CAYLEY OCTADS PLANE QUARTIC CURVES DEL PEZZO SURFACES OF DEGREE 2 AND DOUBLE VERONESE CONES

Jihun Park

IBS CGP/POSTECH, Pohang. Korea

Joint with Hamid Ahmadinezhad (Loughborough University) Ivan Cheltsov (University of Edinburgh) Constantin Shramov (Steklov Mathematical Institute)

JIHUN PARK

CAYLEY OCTADS PLANE QUARTIC CURVES DE

イロト イポト イヨト イヨト

Э

イロト イボト イヨト

DEFINITION

A Cayley octad is a unordered set of eight points in \mathbb{P}^3 that consist of an intersection of three quadrics \mathbb{P}^3 .

For a given Cayley octad Φ , let $\mathcal{L}(\Phi)$ be the linear system of quadrics passing through all the eight points of Φ . This linear system is known to be a net, i.e., 2-dimensional.

Therefore, there are three linearly independent quadric homogenous polynomials F_0 , F_1 , F_2 over \mathbb{P}^3 that generate the linear system $\mathcal{L}(\Phi)$, i.e., an element in $\mathcal{L}(\Phi)$ is defined by the quadric homogenous equation

$$xF_0 + yF_1 + zF_2 = 0 (1)$$

for some $[x : y : z] \in \mathbb{P}^2$. We can express (1) as a 4 × 4 symmetric matrix $M(\Phi)$ with entries of linear forms in x, y, z. Then det $(M(\Phi)) = 0$ defines a plane quartic curve $H(\Phi)$ in \mathbb{P}^2 . This plane quartic curve is called the *Hessian quartic* of the net $\mathcal{L}(\Phi)$. It parametrizes the singular members in $\mathcal{L}(\Phi)$.

DEFINITION

A Cayley octad is called regular if its Hessian quartic is smooth.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

DEFINITION

A smooth plane quartic curve C is a smooth curve in the projective plane \mathbb{P}^2 defined by a homogenous polynomial F(x, y, z) of degree 4.

• There are 28 bitangent lines to a smooth plane quartic curves.

$$t_{o} + t_{h} = 28$$

• There are two kinds of inflection points

$$i_o + 2i_h = 24$$

where $i_h = t_h$.

- Its dual curve is a plane curve of degree 12 with t_o nodes, i_o simple cusps, t_h singular points of type E_6 .
- There are 36 inequivalent symmetric linear determinantal expressions.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

THEOREM (HESSE (1855), DIXON (1902))

There are 36 inequivalent symmetric linear determinantal expressions.

For a given smooth plane quartic curve C, we can obtain 36 distinct nets of quadrics in \mathbb{P}^3 up to projective transformations.

$$C: \det \left(a_{ij}x + b_{ij}y + c_{ij}z\right) = 0 \text{ in } \mathbb{P}^2$$

$$(a_{ij}x + b_{ij}y + c_{ij}z) = x(a_{ij}) + y(b_{ij}) + z(c_{ij})$$
 net of quadrics in \mathbb{P}^3

DEFINITION

A theta characteristic on a smooth curve C is a divisor class θ such that

 $2\theta = K_C$.

A theta characteristic θ is said to be even (resp. odd) if $h^0(C, \mathcal{O}_C(\theta))$ is even (resp. odd).

- The number of theta characteristics of a smooth plane quartic is 64.
- The number of odd theta characteristics of a smooth plane quartic is 28.
- The number of even theta characteristics of a smooth plane quartic is 36.
- An even theta characteristic θ of a smooth plane quartic C defines an embedding of C into P³ via the linear system |K_C + θ|:

$$\varphi_{|\mathcal{K}_{\mathcal{C}}+\theta|}:\mathcal{C}\to\mathcal{S}\subset\mathbb{P}^{3}.$$

The space curve S has degree 6.

A given regular Cayley octad Φ defines a net $\mathcal{L}(\Phi)$ of quadrics in \mathbb{P}^3 . The net \mathcal{L} yields its Hessian quartic curve $H(\Phi)$ in \mathbb{P}^2 , which is smooth. Meanwhile, the singular points of quadrics in the net $\mathcal{L}(\Phi)$ sweep out a smooth curve of degree 6 in \mathbb{P}^3 , which is called the Steinerian curve of the net. There is an even theta characteristic $\theta(\Phi)$ such that the linear system $|\mathcal{K}_{H(\Phi)} + \theta(\Phi)|$ defines an isomorphism of $H(\Phi)$ with $S(\Phi)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Let \mathcal{N} be the set that consists of isomorphism classes of regular Cayley octads modulo projective transformations. Let \mathcal{T} be the set that consists of the pairs (C, θ) , where C is a smooth plane quartic considered up to isomorphism, and θ is an even theta characteristic on C. Define the map

$$\Theta \colon \mathcal{N} \to \mathcal{T}$$

by assigning $\Theta(\mathcal{L}) = (H(\mathcal{L}), \theta(\mathcal{L})).$

THEOREM (BEAUVILLE (1977))

The map Θ is bijective.

