Minimal rational curves on the moduli spaces of symplectic and orthogonal bundles over a curve

Insong Choe [Joint work with Kiryong Chung and Sanghyeon Lee]

Konkuk University

Nov. 24–27, 2019 Institute of Mathematics, University of Bordeaux

• • = • • = •

- We work over \mathbb{C} .
- Let V be a vector bundle of rank 2n over an algebraic curve C.

< 3 > < 3 >

- We work over \mathbb{C} .
- Let V be a vector bundle of rank 2n over an algebraic curve C.
- If V admits a nondegenerate anti-symmetric(symmetric) 2-form

$$\omega: V \otimes V \to \mathcal{O}_{\mathcal{C}},$$

then V is called a symplectic(orthogonal) bundle.

- We work over \mathbb{C} .
- Let V be a vector bundle of rank 2n over an algebraic curve C.
- If V admits a nondegenerate anti-symmetric(symmetric) 2-form

$$\omega: \mathbf{V} \otimes \mathbf{V} \to \mathcal{O}_{\mathbf{C}},$$

then V is called a symplectic(orthogonal) bundle.

From the induced isomorphism V ≅ V[∨], we have deg(V) = 0.
 (In the symplectic case, det(V) ≅ O_C.)

- We work over \mathbb{C} .
- Let V be a vector bundle of rank 2n over an algebraic curve C.
- If V admits a nondegenerate anti-symmetric(symmetric) 2-form

$$\omega: \mathbf{V} \otimes \mathbf{V} \to \mathcal{O}_{\mathbf{C}},$$

then V is called a symplectic(orthogonal) bundle.

- From the induced isomorphism V ≅ V[∨], we have deg(V) = 0.
 (In the symplectic case, det(V) ≅ O_C.)
- Rank 2 case:
 - -Every vector bundle V with $det(V) \cong \mathcal{O}_C$ is a symplectic bundle.
 - -Every orthogonal bundle V with det(V) $\cong \mathcal{O}_C$ is isom. to $L \oplus L^{\vee}$.

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

Assume 2n ≥ 4 and g ≥ 2.
 MS_C(2n): moduli of symplectic bundles of rank 2n over C

★聞▶ ★ 国▶ ★ 国▶

• Assume $2n \ge 4$ and $g \ge 2$.

 $\mathcal{MS}_C(2n)$: moduli of symplectic bundles of rank 2n over C

 $\mathcal{M}\mathcal{O}_{\mathcal{C}}(2n)$: the component of the moduli of orthogonal bundles V with det $(V) \cong \mathcal{O}_{\mathcal{C}}$ containing $[\mathcal{O}_{\mathcal{C}}^{\oplus 2n}]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Assume $2n \ge 4$ and $g \ge 2$. $\mathcal{MS}_C(2n)$: moduli of symplectic bundles of rank 2n over C $\mathcal{MO}_C(2n)$: the component of the moduli of orthogonal bundles Vwith det $(V) \cong \mathcal{O}_C$ containing $[\mathcal{O}_C^{\oplus 2n}]$.

• A symplectic/orthogonal bundle V is stable(semistable)

 $\iff \mu(E) \underset{(\leq)}{<} \mu(V)$ for every isotropic subbundle $E \subset V$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Assume $2n \ge 4$ and $g \ge 2$. $\mathcal{MS}_{C}(2n)$: moduli of symplectic bundles of rank 2n over C $\mathcal{MO}_{C}(2n)$: the component of the moduli of orthogonal bundles Vwith det $(V) \cong \mathcal{O}_{C}$ containing $[\mathcal{O}_{C}^{\oplus 2n}]$.

• A symplectic/orthogonal bundle V is stable(semistable)

 $\iff \mu(E) \underset{(\leq)}{<} \mu(V)$ for every isotropic subbundle $E \subset V$.

• A subbundle $E \subset V$ is called isotropic if $\omega|_{E \otimes E} \equiv 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Assume $2n \ge 4$ and $g \ge 2$. $\mathcal{MS}_{C}(2n)$: moduli of symplectic bundles of rank 2n over C $\mathcal{MO}_{C}(2n)$: the component of the moduli of orthogonal bundles Vwith det $(V) \cong \mathcal{O}_{C}$ containing $[\mathcal{O}_{C}^{\oplus 2n}]$.

