Recent progress on regularity problem due to Castelnuovo-Mumford-Eisenbud-Goto

> Sijong, Kwak (joint with Jinhyung Park)

Department of Mathematical Sciences Korea Advanced Institute of Science and Technology (KAIST)

Inaugural France-Korea Conference, Bordeaux France November 24-27, 2019

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Introduction
- Regularity conjecture and known results
- \mathcal{O}_X -regularity conjecture: smooth cases and singular cases
 - Double point divisors for smooth cases
 - Counterexamples due to J. McCullough-I. Peeva (2018)
- Boundary cases of \mathcal{O}_X -regularity for smooth varieties

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- X : a projective (not necessary smooth) variety defined over an algebraically closed field k with char(k) = 0.
- \mathcal{L} : a very ample line bundle on X.
- For a polarized pair (X, \mathcal{L}) , Serre vanishing theorem implies that

 $H^{i}(X,\mathcal{L}^{\otimes m})=0,\forall i\geq 1,m>>0.$

Question: What is the effective lower bound $m_0(X, \mathcal{L})$ such that $H^i(X, \mathcal{L}^{\otimes m}) = 0, \forall i \ge 1, m \ge m_0(X, \mathcal{L})$?

• (Forklore conjecture) $m_0(X, \mathcal{L})$ is (the delta genus of $\mathcal{L}) + 1$, i.e.

 $m_0(X,\mathcal{L}) = \triangle(X,\mathcal{L}) + 1 := \mathcal{L}^{\dim(X)} + \dim(X) - h^0(X,\mathcal{L}) + 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- X : a projective (not necessary smooth) variety defined over an algebraically closed field k with char(k) = 0.
- \mathcal{L} : a very ample line bundle on X.
- For a polarized pair (X, \mathcal{L}) , Serre vanishing theorem implies that

$$H^{i}(X,\mathcal{L}^{\otimes m})=0,\forall i\geq 1,m>>0.$$

Question: What is the effective lower bound $m_0(X, \mathcal{L})$ such that $H^i(X, \mathcal{L}^{\otimes m}) = 0, \forall i \geq 1, m \geq m_0(X, \mathcal{L})$?

• (Forklore conjecture) $m_0(X, \mathcal{L})$ is (the delta genus of $\mathcal{L}) + 1$, i.e.

 $m_0(X,\mathcal{L}) = \triangle(X,\mathcal{L}) + 1 := \mathcal{L}^{\dim(X)} + \dim(X) - h^0(X,\mathcal{L}) + 1.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- X : a projective (not necessary smooth) variety defined over an algebraically closed field k with char(k) = 0.
- \mathcal{L} : a very ample line bundle on X.
- For a polarized pair (X, \mathcal{L}) , Serre vanishing theorem implies that

$$H^{i}(X,\mathcal{L}^{\otimes m})=0,\forall i\geq 1,m>>0.$$

Question: What is the effective lower bound $m_0(X, \mathcal{L})$ such that $H^i(X, \mathcal{L}^{\otimes m}) = 0, \forall i \geq 1, m \geq m_0(X, \mathcal{L})$?

• (Forklore conjecture) $m_0(X, \mathcal{L})$ is (the delta genus of \mathcal{L}) + 1, i.e.

$$m_0(X,\mathcal{L}) = \triangle(X,\mathcal{L}) + 1 := \mathcal{L}^{\dim(X)} + \dim(X) - h^0(X,\mathcal{L}) + 1.$$

イロト 不得 トイヨト イヨト ヨー ろくの

• Since \mathcal{L} is very ample, X can be embedded in a projective space $\mathbb{P}(H^0(\mathcal{L}))$ and $\mathcal{L} \simeq \mathcal{O}_X(H)$ where H is a hyperplane section divisor. Thus, letting $d := \deg(X) = \mathcal{L}^{\dim(X)}$ and $e = \operatorname{codim}(X, \mathbb{P}(H^0(\mathcal{L})))$,

$$riangle(X,\mathcal{L})+1:=\mathcal{L}^{\dim(X)}+\dim(X)-h^0(X,\mathcal{L})+1=d-e.$$

 This forklore conjecture is true for smooth varieties(Noma, J. Park-K), but many counterexamples has been found due to J. McCullough and I. Peeva (see a paper " Counterexamples to the Eisenbud-Goto regularity conjecture" JAMS, 31(2018), 473-496).