DEFINITION

A smooth del Pezzo surface of degree 2 is a smooth surface whose anticanonical divisor

- is ample;
- has anticanonical degree 2.

- Every smooth del Pezzo surface of degree 2 can be obtained by blowing up P² at 7 points in general position, i.e., no three of them lie on a single line, no six of them lie on a single conic. The anticanonical linear system defines a double covering of P² branched along a smooth quartic curve.
- Every smooth del Pezzo surface of degree 2 can be obtained by taking the double cover of P² branched along a smooth quartic curve. The pull-backs of 28 bitangent lines to the branch quartic curve defines 56 (-1)-curves on the double cover. We may choose 7 disjoint (-1)-curves out of the 56 (-1)-curves.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

REGULAR CAYLEY OCTADS VS Smooth del Pezzo surfaces of degree 2

For a given regular Cayley octad Φ , choose point P in Φ . Project the other 7 points to \mathbb{P}^2 from P. These seven points are in gernal position. Blow up \mathbb{P}^2 along these 7 points to obtain a smooth del Pezzo surface of degree 2. It is a double cover of \mathbb{P}^2 branched along the Hessian quartic curve of the net $\mathcal{L}(\Phi)$.

Regular Cayley Octads vs Smooth del Pezzo surfaces of degree 2

DEFINITION

A double Veronese cone is a 3-fold with Gorenstein terminal singularities whose anticanonical divisor

- is ample;
- is divisible by 2 in the Picard group;
- has anticanonical degree 8.

LEMMA

Seven distinct points P_1, \ldots, P_7 in \mathbb{P}^3 are from a regular Cayley octad if and only if the two conditions (A) every element of $\mathcal{L}(P_1, \ldots, P_7)$ is irreducible; (B) the base locus of $\mathcal{L}(P_1, \ldots, P_7)$ consists of eight distinct points, are satisfied.

LEMMA

- For seven distinct points P_1, \ldots, P_7 in \mathbb{P}^3 , the two conditions
- (A) every element of $\mathcal{L}(P_1, \ldots, P_7)$ is irreducible;
- (B) the base locus of $\mathcal{L}(P_1, \ldots, P_7)$ consists of eight distinct points,

are satisfied if and only if the following three conditions hold:

- (A') no four points of P₁,..., P₇ are coplanar (and in particular no three are collinear);
- (B') all points P_1, \ldots, P_7 are not contained in a single twisted cubic;
- (C') for each *i*, the twisted cubic passing through the points of $\{P_1, \ldots, P_7\} \setminus \{P_i\}$ and the line passing through the point P_i and one point in $\{P_1, \ldots, P_7\} \setminus \{P_i\}$ meet neither twice nor tangentially.

イロト イヨト イヨト イヨト 三日

- Let Φ be a regular Cayley octad. Choose one point P from Φ.
 Denote by P₁,..., P₇ the remaining 7 points.
- For i < j, let L_{ij} be the line in P³ determined by P_i and P_j.
 (21 such lines).
- For *i*, let C_i be the twisted cubic determined by Φ \ {P, P_i}.
 (7 such twisted cubics).

ヘロマ 人間マ 人団マー

- Let $\pi: \widehat{\mathbb{P}}^3 \to \mathbb{P}^3$ be the blow up of \mathbb{P}^3 at the points P_1, \ldots, P_7 .
- $-K_{\widehat{\mathbb{P}}^3}$ is nef and big with $(-K_{\widehat{\mathbb{P}}^3})^3 = 8$.
- Let \widetilde{L}_{ij} be the proper transform of L_{ij} .
- Let C_i be the proper transform of C_i .
- We have $\widetilde{L}_{ij} \cdot (-K_{\widehat{\mathbb{P}}^3}) = \widetilde{C}_i \cdot (-K_{\widehat{\mathbb{P}}^3}) = 0$ and

$$\mathcal{N} = \mathcal{O}(-1) \bigoplus \mathcal{O}(-1).$$

PROPOSITION (ACPS, PROKHOROV)

Let $\pi: \widehat{\mathbb{P}}^3 \to \mathbb{P}^3$ be the blow up of \mathbb{P}^3 at the points P_1, \ldots, P_7 and let $\phi: \widehat{\mathbb{P}}^3 \dashrightarrow V$ be the map given by the linear system $|-2K_{\widehat{\mathbb{P}}^3}|$. Then

- the map ϕ is a birational morphism;
- the exceptional locus of φ is a disjoint union of the proper transforms of the lines passing through pairs of the points P_i and the twisted cubics passing through six-tuples of the points P_i;
- the variety V is a 28-nodal double Veronese cone.

