic and trigonal, then $\left(C, K_{C}\right)$ satisfies property $Q R(4)$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(G. Castelnuovo, D. Mumford, T. Fujita) If $d \geq 2 g+1$, then $C \subset \mathbb{P} H^{0}(C, \mathscr{L})$ is projectively normal.
(B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $N_{1}$ and property $Q R(4)$.
(M. Green, 1984, Green-Lazarsfeld, 1988) If $d \geq 2 g+1+p$, then $(C, \mathscr{L})$ satisfies property $N_{p}$.
(M. Green, 1984) Suppose that $C$ is a smooth curve and $g \geq 5$. For $D:=\varphi_{K_{C}}(C) \subset \mathbb{P}^{g-1}$, the degree 2 part of $I(D)$ is spanned by quadrics of rank $\leq 4$.
※ So, if $C$ is not hyperelliptic and trigonal, then $\left(C, K_{C}\right)$ satisfies property $Q R(4)$.
(C. Voisin, 2004) When $C$ is a general smooth curve, $\left(C, K_{C}\right)$ satisfies property $N_{\mathrm{Cliff}(C)-1}$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(G. Castelnuovo, D. Mumford, T. Fujita) If $d \geq 2 g+1$, then $C \subset \mathbb{P} H^{0}(C, \mathscr{L})$ is projectively normal.
(B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $N_{1}$ and property $Q R(4)$.
(M. Green, 1984, Green-Lazarsfeld, 1988) If $d \geq 2 g+1+p$, then $(C, \mathscr{L})$ satisfies property $N_{p}$.
(M. Green, 1984) Suppose that $C$ is a smooth curve and $g \geq 5$. For $D:=\varphi_{K_{C}}(C) \subset \mathbb{P}^{g-1}$, the degree 2 part of $I(D)$ is spanned by quadrics of rank $\leq 4$.
※ So, if $C$ is not hyperelliptic and trigonal, then $\left(C, K_{C}\right)$ satisfies property $Q R(4)$.
(C. Voisin, 2004) When $C$ is a general smooth curve, $\left(C, K_{C}\right)$ satisfies property $N_{\mathrm{Cliff}(C)-1}$.

Theorem (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$.

Theorem (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$. Then
$\left(X, K_{X}+(n+1+p) L+B\right)$ satisfies property $N_{p}$ for any $p \geq 0$ and for any nef line bundle $B$.

Theorem (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$. Then
$\left(X, K_{X}+(n+1+p) L+B\right)$ satisfies property $N_{p}$ for any $p \geq 0$ and for any nef line bundle $B$.

Corollary (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$ of degree $d$.

Theorem (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$. Then
$\left(X, K_{X}+(n+1+p) L+B\right)$ satisfies property $N_{p}$ for any $p \geq 0$ and for any nef line bundle $B$.

Corollary (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$ of degree $d$. Then

$$
\left(X, L^{\ell}\right) \text { satisfies property } N_{\ell+1-d}
$$

Theorem (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$. Then
$\left(X, K_{X}+(n+1+p) L+B\right)$ satisfies property $N_{p}$ for any $p \geq 0$ and for any nef line bundle $B$.

Corollary (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$ of degree $d$. Then

$$
\left(X, L^{\ell}\right) \text { satisfies property } N_{\ell+1-d}
$$

Theorem : (Varieties defined by Quadratic Equations, David Mumford, 1969)
Let $X \subset \mathbb{P}^{r}$ be a nondegenerate irreducible projective variety of degree $d$. Then for all $\ell \geq d$, the $\ell$ th Veronese variety $\nu_{\ell}(X)$ of $X$ is a set-theoretic linear section of $\nu_{\ell}\left(\mathbb{P}^{r}\right)$.

In particular, $\nu_{\ell}(X)$ is set-theoretically cut out by quadrics of rank $\leq 4$.

Theorem (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$. Then
$\left(X, K_{X}+(n+1+p) L+B\right)$ satisfies property $N_{p}$ for any $p \geq 0$ and for any nef line bundle $B$.

Corollary (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$ of degree $d$. Then

$$
\left(X, L^{\ell}\right) \text { satisfies property } N_{\ell+1-d}
$$

Theorem (Inamda, 1997) : Let $X$ be a projective variety and $A$ an ample line bundle on $X$.

Theorem (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$. Then
$\left(X, K_{X}+(n+1+p) L+B\right)$ satisfies property $N_{p}$ for any $p \geq 0$ and for any nef line bundle $B$.

Corollary (Ein-Lazarsfeld, 1993) : Let $X$ be a smooth complex projective variety of dimension $n$ and let $L$ be a very ample line bundle on $X$ of degree $d$. Then
$\left(X, L^{\ell}\right)$ satisfies property $N_{\ell+1-d}$.

Theorem (Inamda, 1997) : Let $X$ be a projective variety and $A$ an ample line bundle on $X$.
Then for every positive integer $p$, there exists a number $n(p)$ such that

$$
\left(X, A^{\ell}\right) \text { satisfies property } N_{p} \text { for every } \ell \geq n(p)
$$

Definition : Let $L$ be a very ample line bundle on a projective variety $X$.