• A symplectic/orthogonal bundle V is stable(semistable)

 $\iff \mu(E) \underset{(\leq)}{<} \mu(V) \text{ for every isotropic subbundle } E \subset V.$

- A subbundle $E \subset V$ is called isotropic if $\omega|_{E \otimes E} \equiv 0$.
- There is a (injective) forgetful morphism

$$\mathcal{M}S_{\mathcal{C}}(2n), \ \mathcal{M}O_{\mathcal{C}}(2n) \longrightarrow SU_{\mathcal{C}}(2n).$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Let $\mathcal{M} = SU_C(m)$ be the moduli space of semistable vector bundles of rank *m* with trivial determinant. (Assume $g \ge 2$).

副下 《唐下 《唐下

- Let $\mathcal{M} = SU_C(m)$ be the moduli space of semistable vector bundles of rank *m* with trivial determinant. (Assume $g \ge 2$).
- For $m \ge 2$, \mathcal{M} is a Fano variety of Picard number 1 and covered by rational curves called Hecke curves.

- Let $\mathcal{M} = SU_C(m)$ be the moduli space of semistable vector bundles of rank *m* with trivial determinant. (Assume $g \ge 2$).
- For $m \ge 2$, \mathcal{M} is a Fano variety of Picard number 1 and covered by rational curves called Hecke curves.
- (Xiaotao Sun) Hecke curves have minimal degree among the rational curves passing through a general point of M.

- Let $\mathcal{M} = SU_C(m)$ be the moduli space of semistable vector bundles of rank *m* with trivial determinant. (Assume $g \ge 2$).
- For $m \ge 2$, \mathcal{M} is a Fano variety of Picard number 1 and covered by rational curves called Hecke curves.
- (Xiaotao Sun) Hecke curves have minimal degree among the rational curves passing through a general point of M.
- Many applications of Hecke curves to study the geometry of M: non-abelian Torelli theorem for M, structure of Aut(M), deformation rigidity of M, stability of the associated bundles, ...

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Given a point $[V_0] \in \mathcal{M}$, choose $\mu \in \mathbb{P}(V|_x)^{ee} \cong \mathbb{P}^{m-1}$ and define V^{μ} by

$$0
ightarrow V^{\mu}
ightarrow V_{0} \stackrel{\mu}{
ightarrow} \mathbb{C}_{x}
ightarrow 0$$

whose restriction to the fiber at x gives the sequence:

$$0 \to H_0 \to V^{\mu}|_x \to V_0|_x \stackrel{\mu}{\to} \mathbb{C} \to 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Given a point $[V_0] \in \mathcal{M}$, choose $\mu \in \mathbb{P}(V|_x)^{ee} \cong \mathbb{P}^{m-1}$ and define V^{μ} by

$$0
ightarrow V^{\mu}
ightarrow V_{0} \stackrel{\mu}{
ightarrow} \mathbb{C}_{x}
ightarrow 0$$

whose restriction to the fiber at x gives the sequence:

$$0 \to H_0 \to V^{\mu}|_x \to V_0|_x \stackrel{\mu}{\to} \mathbb{C} \to 0.$$

• Choose a 2-dim'l subspace $\nu \subset V^{\mu}|_x$ containing H_0 . Then $\nu \in \mathbb{P}((V^{\mu}|_x)/H_0) \cong \mathbb{P}^{m-2}$ and $\mathbb{P}(\nu) \cong \{H_t\}_{t \in \mathbb{P}^1}$.

|▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ - のへ(?)

• Given a point $[V_0] \in \mathcal{M}$, choose $\mu \in \mathbb{P}(V|_x)^{ee} \cong \mathbb{P}^{m-1}$ and define V^{μ} by

$$0 o V^{\mu} o V_0 \stackrel{\mu}{ o} \mathbb{C}_x o 0$$

whose restriction to the fiber at x gives the sequence:

$$0 \to H_0 \to V^{\mu}|_x \to V_0|_x \stackrel{\mu}{\to} \mathbb{C} \to 0.$$

• Choose a 2-dim'l subspace $\nu \subset V^{\mu}|_x$ containing H_0 . Then $\nu \in \mathbb{P}((V^{\mu}|_x)/H_0) \cong \mathbb{P}^{m-2}$ and $\mathbb{P}(\nu) \cong \{H_t\}_{t \in \mathbb{P}^1}$.

