Recent progress on regularity problem due to Castelnuovo-Mumford-Eisenbud-Goto

Sijong, Kwak (joint with Jinhyung Park)

Department of Mathematical Sciences
Korea Advanced Institute of Science and Technology (KAIST)

Inaugural France-Korea Conference, Bordeaux France November 24-27, 2019

Outline

- Introduction
- Regularity conjecture and known results
- \mathcal{O}_{X}-regularity conjecture: smooth cases and singular cases
- Double point divisors for smooth cases
- Counterexamples due to J. McCullough-I. Peeva (2018)
- Boundary cases of \mathcal{O}_{X}-regularity for smooth varieties

Introduction

- X : a projective (not necessary smooth) variety defined over an algebraically closed field k with $\operatorname{char}(k)=0$.
- \mathcal{L} : a very ample line bundle on X.
- For a polarized pair (X, \mathcal{L}), Serre vanishing theorem implies that

$$
H^{i}\left(X, \mathcal{L}^{\otimes m}\right)=0, \forall i \geq 1, m \gg 0
$$

Question: What is the effective lower bound $m_{0}(X, \mathcal{L})$ such that $H^{i}\left(X, \mathcal{L}^{\otimes m}\right)=0, \forall i \geq 1, m \geq m_{0}(X, \mathcal{L})$?

Introduction

- X : a projective (not necessary smooth) variety defined over an algebraically closed field k with $\operatorname{char}(k)=0$.
- \mathcal{L} : a very ample line bundle on X.
- For a polarized pair (X, \mathcal{L}), Serre vanishing theorem implies that

$$
H^{i}\left(X, \mathcal{L}^{\otimes m}\right)=0, \forall i \geq 1, m \gg 0
$$

Question: What is the effective lower bound $m_{0}(X, \mathcal{L})$ such that $H^{i}\left(X, \mathcal{L}^{\otimes m}\right)=0, \forall i \geq 1, m \geq m_{0}(X, \mathcal{L})$?

Introduction

- X : a projective (not necessary smooth) variety defined over an algebraically closed field k with $\operatorname{char}(k)=0$.
- \mathcal{L} : a very ample line bundle on X.
- For a polarized pair (X, \mathcal{L}), Serre vanishing theorem implies that

$$
H^{i}\left(X, \mathcal{L}^{\otimes m}\right)=0, \forall i \geq 1, m \gg 0
$$

Question: What is the effective lower bound $m_{0}(X, \mathcal{L})$ such that $H^{i}\left(X, \mathcal{L}^{\otimes m}\right)=0, \forall i \geq 1, m \geq m_{0}(X, \mathcal{L}) ?$

- (Forklore conjecture) $m_{0}(X, \mathcal{L})$ is (the delta genus of $\left.\mathcal{L}\right)+1$, i.e.

$$
m_{0}(X, \mathcal{L})=\triangle(X, \mathcal{L})+1:=\mathcal{L}^{\operatorname{dim}(X)}+\operatorname{dim}(X)-h^{0}(X, \mathcal{L})+1
$$

Introduction

- Since \mathcal{L} is very ample, X can be embedded in a projective space $\mathbb{P}\left(H^{0}(\mathcal{L})\right)$ and $\mathcal{L} \simeq \mathcal{O}_{X}(H)$ where H is a hyperplane section divisor. Thus, letting $d:=\operatorname{deg}(X)=\mathcal{L}^{\operatorname{dim}(X)}$ and $e=\operatorname{codim}\left(X, \mathbb{P}\left(H^{0}(\mathcal{L})\right)\right.$,

$$
\triangle(X, \mathcal{L})+1:=\mathcal{L}^{\operatorname{dim}(X)}+\operatorname{dim}(X)-h^{0}(X, \mathcal{L})+1=d-e
$$

- This forklore conjecture is true for smooth varieties(Noma, J. Park-K), but many counterexamples has been found due to J. McCullough and I. Peeva (see a paper " Counterexamples to the Eisenbud-Goto regularity conjecture" JAMS, 31(2018), 473-496)

Introduction

- Since \mathcal{L} is very ample, X can be embedded in a projective space $\mathbb{P}\left(H^{0}(\mathcal{L})\right)$ and $\mathcal{L} \simeq \mathcal{O}_{X}(H)$ where H is a hyperplane section divisor. Thus, letting $d:=\operatorname{deg}(X)=\mathcal{L}^{\operatorname{dim}(X)}$ and $e=\operatorname{codim}\left(X, \mathbb{P}\left(H^{0}(\mathcal{L})\right)\right.$,

$$
\triangle(X, \mathcal{L})+1:=\mathcal{L}^{\operatorname{dim}(X)}+\operatorname{dim}(X)-h^{0}(X, \mathcal{L})+1=d-e .
$$

- This forklore conjecture is true for smooth varieties(Noma, J. Park-K), but many counterexamples has been found due to J . McCullough and I. Peeva (see a paper " Counterexamples to the Eisenbud-Goto regularity conjecture" JAMS, 31(2018), 473-496).

