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Q-homology Projective Planes

Classify algebraic varieties up to connected moduli

Nonsingular projective algebraic curves /C (compact Riemann surfaces) are
classified by the “ mighty" genus

g(C) := (the number of “holes" of C) = dimC H0(C,Ω1
C) = 1

2 dimQ H1(C,Q).

g(C) = 0⇐⇒ C ∼= P1 ∼= (Riemann sphere) = C ∪ {∞}.

In dimension > 1, many invariants: Hodge numbers, Betti numbers

hi,j (X ) = dim H j (X ,Ωi
X ), bi (X ) := dim H i (X ,Q).

Given Hodge numbers (and even fixing fundamental group), hard to describe
the moduli, in general.
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Q-homology Projective Planes

Smooth Algebraic Surfaces with pg = q = 0

Long history : Castelnuovo’s rationality criterion, Severi conjecture, ...

Here, the geometric genus and the irregularity

pg(X ) := dim Hn(X ,OX ) = dim H0(X ,Ωn
X ) = h0,n(X ) = hn,0(X ),

q(X ) := dim H1(X ,OX ) = dim H0(X ,Ω1
X ) = h0,1(X ) = h1,0(X ).

Max Nöther(1844-1921) said [in the book of Federigo Enriques(1871-1946)] :

"Algebraic curves are created by god,

algebraic surfaces are created by devil."
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Q-homology Projective Planes

Smooth Algebraic Surfaces with pg = q = 0
Enriques-Kodaira classification of algebraic surfaces (1940’s):

P2, rational ruled surfaces;
Enriques surfaces;
properly elliptic surfaces with pg = q = 0;
surfaces of general type with pg = 0 (these have K 2 = 1,2, . . . ,9);
blow-ups of the above surfaces.

Smooth algebraic surfaces with minimal invariants, that is, with

b1 = b3 = 0, b0 = b2 = b4 = 1 (⇒ pg = q = 0)

are
P2;
fake projective planes (= surfaces of general type with pg = 0, K 2 = 9).

Remark. FPP’s are not simply connected. Exotic P2 does NOT exist in
complex geometry.
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Q-homology Projective Planes

Q-homology P2

Definition

A normal projective surface S is called a Q-homology P2 if bi (S) = bi (P2) for
all i , i.e. b1 = b3 = 0,b0 = b2 = b4 = 1.

If S is smooth, then S = P2 or a fake projective plane.
If S has A1-singularities only, then S ∼= (w2 = xy) ⊂ P3.
If S has A2-singularities only, then S has 3A2 or 4A2 and
S ∼= P2/G or FPP/G, where G ∼= Z/3 or (Z/3)2.

Any cubic surface in P3 with 3A2 is isom. to (w3 = xyz).
If S has A1 or A2-singularities only, S = P2(1,2,3) or one of the above.

In this talk, we assume S has at worst quotient singularities.
Then S is a Q-homology P2 if b2(S) = 1.

For a minimal resolution S′ → S,

pg(S′) = q(S′) = 0.
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Q-homology Projective Planes

Trichotomy: KS = ample, −ample, num. trivial

Let S be a Q-hom P2 with quotient singularities.

−KS is ample
log del Pezzo surfaces of Picard number 1,
e.g. P2/G, P2(a, b, c), . . .
κ(S′) = −∞.

KS is numerically trivial.
log Enriques surfaces of Picard number 1.
κ(S′) = −∞, 0.

KS is ample.
e.g. all quotients of fake projective planes,
suitable contraction of a suitable blowup of P2, some Enriques surface, . . .
κ(S′) = −∞, 0, 1, 2.

Problem

Classify all Q-homology P2’s with quotient singularities.
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Q-homology Projective Planes

The Maximum Number of Quotient Singularities

Question

How many singular points on S, a Q-homology P2 with quotient singularities?

|Sing(S)| ≤ 5 by the orbifold Bogomolov-Miyaoka-Yau inequality
(Sakai, Miyaoka, Megyesi for K nef)

1
3

K 2
S ≤ eorb(S) := e(S)−

∑
p∈Sing(S)

(
1− 1
|π1(Lp)|

)
.