Definition : Let $L$ be a very ample line bundle on a projective variety $X$.
(1) A decomposition $L=L_{1} \otimes L_{2}$ defines the multiplication map

$$
\tau: H^{0}\left(X, L_{1}\right) \times H^{0}\left(X, L_{2}\right) \rightarrow H^{0}(X, L)
$$

Definition : Let $L$ be a very ample line bundle on a projective variety $X$.
(1) A decomposition $L=L_{1} \otimes L_{2}$ defines the multiplication map
$\tau: H^{0}\left(X, L_{1}\right) \times H^{0}\left(X, L_{2}\right) \rightarrow H^{0}(X, L) \quad\left(\cong\right.$ the space of linear forms on $\left.\mathbb{P} H^{0}(X, L)\right)$

Definition : Let $L$ be a very ample line bundle on a projective variety $X$.
(1) A decomposition $L=L_{1} \otimes L_{2}$ defines the multiplication map
$\tau: H^{0}\left(X, L_{1}\right) \times H^{0}\left(X, L_{2}\right) \rightarrow H^{0}(X, L) \quad\left(\cong\right.$ the space of linear forms on $\left.\mathbb{P} H^{0}(X, L)\right)$ and hence a matrix $\Omega\left(L_{1}, L_{2}\right)$ of linear forms on $\mathbb{P} H^{0}(X, L)$.

Definition : Let $L$ be a very ample line bundle on a projective variety $X$.
(1) A decomposition $L=L_{1} \otimes L_{2}$ defines the multiplication map

$$
\tau: H^{0}\left(X, L_{1}\right) \times H^{0}\left(X, L_{2}\right) \rightarrow H^{0}(X, L) \quad\left(\cong \text { the space of linear forms on } \mathbb{P} H^{0}(X, L)\right)
$$ and hence a matrix $\Omega\left(L_{1}, L_{2}\right)$ of linear forms on $\mathbb{P} H^{0}(X, L)$. Then $I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$ is contained in the homogeneous ideal of $X \subset \mathbb{P} H^{0}(X, L)$.

Definition : Let $L$ be a very ample line bundle on a projective variety $X$.
(1) A decomposition $L=L_{1} \otimes L_{2}$ defines the multiplication map
$\tau: H^{0}\left(X, L_{1}\right) \times H^{0}\left(X, L_{2}\right) \rightarrow H^{0}(X, L) \quad\left(\cong\right.$ the space of linear forms on $\left.\mathbb{P} H^{0}(X, L)\right)$ and hence a matrix $\Omega\left(L_{1}, L_{2}\right)$ of linear forms on $\mathbb{P} H^{0}(X, L)$. Then $I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$ is contained in the homogeneous ideal of $X \subset \mathbb{P} H^{0}(X, L)$.
(2) We say that $(X, L)$ is determinantally presented if there is a decomposition $L=L_{1} \otimes L_{2}$ such that $I(X)=I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$.

Definition : Let $L$ be a very ample line bundle on a projective variety $X$.
(1) A decomposition $L=L_{1} \otimes L_{2}$ defines the multiplication map

$$
\tau: H^{0}\left(X, L_{1}\right) \times H^{0}\left(X, L_{2}\right) \rightarrow H^{0}(X, L) \quad\left(\cong \text { the space of linear forms on } \mathbb{P} H^{0}(X, L)\right)
$$

and hence a matrix $\Omega\left(L_{1}, L_{2}\right)$ of linear forms on $\mathbb{P} H^{0}(X, L)$.
Then $I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$ is contained in the homogeneous ideal of $X \subset \mathbb{P} H^{0}(X, L)$.
(2) We say that $(X, L)$ is determinantally presented if there is a decomposition $L=L_{1} \otimes L_{2}$ such that $I(X)=I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$.

Remark : If $(X, L)$ is determinantally presented, then it satisfies property $Q R(4)$.

$$
(X, L)=\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right), O_{\mathbb{P}^{1}}(3)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(2)
$$

$$
(X, L)=\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right), O_{\mathbb{P}^{1}}(3)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(2)
$$

$$
\Rightarrow H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right)=K\{s, t\}, H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(2)\right)=K\left\{s^{2}, s t, t^{2}\right\}
$$

$$
(X, L)=\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right), O_{\mathbb{P}^{1}}(3)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(2)
$$

$\Longrightarrow H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right)=K\{s, t\}, H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(2)\right)=K\left\{s^{2}, s t, t^{2}\right\}$
$\Rightarrow \operatorname{From} \tau: H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(2)\right) \rightarrow H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$,

## Example :

$$
(X, L)=\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right), O_{\mathbb{P}^{1}}(3)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(2)
$$

$\Longrightarrow H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right)=K\{s, t\}, H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(2)\right)=K\left\{s^{2}, s t, t^{2}\right\}$
$\Rightarrow$ From $\tau: H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(2)\right) \rightarrow H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right)$, we obtain

$$
\left[\begin{array}{ccc}
s^{3} & s^{2} t & s t^{2} \\
s^{2} t & s t^{2} & t^{3}
\end{array}\right] \text { and hence } \Omega\left(O_{\mathbb{P}^{1}}(1), O_{\mathbb{P}^{1}}(2)\right)=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3}
\end{array}\right]
$$