Introduction

- Let \mathcal{L} be an ample and globally generated line bundle on X. A coherent sheaf \mathcal{F} on X is m-regular with respect to \mathcal{L} if $H^{i}\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes(m-i)}\right)=0$ for $i \geq 1$.
- $\operatorname{reg}_{\mathcal{L}}(\mathcal{F})$ is the minimum of m such that \mathcal{F} is m-regular with respect to \mathcal{L}. For example, $\operatorname{reg}\left(\mathcal{O}_{x}\right)$ is the minimum m such that

$$
\operatorname{reg}\left(O_{x}\right):=\min \left\{m \mid H^{i}\left(X, \mathcal{L}^{\otimes(m-i)}\right)=0 \text { for all } i \geq \uparrow\right\} .
$$

Mumford's Regularity Theorem

The m-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is $(m+1)$-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

Introduction

- Let \mathcal{L} be an ample and globally generated line bundle on X. A coherent sheaf \mathcal{F} on X is m-regular with respect to \mathcal{L} if $H^{i}\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes(m-i)}\right)=0$ for $i \geq 1$.
- $\operatorname{reg}_{\mathcal{L}}(\mathcal{F})$ is the minimum of m such that \mathcal{F} is m-regular with respect to \mathcal{L}. For example, $\operatorname{reg}\left(\mathcal{O}_{X}\right)$ is the minimum m such that

$$
\operatorname{reg}\left(\mathcal{O}_{X}\right):=\min \left\{m \mid H^{i}\left(X, \mathcal{L}^{\otimes(m-i)}\right)=0 \text { for all } i \geq 1\right\}
$$

Mumford's Regularity Theorem
The m-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is $(m+1)$-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

Introduction

- Let \mathcal{L} be an ample and globally generated line bundle on X. A coherent sheaf \mathcal{F} on X is m-regular with respect to \mathcal{L} if $H^{i}\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes(m-i)}\right)=0$ for $i \geq 1$.
- $\operatorname{reg}_{\mathcal{L}}(\mathcal{F})$ is the minimum of m such that \mathcal{F} is m-regular with respect to \mathcal{L}. For example, $\operatorname{reg}\left(\mathcal{O}_{X}\right)$ is the minimum m such that

$$
\operatorname{reg}\left(\mathcal{O}_{X}\right):=\min \left\{m \mid H^{i}\left(X, \mathcal{L}^{\otimes(m-i)}\right)=0 \text { for all } i \geq 1\right\}
$$

Mumford's Regularity Theorem

The m-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is $(m+1)$-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

Introduction

- Let \mathcal{L} be an ample and globally generated line bundle on X. A coherent sheaf \mathcal{F} on X is m-regular with respect to \mathcal{L} if $H^{i}\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes(m-i)}\right)=0$ for $i \geq 1$.
- $\operatorname{reg}_{\mathcal{L}}(\mathcal{F})$ is the minimum of m such that \mathcal{F} is m-regular with respect to \mathcal{L}. For example, $\operatorname{reg}\left(\mathcal{O}_{X}\right)$ is the minimum m such that

$$
\operatorname{reg}\left(\mathcal{O}_{X}\right):=\min \left\{m \mid H^{i}\left(X, \mathcal{L}^{\otimes(m-i)}\right)=0 \text { for all } i \geq 1\right\}
$$

Mumford's Regularity Theorem

The m-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is $(m+1)$-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

General setting

$X^{n} \subset \mathbb{P}^{n+e}:$ a non-degenerate projective variety of $\operatorname{dim} n$, codim e, and degree d defined over $k=\bar{k}$ with $\operatorname{char}(k)=0$.

Definition

- X is called m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_{X}(1)$, equivalently the following two conditions hold:
(1. (Castelnuovo normality) $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(m-1)\right)$ is surjective, i.e. X is $(m-1)$-normal;
- $\operatorname{reg}(X):=\min \{m \mid X$ is m-regular $\}$
- reg $\left(\mathcal{O}_{x}\right):=\min \left\{m \mid \mathcal{O}_{x}\right.$ is m-reqular

General setting

$X^{n} \subset \mathbb{P}^{n+e}:$ a non-degenerate projective variety of $\operatorname{dim} n, \operatorname{codim} e$, and degree d defined over $k=\bar{k}$ with $\operatorname{char}(k)=0$.