(Keel-McKernan for −K nef)

0 ≤ eorb(S).

Many examples with |Sing(S)| ≤ 4 (cf. Brenton, 1977)
If −KS is ample, |Sing(S)| ≤ 4 (Belousov, 2008).

The case with |Sing(S)| = 5 were classified by Hwang-Keum.
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Q-homology Projective Planes

Theorem (D.Hwang-Keum, JAG 2011)

Let S be a Q-homology P2 with quotient singularities. Then |Sing(S)| ≤ 4
except the following case:
S has 5 singular points of type 3A1 + 2A3, and its minimal resolution S′ is an
Enriques surface.

Corollary

Every Z-homology P2 with quotient singularities has at most 4 singular points.

Remark

(1) Every Z-cohomology P2 with quotient singularities has at most 1 singular
point. If it has, then the singularity is of type E8 [Bindschadler-Brenton, 1984].
(2) Q-homology P2 with rational singularities may have arbitrarily many
singularities, no bound.
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Montgomery-Yang Problem

C∞-action of S1 on Sm

S1 ⊂ Diff (Sm).

The identity element 1 ∈ S1 acts identically on Sm.

Each diffeomorphism g ∈ S1 is homotopic to the identity map 1Sm .
By Lefschetz Fixed Point Formula,

e(Fix(g)) = e(Fix(1)) = e(Sm).

If m is even, then e(Sm) = 2 and such an action has a fixed point, so the
foliation by circles degenerates.

Assume m = 2n − 1 odd.

Definition

A C∞-action of S1 on S2n−1

S1 × S2n−1 → S2n−1

is called a pseudofree S1-action on S2n−1 if it is free except for finitely many
orbits (whose isotropy groups Z/a1, . . . ,Z/ak have pairwise prime orders).
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Montgomery-Yang Problem

Pseudofree S1-action on S2n−1

Example (Linear actions)

S2n−1 = {(z1, z2, ..., zn) ∈ Cn : |z1|2 + |z2|2 + ...+ |zn|2 = 1} ⊂ Cn

S1 = {λ ∈ C : |λ| = 1} ⊂ C.

Positive integers a1, ...,an pairwise prime.

S1 × S2n−1 → S2n−1

(λ, (z1, z2, ..., zn))→ (λa1z1, λ
a2z2, ..., λ

an zn).

In this linear action

S2n−1/S1 ∼= CPn−1(a1,a2, ...,an).

The orbit of the i-th coordinate point ei ∈ S2n−1 is exceptional iff ai ≥ 2.
The orbit of a non-coordinate point of S2n−1 is NOT exceptional.
This action has at most n exceptional orbits.
The quotient map S2n−1 → CPn−1(a1,a2, ...,an) is a Seifert fibration.
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Montgomery-Yang Problem

Pseudofree S1-action on S2n−1

For n = 2 Seifert (1932) showed that each pseudo-free S1-action on S3 is
linear and hence has at most 2 exceptional orbits.
For n = 4 Montgomery-Yang (1971) showed that given arbitrary collection
of pairwise prime positive integers a1, . . . ,ak , there is a pseudofree
S1-action on a homotopy S7 whose exceptional orbits have exactly those
orders.
Petrie (1974) generalised the above M-Y for all n ≥ 5.

Conjecture (Montgomery-Yang problem, Fintushel-Stern 1987)

A pseudo-free S1-action on S5 has at most 3 exceptional orbits.

This problem is wide open. F-S withdrew their paper [O(2)-actions on the
5-sphere, Invent. Math. 1987].
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Montgomery-Yang Problem

Pseudo-free S1-actions on a manifold Σ have been studied in terms of
the orbit space Σ/S1.
The orbit space X = S5/S1 of such an action is a 4-manifold with isolated
singularities whose neighborhoods are cones over lens spaces S3/Zai

corresponding to the exceptional orbits of the S1-action.