## Example :

$$
\begin{gathered}
(X, L)=\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right), O_{\mathbb{P}^{1}}(3)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(2) \\
\Rightarrow H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right)=K\{s, t\}, H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(2)\right)=K\left\{s^{2}, s t, t^{2}\right\} \\
\Rightarrow \text { From } \tau: H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(2)\right) \rightarrow H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(3)\right), \text { we obtain } \\
{\left[\begin{array}{ccc}
s^{3} & s^{2} t & s t^{2} \\
s^{2} t & s t^{2} & t^{3}
\end{array}\right] \text { and hence } \Omega\left(O_{\mathbb{P}^{1}}(1), O_{\mathbb{P}^{1}}(2)\right)=\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{1} & x_{2} & x_{3}
\end{array}\right] .}
\end{gathered}
$$

In this case, $I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$ is exactly the homogeneous ideal of $X \subset \mathbb{P} H^{0}(X, L)$.

$$
(X, L)=\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right), O_{\mathbb{R}^{2}}(2)=O_{\mathbb{P}^{2}}(1) \otimes O_{\mathbb{P}^{2}}(1)
$$

$$
(X, L)=\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right), O_{\mathbb{P}^{2}}(2)=O_{\mathbb{P}^{2}}(1) \otimes O_{\mathbb{P}^{2}}(1)
$$

$\Rightarrow H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right)=K\{x, y, z\}, H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right)=K\left\{x^{2}, y^{2}, z^{2}, x y, x z, y z\right\}$

## Example :

$$
(X, L)=\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right), O_{\mathbb{P}^{2}}(2)=O_{\mathbb{P}^{2}}(1) \otimes O_{\mathbb{P}^{2}}(1)
$$

$\Rightarrow H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right)=K\{x, y, z\}, H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right)=K\left\{x^{2}, y^{2}, z^{2}, x y, x z, y z\right\}$
$\Rightarrow$ From the map $\tau: H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right) \times H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right) \rightarrow H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right)$, we have

$$
\left[\begin{array}{ccc}
x^{2} & x y & x z \\
x y & y^{2} & y z \\
x z & y z & z^{2}
\end{array}\right] \text { and hence } \Omega\left(O_{\mathbb{P}^{2}}(1), O_{\mathbb{P}^{2}}(1)\right)=\left[\begin{array}{lll}
x_{0} & x_{3} & x_{4} \\
x_{3} & x_{1} & x_{5} \\
x_{4} & x_{5} & x_{2}
\end{array}\right] .
$$

## Example :

$$
(X, L)=\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right), O_{\mathbb{P}^{2}}(2)=O_{\mathbb{P}^{2}}(1) \otimes O_{\mathbb{P}^{2}}(1)
$$

$\Longrightarrow H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right)=K\{x, y, z\}, H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right)=K\left\{x^{2}, y^{2}, z^{2}, x y, x z, y z\right\}$
$\Rightarrow$ From the map $\tau: H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right) \times H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right) \rightarrow H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right)$, we have

$$
\left[\begin{array}{ccc}
x^{2} & x y & x z \\
x y & y^{2} & y z \\
x z & y z & z^{2}
\end{array}\right] \text { and hence } \Omega\left(O_{\mathbb{P}^{2}}(1), O_{\mathbb{P}^{2}}(1)\right)=\left[\begin{array}{lll}
x_{0} & x_{3} & x_{4} \\
x_{3} & x_{1} & x_{5} \\
x_{4} & x_{5} & x_{2}
\end{array}\right] .
$$

In this case, $I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$ is exactly the homogeneous ideal of $X \subset \mathbb{P} H^{0}(X, L)$.

## Example :

$$
\begin{array}{r}
(X, L)=\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right), O_{\mathbb{P}^{2}}(2)=O_{\mathbb{P}^{2}}(1) \otimes O_{\mathbb{P}^{2}}(1) \\
\Rightarrow H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right)=K\{x, y, z\}, H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right)=K\left\{x^{2}, y^{2}, z^{2}, x y, x z, y z\right\}
\end{array}
$$

$\Rightarrow$ From the map $\tau: H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right) \times H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(1)\right) \rightarrow H^{0}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2)\right)$, we have

$$
\left[\begin{array}{ccc}
x^{2} & x y & x z \\
x y & y^{2} & y z \\
x z & y z & z^{2}
\end{array}\right] \text { and hence } \Omega\left(O_{\mathbb{P}^{2}}(1), O_{\mathbb{P}^{2}}(1)\right)=\left[\begin{array}{lll}
x_{0} & x_{3} & x_{4} \\
x_{3} & x_{1} & x_{5} \\
x_{4} & x_{5} & x_{2}
\end{array}\right] .
$$

In this case, $I\left(\Omega\left(L_{1}, L_{2}\right), 2\right)$ is exactly the homogeneous ideal of $X \subset \mathbb{P} H^{0}(X, L)$.