Definition

- X is called m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_{X}(1)$, equivalently the following two conditions hold:
(1. (Castelnuovo normality) $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(m-1)\right)$ is surjective, i.e. X is $(m-1)$-normal;
(2) (\mathcal{O}_{X}-regularity) $H^{i}\left(\mathcal{O}_{X}(m-1-i)=H^{i}\left(\mathcal{L}^{\otimes(m-1-i)}\right)\right)=0$ for all $i \geq 1$, i.e. \mathcal{O}_{X} is $(m-1)$-regular with respect to $\mathcal{L} \simeq \mathcal{O}_{X}(1)$.
- $\operatorname{reg}\left(\mathcal{O}_{X}\right):=\min \left\{m \mid \mathcal{O}_{X}\right.$ is m-regular

General setting

$X^{n} \subset \mathbb{P}^{n+e}:$ a non-degenerate projective variety of $\operatorname{dim} n, \operatorname{codim} e$, and degree d defined over $k=\bar{k}$ with $\operatorname{char}(k)=0$.

Definition

- X is called m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_{X}(1)$, equivalently the following two conditions hold:
(1. (Castelnuovo normality) $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(m-1)\right)$ is surjective, i.e. X is $(m-1)$-normal;
(2) (\mathcal{O}_{X}-regularity) $H^{i}\left(\mathcal{O}_{X}(m-1-i)=H^{i}\left(\mathcal{L}^{\otimes(m-1-i)}\right)\right)=0$ for all $i \geq 1$, i.e. \mathcal{O}_{X} is $(m-1)$-regular with respect to $\mathcal{L} \simeq \mathcal{O}_{X}(1)$.
- $\operatorname{reg}(X):=\min \{m \mid X$ is m-regular $\}$.

General setting

$X^{n} \subset \mathbb{P}^{n+e}:$ a non-degenerate projective variety of $\operatorname{dim} n, \operatorname{codim} e$, and degree d defined over $k=\bar{k}$ with $\operatorname{char}(k)=0$.

Definition

- X is called m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_{X}(1)$, equivalently the following two conditions hold:
(1. (Castelnuovo normality) $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(m-1)\right)$ is surjective, i.e. X is $(m-1)$-normal;
(2) (\mathcal{O}_{X}-regularity) $H^{i}\left(\mathcal{O}_{X}(m-1-i)=H^{i}\left(\mathcal{L}^{\otimes(m-1-i)}\right)\right)=0$ for all $i \geq 1$, i.e. \mathcal{O}_{X} is $(m-1)$-regular with respect to $\mathcal{L} \simeq \mathcal{O}_{X}(1)$.
- $\operatorname{reg}(X):=\min \{m \mid X$ is m-regular $\}$.
- $\operatorname{reg}\left(\mathcal{O}_{X}\right):=\min \left\{m \mid \mathcal{O}_{X}\right.$ is m-regular $\}$.

General setting

$X^{n} \subset \mathbb{P}^{n+e}:$ a non-degenerate projective variety of $\operatorname{dim} n, \operatorname{codim} e$, and degree d defined over $k=\bar{k}$ with $\operatorname{char}(k)=0$.

Definition

- X is called m-regular if the ideal sheaf \mathcal{I}_{X} is m-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_{X}(1)$, equivalently the following two conditions hold:
(1. (Castelnuovo normality) $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(m-1)\right)$ is surjective, i.e. X is $(m-1)$-normal;
(2) (\mathcal{O}_{X}-regularity) $H^{i}\left(\mathcal{O}_{X}(m-1-i)=H^{i}\left(\mathcal{L}^{\otimes(m-1-i)}\right)\right)=0$ for all $i \geq 1$, i.e. \mathcal{O}_{X} is $(m-1)$-regular with respect to $\mathcal{L} \simeq \mathcal{O}_{X}(1)$.
- $\operatorname{reg}(X):=\min \{m \mid X$ is m-regular $\}$.
- $\operatorname{reg}\left(\mathcal{O}_{X}\right):=\min \left\{m \mid \mathcal{O}_{X}\right.$ is m-regular $\}$.