• For each $t \in \mathbb{P}^1$, define V_t by the extension $0 \to V^{\mu} \to V_t \to \mathbb{C}_x \to 0$ such that ker $[V^{\mu}|_x \to V_t|_x] = H_t$.

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ < のQ(0)</p>

• Given a point $[V_0] \in \mathcal{M}$, choose $\mu \in \mathbb{P}(V|_x)^{ee} \cong \mathbb{P}^{m-1}$ and define V^{μ} by

$$0 \to V^{\mu} \to V_0 \stackrel{\mu}{\to} \mathbb{C}_x \to 0$$

whose restriction to the fiber at x gives the sequence:

$$0 \to H_0 \to V^{\mu}|_x \to V_0|_x \stackrel{\mu}{\to} \mathbb{C} \to 0.$$

• Choose a 2-dim'l subspace $\nu \subset V^{\mu}|_x$ containing H_0 . Then $\nu \in \mathbb{P}((V^{\mu}|_x)/H_0) \cong \mathbb{P}^{m-2}$ and $\mathbb{P}(\nu) \cong \{H_t\}_{t \in \mathbb{P}^1}$.

• For each $t \in \mathbb{P}^1$, define V_t by the extension $0 \to V^{\mu} \to V_t \to \mathbb{C}_x \to 0$ such that ker $[V^{\mu}|_x \to V_t|_x] = H_t$.

• \rightsquigarrow get Hecke curve $\mathcal{C}^{\mu\nu} = \{V_t : t \in \mathbb{P}(\nu) \cong \mathbb{P}^1\}$ through V_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

• Given a point $[V_0] \in \mathcal{M}$, choose $\mu \in \mathbb{P}(V|_x)^{ee} \cong \mathbb{P}^{m-1}$ and define V^{μ} by

$$0 \to V^{\mu} \to V_0 \stackrel{\mu}{\to} \mathbb{C}_x \to 0$$

whose restriction to the fiber at x gives the sequence:

$$0 \to H_0 \to V^{\mu}|_x \to V_0|_x \stackrel{\mu}{\to} \mathbb{C} \to 0.$$

• Choose a 2-dim'l subspace $\nu \subset V^{\mu}|_x$ containing H_0 . Then $\nu \in \mathbb{P}((V^{\mu}|_x)/H_0) \cong \mathbb{P}^{m-2}$ and $\mathbb{P}(\nu) \cong \{H_t\}_{t \in \mathbb{P}^1}$.

- For each $t \in \mathbb{P}^1$, define V_t by the extension $0 \to V^{\mu} \to V_t \to \mathbb{C}_x \to 0$ such that ker $[V^{\mu}|_x \to V_t|_x] = H_t$.
- \rightsquigarrow get Hecke curve $\mathcal{C}^{\mu\nu} = \{V_t : t \in \mathbb{P}(\nu) \cong \mathbb{P}^1\}$ through V_0 .

• Hecke curves $C^{\mu\nu}$ through $[V_0]$ are parameterized by ν lying over μ .

ロト (同) (三) (三) (つ) (つ)

Overview on the results (with K. Chung and S. Lee)

- Construction of "Hecke curves" on $MS_C(2n)$ and $MO_C(2n)$.
 - -The Hecke curves on $\mathcal{MS}_{\mathcal{C}}(2n)$ are special type of $\mathcal{C}^{\mu\nu}$'s on \mathcal{M} .
 - -But the Hecke curves on $\mathcal{MO}_{\mathcal{C}}(2n)$ have degree = $2 \operatorname{deg}(\mathcal{C}^{\mu\nu})$.

Overview on the results (with K. Chung and S. Lee)

- Construction of "Hecke curves" on MS_C(2n) and MO_C(2n).
 -The Hecke curves on MS_C(2n) are special type of C^{μν}'s on M.
 -But the Hecke curves on MO_C(2n) have degree = 2 deg(C^{μν}).
- Hecke curves on $MS_C(2n)$ and $MO_C(2n)$ have minimal degree among the rational curves passing through a general point.