More Examples : (1) Rational Normal Scrolls
(2) Segre Embedding $\sigma\left(\mathbb{P}^{a} \times \mathbb{P}^{b}\right) \subset \mathbb{P}^{a b+a+b}$

Theorem (Eisenbud-Koh-Stillman, 1988) : Let $C$ be an integral curve of arithmetic genus $g$. If $\mathscr{L}$ is a line bundle on $C$ of degree $\geq 4 g+2$, then $(C, \mathscr{L})$ is determinantally presented.

Theorem (Eisenbud-Koh-Stillman, 1988) : Let $C$ be an integral curve of arithmetic genus $g$. If $\mathscr{L}$ is a line bundle on $C$ of degree $\geq 4 g+2$, then $(C, \mathscr{L})$ is determinantally presented.

Theorem (Sidman-Smith, 2011) : Let $X$ be an irreducible projective variety. Then every sufficiently ample line bundle on $X$ is determinantlly presented.

Theorem (Eisenbud-Koh-Stillman, 1988) : Let $C$ be an integral curve of arithmetic genus $g$. If $\mathscr{L}$ is a line bundle on $C$ of degree $\geq 4 g+2$, then $(C, \mathscr{L})$ is determinantally presented.

Theorem (Sidman-Smith, 2011) : Let $X$ be an irreducible projective variety. Then every sufficiently ample line bundle on $X$ is determinantlly presented.

That is, there exists a line bundle $A$ on $X$ such that
( $X, L$ ) is determinantlly presented if $L \otimes A^{-1}$ is ample.

Theorem (M. Pucci, 1998) : For the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{N}$, it holds that

$$
I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=I\left(\Omega\left(O_{\mathbb{P}^{n}}(1), O_{\mathbb{P}^{n}}(d-1)\right), 2\right)
$$

Theorem (M. Pucci, 1998) : For the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{N}$, it holds that

$$
I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=I\left(\Omega\left(O_{\mathbb{P}^{n}}(1), O_{\mathbb{P}^{n}}(d-1)\right), 2\right)
$$

In particular, $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ is determinantally presented.

Theorem (M. Pucci, 1998) : For the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{N}$, it holds that

$$
I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=I\left(\Omega\left(O_{\mathbb{P}^{n}}(1), O_{\mathbb{P}^{n}}(d-1)\right), 2\right)
$$

In particular, $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ is determinantally presented.

Theorem (Huy Tài Hà, 2002) : The ideal of a Segre variety $\sigma\left(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}}\right) \subset \mathbb{P}^{\left(n_{1}+1\right) \cdots\left(n_{t}+1\right)-1}$ is generated by the 2 -minors of a generic hypermatrix of indeterminates.

Theorem (M. Pucci, 1998) : For the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{N}$, it holds that

$$
I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=I\left(\Omega\left(O_{\mathbb{P}^{n}}(1), O_{\mathbb{P}^{n}}(d-1)\right), 2\right)
$$

In particular, $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ is determinantally presented.

Theorem (Huy Tài Hà, 2002) : The ideal of a Segre variety $\sigma\left(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}}\right) \subset \mathbb{P}^{\left(n_{1}+1\right) \cdots\left(n_{t}+1\right)-1}$ is generated by the 2 -minors of a generic hypermatrix of indeterminates.

Theorem (A. Bernardi, 2008) : For a Segre-Veronese variety $\left.\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}} \hookrightarrow{ }^{O\left(d_{1}, \ldots, d_{t}\right)} \mathbb{P}^{\prod_{i=1}^{t}\left(n_{i}+d_{i}-1\right)} d_{i}\right)^{-1}$, the homogeneous ideal is generated by the 2 -minors of a generic symmetric hypermatrix.

Theorem (M. Pucci, 1998) : For the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{N}$, it holds that

$$
I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=I\left(\Omega\left(O_{\mathbb{P}^{n}}(1), O_{\mathbb{P}^{n}}(d-1)\right), 2\right)
$$

In particular, $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ is determinantally presented.

Theorem (Huy Tài Hà, 2002) : The ideal of a Segre variety $\sigma\left(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}}\right) \subset \mathbb{P}^{\left(n_{1}+1\right) \cdots\left(n_{t}+1\right)-1}$ is generated by the 2 -minors of a generic hypermatrix of indeterminates.

Theorem (A. Bernardi, 2008) : For a Segre-Veronese variety $\left.\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}} \hookrightarrow{ }^{O\left(d_{1}, \ldots, d_{t}\right)} \mathbb{P}^{\prod_{i=1}^{t}\left(n_{i}+d_{i}-1\right.} d_{i}\right)-1$. the homogeneous ideal is generated by the 2 -minors of a generic symmetric hypermatrix.

Theorem (Sidman-Smith, 2011) :
(1) If $t \geq 3$, then $\sigma\left(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}}\right) \subset \mathbb{P}^{\left(n_{1}+1\right) \cdots\left(n_{t}+1\right)-1}$ is not determinantally presented.

Theorem (M. Pucci, 1998) : For the Veronese variety $\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{N}$, it holds that

$$
I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)=I\left(\Omega\left(O_{\mathbb{P}^{n}}(1), O_{\mathbb{P}^{n}}(d-1)\right), 2\right)
$$

In particular, $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ is determinantally presented.