• Since \mathcal{L} is very ample, X can be embedded in a projective space $\mathbb{P}(H^0(\mathcal{L}))$ and $\mathcal{L} \simeq \mathcal{O}_X(H)$ where H is a hyperplane section divisor. Thus, letting $d := \deg(X) = \mathcal{L}^{\dim(X)}$ and $e = \operatorname{codim}(X, \mathbb{P}(H^0(\mathcal{L})))$,

$$\triangle(X,\mathcal{L})+1:=\mathcal{L}^{\dim(X)}+\dim(X)-h^0(X,\mathcal{L})+1=d-e.$$

 This forklore conjecture is true for smooth varieties(Noma, J. Park-K), but many counterexamples has been found due to J. McCullough and I. Peeva (see a paper " Counterexamples to the Eisenbud-Goto regularity conjecture" JAMS, 31(2018), 473-496).

- Let *L* be an ample and globally generated line bundle on *X*. A coherent sheaf *F* on *X* is *m*-regular with respect to *L* if *Hⁱ*(*X*, *F* ⊗ *L*^{⊗(*m*−*i*)}) = 0 for *i* ≥ 1.
- reg_L(F) is the minimum of m such that F is m-regular with respect to L. For example, reg(O_X) is the minimum m such that

$$\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid H^i(X, \mathcal{L}^{\otimes (m-i)}) = 0 \text{ for all } i \geq 1\}.$$

Mumford's Regularity Theorem

The *m*-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is (m+1)-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

- Let *L* be an ample and globally generated line bundle on *X*. A coherent sheaf *F* on *X* is *m*-regular with respect to *L* if *Hⁱ*(*X*, *F* ⊗ *L*^{⊗(*m*−*i*)}) = 0 for *i* ≥ 1.
- reg_L(F) is the minimum of *m* such that F is *m*-regular with respect to L. For example, reg(O_X) is the minimum *m* such that

$$\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid H^i(X, \mathcal{L}^{\otimes (m-i)}) = 0 \text{ for all } i \geq 1\}.$$

Mumford's Regularity Theorem

The *m*-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is (m+1)-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

- Let *L* be an ample and globally generated line bundle on *X*. A coherent sheaf *F* on *X* is *m*-regular with respect to *L* if *Hⁱ*(*X*, *F* ⊗ *L*^{⊗(*m*−*i*)}) = 0 for *i* ≥ 1.
- reg_L(F) is the minimum of *m* such that F is *m*-regular with respect to L. For example, reg(O_X) is the minimum *m* such that

$$\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid H^i(X, \mathcal{L}^{\otimes (m-i)}) = 0 \text{ for all } i \geq 1\}.$$

Mumford's Regularity Theorem

The *m*-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is (m+1)-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

イロト 不得 トイヨト イヨト ヨー ろくの

- Let *L* be an ample and globally generated line bundle on *X*. A coherent sheaf *F* on *X* is *m*-regular with respect to *L* if *Hⁱ*(*X*, *F* ⊗ *L*^{⊗(*m*−*i*)}) = 0 for *i* ≥ 1.
- reg_L(F) is the minimum of *m* such that F is *m*-regular with respect to L. For example, reg(O_X) is the minimum *m* such that

$$\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid H^i(X, \mathcal{L}^{\otimes (m-i)}) = 0 \text{ for all } i \geq 1\}.$$

Mumford's Regularity Theorem

The *m*-regularity of \mathcal{F} with respect to \mathcal{L} has nice properties as follows:

- \mathcal{F} is (m+1)-regular;
- $\mathcal{F} \otimes \mathcal{L}^{\otimes m}$ is generated by its global sections.

Definition

- X is called *m*-regular if the ideal sheaf \mathcal{I}_X is *m*-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_X(1)$, **equivalently** the following two conditions hold:
 - (Castelnuovo normality) $H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)) \twoheadrightarrow H^0(\mathcal{O}_X(m-1))$ is surjective, i.e. *X* is (m-1)-normal;
 - ② (\mathcal{O}_X -regularity) $H^i(\mathcal{O}_X(m-1-i) = H^i(\mathcal{L}^{\otimes (m-1-i)})) = 0$ for all *i* ≥ 1, i.e. \mathcal{O}_X is (m-1)-regular with respect to $\mathcal{L} \simeq \mathcal{O}_X(1)$.
- $reg(X) := min\{m \mid X \text{ is } m regular \}.$
- $\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid \mathcal{O}_X \text{ is } m \operatorname{regular}\}.$