Overview on the results (with K. Chung and S. Lee)

- Construction of "Hecke curves" on MS_C(2n) and MO_C(2n).
 -The Hecke curves on MS_C(2n) are special type of C^{μν}'s on M.
 -But the Hecke curves on MO_C(2n) have degree = 2 deg(C^{μν}).
- Hecke curves on $MS_C(2n)$ and $MO_C(2n)$ have minimal degree among the rational curves passing through a general point.
- Applications:

-non-abelian Torelli theorem for $MS_C(2n)$ and $MO_C(2n)$ -description of $Aut(MS_C(2n))$ and $Aut(MO_C(2n))$.

くぼう くほう くほう

• Given a point $[(V_0, \omega_0)]$, choose $\Lambda \in IG(2, V_0|_x)$ and define V^{Λ} by

$$0
ightarrow V^{\Lambda}
ightarrow V_{0}
ightarrow (V_{0}|_{x})/\Lambda^{\perp} \otimes \mathbb{C}_{x}
ightarrow 0$$

whose restriction to the fiber at x gives the sequence:

$$0 \to H_0 (\cong \mathbb{C}^2) \to V^{\Lambda}|_x \to V_0|_x \to \mathbb{C}^2 \to 0.$$

くぼう くほう くほう

• Given a point $[(V_0, \omega_0)]$, choose $\Lambda \in IG(2, V_0|_x)$ and define V^{Λ} by

$$0
ightarrow V^{\Lambda}
ightarrow V_{0}
ightarrow (V_{0}|_{x})/\Lambda^{\perp} \otimes \mathbb{C}_{x}
ightarrow 0$$

whose restriction to the fiber at x gives the sequence:

$$0 o H_0 (\cong \mathbb{C}^2) o V^{\Lambda}|_x o V_0|_x o \mathbb{C}^2 o 0.$$

• Then V^{Λ} inherits a symmetric form ω^{Λ} which degenerates at x such that $H_0 \subset \ker(\omega^{\Lambda}|_x) \cong \mathbb{C}^4.$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Given a point $[(V_0, \omega_0)]$, choose $\Lambda \in IG(2, V_0|_x)$ and define V^{Λ} by

$$0
ightarrow V^{\Lambda}
ightarrow V_{0}
ightarrow (V_{0}|_{x})/\Lambda^{\perp} \otimes \mathbb{C}_{x}
ightarrow 0$$

whose restriction to the fiber at x gives the sequence:

$$0 o H_0 (\cong \mathbb{C}^2) o V^{\Lambda}|_x o V_0|_x o \mathbb{C}^2 o 0.$$

- Then V^{Λ} inherits a symmetric form ω^{Λ} which degenerates at x such that $H_0 \subset \ker(\omega^{\Lambda}|_x) \cong \mathbb{C}^4.$
- For each 2-dim'l subspace $H \subset V^{\Lambda}|_{x}$, we get a vector bundle V_{H} :

$$0 o V^{\Lambda} o V_{H} o (\mathbb{C}_{x})^{\oplus 2} o 0$$

with $H = \ker[V^{\Lambda}|_x \to V_H|_x]$.

- 本語 医 本 医 医 一 医

• Given a point $[(V_0, \omega_0)]$, choose $\Lambda \in IG(2, V_0|_x)$ and define V^{Λ} by

$$0
ightarrow V^{\Lambda}
ightarrow V_{0}
ightarrow (V_{0}|_{x})/\Lambda^{\perp} \otimes \mathbb{C}_{x}
ightarrow 0$$

whose restriction to the fiber at x gives the sequence:

$$0 o H_0 (\cong \mathbb{C}^2) o V^{\Lambda}|_x o V_0|_x o \mathbb{C}^2 o 0.$$

- Then V^{Λ} inherits a symmetric form ω^{Λ} which degenerates at x such that $H_0 \subset \ker(\omega^{\Lambda}|_x) \cong \mathbb{C}^4.$
- For each 2-dim'l subspace $H \subset V^{\Lambda}|_x$, we get a vector bundle V_H :

$$0 o V^{\Lambda} o V_{H} o (\mathbb{C}_{x})^{\oplus 2} o 0$$

with $H = \ker[V^{\Lambda}|_x \to V_H|_x]$.

