Open 3-manifolds

G. Besson

CNRS - Université Grenoble Alpes

Inaugural France-Korea conference
Bordeaux, 26 November 2019

Outline

Introduction

Decomposable manifolds

Contractible manifolds

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

Closed 3-manifolds

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

Closed 3-manifolds

- Kneser decomposition :

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

Closed 3-manifolds

- Kneser decomposition :

$$
M=M_{1} \# \ldots \# M_{k}
$$

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

Closed 3-manifolds

- Kneser decomposition :

$$
M=M_{1} \# \ldots \# M_{k}
$$

M_{i} are prime manifolds.

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

Closed 3-manifolds

- Kneser decomposition :

$$
M=M_{1} \# \ldots \# M_{k}
$$

M_{i} are prime manifolds.

- Jaco-Shalen and Johannson decomposition : for M prime

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

Closed 3-manifolds

- Kneser decomposition :

$$
M=M_{1} \# \ldots \# M_{k}
$$

M_{i} are prime manifolds.

- Jaco-Shalen and Johannson decomposition : for M prime

$$
M=N_{1} \bigcup_{\mathbf{T}^{2}} \ldots \bigcup_{\mathbf{T}^{2}} N_{p}
$$

A question

Question : what could be a good statement for the geometrization of open 3-manifolds?

Closed 3-manifolds

- Kneser decomposition :

$$
M=M_{1} \# \ldots \# M_{k}
$$

M_{i} are prime manifolds.

- Jaco-Shalen and Johannson decomposition : for M prime

$$
M=N_{1} \bigcup_{\mathbf{T}^{2}} \ldots \bigcup_{\mathbf{T}^{2}} N_{p}
$$

no incompressible tori in N_{i}.

A question

A question

None of the two first steps is true for open manifolds! (examples by P. Scott, S. Maillot).

A question

None of the two first steps is true for open manifolds! (examples by P. Scott, S. Maillot).

Instead we'd better look at examples of (families of) 3-manifolds.

A question

None of the two first steps is true for open manifolds! (examples by P. Scott, S. Maillot).

Instead we'd better look at examples of (families of) 3-manifolds.

- Decomposable manifolds.

A question

None of the two first steps is true for open manifolds! (examples by P. Scott, S. Maillot).

Instead we'd better look at examples of (families of) 3-manifolds.

- Decomposable manifolds.
- Contractible manifolds.

Outline

Introduction

Decomposable manifolds

Contractible manifolds

Definition

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if

Definition

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T

Definition

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T

Definition

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T
and $v \mapsto X_{v} \in \mathcal{X}$ defined on vertices of T

Definition

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if

such that removing 3-balls and gluing $S^{2} \times I$ to the X_{v} 's according to the edges of T

Definition

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T
and $v \mapsto X_{v} \in \mathcal{X}$ defined on vertices of T

such that removing 3-balls and gluing $S^{2} \times I$ to the X_{v} 's according to the edges of $T \leadsto M$.

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

\approx

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

\approx

\mathbf{R}^{3}
- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the line $\leadsto S^{2} \times \mathbf{R}$

Graphs versus trees

Graphs versus trees

One result

Definition
(M, g) has bounded geometry if $\exists Q, \rho>0$ such that $\left|\operatorname{Sect}_{g}\right| \leqslant Q$ and inj ${ }_{g} \geqslant \rho$.

One result

Definition
(M, g) has bounded geometry if $\exists Q, \rho>0$ such that $\left|\operatorname{Sect}_{g}\right| \leqslant Q$ and inj ${ }_{g} \geqslant \rho$.

Theorem (Bessières-B.-Maillot)
M has a complete metric of bounded geometry and Scal $\geqslant 1$ iff there is a finite collection \mathcal{F} of spherical manifolds such that M is a (maybe infinite) connected sum of copies of $S^{2} \times S^{1}$ and members of \mathcal{F}.

Remarks

Remarks

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.

Remarks

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.
- A variant of Perelman's Ricci flow with surgery, which we call surgical solution of the Ricci flow.

Remarks

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.
- A variant of Perelman's Ricci flow with surgery, which we call surgical solution of the Ricci flow.
- Improvement by Jian Wang \leadsto No bounded geometry assumption,

Remarks

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.
- A variant of Perelman's Ricci flow with surgery, which we call surgical solution of the Ricci flow.
- Improvement by Jian Wang \leadsto No bounded geometry assumption, no Ricci flow!

Remarks

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.
- A variant of Perelman's Ricci flow with surgery, which we call surgical solution of the Ricci flow.
- Improvement by Jian Wang \sim No bounded geometry assumption, no Ricci flow! Instead, minimal surfaces.

Outline

Introduction

Decomposable manifolds

Contractible manifolds

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

- T_{1} is unknotted in S^{3} and T_{i} is knotted and null-homotopic in T_{i-1}, for $i>1$.

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

- T_{1} is unknotted in S^{3} and T_{i} is knotted and null-homotopic in T_{i-1}, for $i>1$.

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

- T_{1} is unknotted in S^{3} and T_{i} is knotted and null-homotopic in T_{i-1}, for $i>1$.