Definition

- X is called *m*-regular if the ideal sheaf \mathcal{I}_X is *m*-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_X(1)$, **equivalently** the following two conditions hold:
 - (Castelnuovo normality) $H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)) \twoheadrightarrow H^0(\mathcal{O}_X(m-1))$ is surjective, i.e. X is (m-1)-normal;
 - ② (\mathcal{O}_X -regularity) $H^i(\mathcal{O}_X(m-1-i) = H^i(\mathcal{L}^{\otimes (m-1-i)})) = 0$ for all *i* ≥ 1, i.e. \mathcal{O}_X is (m-1)-regular with respect to $\mathcal{L} \simeq \mathcal{O}_X(1)$.
- reg(X):= min{ $m \mid X$ is m regular }.
- $\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid \mathcal{O}_X \text{ is } m \operatorname{regular}\}.$

Definition

- X is called *m*-regular if the ideal sheaf \mathcal{I}_X is *m*-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_X(1)$, **equivalently** the following two conditions hold:
 - (Castelnuovo normality) $H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)) \twoheadrightarrow H^0(\mathcal{O}_X(m-1))$ is surjective, i.e. X is (m-1)-normal;
 - ② (\mathcal{O}_X -regularity) $H^i(\mathcal{O}_X(m-1-i) = H^i(\mathcal{L}^{\otimes (m-1-i)})) = 0$ for all *i* ≥ 1, i.e. \mathcal{O}_X is (m-1)-regular with respect to $\mathcal{L} \simeq \mathcal{O}_X(1)$.
- $reg(X) := min\{m \mid X \text{ is } m regular \}.$

• $\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid \mathcal{O}_X \text{ is } m - \operatorname{regular}\}.$

Definition

- X is called *m*-regular if the ideal sheaf \mathcal{I}_X is *m*-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_X(1)$, **equivalently** the following two conditions hold:
 - (Castelnuovo normality) $H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)) \twoheadrightarrow H^0(\mathcal{O}_X(m-1))$ is surjective, i.e. X is (m-1)-normal;
 - ② (\mathcal{O}_X -regularity) $H^i(\mathcal{O}_X(m-1-i) = H^i(\mathcal{L}^{\otimes (m-1-i)})) = 0$ for all *i* ≥ 1, i.e. \mathcal{O}_X is (m-1)-regular with respect to $\mathcal{L} \simeq \mathcal{O}_X(1)$.
- $reg(X) := min\{m \mid X \text{ is } m regular \}.$
- $\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid \mathcal{O}_X \text{ is } m \operatorname{regular}\}.$

Definition

- X is called *m*-regular if the ideal sheaf \mathcal{I}_X is *m*-regular w.r.t. $\mathcal{L} \simeq \mathcal{O}_X(1)$, **equivalently** the following two conditions hold:
 - (Castelnuovo normality) $H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(m-1)) \twoheadrightarrow H^0(\mathcal{O}_X(m-1))$ is surjective, i.e. X is (m-1)-normal;
 - ② (\mathcal{O}_X -regularity) $H^i(\mathcal{O}_X(m-1-i) = H^i(\mathcal{L}^{\otimes (m-1-i)})) = 0$ for all *i* ≥ 1, i.e. \mathcal{O}_X is (m-1)-regular with respect to $\mathcal{L} \simeq \mathcal{O}_X(1)$.
- $reg(X) := min\{m \mid X \text{ is } m regular \}.$
- $\operatorname{reg}(\mathcal{O}_X) := \min\{m \mid \mathcal{O}_X \text{ is } m \operatorname{regular}\}.$

[Castelnuovo normality, version I]

Give a bound for m_0 in terms of deg(X), $\operatorname{codim}(X)$ such that for all $m \ge m_0$, $H^1(\mathbb{P}^{n+e}, \mathcal{I}_{X|\mathbb{P}^{n+e}}(m)) = 0$, i.e.

$H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(m)) \twoheadrightarrow H^0(\mathcal{O}_X(m))$ is surjective.

[Castelnuovo-Mumford regularity, version II] Give a bound for m_0 such that $reg(X) \le m_0$.