Easy to check that X is simply connected and H2(X ,Z) has rank 1 and
intersection matrix (1/a1a2 · · · ak ).
An exceptional orbit with isotropy type Z/a has an equivariant tubular
neighborhood which may be identified with C× C× S1 with a S1-action

λ · (z,w ,u) = (λr z, λsw , λau)

where r and s are relatively prime to a.
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Montgomery-Yang Problem

The following 1-1 correspondence was known to Montgomery-Yang,
Fintushel-Stern, and revisited by Kollár(2005).

Theorem
There is a one-to-one correspondence between:

1 Pseudo-free S1-actions on Q-homology 5-spheres Σ with H1(Σ,Z) = 0.
2 Compact differentiable 4-manifolds M with boundary such that

1 ∂M =
⋃
i
Li is a disjoint union of lens spaces Li = S3/Zai ,

2 the ai ’s are pairwise prime,
3 H1(M,Z) = 0,
4 H2(M,Z) ∼= Z.

Furthermore, Σ is diffeomorphic to S5 iff π1(M) = 1.
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Algebraic Montgomery-Yang Problem

Algebraic Montgomery-Yang Problem

This is the M-Y Problem when S5/S1 attains a structure of a normal projective
surface.

Conjecture (J. Kollár)

Let S be a Q-homology P2 with at worst quotient singularities. If π1(S0) = {1},
then S has at most 3 singular points.

What if the condition π1(S0) = {1} is replaced by the weaker condition
H1(S0,Z) = 0?

There are infinitely many examples S with
H1(S0,Z) = 0, π1(S0) 6= {1}, |Sing(S)| = 4.

These examples obtained from the classification of surface quotient
singularities [E. Brieskorn, Invent. Math. 1968].
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Algebraic Montgomery-Yang Problem

Example (coming from Brieskorn’s classification of surface singularities)

Im ⊂ GL(2,C) the 2m-ary icosahedral group Im = Z2m.A5.

1→ Z2m → Im → A5 ⊂ PSL(2,C)

Im acts on C2. This action extends naturally to P2. Then

S := P2/Im

is a Z-homology P2 with −KS ample,

S has 4 quotient singularities:
one non-cyclic singularity of type Im (the image of O ∈ C2), and
3 cyclic singularities of order 2,3,5 (on the image of the line at infinity),
π1(S0) = A5, hence H1(S0,Z) = 0.

Call these surfaces Brieskorn quotients.
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Algebraic Montgomery-Yang Problem

Progress on Algebraic Montgomery-Yang Problem

Theorem (D.Hwang-Keum, MathAnn 2011)

Let S be a Q-homology P2 with quotient singularities, not all cyclic, such that
π1(S0) = {1}. Then |Sing(S)| ≤ 3.

More precisely

Theorem (D.Hwang-Keum, MathAnn 2011)

Let S be a Q-homology P2 with 4 or more quotient singularities, not all cyclic,
such that H1(S0,Z) = 0. Then S is isomorphic to a Brieskorn quotient.

More Progress on Algebraic Montgomery-Yang Problem:

Theorem (D.Hwang-Keum, 2013, 2014)

Let S be a Q-homology P2 with cyclic singularities such that H1(S0,Z) = 0. If
either S is not rational or −KS is ample, then |Sing(S)| ≤ 3.
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Algebraic Montgomery-Yang Problem

The Remaining Case of Algebraic M-Y Problem:
S is a Q-homology P2 satisfying
(1) S has cyclic singularities only,
(2) S is a rational surface with KS ample.

π∗KS = KS′ +
∑

Dp.

There are such surfaces. Examples given by
Keel and Mckernan (Mem. AMS 1999),
Kollár (Pure Appl. Math. Q. 2008) — an infinite series of examples with
|Sing(S)| = 2.
D. Hwang and Keum (Proc. AMS 2012) — infinite series of examples with
|Sing(S)| = 1,2,3.

Problem

Are there such surfaces S with |Sing(S)| = 4?
No examples known yet.
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|Sing(S)| = 1,2,3.