Castelnuovo type problem

[Castelnuovo normality, version I]
Give a bound for m_{0} in terms of $\operatorname{deg}(X), \operatorname{codim}(X)$ such that for all $m \geq m_{0}, H^{1}\left(\mathbb{P}^{n+e}, \mathcal{I}_{X \mid \mathbb{P}^{n+e}}(m)\right)=0$, i.e.

$$
H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(m)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(m)\right) \text { is surjective. }
$$

[Castelnuovo-Mumford regularity, version II]
Give a bound for m_{0} such that $\operatorname{reg}(X) \leq m_{0}$

- Note that m-normality depends on the embedding of $X \subset \mathbb{P}^{n+e}$ but the vanishing $H^{i}\left(X, \mathcal{L}^{\otimes(m-1-i)}\right)=0$ is intrinsic.
equality when X is completely embedded in $\mathbb{P}\left(H^{0}(\mathcal{L})\right)$.

Castelnuovo type problem

[CasteInuovo normality, version I]

Give a bound for m_{0} in terms of $\operatorname{deg}(X), \operatorname{codim}(X)$ such that for all $m \geq m_{0}, H^{1}\left(\mathbb{P}^{n+e}, \mathcal{I}_{X \mid \mathbb{P}^{n+e}}(m)\right)=0$, i.e.

$$
H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(m)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(m)\right) \text { is surjective. }
$$

[Castelnuovo-Mumford regularity, version II]
Give a bound for m_{0} such that $\operatorname{reg}(X) \leq m_{0}$.

- Note that m-normality depends on the embedding of $X \subset \mathbb{P}^{n+e}$ but the vanishing $H^{i}\left(X, \mathcal{L}^{\otimes(m-1-i)}\right)=0$ is intrinsic.
- $\triangle(X, \mathcal{L})+1:=\mathcal{L}^{\operatorname{dim}(X)}+\operatorname{dim}(X)-h^{0}(X, \mathcal{L})+1 \leq d-e$ with equality when X is completely embedded in $\mathbb{P}\left(H^{0}(\mathcal{L})\right)$.

Regularity Conjecture

$X^{n} \subset \mathbb{P}^{n+e}:$ irreducible and reduced of codim e and degree d.
Regularity Conjecture(1984)

- $\operatorname{reg}(X) \leq d-e+1$ (Eisenbud-Goto conjecture) namely,
(1) X is $(d-e)$-normal, i.e. $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(d-e)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(d-e)\right)$
is surjective;
(2) $\operatorname{reg}_{H}\left(\mathcal{O}_{X}\right) \leq d-e$, i.e. $H^{i}\left(\mathcal{O}_{X}(d-e-i)\right)=0$ for all $i \geq 1$.
- $\operatorname{reg}(X) \leq d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

Regularity Conjecture

$X^{n} \subset \mathbb{P}^{n+e}:$ irreducible and reduced of codim e and degree d. Regularity Conjecture(1984)

- $\operatorname{reg}(X) \leq d-e+1$ (Eisenbud-Goto conjecture) namely,
(1) X is $(d-e)$-normal, i.e. $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(d-e)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(d-e)\right)$ is surjective;
(2) $\operatorname{reg}_{H}\left(\mathcal{O}_{X}\right) \leq d-e$, i.e. $H^{i}\left(\mathcal{O}_{X}(d-e-i)\right)=0$ for all $i \geq 1$.
- $\operatorname{reg}(X) \leq d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

Regularity Conjecture

$X^{n} \subset \mathbb{P}^{n+e}:$ irreducible and reduced of codim e and degree d. Regularity Conjecture(1984)

- $\operatorname{reg}(X) \leq d-e+1$ (Eisenbud-Goto conjecture) namely,
(1) X is $(d-e)$-normal, i.e. $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(d-e)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(d-e)\right)$ is surjective;
(2) $\operatorname{reg}_{H}\left(\mathcal{O}_{X}\right) \leq d-e$, i.e. $H^{i}\left(\mathcal{O}_{X}(d-e-i)\right)=0$ for all $i \geq 1$.
- $\operatorname{reg}(X) \leq d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

Regularity Conjecture

$X^{n} \subset \mathbb{P}^{n+e}:$ irreducible and reduced of codim e and degree d. Regularity Conjecture(1984)

- $\operatorname{reg}(X) \leq d-e+1$ (Eisenbud-Goto conjecture) namely,
(1) X is $(d-e)$-normal, i.e. $H^{0}\left(\mathcal{O}_{\mathbb{P}^{n+e}}(d-e)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}(d-e)\right)$ is surjective;
(2) $\operatorname{reg}_{H}\left(\mathcal{O}_{X}\right) \leq d-e$, i.e. $H^{i}\left(\mathcal{O}_{X}(d-e-i)\right)=0$ for all $i \geq 1$.
- $\operatorname{reg}(X) \leq d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