- Note that *m*-normality depends on the embedding of X ⊂ P^{n+e} but the vanishing Hⁱ(X, L^{⊗(m-1-i)}) = 0 is intrinsic.
- $\triangle(X, \mathcal{L}) + 1 := \mathcal{L}^{\dim(X)} + \dim(X) h^0(X, \mathcal{L}) + 1 \le d e$ with equality when X is completely embedded in $\mathbb{P}(H^0(\mathcal{L}))$.

[Castelnuovo normality, version I]

Give a bound for m_0 in terms of deg(X), $\operatorname{codim}(X)$ such that for all $m \ge m_0$, $H^1(\mathbb{P}^{n+e}, \mathcal{I}_{X|\mathbb{P}^{n+e}}(m)) = 0$, i.e.

 $H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(m)) \twoheadrightarrow H^0(\mathcal{O}_X(m))$ is surjective.

[Castelnuovo-Mumford regularity, version II] Give a bound for m_0 such that $reg(X) \le m_0$.

 Note that *m*-normality depends on the embedding of X ⊂ P^{n+e} but the vanishing Hⁱ(X, L^{⊗(m-1-i)}) = 0 is intrinsic.

• $\triangle(X, \mathcal{L}) + 1 := \mathcal{L}^{\dim(X)} + \dim(X) - h^0(X, \mathcal{L}) + 1 \le d - e$ with equality when X is completely embedded in $\mathbb{P}(H^0(\mathcal{L}))$.

- $reg(X) \le d e + 1$ (Eisenbud-Goto conjecture) namely,
 - 1 X is (d e)-normal, i.e. $H^0(\mathcal{O}_{\mathbb{P}^{n+e}}(d e)) \to H^0(\mathcal{O}_X(d e))$ is surjective;
 - (2) $\operatorname{reg}_{H}(\mathcal{O}_{X}) \leq d e$, i.e. $H^{i}(\mathcal{O}_{X}(d e i)) = 0$ for all $i \geq 1$.
- $reg(X) \le d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

- reg(X) ≤ d e + 1 (Eisenbud-Goto conjecture) namely,
 X is (d e)-normal, i.e. H⁰(O_{P^{n+e}}(d e)) → H⁰(O_X(d e)) is surjective;
 - 2 $\operatorname{reg}_{H}(\mathcal{O}_{X}) \leq d-e$, i.e. $H^{i}(\mathcal{O}_{X}(d-e-i)) = 0$ for all $i \geq 1$.
- $reg(X) \le d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

- reg(X) ≤ d e + 1 (Eisenbud-Goto conjecture) namely,
 X is (d e)-normal, i.e. H⁰(O_{P^{n+e}}(d e)) → H⁰(O_X(d e)) is surjective;
 - 2 $\operatorname{reg}_{H}(\mathcal{O}_{X}) \leq d-e$, i.e. $H^{i}(\mathcal{O}_{X}(d-e-i)) = 0$ for all $i \geq 1$.
- $reg(X) \le d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

イロト 不得 トイヨト イヨト ヨー ろくの

- reg(X) ≤ d e + 1 (Eisenbud-Goto conjecture) namely,
 X is (d e)-normal, i.e. H⁰(O_{P^{n+e}}(d e)) → H⁰(O_X(d e)) is surjective;
 - 2 $\operatorname{reg}_{H}(\mathcal{O}_{X}) \leq d-e$, i.e. $H^{i}(\mathcal{O}_{X}(d-e-i)) = 0$ for all $i \geq 1$.
- $reg(X) \le d$ (slightly weaker bound due to Bayer-Mumford).
- An interesting problem is to classify varieties of maximal regularity with geometric meanings.

イロト 不得 トイヨト イヨト ヨー ろくの

Theorem (Castelnuovo 1893)

Let $C \subset \mathbb{P}^3$ be a non-degenerate smooth projective curve of degree d. Then $reg(C) \leq d - 1$.

Theorem (Gruson-Lazarsfeld-Peskine 1983)

Let $C \subset \mathbb{P}^r$ be a projective curve (not necessarily smooth) of degree d and codimension e.

• $\operatorname{reg}(C) \leq d - e + 1$.

the equality holds ⇔ C ⊂ P^r is a plane curve, an elliptic normal curve, a rational normal curve, a rational curve with d = e + 2, or a smooth rational curve having a (d - e + 1)-secant line.

イロト 不得 トイヨト イヨト 二日

Theorem (Castelnuovo 1893)

Let $C \subset \mathbb{P}^3$ be a non-degenerate smooth projective curve of degree d. Then $reg(C) \leq d - 1$.