• Lemma V_H has an orthogonal form $\Leftrightarrow H \in IG(2, \ker(\omega^A|_x)).$

• It is well-known that $IG(2, \ker(\omega^{\Lambda}|_{x})) = IG(2, 4) \cong \mathbb{P}^{1} \sqcup \mathbb{P}^{1}$.

3

- 4 同 ト 4 三 ト - 4 三 ト

- It is well-known that $IG(2, \ker(\omega^{\Lambda}|_{x})) = IG(2, 4) \cong \mathbb{P}^{1} \sqcup \mathbb{P}^{1}$.
- For each $t \in IG(2, \ker(\omega^{\Lambda}|_{x}))$ representing $H_{t} \subset \ker(\omega^{\Lambda}|_{x})$, define V_{t} by

$$0 o V^{\Lambda} o V_t o (\mathbb{C}_x)^{\oplus 2} o 0$$

such that ker $[V^{\Lambda}|_x \rightarrow V_t|_x] = H_t$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- It is well-known that $IG(2, \ker(\omega^{\Lambda}|_{x})) = IG(2, 4) \cong \mathbb{P}^{1} \sqcup \mathbb{P}^{1}$.
- For each $t \in IG(2, \ker(\omega^{\Lambda}|_x))$ representing $H_t \subset \ker(\omega^{\Lambda}|_x)$, define V_t by

$$0 o V^{\Lambda} o V_t o (\mathbb{C}_x)^{\oplus 2} o 0$$

such that ker $[V^{\Lambda}|_x \to V_t|_x] = H_t$.

By the above Lemma, V_t's are orthogonal bundles. In particular for t = 0, we get back V₀ ∈ MO_C(2n).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- It is well-known that $IG(2, \ker(\omega^{\Lambda}|_{x})) = IG(2, 4) \cong \mathbb{P}^{1} \sqcup \mathbb{P}^{1}$.
- For each $t \in IG(2, \ker(\omega^{\Lambda}|_{x}))$ representing $H_{t} \subset \ker(\omega^{\Lambda}|_{x})$, define V_{t} by

$$0 o V^{\Lambda} o V_t o (\mathbb{C}_{ imes})^{\oplus 2} o 0$$

such that ker $[V^{\Lambda}|_x \to V_t|_x] = H_t$.

- By the above Lemma, V_t's are orthogonal bundles. In particular for t = 0, we get back V₀ ∈ MO_C(2n).
- \rightsquigarrow for the component \mathbb{P}^1 containing 0, we get orthogonal Hecke curve $\mathcal{C}^{\Lambda} = \{(V_t, \omega_t) : t \in \mathbb{P}^1 \subset IG(2, 4)\}$ passing through V_0 .

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

- It is well-known that $IG(2, \ker(\omega^{\Lambda}|_{x})) = IG(2, 4) \cong \mathbb{P}^{1} \sqcup \mathbb{P}^{1}$.
- For each $t \in IG(2, \ker(\omega^{\Lambda}|_{x}))$ representing $H_{t} \subset \ker(\omega^{\Lambda}|_{x})$, define V_{t} by

$$0 o V^{\Lambda} o V_t o (\mathbb{C}_x)^{\oplus 2} o 0$$

such that ker $[V^{\Lambda}|_x \to V_t|_x] = H_t$.

- By the above Lemma, V_t's are orthogonal bundles. In particular for t = 0, we get back V₀ ∈ MO_C(2n).
- \rightsquigarrow for the component \mathbb{P}^1 containing 0, we get orthogonal Hecke curve $\mathcal{C}^{\Lambda} = \{(V_t, \omega_t) : t \in \mathbb{P}^1 \subset IG(2, 4)\}$ passing through V_0 .
- Orthogonal Hecke curves C^Λ through [(V₀, ω₀)] ∈ MO_C(2n) are parameterized by Λ ∈ IG(2, V₀|_x) ≃ IG(2, 2n).

・ロン ・聞と ・ヨン ・ヨン … ヨ

For the computation of the degree of $\mathbb{P}^1 \subset \mathcal{MS}_C(2n)$ and $\mathcal{MO}_C(2n)$, we basically follow X. Sun's approach for $\mathbb{P}^1 \subset \mathcal{M}$.

< 回 ト < 三 ト < 三 ト

For the computation of the degree of $\mathbb{P}^1 \subset \mathcal{MS}_C(2n)$ and $\mathcal{MO}_C(2n)$, we basically follow X. Sun's approach for $\mathbb{P}^1 \subset \mathcal{M}$.