THEOREM (PROKHOROV)

Every double Veronese cone with 28 singular points can be obtained in this way.

JIHUN PARK

Э

・ロト ・回ト ・ヨト ・ヨト

We start with a smooth quartic curve C in the projective plane \mathbb{P}^2 given by an equation

$$H(x, y, z) = \sum_{i+j+k=4} a_{ijk} x^{i} y^{j} z^{k} = 0.$$
 (2)

We regard [s:t:u] as a general point in the dual projective plane $\check{\mathbb{P}}^2$. Then the corresponding line on \mathbb{P}^2 is a general line $L_{s,t,u}$ given by

$$sx + ty + uz = 0.$$

The line $L_{s,t,u}$ hits the quartic *C* at four distinct points x_1 , x_2 , x_3 , x_4 lying on $L_{s,t,u} \setminus \{z = 0\}$. We may regard these four points as points on the affine line, so that we could define their cross-ratio as follows:

$$\lambda(x_1, x_2, x_3, x_4) = \frac{(x_1 - x_3)(x_4 - x_2)}{(x_1 - x_2)(x_4 - x_3)}.$$

This has six different values according to the order of the four points

However, the following *j*-function is invariant with respect to the reordering x_1 , x_2 , x_3 , x_4 .

$$j(x_1, x_2, x_3, x_4) = 256 \frac{(1 - \lambda(x_1, x_2, x_3, x_4) (1 - \lambda(x_1, x_2, x_3, x_4)))^3}{\lambda(x_1, x_2, x_3, x_4)^2 (1 - \lambda(x_1, x_2, x_3, x_4))^2} = 2^8 \frac{((x_1 - x_2)^2 (x_4 - x_3)^2 - (x_1 - x_3)(x_4 - x_2)(x_4 - x_1)(x_3 - x_2))^3}{(x_1 - x_2)^2 (x_1 - x_3)^2 (x_1 - x_4)^2 (x_2 - x_3)^2 (x_2 - x_4)^2 (x_3 - x_4)^2}.$$
(3)

3

・ロト ・四ト ・ヨト ・ ヨト

By plugging $z = -\frac{sx+ty}{u}$ into (2), we obtain

$$u^{4}H\left(x, y, -\frac{sx+ty}{u}\right) = \sum_{i+j+k=4}^{4} a_{ijk}(-u)^{4-k} (sx+ty)^{k} x^{i} y^{j}$$
$$= \sum_{r=0}^{4} b_{4-r} x^{r} y^{4-r},$$

where

$$b_{r} = \sum_{j=0}^{r} \sum_{i+k=4-j} (-1)^{k} a_{ijk} \binom{k}{k+j-r} s^{k+j-r} t^{r-j} u^{4-k}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Then we have the following identities for elementary symmetric functions of x_1 , x_2 , x_3 , x_4 :

$$\begin{aligned} x_1 + x_2 + x_3 + x_4 &= -\frac{b_1}{b_0}; \\ x_1 x_2 + x_1 x_3 + x_1 x_4 + x_2 x_3 + x_2 x_4 + x_3 x_4 &= \frac{b_2}{b_0}; \\ x_2 x_3 x_4 + x_1 x_2 x_4 + x_1 x_2 x_4 + x_1 x_2 x_3 &= -\frac{b_3}{b_0}; \\ x_1 x_2 x_3 x_4 &= \frac{b_4}{b_0}. \end{aligned}$$

Since the denominator and the numerator of the *j*-function in (3) are symmetric polynomials in x_1, x_2, x_3, x_4 , the *j*-function in (3) may be regarded as a rational function in b_0, b_1, b_2, b_3, b_4 .