Theorem (Gruson-Lazarsfeld-Peskine 1983)

Let $C \subset \mathbb{P}^r$ be a projective curve (not necessarily smooth) of degree d and codimension e.

• $\operatorname{reg}(C) \leq d - e + 1$.

the equality holds ⇔ C ⊂ P^r is a plane curve, an elliptic normal curve, a rational normal curve, a rational curve with d = e + 2, or a smooth rational curve having a (d - e + 1)-secant line.

Theorem (Castelnuovo 1893)

Let $C \subset \mathbb{P}^3$ be a non-degenerate smooth projective curve of degree d. Then $reg(C) \leq d - 1$.

Theorem (Gruson-Lazarsfeld-Peskine 1983)

Let $C \subset \mathbb{P}^r$ be a projective curve (not necessarily smooth) of degree d and codimension e.

• $\operatorname{reg}(C) \leq d - e + 1$.

the equality holds ⇔ C ⊂ P^r is a plane curve, an elliptic normal curve, a rational normal curve, a rational curve with d = e + 2, or a smooth rational curve having a (d - e + 1)-secant line.

- (Pinkham, Lazarsfeld) If n = 2, then $reg(X) \le d e + 1$.
- 2 (K-) If n = 3, then $reg(X) \le (d e + 1) + 1$.

(Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $reg(X) \le min\{e, n+1\}(d-1) - n + 1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next to extremal cases.

- (Pinkham, Lazarsfeld) If n = 2, then $reg(X) \le d e + 1$.
- ② (K-) If n = 3, then reg(X) ≤ (d e + 1) + 1.

(Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $reg(X) \le min\{e, n+1\}(d-1) - n + 1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next to extremal cases.

- (Pinkham, Lazarsfeld) If n = 2, then $reg(X) \le d e + 1$.
- ② (K-) If n = 3, then reg(X) ≤ (d e + 1) + 1.

(Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $reg(X) \le min\{e, n+1\}(d-1) - n + 1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next to extremal cases.

- (Pinkham, Lazarsfeld) If n = 2, then $reg(X) \le d e + 1$.
- ② (K-) If n = 3, then reg(X) ≤ (d e + 1) + 1.
- (Mumford, Bertram-Ein-Lazarsfeld) In general, we only have $reg(X) \le min\{e, n+1\}(d-1) n + 1$.

There is no classification results for the extremal cases in higher dimensional cases. It is also an interesting problem to classify the next to extremal cases.

Remark

Lemma

Let $X^n \subset \mathbb{P}^{n+e}$ be a projective variety of dimension $n \ge 2$, and let $Y \subseteq \mathbb{P}^{n+e-1}$ be a general hyperplane section.

- If $Y \subseteq \mathbb{P}^{n+e-1}$ is k-normal for $k \ge k_0$, then $H^1(X, \mathcal{O}_X(k)) = 0$ for $k \ge k_0 1$;
- For $i \ge 2$, $H^{i-1}(Y, \mathcal{O}_Y(k)) = 0$ for $k \ge k_0$, then $H^i(X, \mathcal{O}_X(k)) = 0$ for $k \ge k_0 1$.
- In particular, $\operatorname{reg}(Y) \leq k_0$ implies $\operatorname{reg}(\mathcal{O}_X) \leq k_0 1$.
- Therefore, for a singular surface X, $reg(\mathcal{O}_X) \leq d e$.
- For any threefold X with at worst finite singular points, $\operatorname{reg}(\mathcal{O}_X) \leq d e$.

Mysterious dichotomy between smooth varieties and singular varieties. Positive results for smooth cases

- variants of Kodaira vanishing theorem.
- projection methods with the locus of multisecant lines.
- The fact that the base locus of the double point divisor is empty or at worst finite plays a crucial role to guarantee the semi-ampleness of the double point divisors (Zariski-Fujita theorem).

Negative results for singular cases

- McCullough-Peeva constructed counterexamples to regularity conjecture. Starting from a projective subscheme with bad regularity, they could construct the prime ideal(via step-by step homogenization process with Rees-like algebra) whose regularity is almost same.
- Furthermore, there is no polynomial bound in degree on regularity.

November 27, 2019 12 / 19

< ロ > < 同 > < 回 > < 回 >

Mysterious dichotomy between smooth varieties and singular varieties. Positive results for smooth cases

- variants of Kodaira vanishing theorem.
- projection methods with the locus of multisecant lines.
- The fact that the base locus of the double point divisor is empty or at worst finite plays a crucial role to guarantee the semi-ampleness of the double point divisors (Zariski-Fujita theorem).