Theorem (Huy Tài Hà, 2002) : The ideal of a Segre variety $\sigma\left(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}}\right) \subset \mathbb{P}^{\left(n_{1}+1\right) \cdots\left(n_{t}+1\right)-1}$ is generated by the 2 -minors of a generic hypermatrix of indeterminates.

Theorem (A. Bernardi, 2008) : For a Segre-Veronese variety $\left.\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}} \hookrightarrow^{O\left(d_{1}, \ldots, d_{t}\right)} \mathbb{P}^{\prod_{i=1}^{t}\left(n_{i}+d_{i}-1\right.} d_{i}\right)^{-1}$, the homogeneous ideal is generated by the 2 -minors of a generic symmetric hypermatrix.

Theorem (Sidman-Smith, 2011) :
(1) If $t \geq 3$, then $\sigma\left(\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}}\right) \subset \mathbb{P}^{\left(n_{1}+1\right) \cdots\left(n_{t}+1\right)-1}$ is not determinantally presented.
(2) The ideal of $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{t}} \hookrightarrow^{O\left(d_{1}, \ldots, d_{t}\right)} \mathbb{P}^{\prod_{i=1}^{t}\binom{n_{i}+d_{i}-1}{d_{i}}-1}$ is determinantally presented if at least $t-2$ of $d_{1}, \ldots, d_{t}$ are at least 2 .

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that $\operatorname{char}(K) \neq 2,3$. Then $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ satisfies property $Q R(3)$ for all $n \geq 1$ and $d \geq 2$.

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that char $(K) \neq 2,3$. Then $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ satisfies property $Q R(3)$ for all $n \geq 1$ and $d \geq 2$.

Sketch of the Proof : Step 1. ( $Q-\mathrm{map}$ ):

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that char $(K) \neq 2,3$. Then $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ satisfies property $Q R(3)$ for all $n \geq 1$ and $d \geq 2$.

Sketch of the Proof : Step 1. ( $Q$-map) : Let $N=\binom{n+d}{n}-1$ and $\varphi: H^{0}\left(O_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(O_{\mathbb{P}^{N}}(1)\right)$.

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that char $(K) \neq 2,3$. Then $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ satisfies property $Q R(3)$ for all $n \geq 1$ and $d \geq 2$.

Sketch of the Proof : Step 1. ( $Q$-map) : Let $N=\binom{n+d}{n}-1$ and $\varphi: H^{0}\left(O_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(O_{\mathbb{P}^{N}}(1)\right)$. $Q: \quad H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(d-2)\right) \quad \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2}$

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that $\operatorname{char}(K) \neq 2,3$. Then $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ satisfies property $Q R(3)$ for all $n \geq 1$ and $d \geq 2$.

Sketch of the Proof : Step 1. ( $Q$-map) : Let $N=\binom{n+d}{n}-1$ and $\varphi: H^{0}\left(O_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(O_{\mathbb{P}^{N}}(1)\right)$.

$$
\begin{aligned}
Q: H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(d-2)\right) & \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2} \\
(f, g, h) & \mapsto \quad Q(f, g, h):=\varphi\left(f^{2} h\right) \varphi\left(g^{2} h\right)-\varphi(f g h)^{2}
\end{aligned}
$$

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that $\operatorname{char}(K) \neq 2,3$. Then $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ satisfies property $Q R(3)$ for all $n \geq 1$ and $d \geq 2$.


$$
\begin{aligned}
Q: H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(d-2)\right) & \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2} \\
(f, g, h) & \mapsto \quad Q(f, g, h):=\varphi\left(f^{2} h\right) \varphi\left(g^{2} h\right)-\varphi(f g h)^{2}
\end{aligned}
$$

It suffices to show that $\operatorname{Im}(Q)$ spans $I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2}$.

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that $\operatorname{char}(K) \neq 2,3$. Then $\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right)$ satisfies property $Q R(3)$ for all $n \geq 1$ and $d \geq 2$.

Sketch of the Proof : Step 1. ( $Q$-map) : Let $N=\binom{n+d}{n}-1$ and $\varphi: H^{0}\left(O_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(O_{\mathbb{P}^{N}}(1)\right)$.

$$
\begin{aligned}
Q: H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(d-2)\right) & \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2} \\
(f, g, h) & \mapsto \quad Q(f, g, h):=\varphi\left(f^{2} h\right) \varphi\left(g^{2} h\right)-\varphi(f g h)^{2}
\end{aligned}
$$

It suffices to show that $\operatorname{Im}(Q)$ spans $I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2}$.

Step 2.: The case $n=1$ is proved by using the above $Q$-map.

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that $\operatorname{char}(K) \neq 2,3$. Then

$$
\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right) \text { satisfies property } Q R(3) \text { for all } n \geq 1 \text { and } d \geq 2
$$

Sketch of the Proof : Step 1. ( $Q$-map) : Let $N=\binom{n+d}{n}-1$ and $\varphi: H^{0}\left(O_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(O_{\mathbb{P}^{N}}(1)\right)$.

$$
\begin{aligned}
Q: H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(d-2)\right) & \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2} \\
(f, g, h) & \mapsto \quad Q(f, g, h):=\varphi\left(f^{2} h\right) \varphi\left(g^{2} h\right)-\varphi(f g h)^{2}
\end{aligned}
$$

It suffices to show that $\operatorname{Im}(Q)$ spans $I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2}$.