Problem

Are there such surfaces S with |Sing(S)| = 4?
No examples known yet.
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Algebraic Montgomery-Yang Problem

Kollár’s examples

Y = Y (a1,a2,a3,a4) := (xa1
1 x2 + xa2

2 x3 + xa3
3 x4 + xa4

4 x1 = 0)

in P(w1,w2,w3,w4). Y has 4 singularities, two each on

C1 := (x1 = x3 = 0), C2 := (x2 = x4 = 0).

Contracting C1 and C2 we get X (a1,a2,a3,a4), a Q-homology P2 with 2
singularities

[2, . . . ,2︸ ︷︷ ︸
a4−1

,a3,a1,2, . . . ,2︸ ︷︷ ︸
a2−1

]

[2, . . . ,2︸ ︷︷ ︸
a3−1

,a2,a4,2, . . . ,2︸ ︷︷ ︸
a1−1

].

KX is ample iff
∑

aj > 12 and ai ≥ 3 for all i .

X can be obtained by blowing up P2,
∑

aj times inside 4 lines, then
contracting all negative curves with self-intersection ≤ −2 (Hwang-Keum
2012, also Urzua-Yanez 2016). The number of such curves is

∑
aj .
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Algebraic Montgomery-Yang Problem

More examples

can be obtained by blowing up P2 many times

(1) inside the union of 3 lines and a conic (total degree 5), then contracting all
negative curves with self-intersection ≤ −2
=⇒ infinite series of examples with |Sing(S)| = 2,3;

(2) inside the union of 4 lines and a nodal cubic (total degree 7), then
contracting all negative curves with self-intersection ≤ −2
=⇒ infinite series of examples with |Sing(S)| = 1.

Problem

Are there any Q-homology P2 which is a rational surface S with KS ample and
with |Sing(S)| = 4?
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Algebraic Montgomery-Yang Problem

Symplectic Montgomery-Yang Problem

This is the M-Y Problem when S5/S1 attains a structure of a symplectic
orbifold,
i.e. away from its quotient singularities, a symplectic 4-manifold.

Question
Bogomolov inequality holds for symplectic compact 4-manifolds?

c2
1 ≤ 4c2
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Fake Projective Planes

Fake Projective Planes

A compact complex surface with the same Betti numbers as P2 is called a
fake projective plane if it is not biholomorphic to P2.

A FPP has ample canonical divisor K , so it is a smooth proper (geometrically
connected) surface of general type with pg = 0 and K 2 = 9 (this definition
extends to arbitrary characteristic.)

The existence of a FPP was first proved by Mumford (1979) based on the
theory of 2-adic uniformization, and later two more examples by Ishida-Kato
(1998) in this abstract method.

Keum (2006) gave a construction of a FPP with an order 7 automorphism,
which is birational to an order 7 cyclic cover of a Dolgachev surface.

Keum FPP and Mumford FPP belong to the same class, in the sense that
both fundamental groups are contained in the same maximal arithmetic
subgroup of PU(2,1), the isometry group of the complex 2-ball.
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Fake Projective Planes

FPP’s have Chern numbers c2
1 = 3c2 = 9 and are complex 2-ball quotients by

Aubin (1976) and Yau (1977). Such ball quotients are strongly rigid by
Mostow’s rigidity theorem (1973), that is, determined by fundamental group up
to holomorphic or anti-holomorphic isomorphism.

FPP’s come in complex conjugate pairs by Kharlamov-Kulikov (2002) and
have been classified as quotients of the two-dimensional complex ball by
explicitly written co-compact torsion-free arithmetic subgroups of PU(2,1) by
Prasad-Yeung (2007, 2010) and Cartwright-Steger (2010). The arithmeticity
of their fundamental groups was proved by Klingler (2003).

There are exactly 100 fake projective planes total, corresponding to 50 distinct
fundamental groups.

Interesting problems on fake projective planes:
Exceptional collections in Db(coh(X ))

Bicanonical map
Explicit equations
Bloch conjecture on zero cycles

JongHae Keum (KIAS) Algebraic surfaces with minimal Betti numbers 23 / 28



Fake Projective Planes

FPP’s have Chern numbers c2
1 = 3c2 = 9 and are complex 2-ball quotients by

Aubin (1976) and Yau (1977). Such ball quotients are strongly rigid by
Mostow’s rigidity theorem (1973), that is, determined by fundamental group up
to holomorphic or anti-holomorphic isomorphism.