A rational curve $\mathbb{P}^1 \subset \mathcal{M}$ gives a vector bundle $\mathcal{V} \to \mathbb{P}^1 \times C$. Its degree is computed by using the relative Harder–Narasimhan filtration

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k = \mathcal{V}$$

which restricts to the H–N filtration of $\mathcal{V}|_{\mathbb{P}^1 \times \{x\}}$ for a general $x \in C$.

For the computation of the degree of $\mathbb{P}^1 \subset \mathcal{MS}_C(2n)$ and $\mathcal{MO}_C(2n)$, we basically follow X. Sun's approach for $\mathbb{P}^1 \subset \mathcal{M}$.

A rational curve $\mathbb{P}^1 \subset \mathcal{M}$ gives a vector bundle $\mathcal{V} \to \mathbb{P}^1 \times C$. Its degree is computed by using the relative Harder–Narasimhan filtration

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k = \mathcal{V}$$

which restricts to the H–N filtration of $\mathcal{V}|_{\mathbb{P}^1 \times \{x\}}$ for a general $x \in C$.

Lemma The above filtration for $\mathbb{P}^1 \subset \mathcal{M}S_{\mathcal{C}}(2n)$ and $\mathcal{M}O_{\mathcal{C}}(2n)$ is symmetric about the middle:

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_\ell \subset \mathcal{E}_\ell^\perp \subset \mathcal{E}_{\ell-1}^\perp \subset \cdots \mathcal{E}_1^\perp \subset \mathcal{E}_0^\perp = \mathcal{V},$$

where $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_\ell$ are isotropic.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

For the computation of the degree of $\mathbb{P}^1 \subset \mathcal{MS}_C(2n)$ and $\mathcal{MO}_C(2n)$, we basically follow X. Sun's approach for $\mathbb{P}^1 \subset \mathcal{M}$.

A rational curve $\mathbb{P}^1 \subset \mathcal{M}$ gives a vector bundle $\mathcal{V} \to \mathbb{P}^1 \times C$. Its degree is computed by using the relative Harder–Narasimhan filtration

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k = \mathcal{V}$$

which restricts to the H–N filtration of $\mathcal{V}|_{\mathbb{P}^1 \times \{x\}}$ for a general $x \in C$.

Lemma The above filtration for $\mathbb{P}^1 \subset \mathcal{M}S_{\mathcal{C}}(2n)$ and $\mathcal{M}O_{\mathcal{C}}(2n)$ is symmetric about the middle:

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_\ell \subset \mathcal{E}_\ell^\perp \subset \mathcal{E}_{\ell-1}^\perp \subset \cdots \mathcal{E}_1^\perp \subset \mathcal{E}_0^\perp = \mathcal{V},$$

where $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_\ell$ are isotropic.

Therefore, we may compute the degree of \mathbb{P}^1 by the degrees of isotropic subbundles, which are "controllable" in the symplectic/orthogonal setting.

(人間) (人) (人) (人) (日) (日)

Non-abelian Torelli theorem

For two applications below, we need further to show:

Lemma The symplectic / orthogonal Hecke curves passing through a general point [V] of $MS_C(2n) / MO_C(2n)$ are effectively parameterized by $\mathbb{P}(V) / IG(2, V)$ (under a suitable assumption on g(C)).

くほう くほう くほう

Non-abelian Torelli theorem

For two applications below, we need further to show:

Lemma The symplectic / orthogonal Hecke curves passing through a general point [V] of $\mathcal{MS}_{C}(2n) / \mathcal{MO}_{C}(2n)$ are effectively parameterized by $\mathbb{P}(V) / IG(2, V)$ (under a suitable assumption on g(C)).

Theorem Under the above assumption on g(C),

$$\mathcal{M}\mathcal{O}_{\mathcal{C}}(2n) \cong \mathcal{M}\mathcal{O}_{\mathcal{C}'}(2n) \implies \mathcal{C} \cong \mathcal{C}'.$$

くぼう くほう くほう

Non-abelian Torelli theorem

For two applications below, we need further to show:

Lemma The symplectic / orthogonal Hecke curves passing through a general point [V] of $MS_C(2n) / MO_C(2n)$ are effectively parameterized by $\mathbb{P}(V) / IG(2, V)$ (under a suitable assumption on g(C)).