Step 2. : The case $n=1$ is proved by using the above $Q$-map.

Step 3. : The case $d=2$ case is proved by using the above $Q$-map and an induction on $n$.

Theorem (Han-Lee-Moon-Park, 2019) : Suppose that char $(K) \neq 2,3$. Then

$$
\left(\mathbb{P}^{n}, O_{\mathbb{P}^{n}}(d)\right) \text { satisfies property } Q R(3) \text { for all } n \geq 1 \text { and } d \geq 2
$$

Sketch of the Proof : Step 1. ( $Q$-map) : Let $N=\binom{n+d}{n}-1$ and $\varphi: H^{0}\left(O_{\mathbb{P}^{n}}(d)\right) \rightarrow H^{0}\left(O_{\mathbb{P}^{n}}(1)\right)$.

$$
\begin{aligned}
Q: H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(1)\right) \times H^{0}\left(O_{\mathbb{P}^{n}}(d-2)\right) & \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2} \\
(f, g, h) & \mapsto \quad Q(f, g, h):=\varphi\left(f^{2} h\right) \varphi\left(g^{2} h\right)-\varphi(f g h)^{2}
\end{aligned}
$$

It suffices to show that $\operatorname{Im}(Q)$ spans $I\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)_{2}$.

Step 2. : The case $n=1$ is proved by using the above $Q$-map.

Step 3. : The case $d=2$ case is proved by using the above $Q$-map and an induction on $n$.

Step 4. : Double induction on $(n, d)+\operatorname{Aut}\left(\nu_{d}\left(\mathbb{P}^{n}\right), \mathbb{P}^{N}\right)$

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Let $F_{i j}=\left|\begin{array}{cc}z_{i} & z_{j} \\ z_{i+1} & z_{j+1}\end{array}\right|=z_{i} z_{j+1}-z_{j} z_{i+1} \quad \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$.

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Let $F_{i j}=\left|\begin{array}{cc}z_{i} & z_{j} \\ z_{i+1} & z_{j+1}\end{array}\right|=z_{i} z_{j+1}-z_{j} z_{i+1} \quad \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$. Then

$$
\operatorname{rank}\left(F_{i, i+1}=z_{i} z_{i+2}-z_{i+1}^{2}\right)=3 \text { and } \operatorname{rank}\left(F_{i j}\right)=4 \text { if } j-i>1
$$

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Let $F_{i j}=\left|\begin{array}{cc}z_{i} & z_{j} \\ z_{i+1} & z_{j+1}\end{array}\right|=z_{i} z_{j+1}-z_{j} z_{i+1} \quad \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$. Then

$$
\operatorname{rank}\left(F_{i, i+1}=z_{i} z_{i+2}-z_{i+1}^{2}\right)=3 \text { and } \operatorname{rank}\left(F_{i j}\right)=4 \text { if } j-i>1
$$

From the decomposition $O_{\mathbb{P}^{1}}(d)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(d-2)$,

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Let $F_{i j}=\left|\begin{array}{cc}z_{i} & z_{j} \\ z_{i+1} & z_{j+1}\end{array}\right|=z_{i} z_{j+1}-z_{j} z_{i+1} \quad \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$. Then

$$
\operatorname{rank}\left(F_{i, i+1}=z_{i} z_{i+2}-z_{i+1}^{2}\right)=3 \text { and } \operatorname{rank}\left(F_{i j}\right)=4 \text { if } j-i>1
$$

From the decomposition $O_{\mathbb{P}^{1}}(d)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(d-2)$, we have the map

$$
Q: H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(d-2)\right) \quad \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2} .
$$

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Let $F_{i j}=\left|\begin{array}{cc}z_{i} & z_{j} \\ z_{i+1} & z_{j+1}\end{array}\right|=z_{i} z_{j+1}-z_{j} z_{i+1} \quad \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$. Then

$$
\operatorname{rank}\left(F_{i, i+1}=z_{i} z_{i+2}-z_{i+1}^{2}\right)=3 \text { and } \operatorname{rank}\left(F_{i j}\right)=4 \text { if } j-i>1
$$

From the decomposition $O_{\mathbb{P}^{1}}(d)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(d-2)$, we have the map

$$
Q: H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(d-2)\right) \quad \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2} .
$$

Let $G_{i j}:=Q\left(s, t, s^{d-2-i} t^{i}+s^{d-2-j} t^{j}\right)$

$$
\begin{aligned}
& =\varphi\left(s^{2}\left(s^{d-2-i} t^{i}+s^{d-2-j} t^{j}\right)\right) \times \varphi\left(t^{2}\left(s^{d-2-i} t^{i}+s^{d-2-j} t^{j}\right)\right)-\varphi\left(s t\left(s^{d-2-i} t^{i}+s^{d-2-j} t^{j}\right)\right)^{2} \\
& =\left(z_{i}+z_{j}\right)\left(z_{i+1}+z_{j+2}\right)-\left(z_{i+1}+z_{j+1}\right)^{2} \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}
\end{aligned}
$$