ロトス団トメミトメミト

Indeed, one has

$$j(b_0, b_1, b_2, b_3, b_4) = 1728 \frac{4h_2(b_0, b_1, b_2, b_3, b_4)^3}{4h_2(b_0, b_1, b_2, b_3, b_4)^3 - 27h_3(b_0, b_1, b_2, b_3, b_4)^2},$$

where

$$h_2(b_0, b_1, b_2, b_3, b_4) = rac{1}{3} \Big(-3b_1b_3 + 12b_0b_4 + b_2^2 \Big);$$

 $h_3(b_0, b_1, b_2, b_3, b_4) = \frac{1}{27} \Big(72b_0b_2b_4 - 27b_0b_3^2 - 27b_1^2b_4 + 9b_1b_2b_3 - 2b_2^3 \Big).$

(日) (四) (분) (분) (분)

Regarding $h_2(b_0, b_1, b_2, b_3, b_4)$ and $h_3(b_0, b_1, b_2, b_3, b_4)$ as polynomials in s, t, u, one can see that

$$h_2(b_0, b_1, b_2, b_3, b_4) = u^4 g_4(s, t, u),$$

$$h_3(b_0, b_1, b_2, b_3, b_4) = u^6 g_6(s, t, u),$$

where $g_4(s, t, u)$ and $g_6(s, t, u)$ are homogenous polynomials of degrees 4 and 6, respectively, in s, t, u. Consequently, the rational function $j(b_0, b_1, b_2, b_3, b_4)$ may be regarded as a rational function j_C in s, t, u, so that it is a rational function on $\check{\mathbb{P}}^2$. More precisely, one has

$$j_{C}(s,t,u) = 1728 \frac{4g_{4}(s,t,u)^{3}}{4g_{4}(s,t,u)^{3} - 27g_{6}(s,t,u)^{2}}.$$

(ロト (四ト (ヨト (ヨト)))

$$j_C(s,t,u) = 1728 \frac{4g_4(s,t,u)^3}{4g_4(s,t,u)^3 - 27g_6(s,t,u)^2}.$$

- The equation g₄(s, t, u) = 0 of degree 4 describes the points of P² corresponding to lines that intersect C by equianharmonic quadruples of points. In other words, these lines with the quadruples of points define elliptic curves of *j*-invariant 0. Elliptic curves of *j*-invariant 0 are isomorphic to the Fermat plane cubic curve.
- The equation g₆(s, t, u) = 0 of degree 6 describes the points of ℙ² corresponding to lines that intersect C by harmonic quadruples of points. In this case, lines with the quadruples of points define elliptic curves of *j*-invariant 1728.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Eventually, with $g_4(s, t, u)$ and $g_6(s, t, u)$, we obtain a hypersurface V of degree 6 in $\mathbb{P}(1, 1, 1, 2, 3)$ given by an equation

$$w^2 = v^3 - g_4(s, t, u)v + g_6(s, t, u),$$

where wt(w) = 3, wt(v) = 2.

This is a double Veronese Cone.

ロトス回とスロトスロト

$$w^2 = v^3 - g_4(s, t, u)v + g_6(s, t, u).$$

- It has 28 nodes.
- These points come from 28 bitangents of the given smooth plane quartic curve *C*.
- V has a rational elliptic fibration structure over $\check{\mathbb{P}^2}$.
- These points lie over the ordinary double points and *E*₆-type singular points of the dual curve of *C*.

(ロト (周ト (ヨト (ヨト

28-NODAL DOUBLE VERONESE CONES

Here ϕ is a small resolution of all singular points of the 3-fold V, the morphism π is the blow up of \mathbb{P}^3 at the seven distinct points P_1, \ldots, P_7 , and the rational map κ is given by the half-anticanonical linear system of V.

・ロト ・ 四ト ・ 日ト ・ 日ト

28-NODAL DOUBLE VERONESE CONES

JIHUN PARK

CAYLEY OCTADS PLANE QUARTIC CURVES DE

シへで 34/36

Э

イロト イヨト イヨト

(4)

• Φ_1 can be transformed onto Φ_2 by a Cremona transform. • $\widehat{\mathbb{P}}_1^3$ is transformed onto $\widehat{\mathbb{P}}_2^3$ by flops. A (unordered) set of seven distinct odd theta characteristics θ₁,..., θ₇ on a smooth plane quartic curve C is called an Aronhold system if they satisfy the condition that θ_i + θ_j + θ_k - K_C is an even theta characteristic for each choice of three distinct indices *i*, *j*, *k*.

・ロト ・ 四ト ・ 日ト ・ 日ト

- A choice of a point in a given Cayley octad Φ is a choice of an Aronhold system.
- The diagram (4) is not unique.
- The diagram (4) is given by a choice of an Aronhold system up to automorphisms preserving the sums of the odd theta characteristics in Aronhold systems.
- In general, there are $288 = 8 \times 36$ diagrams.

(ロト (周ト (ヨト (ヨト