FPP’s come in complex conjugate pairs by Kharlamov-Kulikov (2002) and
have been classified as quotients of the two-dimensional complex ball by
explicitly written co-compact torsion-free arithmetic subgroups of PU(2,1) by
Prasad-Yeung (2007, 2010) and Cartwright-Steger (2010). The arithmeticity
of their fundamental groups was proved by Klingler (2003).

There are exactly 100 fake projective planes total, corresponding to 50 distinct
fundamental groups.

Interesting problems on fake projective planes:
Exceptional collections in Db(coh(X ))

Bicanonical map
Explicit equations
Bloch conjecture on zero cycles

JongHae Keum (KIAS) Algebraic surfaces with minimal Betti numbers 23 / 28



Fake Projective Planes

FPP’s have Chern numbers c2
1 = 3c2 = 9 and are complex 2-ball quotients by

Aubin (1976) and Yau (1977). Such ball quotients are strongly rigid by
Mostow’s rigidity theorem (1973), that is, determined by fundamental group up
to holomorphic or anti-holomorphic isomorphism.

FPP’s come in complex conjugate pairs by Kharlamov-Kulikov (2002) and
have been classified as quotients of the two-dimensional complex ball by
explicitly written co-compact torsion-free arithmetic subgroups of PU(2,1) by
Prasad-Yeung (2007, 2010) and Cartwright-Steger (2010). The arithmeticity
of their fundamental groups was proved by Klingler (2003).

There are exactly 100 fake projective planes total, corresponding to 50 distinct
fundamental groups.

Interesting problems on fake projective planes:
Exceptional collections in Db(coh(X ))

Bicanonical map
Explicit equations
Bloch conjecture on zero cycles

JongHae Keum (KIAS) Algebraic surfaces with minimal Betti numbers 23 / 28



Fake Projective Planes

FPP’s have Chern numbers c2
1 = 3c2 = 9 and are complex 2-ball quotients by

Aubin (1976) and Yau (1977). Such ball quotients are strongly rigid by
Mostow’s rigidity theorem (1973), that is, determined by fundamental group up
to holomorphic or anti-holomorphic isomorphism.

FPP’s come in complex conjugate pairs by Kharlamov-Kulikov (2002) and
have been classified as quotients of the two-dimensional complex ball by
explicitly written co-compact torsion-free arithmetic subgroups of PU(2,1) by
Prasad-Yeung (2007, 2010) and Cartwright-Steger (2010). The arithmeticity
of their fundamental groups was proved by Klingler (2003).

There are exactly 100 fake projective planes total, corresponding to 50 distinct
fundamental groups.

Interesting problems on fake projective planes:
Exceptional collections in Db(coh(X ))

Bicanonical map
Explicit equations
Bloch conjecture on zero cycles

JongHae Keum (KIAS) Algebraic surfaces with minimal Betti numbers 23 / 28



Fake Projective Planes

Explicit equations of a Fake Projective Plane
It has long been of great interest since Mumford to find equations of an FPP.

With Lev Borisov (Duke M.J. 2020?), we find equations of a conjugate pair of
fake projective planes by using the geometry of the quotients of such FPP
[Keum, 2008].

The equations are given explicitly as 84 cubics in P9 with coefficients in the
field Q[

√
−7].

Conjugating equations we get the complex conjugate of the surface.

This pair has the most geometric symmetries among the 50 pairs, in the
sense that
(i) Aut ∼= G21 = Z7 : Z3, the largest (Keum’s FPPs);
(ii) the Z7-quotient has a smooth model of a (2,4)-elliptic surface, not simply
connected.

The universal double cover of this elliptic surface is an (1,2)-elliptic surface,
has the same Hodge numbers as K3, but Kodaira dimension 1.
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Fake Projective Planes

B2 P̂2
fake X π−→ P3

↘ ↙ ↘ ↙ ↘
P2

fake Y P1

↘ ↙ ↘ ↙
P2

fake/Z7 P1

(1)

B2 is the complex 2-ball. P2
fake is our FPP.