Theorem (Castelnuovo 1893)
Let $C \subset \mathbb{P}^{3}$ be a non-degenerate smooth projective curve of degree d. Then $\operatorname{reg}(C) \leq d-1$.

```
Theorem (Gruson-Lazarsfeld-Peskine 1983)
Let C \subset \mathbb{Pr}}\mathrm{ be a projective curve (not necessarily smooth) of degree d
and codimension e.
```

- $\operatorname{reg}(C) \leq d-e+1$.
- the equality holds $\Leftrightarrow C \subset \mathbb{P}^{r}$ is a plane curve, an elliptic normal curve, a rational normal curve, a rational curve with $d=e+2$, or a smooth rational curve having a

Theorem (Castelnuovo 1893)
Let $C \subset \mathbb{P}^{3}$ be a non-degenerate smooth projective curve of degree d. Then $\operatorname{reg}(C) \leq d-1$.

Theorem (Gruson-Lazarsfeld-Peskine 1983)

Let $C \subset \mathbb{P}^{r}$ be a projective curve (not necessarily smooth) of degree d and codimension e.

- $\operatorname{reg}(C) \leq d-e+1$.
- the equality holds $\Leftrightarrow C \subset \mathbb{P}^{r}$ is a plane curve, an elliptic normal curve, a rational normal curve, a rational curve with $d=e+2$, or a smooth rational curve having a ($d-e+1$)-secant line.

Theorem (Castelnuovo 1893)
Let $C \subset \mathbb{P}^{3}$ be a non-degenerate smooth projective curve of degree d. Then $\operatorname{reg}(C) \leq d-1$.

Theorem (Gruson-Lazarsfeld-Peskine 1983)

Let $C \subset \mathbb{P}^{r}$ be a projective curve (not necessarily smooth) of degree d and codimension e.

- $\operatorname{reg}(C) \leq d-e+1$.
- the equality holds $\Leftrightarrow C \subset \mathbb{P}^{r}$ is a plane curve, an elliptic normal curve, a rational normal curve, a rational curve with $d=e+2$, or a smooth rational curve having a ($d-e+1$)-secant line.

In higher dimensional cases, we only have partial results. Assume that X is smooth.
(1) (Pinkham, Lazarsfeld) If $n=2$, then $\operatorname{reg}(X) \leq d-e+1$.
(2) (K-) If $n=3$, then $\operatorname{reg}(X) \leq(d-e+1)+1$
(3) (Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $\operatorname{reg}(X) \leq \min \{e, n+1\}(d-1)-n+1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next
to extremal cases.

In higher dimensional cases, we only have partial results. Assume that X is smooth.
(1) (Pinkham, Lazarsfeld) If $n=2$, then $\operatorname{reg}(X) \leq d-e+1$.
(2) (K-) If $n=3$, then $\operatorname{reg}(X) \leq(d-e+1)+1$.
© (Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $\operatorname{reg}(X) \leq \min \{e, n+1\}(d-1)-n+1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next
to extremal cases.

In higher dimensional cases, we only have partial results. Assume that X is smooth.
(1) (Pinkham, Lazarsfeld) If $n=2$, then $\operatorname{reg}(X) \leq d-e+1$.
(2) (K-) If $n=3$, then $\operatorname{reg}(X) \leq(d-e+1)+1$.
(3) (Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $\operatorname{reg}(X) \leq \min \{e, n+1\}(d-1)-n+1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next to extremal cases.

In higher dimensional cases, we only have partial results. Assume that X is smooth.
(1) (Pinkham, Lazarsfeld) If $n=2$, then $\operatorname{reg}(X) \leq d-e+1$.
(3) (K-) If $n=3$, then $\operatorname{reg}(X) \leq(d-e+1)+1$.
(3) (Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $\operatorname{reg}(X) \leq \min \{e, n+1\}(d-1)-n+1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next to extremal cases.

Remark

Lemma

Let $X^{n} \subset \mathbb{P}^{n+e}$ be a projective variety of dimension $n \geq 2$, and let $Y \subseteq \mathbb{P}^{n+e-1}$ be a general hyperplane section.

- If $Y \subseteq \mathbb{P}^{n+e-1}$ is k-normal for $k \geq k_{0}$, then $H^{1}\left(X, \mathcal{O}_{X}(k)\right)=0$ for $k \geq k_{0}-1$;
- For $i \geq 2, H^{i-1}\left(Y, \mathcal{O}_{Y}(k)\right)=0$ for $k \geq k_{0}$, then $H^{i}\left(X, \mathcal{O}_{X}(k)\right)=0$ for $k \geq k_{0}-1$.
- In particular, $\operatorname{reg}(Y) \leq k_{0}$ implies $\operatorname{reg}\left(\mathcal{O}_{X}\right) \leq k_{0}-1$.
- Therefore, for a singular surface $X, \operatorname{reg}\left(\mathcal{O}_{X}\right) \leq d-e$.
- For any threefold X with at worst finite singular points, $\operatorname{reg}\left(\mathcal{O}_{X}\right) \leq d-e$.