Negative results for singular cases

- McCullough-Peeva constructed counterexamples to regularity conjecture. Starting from a projective subscheme with bad regularity, they could construct the prime ideal(via step-by step homogenization process with Rees-like algebra) whose regularity is almost same.
- Furthermore, there is no polynomial bound in degree on regularity.

A D M A A A M M

Threefolds in **P**⁵

This is the first nontrivial case on regularity for smooth threefolds and also the nontrivial case for \mathcal{O}_X -regularity for singular threefolds.

- (K-, 1998) Let X be a smooth threefold in \mathbb{P}^5 . Then
 - X is m-normal for all $m \ge d 4$;
 - $\operatorname{reg}(X) \leq d 1$ because of Lazarsfeld method with the following facts: Zak's linearly normality theorem, $h^1(\mathcal{O}_X) = 0$ (Barth Theorem) and the locus of 5-secant lines is 4-dimensional due to Z. Ran's (dimension +2)-secant lemma.
- (MP, 2018) constructed a singular threefold $X \subset \mathbb{P}^5$ with dim Sing(X) = 1 such that $I_X = (f_1, f_2, ..., f_{19}), 7 \leq \deg(f_i) \leq 105$, $\deg(X) = 94 < \operatorname{reg}(X) = 105$, $\operatorname{reg}(\mathcal{O}_X) = 39$. More precisely, $h^1(\mathcal{I}_X(104)) = 0$ but, $h^1(\mathcal{I}_X(103)) \neq 0$. Note that X is a linear section of $Y^6 \subset \mathbb{P}^8$ whose depth is 4 and so $\operatorname{reg}(X) = \operatorname{reg}(Y)$.

Threefolds in ℙ⁵

This is the first nontrivial case on regularity for smooth threefolds and also the nontrivial case for \mathcal{O}_X -regularity for singular threefolds.

- (K-, 1998) Let X be a smooth threefold in \mathbb{P}^5 . Then
 - X is m-normal for all $m \ge d 4$;
 - $\operatorname{reg}(X) \leq d 1$ because of Lazarsfeld method with the following facts: Zak's linearly normality theorem, $h^1(\mathcal{O}_X) = 0$ (Barth Theorem) and the locus of 5-secant lines is 4-dimensional due to Z. Ran's (dimension +2)-secant lemma.

• (MP, 2018) constructed a singular threefold $X \subset \mathbb{P}^5$ with dim Sing(X) = 1 such that $I_X = (f_1, f_2, ..., f_{19}), 7 \leq deg(f_i) \leq 105$, $deg(X) = 94 < reg(X) = 105, reg(\mathcal{O}_X) = 39$. More precisely, $h^1(\mathcal{I}_X(104)) = 0$ but, $h^1(\mathcal{I}_X(103)) \neq 0$. Note that X is a linear section of $Y^6 \subset \mathbb{P}^8$ whose depth is 4 and so reg(X) = reg(Y).

Proposition (Birational double point formula)

Let $\varphi \colon V^n \to M^{n+1}$ be a morphism of smooth projective varieties such that $\varphi \colon V \twoheadrightarrow W := \varphi(V) \subset M$ is birational.

Then, $\varphi^*(K_M + W) - K_V \sim D - E$ where *D* and *E* are effective divisors on *V* such that *E* is φ -exceptional. Moreover, if φ is isomorphic at $x \in V$, then $x \notin \text{Supp}(D - E)$.

Proof. see Lemma 10.2.8(Positivity in Algebraic Geometry II).

Proposition (Birational double point formula)

Let $\varphi \colon V^n \to M^{n+1}$ be a morphism of smooth projective varieties such that $\varphi \colon V \twoheadrightarrow W := \varphi(V) \subset M$ is birational.

Then, $\varphi^*(K_M + W) - K_V \sim D - E$ where *D* and *E* are effective divisors on *V* such that *E* is φ -exceptional. Moreover, if φ is isomorphic at $x \in V$, then $x \notin \text{Supp}(D - E)$.

Proof. see Lemma 10.2.8(Positivity in Algebraic Geometry II).