On the picture $T_{i+1} \subset T_{i} \subset T_{i-1}$.

Whitehead manifolds

- $W=\cap T_{i}$ is the Whitehead continuum.

Whitehead manifolds

- $W=\cap T_{i}$ is the Whitehead continuum.
- $X=S^{3} \backslash W \subset S^{3}$ is a (the) whitehead manifold (genus one).

Whitehead manifolds

- $W=\cap T_{i}$ is the Whitehead continuum.
- $X=S^{3} \backslash W \subset S^{3}$ is a (the) whitehead manifold (genus one).

Theorem
X is contractible and not homeomorphic to \mathbf{R}^{3}.

Whitehead manifolds

- $W=\cap T_{i}$ is the Whitehead continuum.
- $X=S^{3} \backslash W \subset S^{3}$ is a (the) whitehead manifold (genus one).

Theorem
X is contractible and not homeomorphic to \mathbf{R}^{3}.
The idea is that the core of T_{i} and the meridian of T_{i-1} form the Whitehead link.

Whitehead continuum

Whitehead link

Whitehead manifolds

What is known :

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm) .

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- Uncountably many examples (McMillan)

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- Uncountably many examples (McMillan) (compare to countably many closed 3-manifolds).

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- Uncountably many examples (McMillan) (compare to countably many closed 3-manifolds).
- Uncountably many examples which do not embed in S^{3} (Kister-McMillan).

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- Uncountably many examples (McMillan) (compare to countably many closed 3-manifolds).
- Uncountably many examples which do not embed in S^{3} (Kister-McMillan).
- Examples that cannot cover non-trivially any manifold (Myers).

Geometry of Whitehead manifolds

Theorem (J. Wang, 2019)
Whitehead manifolds cannot carry a complete metric of non-negative scalar curvature.

Geometry of Whitehead manifolds

Theorem (J. Wang, 2019)
Whitehead manifolds cannot carry a complete metric of non-negative scalar curvature.
previous results,

Geometry of Whitehead manifolds

Theorem (J. Wang, 2019)
Whitehead manifolds cannot carry a complete metric of non-negative scalar curvature.
previous results,

- No complete metric of non-positive sectional curvature.

Geometry of Whitehead manifolds

Theorem (J. Wang, 2019)
Whitehead manifolds cannot carry a complete metric of non-negative scalar curvature.
previous results,

- No complete metric of non-positive sectional curvature.
- No complete metric of uniformly positive scalar curvature (Gromov-Lawson, Chang-Weinberger-Yu, BBM).

Geometry of Whitehead manifolds

Theorem (J. Wang, 2019)
Whitehead manifolds cannot carry a complete metric of non-negative scalar curvature.
previous results,

- No complete metric of non-positive sectional curvature.
- No complete metric of uniformly positive scalar curvature (Gromov-Lawson, Chang-Weinberger-Yu, BBM).
- No complete metric of non-negative Ricci curvature (G. Liu).

Higher genus Whitehead manifolds

We could replace tori by higher genus surfaces:

Higher genus Whitehead manifolds

We could replace tori by higher genus surfaces:

$$
\Sigma_{1} \supset \Sigma_{2} \supset \Sigma_{3} \supset \ldots
$$

Higher genus Whitehead manifolds

We could replace tori by higher genus surfaces:

$$
\Sigma_{1} \supset \Sigma_{2} \supset \Sigma_{3} \supset \ldots
$$

and define a space X, not necessarily simply connected, but

Higher genus Whitehead manifolds

We could replace tori by higher genus surfaces :

$$
\Sigma_{1} \supset \Sigma_{2} \supset \Sigma_{3} \supset \ldots
$$

and define a space X, not necessarily simply connected, but

Higher genus Whitehead manifolds

Higher genus Whitehead manifolds

Jian Wang's result extends to,

Higher genus Whitehead manifolds

Jian Wang's result extends to,

- If X is contractible of genus one then

Higher genus Whitehead manifolds

Jian Wang's result extends to,

- If X is contractible of genus one then non-negative scalar curvature implies $X \simeq \mathbf{R}^{3}$.

Higher genus Whitehead manifolds

Jian Wang's result extends to,

- If X is contractible of genus one then non-negative scalar curvature implies $X \simeq \mathbf{R}^{3}$.
- Same if π_{1}^{∞} is trivial.

Some ideas of the proof

Some ideas of the proof

For the Whitehead construction, let $N_{k}=S^{3} \backslash T_{k}$ then,

Some ideas of the proof

For the Whitehead construction, let $N_{k}=S^{3} \backslash T_{k}$ then, $X=U_{k} N_{k}$.

Some ideas of the proof

For the Whitehead construction, let $N_{k}=S^{3} \backslash T_{k}$ then, $X=\cup_{k} N_{k}$.

- Let $\gamma_{k} \subset \partial N_{k}$ be a meridian curve,

Some ideas of the proof

For the Whitehead construction, let $N_{k}=S^{3} \backslash T_{k}$ then, $X=\cup_{k} N_{k}$.