Mysterious dichotomy between smooth varieties and singular varieties. Positive results for smooth cases

- variants of Kodaira vanishing theorem.
- projection methods with the locus of multisecant lines.
- The fact that the base locus of the double point divisor is empty or at worst finite plays a crucial role to guarantee the semi-ampleness of the double point divisors (Zariski-Fujita theorem).
- McCullough-Peeva constructed counterexamples to regularity conjecture. Starting from a projective subscheme with bad regularity, they could' construct the prime ideal'(via step-by step homogenization process with Rees-like algebra) whose regularity is almost same.

Mysterious dichotomy between smooth varieties and singular varieties. Positive results for smooth cases

- variants of Kodaira vanishing theorem.
- projection methods with the locus of multisecant lines.
- The fact that the base locus of the double point divisor is empty or at worst finite plays a crucial role to guarantee the semi-ampleness of the double point divisors (Zariski-Fujita theorem).
Negative results for singular cases
- McCullough-Peeva constructed counterexamples to regularity conjecture. Starting from a projective subscheme with bad regularity, they could construct the prime ideal(via step-by step homogenization process with Rees-like algebra) whose regularity is almost same.
- Furthermore, there is no polynomial bound in degree on regularity.

Threefolds in \mathbb{P}^{5}

This is the first nontrivial case on regularity for smooth threefolds and also the nontrivial case for \mathcal{O}_{X}-regularity for singular threefolds.

- (K-, 1998) Let X be a smooth threefold in \mathbb{P}^{5}. Then
- X is m-normal for all $m \geq d-4$;
- $\operatorname{reg}(X) \leq d-1$ because of Lazarsfeld method with the following facts: Zak's linearly normality theorem, $h^{1}\left(\mathcal{O}_{X}\right)=0$ (Barth Theorem) and the locus of 5 -secant lines is 4-dimensional due to Z . Ran's (dimension +2)-secant lemma.

Threefolds in \mathbb{P}^{5}

This is the first nontrivial case on regularity for smooth threefolds and also the nontrivial case for \mathcal{O}_{X}-regularity for singular threefolds.

- (K-, 1998) Let X be a smooth threefold in \mathbb{P}^{5}. Then
- X is m-normal for all $m \geq d-4$;
- $\operatorname{reg}(X) \leq d-1$ because of Lazarsfeld method with the following facts: Zak's linearly normality theorem, $h^{1}\left(\mathcal{O}_{X}\right)=0$ (Barth Theorem) and the locus of 5 -secant lines is 4-dimensional due to Z . Ran's (dimension +2)-secant lemma.
- (MP, 2018) constructed a singular threefold $X \subset \mathbb{P}^{5}$ with $\operatorname{dim} \operatorname{Sing}(X)=1$ such that $I_{X}=\left(f_{1}, f_{2}, \ldots, f_{19}\right), 7 \leq \operatorname{deg}\left(f_{i}\right) \leq 105$, $\operatorname{deg}(X)=94<\operatorname{reg}(X)=105, \operatorname{reg}\left(\mathcal{O}_{X}\right)=39$. More precisely, $h^{1}\left(\mathcal{I}_{X}(104)\right)=0$ but, $h^{1}\left(\mathcal{I}_{X}(103)\right) \neq 0$. Note that X is a linear section of $Y^{6} \subset \mathbb{P}^{8}$ whose depth is 4 and $\operatorname{soreg}(X)=\operatorname{reg}(Y)$.

Positive results

Proposition (Birational double point formula)
Let $\varphi: V^{n} \rightarrow M^{n+1}$ be a morphism of smooth projective varieties such that $\varphi: V \rightarrow W:=\varphi(V) \subset M$ is birational.
Then, ${ }^{*}\left(K_{M}+W\right)-K_{V} \sim D-E$ where D and E are effective divisors
on V such that E is φ-exceptional. Moreover, if φ is isomorphic at
$x \in V$, then $x \notin \operatorname{Supp}(D-E)$.
Proof see Lemma 10.2.8(Positivity in Algebraic Geometry II).

Positive results

Proposition (Birational double point formula)
Let $\varphi: V^{n} \rightarrow M^{n+1}$ be a morphism of smooth projective varieties such that $\varphi: V \rightarrow W:=\varphi(V) \subset M$ is birational.
Then, $\varphi^{*}\left(K_{M}+W\right)-K_{V} \sim D-E$ where D and E are effective divisors on V such that E is φ-exceptional. Moreover, if φ is isomorphic at $x \in V$, then $x \notin \operatorname{Supp}(D-E)$.