Y → P1 is a (2,4)-elliptic surface with one I9-fibre and three 4-sections.
X → P1 is an (1,2)-elliptic surface with two I9-fibres and six 2-sections.

Using these 24 smooth rational curves on X we find a linear system which
gives a birational map

π : X → P3.

The image is a sextic surface, highly singular.
Its equation is computed explicitly using the elliptic fibration structure X → P1.
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Fake Projective Planes

84 Equations of the fake projective plane

eq1 = U1U2U3 + (1− i
√

7)(U2
3 U4 + U2

1 U5 + U2
2 U6) + (10− 2i

√
7)U4U5U6

eq2 = (−3 + i
√

7)U3
0 + (7 + i

√
7)(−2U1U2U3 + U7U8U9 − 8U4U5U6)

+ 8U0(U1U4 + U2U5 + U3U6) + (6 + 2i
√

7)U0(U1U7 + U2U8 + U3U9)

eq3 = (11− i
√

7)U3
0 + 128U4U5U6 − (18 + 10i

√
7)U7U8U9

+ 64(U2U2
4 + U3U2

5 + U1U2
6 ) + (−14− 6i

√
7)U0(U1U7 + U2U8 + U3U9)

+ 8(1 + i
√

7)(U2
1 U8 + U2

2 U9 + U2
3 U7 − 2U1U2U3)

eq4 = −(1 + i
√

7)U0U3(4U6 + U9) + 8(U1U2U3 + U1U6U9 + U5U7U9)

+ 16(U5U6U7 − U2
1 U5 − U3U2

5 )

eq5 = g3(eq4)

eq6 = g2
3(eq4)

...
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Fake Projective Planes

On the coordinates (U0 : U1 : U2 : U3 : U4 : U5 : U6 : U7 : U8 : U9) of P9

g7 := (U0 : ζ6U1 : ζ5U2 : ζ3U3 : ζU4 : ζ2U5 : ζ4U6 : ζU7 : ζ2U8 : ζ4U9)

g3 := (U0 : U2 : U3 : U1 : U5 : U6 : U4 : U8 : U9 : U7)

where ζ = ζ7 is the primitive 7-th root of 1.

It can be verified that the variety

Z ⊂ P9

defined by the 84 equations is indeed a FPP. Use Magma and Macaulay 2.

Take a prime p = 263. Then
√
−7 = 16 mod p.

Magma calculates the Hilbert series of Z

h0(Z ,OZ (k)) =
1
2

(6k − 1)(6k − 2) = 18k2 − 9k + 1, k ≥ 0.

Smoothness of Z is a subtle problem.
The 84× 10 Jacobian matrix has too many 7× 7 minors.
By adding suitably chosen 3 minors to the ideal of 84 cubics, the Hilbert
polynomial drops from 18k2 − 9k + 1 to linear, then to constant, then to 0.
If the equations generate the ring modulo 263, then they also generate it with
exact coefficients.
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Fake Projective Planes

Thus Z is a smooth surface with a very ample divisor class D = OZ (1). From
the Hilbert polynomial we see that

D2 = 36,DKZ = 18, χ(Z ,OZ ) = 1.

In part, Z � P2.

Macaulay 2 calculates the projective resolution of OZ as

0→ O(−9)⊕28 → O(−8)⊕189 → O(−7)⊕540 → O(−6)⊕840

→ O(−5)⊕756 → O(−4)⊕378 → O(−3)⊕84 → O → OZ → 0.

By semicontinuity, the resolution is of the same shape over C.

Since all the sheaves O(−k) are acyclic, we see that

h1(Z ,OZ ) = h2(Z ,OZ ) = 0.

Macaulay also calculates (again working modulo 263)

χ(Z ,2KZ ) = 10.

This implies K 2
Z = 9. Thus Z is a FPP.

Z can be further identified with the FPP which we started with.
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