- Let $\gamma_{k} \subset \partial N_{k}$ be a meridian curve,
- it spans a minimising disk $D_{k} \subset N_{k}$ (Plateau problem),

Some ideas of the proof

For the Whitehead construction, let $N_{k}=S^{3} \backslash T_{k}$ then, $X=U_{k} N_{k}$.

- Let $\gamma_{k} \subset \partial N_{k}$ be a meridian curve,
- it spans a minimising disk $D_{k} \subset N_{k}$ (Plateau problem),
- the number of connected components of $D_{k} \cap N_{1}$ which intersect N_{0} goes to $+\infty$ with k.

Some ideas of the proof

For the Whitehead construction, let $N_{k}=S^{3} \backslash T_{k}$ then, $X=\cup_{k} N_{k}$.

- Let $\gamma_{k} \subset \partial N_{k}$ be a meridian curve,
- it spans a minimising disk $D_{k} \subset N_{k}$ (Plateau problem),
- the number of connected components of $D_{k} \cap N_{1}$ which intersect N_{0} goes to $+\infty$ with k.
- We assume that D_{k} converges towards Σ a complete stable minimal surface,

Some ideas of the proof

For the Whitehead construction, let $N_{k}=S^{3} \backslash T_{k}$ then, $X=U_{k} N_{k}$.

- Let $\gamma_{k} \subset \partial N_{k}$ be a meridian curve,
- it spans a minimising disk $D_{k} \subset N_{k}$ (Plateau problem),
- the number of connected components of $D_{k} \cap N_{1}$ which intersect N_{0} goes to $+\infty$ with k.
- We assume that D_{k} converges towards Σ a complete stable minimal surface, which by Schoen-Yau is diffeomorphic to \mathbf{R}^{2}.

Some ideas of the proof

Some ideas of the proof

- The number of connected components of $\Sigma \cap N_{1}$ intersecting N_{0} is infinite.

Some ideas of the proof

- The number of connected components of $\Sigma \cap N_{1}$ intersecting N_{0} is infinite.
- Meeks-Yau \leadsto each of these components contains a definite amount of area.

Some ideas of the proof

- The number of connected components of $\Sigma \cap N_{1}$ intersecting N_{0} is infinite.
- Meeks-Yau \leadsto each of these components contains a definite amount of area.
- An extrinsic version of Cohn-Vossen's inequality reads,

$$
\int_{\Sigma} \kappa(x) d v(x) \leq 2 \pi
$$

with $\kappa=$ ambient scalar curvature.

Some ideas of the proof

- The number of connected components of $\Sigma \cap N_{1}$ intersecting N_{0} is infinite.
- Meeks-Yau \leadsto each of these components contains a definite amount of area.
- An extrinsic version of Cohn-Vossen's inequality reads,

$$
\int_{\Sigma} \kappa(x) d v(x) \leq 2 \pi
$$

with $\kappa=$ ambient scalar curvature.

- By compactness $\kappa(x) \geq C$ on N_{1},

Some ideas of the proof

- The number of connected components of $\Sigma \cap N_{1}$ intersecting N_{0} is infinite.
- Meeks-Yau \leadsto each of these components contains a definite amount of area.
- An extrinsic version of Cohn-Vossen's inequality reads,

$$
\int_{\Sigma} \kappa(x) d v(x) \leq 2 \pi
$$

with $\kappa=$ ambient scalar curvature.

- By compactness $\kappa(x) \geq C$ on N_{1}, a contradiction!

Some ideas of the proof

- The number of connected components of $\Sigma \cap N_{1}$ intersecting N_{0} is infinite.
- Meeks-Yau \leadsto each of these components contains a definite amount of area.
- An extrinsic version of Cohn-Vossen's inequality reads,

$$
\int_{\Sigma} \kappa(x) d v(x) \leq 2 \pi
$$

with $\kappa=$ ambient scalar curvature.

- By compactness $\kappa(x) \geq C$ on N_{1}, a contradiction!
- Too naive,

Some ideas of the proof

- The number of connected components of $\Sigma \cap N_{1}$ intersecting N_{0} is infinite.
- Meeks-Yau \leadsto each of these components contains a definite amount of area.
- An extrinsic version of Cohn-Vossen's inequality reads,

$$
\int_{\Sigma} \kappa(x) d v(x) \leq 2 \pi
$$

with $\kappa=$ ambient scalar curvature.

- By compactness $\kappa(x) \geq C$ on N_{1}, a contradiction!
- Too naive, D_{k} converges towards a lamination with complete stable minimal leaves.

Conclusion

Conclusion

The whole story is about positive (or non-negative) scalar curvature

Conclusion

The whole story is about positive (or non-negative) scalar curvature \leadsto topological constraints.

Conclusion

The whole story is about positive (or non-negative) scalar curvature \leadsto topological constraints.

See recent works by M. Gromov and al.

Conclusion

The whole story is about positive (or non-negative) scalar curvature \leadsto topological constraints.

See recent works by M. Gromov and al.

What about higher dimension?

Conclusion

The whole story is about positive (or non-negative) scalar curvature \leadsto topological constraints.

See recent works by M. Gromov and al.
What about higher dimension ? Exotic differential structure on \mathbf{R}^{4} ?