Proof. see Lemma 10.2.8(Positivity in Algebraic Geometry II).

Positive results

Proposition (Birational double point formula)
Let $\varphi: V^{n} \rightarrow M^{n+1}$ be a morphism of smooth projective varieties such that $\varphi: V \rightarrow W:=\varphi(V) \subset M$ is birational.
Then, $\varphi^{*}\left(K_{M}+W\right)-K_{V} \sim D-E$ where D and E are effective divisors on V such that E is φ-exceptional. Moreover, if φ is isomorphic at $x \in V$, then $x \notin \operatorname{Supp}(D-E)$.

Proof. see Lemma 10.2.8(Positivity in Algebraic Geometry II).

Double point divisors from inner projections

Let $x_{1}, \ldots, x_{e-1} \in X$ be general points, and let $\Lambda:=\left\langle x_{1}, \ldots, x_{e-1}\right\rangle$.
Consider the inner projection at Λ and the blow-up X of X at x_{1}, \ldots, x_{e-1} with the following diagram:

From the morphism $\tilde{\pi}: \widetilde{X} \rightarrow \bar{X}_{\wedge} \subset \mathbb{P}^{n+1}$ and $\operatorname{deg}\left(\bar{X}_{\Lambda}\right)=d-(e-1)$, the birational double point formula implies that

$$
\widetilde{\pi}^{*}\left(K_{\mathbb{P}}{ }^{n+1}+\bar{X}_{\Lambda}\right)-K_{\tilde{X}}=(d-n-e-1) \widetilde{H}-K_{\tilde{X}} \sim D(\widetilde{\pi})-\widetilde{E} .
$$

Double point divisors from inner projections

Let $x_{1}, \ldots, x_{e-1} \in X$ be general points, and let $\Lambda:=\left\langle x_{1}, \ldots, x_{e-1}\right\rangle$. Consider the inner projection at Λ and the blow-up \widetilde{X} of X at x_{1}, \ldots, x_{e-1} with the following diagram:

From the morphism $\tilde{\pi}: \widetilde{X} \rightarrow \bar{X}_{\wedge} \subset \mathbb{P}^{n+1}$ and $\operatorname{deg}\left(\bar{X}_{\wedge}\right)=d-(e-1)$, the birational double point formula implies that

$$
\tilde{\pi}^{*}\left(K_{\mathbb{P} n+1}+\bar{X}_{\Lambda}\right)-K_{\tilde{X}}=(d-n-e-1) \widetilde{H}-K_{\tilde{X}} \sim D(\widetilde{\pi})-\widetilde{E} .
$$

Double point divisors from inner projections

Let $x_{1}, \ldots, x_{e-1} \in X$ be general points, and let $\Lambda:=\left\langle x_{1}, \ldots, x_{e-1}\right\rangle$. Consider the inner projection at Λ and the blow-up \widetilde{X} of X at x_{1}, \ldots, x_{e-1} with the following diagram:

From the morphism $\tilde{\pi}: \widetilde{X} \rightarrow \bar{X}_{\wedge} \subset \mathbb{P}^{n+1}$ and $\operatorname{deg}\left(\bar{X}_{\wedge}\right)=d-(e-1)$, the birational double point formula implies that

$$
\tilde{\pi}^{*}\left(K_{\mathbb{P} n+1}+\bar{X}_{\Lambda}\right)-K_{\tilde{X}}=(d-n-e-1) \widetilde{H}-K_{\tilde{X}} \sim D(\widetilde{\pi})-\widetilde{E} .
$$

If we assume $\widetilde{E}=\emptyset$, then, the non-isomorphic double point locus $D(\widetilde{\pi})$ of $\widetilde{\pi}$ is equivalent to $(d-n-e-1) \widetilde{H}-K_{\tilde{X}}$.
$D(\pi):=\sigma\left(D(\tilde{\pi})|\tilde{x}| E_{1} \cup \ldots \cup E_{e-1}\right)$ which is called the double point divisor from inner projection π_{Λ} and linearly equivalent to $B_{i n n}:=(d-n-e-1) H-K_{X}$.

Proposition (Noma)

- Suppose that X is not a scroll over a smooth projective curve, the Veronese surface in \mathbb{P}^{5}, or a Roth variety. Then, $B_{\text {inn }}$ is semiample. - $\operatorname{reg}_{H}\left(\mathrm{O}_{x}\right) \leq d-e$ unless X is a scroll over a curve.