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Let $F_{i j}=\left|\begin{array}{cc}z_{i} & z_{j} \\ z_{i+1} & z_{j+1}\end{array}\right|=z_{i} z_{j+1}-z_{j} z_{i+1} \quad \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$. Then

$$
\operatorname{rank}\left(F_{i, i+1}=z_{i} z_{i+2}-z_{i+1}^{2}\right)=3 \text { and } \operatorname{rank}\left(F_{i j}\right)=4 \text { if } j-i>1
$$

From the decomposition $O_{\mathbb{P}^{1}}(d)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(d-2)$, we have the map

$$
Q: H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(d-2)\right) \quad \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2} .
$$

Let $G_{i j}:=Q\left(s, t, s^{d-2-i} t^{i}+s^{d-2-j} t^{j}\right)=\left(z_{i}+z_{j}\right)\left(z_{i+1}+z_{j+2}\right)-\left(z_{i+1}+z_{j+1}\right)^{2} \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$.

Then $\left\{F_{i, i+1} \mid 0 \leq i \leq d-1\right\} \cup\left\{G_{i j} \mid 0 \leq i<j \leq d-2\right\}$ is a basis for $I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$.

Example : The ideal of the rational normal curve $\nu_{d}\left(\mathbb{P}^{1}\right) \subset \mathbb{P}^{d}$ is equal to $I(2, \Omega)$ where

$$
\Omega=\left(\begin{array}{cccccc}
z_{0} & z_{1} & z_{2} & \cdots & z_{d-2} & z_{d-1} \\
z_{1} & z_{2} & z_{3} & \cdots & z_{d-1} & z_{d}
\end{array}\right)
$$

Let $F_{i j}=\left|\begin{array}{cc}z_{i} & z_{j} \\ z_{i+1} & z_{j+1}\end{array}\right|=z_{i} z_{j+1}-z_{j} z_{i+1} \quad \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$. Then

$$
\operatorname{rank}\left(F_{i, i+1}=z_{i} z_{i+2}-z_{i+1}^{2}\right)=3 \text { and } \operatorname{rank}\left(F_{i j}\right)=4 \text { if } j-i>1
$$

From the decomposition $O_{\mathbb{P}^{1}}(d)=O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(1) \otimes O_{\mathbb{P}^{1}}(d-2)$, we have the map

$$
Q: H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(1)\right) \times H^{0}\left(\mathbb{P}^{1}, O_{\mathbb{P}^{1}}(d-2)\right) \quad \rightarrow \quad I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2} .
$$

Let $G_{i j}:=Q\left(s, t, s^{d-2-i} t^{i}+s^{d-2-j} t^{j}\right)=\left(z_{i}+z_{j}\right)\left(z_{i+1}+z_{j+2}\right)-\left(z_{i+1}+z_{j+1}\right)^{2} \in I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$.

Then $\left\{F_{i, i+1} \mid 0 \leq i \leq d-1\right\} \cup\left\{G_{i j} \mid 0 \leq i<j \leq d-2\right\}$ is a basis for $I\left(\nu_{d}\left(\mathbb{P}^{1}\right)\right)_{2}$.
In particular, $\left.\left(\mathbb{P}^{1}\right), O_{\mathbb{P}^{1}}(d)\right)$ satisfies property $Q R(3)$.

Corollary 1. : For $X \subset \mathbb{P}^{r}$, let $m$ be an integer such that
$X$ is $j$-normal for all $j \geq m$ and $I(X)=\left\langle I(X)_{\leq m}\right\rangle \quad$ (e.g., $m=\operatorname{reg}(X)$ ).

Corollary 1. : For $X \subset \mathbb{P}^{r}$, let $m$ be an integer such that
$X$ is $j$-normal for all $j \geq m$ and $I(X)=\left\langle I(X)_{\leq m}\right\rangle \quad$ (e.g., $m=\operatorname{reg}(X)$ ).
Then $\left(X, O_{X}(\ell)\right)$ satisfies property $Q R(3)$ for all $\ell \geq m$.

Corollary 1. : For $X \subset \mathbb{P}^{r}$, let $m$ be an integer such that
$X$ is $j$-normal for all $j \geq m$ and $I(X)=\left\langle I(X)_{\leq m}\right\rangle \quad$ (e.g., $m=\operatorname{reg}(X)$ ).
Then $\left(X, O_{X}(\ell)\right)$ satisfies property $Q R(3)$ for all $\ell \geq m$.

$$
\begin{array}{cccl}
\nu_{\ell}\left(\mathbb{P}^{r}\right) & \subset & \mathbb{P}^{\binom{r+\ell}{r}-1} \\
\cup & \cup & \Longrightarrow & \nu_{\ell}(X)=\nu_{\ell}\left(\mathbb{P}^{r}\right) \cap\left\langle\nu_{\ell}(X)\right\rangle \\
\nu_{\ell}(X) & \subset & \left\langle\nu_{\ell}(X)\right\rangle &
\end{array} \begin{aligned}
& \text { ideal-theoretically. }
\end{aligned}
$$

Corollary 1.: For $X \subset \mathbb{P}^{r}$, let $m$ be an integer such that
$X$ is $j$-normal for all $j \geq m$ and $I(X)=\left\langle I(X)_{\leq m}\right\rangle \quad$ (e.g., $m=\operatorname{reg}(X)$ ).
Then $\left(X, O_{X}(\ell)\right)$ satisfies property $Q R(3)$ for all $\ell \geq m$.