Theorem Under the above assumption on g(C),

$$\mathcal{M}\mathcal{O}_{\mathcal{C}}(2n) \cong \mathcal{M}\mathcal{O}_{\mathcal{C}'}(2n) \implies \mathcal{C} \cong \mathcal{C}'.$$

Proof An isom. ϕ of moduli spaces induces an isom. of parameter spaces of minimal rational curves: $\mathbb{P}(V) \cong \mathbb{P}(\phi(V))$ or $IG(2, V) \cong IG(2, \phi(V))$. Since these are rational fibrations over C and C' respectively, $C \cong C'$.

- * @ * * 注 * * 注 * - 注

Automorphisms of the moduli spaces

There are two sources of the automorphisms of $MS_C(2n)$ and $MO_C(2n)$:

- automorphism $\sigma \in \operatorname{Aut}(C)$
- 2-torsion point $L \in Pic^{0}(C)$: if $V \in \mathcal{M}S_{C}(2n)$, then so is $V \otimes L$, since

$$(V \otimes L)^{\vee} \cong V^{\vee} \otimes L^{\vee} \cong V \otimes L.$$

< 回 ト < 三 ト < 三 ト

Automorphisms of the moduli spaces

There are two sources of the automorphisms of $MS_C(2n)$ and $MO_C(2n)$:

- automorphism $\sigma \in \operatorname{Aut}(C)$
- 2-torsion point $L \in Pic^{0}(C)$: if $V \in \mathcal{M}S_{C}(2n)$, then so is $V \otimes L$, since

$$(V \otimes L)^{\vee} \cong V^{\vee} \otimes L^{\vee} \cong V \otimes L.$$

Theorem Under the above assumption on g(C), the automorphism groups of $MS_C(2n)$ and $MO_C(2n)$ are generated by these two sources.

くぼう くほう くほう

Automorphisms of the moduli spaces

There are two sources of the automorphisms of $MS_C(2n)$ and $MO_C(2n)$:

- automorphism $\sigma \in \operatorname{Aut}(C)$
- 2-torsion point $L \in Pic^{0}(C)$: if $V \in \mathcal{M}S_{C}(2n)$, then so is $V \otimes L$, since

$$(V \otimes L)^{\vee} \cong V^{\vee} \otimes L^{\vee} \cong V \otimes L.$$

Theorem Under the above assumption on g(C), the automorphism groups of $MS_C(2n)$ and $MO_C(2n)$ are generated by these two sources.

Proof An automorphism $\tau \in \operatorname{Aut}(\mathcal{M}S_{\mathcal{C}}(2n))$ induces an isomorphism $\tilde{\tau} : \mathbb{P}(V) \cong \mathbb{P}(\tau(V))$. By composing with an $\sigma \in \operatorname{Aut}(\mathcal{C})$, we may assume that $\tilde{\tau}$ preserves the fibers. Then $\tau(V) \cong V \otimes L$ for some $L \in \operatorname{Pic}^0(\mathcal{C})$. Specializing V to the trivial symplectic bundle $\mathcal{O}_{\mathcal{C}}^{\oplus 2n}$, we get $L^2 \cong \mathcal{O}_{\mathcal{C}}$.

・ロン ・聞と ・ヨン ・ヨン … ヨ

More general context

For a line bundle L over C, an L-valued symplectic/orthogonal bundle is a vector bundle V of rank 2n equipped with a symplectic/orthogonal form ω : V ⊗ V → L.

From $V \cong V^{\vee} \otimes L$, we get det(V) = n deg(L).

- An L-valued orthogonal bundle V satisfies (det V)² ≅ L²ⁿ, but det V ≇ Lⁿ in general. Together with the 2nd Stiefel–Whitney class w₂(V), the class c₁(V) produces several components of MO_C(2n, L). (Ex: MO_C(2n) is the component of MO_C(2n, O_C) with w₂ = 0.)
- We may also consider the orthogonal bundles of odd rank.

The discussions for minimal rational curves on $MS_C(2n)$ and $MO_C(2n)$ also works for $MS_C(2n, L)$ and $MO_C(n, L)$ in general.

イロト 不得 とくほ とくほう 二日