Remark that b.p.f. implies "semiample" which also implies nefness. The base locus of $B_{\text {inn }}$ is contained in the non-birational locus $C(X):=\left\{X \in X \mid \pi_{X}: X \rightarrow \mathbb{P}^{n+e-1}\right.$ is non birational $\}$ which is finite. So, Fujita-Zariski Theorem guarantee the semiampleness.

If we assume $\widetilde{E}=\emptyset$, then, the non-isomorphic double point locus $D(\widetilde{\pi})$ of $\widetilde{\pi}$ is equivalent to $(d-n-e-1) \widetilde{H}-K_{\tilde{\chi}}$. Define $D(\pi):=\overline{\sigma\left(\left.D(\widetilde{\pi})\right|_{\left.\tilde{X} \backslash E_{1} \cup \ldots \cup E_{e-1}\right)}\right)}$ which is called the double point divisor from inner projection π_{Λ} and linearly equivalent to
$B_{i n n}:=(d-n-e-1) H-K_{X}$.

Proposition (Noma)

- Suppose that X is not a scroll over a smooth projective curve, the Veronese surface in \mathbb{P}^{5}, or a Roth variety. Then, $B_{\text {inn }}$ is semiample.
- $\operatorname{reg}_{H}\left(\mathcal{O}_{X}\right) \leq d-e$ unless X is a scroll over a curve.
\square

If we assume $\widetilde{E}=\emptyset$, then, the non-isomorphic double point locus $D(\widetilde{\pi})$ of $\widetilde{\pi}$ is equivalent to $(d-n-e-1) \widetilde{H}-K_{\tilde{\chi}}$. Define $D(\pi):=\overline{\sigma\left(\left.D(\tilde{\pi})\right|_{\left.\tilde{X} \backslash E_{1} \cup \ldots \cup E_{e-1}\right)}\right)}$ which is called the double point divisor from inner projection π_{\wedge} and linearly equivalent to
$B_{i n n}:=(d-n-e-1) H-K_{X}$.

Proposition (Noma)

- Suppose that X is not a scroll over a smooth projective curve, the Veronese surface in \mathbb{P}^{5}, or a Roth variety. Then, $B_{\text {inn }}$ is semiample.
- $\operatorname{reg}_{H}\left(\mathcal{O}_{X}\right) \leq d-e$ unless X is a scroll over a curve.

Remark that b.p.f. implies "semiample" which also implies nefness. The base locus of $B_{\text {inn }}$ is contained in the non-birational locus $\mathcal{C}(X):=\left\{x \in X \mid \pi_{X}: X \rightarrow \mathbb{P}^{n+e-1}\right.$ is non birational $\}$ which is finite. So, Fujita-Zariski Theorem guarantee the semiampleness.

So, the double point dvisor $B_{i n n}=(d-n-e-1) H-K_{X}$ is nef. On the other hand,

$$
(d-e-i) H=K_{X}+(n+1-i) H+B_{i n n} .
$$

Thus, Kodaira vanishing give a proof of $\operatorname{reg}\left(\mathcal{O}_{X}\right) \leq d-e$. We have the following (jointly with J. Park, to appear):

Proposition

Let $X \subseteq \mathbb{P}^{r}$ be a non-degenerate scroll of degree d and codimension e over a smooth projective curve of genus g. Suppose that $n=\operatorname{dim}(X) \geq 2$. Then we have the following:
(1) If $g=0$, then $\operatorname{reg}\left(\mathcal{O}_{X}\right)=1$.
(2) If $g=1$, then $\operatorname{reg}\left(\mathcal{O}_{X}\right)=2$.
(3) If $g \geq 2$, then $\operatorname{reg}\left(\mathcal{O}_{x}\right) \leq d-e-2$.

Theorem

Let $X \subseteq \mathbb{P}^{r}$ be a non-degenerate smooth projective variety of degree d and codimension e. Then we have the upper bound and classification of boundary cases(jointly with J. Park, to appear):
(1) $\operatorname{reg}\left(\mathcal{O}_{X}\right) \leq d-e$.
(2) $\operatorname{reg}\left(\mathcal{O}_{X}\right)=d-e$ if and only if $X \subseteq \mathbb{P}^{r}$ is a hypersurface or a linearly normal variety with $d=e+1$ or $e+2$.
(3) $\operatorname{reg}\left(\mathcal{O}_{X}\right)=d-e-1$ if and only if $X \subseteq \mathbb{P}^{r}$ is an isomorphic projection of a projective variety in (a) at one point, a linearly normal variety with $d=e+3$ and $e \geq 2$, or a complete intersection of type $(2,3)$.

- Thank you very much for your concern!