Corollary 2.: Let $L$ be a very ample line bundle on a projective variety $X$ such that ( $X, L$ ) satisfies property $N_{1}$. Then $\left(X, L^{d}\right)$ satisfies property $Q R(3)$ for all $d \geq 2$.

Corollary 1.: For $X \subset \mathbb{P}^{r}$, let $m$ be an integer such that

$$
X \text { is } j \text {-normal for all } j \geq m \text { and } I(X)=\left\langle I(X)_{\leq m}\right\rangle \quad \text { (e.g., } m=\operatorname{reg}(X) \text { ). }
$$

Then $\left(X, O_{X}(\ell)\right)$ satisfies property $Q R(3)$ for all $\ell \geq m$.

Corollary 2.: Let $L$ be a very ample line bundle on a projective variety $X$ such that ( $X, L$ ) satisfies property $N_{1}$. Then $\left(X, L^{d}\right)$ satisfies property $Q R(3)$ for all $d \geq 2$.

Example : Let $X=\operatorname{Gr}\left(\ell, k^{n}\right)$ be the Grassmannian manifold of $k$-dimensional subspaces of $k^{n}$. Let $L$ be the generator of $\operatorname{Pic}(X)$ which defines the $\operatorname{Pl} \ddot{u}$ cker embedding of $X$. When $n \geq 3$ and $1 \leq \ell \leq n-2$,
$(X, L)$ fails to satisfy property $Q R(5)$ and $\left(X, L^{d}\right)$ satisfies property $Q R(3)$ for all $d \geq 2$.

Corollary 1.: For $X \subset \mathbb{P}^{r}$, let $m$ be an integer such that
$X$ is $j$-normal for all $j \geq m$ and $I(X)=\left\langle I(X)_{\leq m}\right\rangle \quad$ (e.g., $m=\operatorname{reg}(X)$ ).
Then $\left(X, O_{X}(\ell)\right)$ satisfies property $Q R(3)$ for all $\ell \geq m$.

Corollary 2.: Let $L$ be a very ample line bundle on a projective variety $X$ such that ( $X, L$ ) satisfies property $N_{1}$. Then ( $X, L^{d}$ ) satisfies property $Q R(3)$ for all $d \geq 2$.

Corollary 3. : Let $A$ be an ample line bundle on a projective variety $X$. Then there is a positive integer $d_{0}$ such that $\left(X, A^{d}\right)$ satisfies property $Q R(3)$ for all even $d \geq d_{0}$.
© Curves of High Degree
Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(1) (B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $Q R(4)$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(1) (B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $Q R(4)$.
(2) (M. Green, 1984) Suppose that $C$ is a smooth curve and $g \geq 5$. For $D:=\varphi_{K_{C}}(C) \subset \mathbb{P}^{g-1}$, the degree 2 part of $I(D)$ is spanned by quadrics of rank $\leq 4$.
※ So, if $C$ is not hyperelliptic and trigonal, then $\left(C, K_{C}\right)$ satisfies property $Q R(4)$.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(1) (B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $Q R(4)$.
(2) (M. Green, 1984) Suppose that $C$ is a smooth curve and $g \geq 5$. For $D:=\varphi_{K_{C}}(C) \subset \mathbb{P}^{g-1}$, the degree 2 part of $I(D)$ is spanned by quadrics of rank $\leq 4$.
※ So, if $C$ is not hyperelliptic and trigonal, then $\left(C, K_{C}\right)$ satisfies property $Q R(4)$.
(3) (Eisenbud-Koh-Stillman, 1988) If $d \geq 4 g+2$, then $(C, \mathscr{L})$ is determinantally presented.

Let $C$ be a projective integral curve of arithmetic genus $g$ and let $\mathscr{L}$ be a line bundle of degree $d$ on $C$.
(1) (B. Saint-Donat, 1972) If $d \geq 2 g+2$, then $(C, \mathscr{L})$ satisfies property $Q R(4)$.
(2) (M. Green, 1984) Suppose that $C$ is a smooth curve and $g \geq 5$. For $D:=\varphi_{K_{C}}(C) \subset \mathbb{P}^{g-1}$, the degree 2 part of $I(D)$ is spanned by quadrics of rank $\leq 4$.
※ So, if $C$ is not hyperelliptic and trigonal, then $\left(C, K_{C}\right)$ satisfies property $Q R(4)$.
(3) (Eisenbud-Koh-Stillman, 1988) If $d \geq 4 g+2$, then $(C, \mathscr{L})$ is determinantally presented.

Theorem (Park, 2019): If $g=0,1$ and $d \geq 2 g+2$ or $g \geq 2$ and $d \geq 4 g+4$, then $(C, \mathscr{L})$ satisfies property $Q R(3)$.