Proposition (Birational double point formula)

Let $\varphi \colon V^n \to M^{n+1}$ be a morphism of smooth projective varieties such that $\varphi \colon V \twoheadrightarrow W := \varphi(V) \subset M$ is birational.

Then, $\varphi^*(K_M + W) - K_V \sim D - E$ where *D* and *E* are effective divisors on *V* such that *E* is φ -exceptional. Moreover, if φ is isomorphic at $x \in V$, then $x \notin \text{Supp}(D - E)$.

Proof. see Lemma 10.2.8(Positivity in Algebraic Geometry II).

Double point divisors from inner projections

Let $x_1, \ldots, x_{e-1} \in X$ be general points, and let $\Lambda := \langle x_1, \ldots, x_{e-1} \rangle$. Consider the inner projection at Λ and the blow-up \widetilde{X} of X at x_1, \ldots, x_{e-1} with the following diagram:

From the morphism $\tilde{\pi} : \tilde{X} \to \overline{X}_{\Lambda} \subset \mathbb{P}^{n+1}$ and $\deg(\overline{X}_{\Lambda}) = d - (e - 1)$, the birational double point formula implies that

 $\widetilde{\pi}^*(K_{\mathbb{P}^{n+1}}+\overline{X}_{\Lambda})-K_{\widetilde{X}}=(d-n-e-1)\widetilde{H}-K_{\widetilde{X}}\sim D(\widetilde{\pi})-\widetilde{E}.$

Sijong Kwak (KAIST)

Recent progress on regularity problem

November 27, 2019 15 / 19

Double point divisors from inner projections

Let $x_1, \ldots, x_{e-1} \in X$ be general points, and let $\Lambda := \langle x_1, \ldots, x_{e-1} \rangle$. Consider the inner projection at Λ and the blow-up \widetilde{X} of X at x_1, \ldots, x_{e-1} with the following diagram:

From the morphism $\tilde{\pi} : \tilde{X} \twoheadrightarrow \overline{X}_{\Lambda} \subset \mathbb{P}^{n+1}$ and $\deg(\overline{X}_{\Lambda}) = d - (e - 1)$, the birational double point formula implies that

$$\widetilde{\pi}^*(K_{\mathbb{P}^{n+1}}+\overline{X}_{\Lambda})-K_{\widetilde{X}}=(d-n-e-1)\widetilde{H}-K_{\widetilde{X}}\sim D(\widetilde{\pi})-\widetilde{E}.$$

イロト 不得 トイヨト イヨト ヨー ろくの

Double point divisors from inner projections

Let $x_1, \ldots, x_{e-1} \in X$ be general points, and let $\Lambda := \langle x_1, \ldots, x_{e-1} \rangle$. Consider the inner projection at Λ and the blow-up \widetilde{X} of X at x_1, \ldots, x_{e-1} with the following diagram:

From the morphism $\tilde{\pi} : \tilde{X} \twoheadrightarrow \overline{X}_{\Lambda} \subset \mathbb{P}^{n+1}$ and $\deg(\overline{X}_{\Lambda}) = d - (e - 1)$, the birational double point formula implies that

$$\widetilde{\pi}^*(K_{\mathbb{P}^{n+1}}+\overline{X}_{\Lambda})-K_{\widetilde{X}}=(d-n-e-1)\widetilde{H}-K_{\widetilde{X}}\sim D(\widetilde{\pi})-\widetilde{E}.$$

イロト 不得 トイヨト イヨト ヨー ろくの

If we assume $\widetilde{E} = \emptyset$, then, the non-isomorphic double point locus $D(\widetilde{\pi})$ of $\widetilde{\pi}$ is equivalent to $(d - n - e - 1)\widetilde{H} - K_{\widetilde{X}}$. Define

 $D(\pi) := \overline{\sigma(D(\widetilde{\pi})|_{\widetilde{X} \setminus E_1 \cup \cdots \cup E_{e-1}})}$ which is called the double point divisor from inner projection π_{Λ} and linearly equivalent to $B_{inn} := (d - n - e - 1)H - K_X.$

Proposition (Noma)

- Suppose that X is not a scroll over a smooth projective curve, the Veronese surface in P⁵, or a Roth variety. Then, B_{inn} is semiample.
- $\operatorname{reg}_{H}(\mathcal{O}_{X}) \leq d e$ unless X is a scroll over a curve.

Remark that b.p.f. implies "semiample" which also implies nefness. The base locus of B_{inn} is contained in the non-birational locus $C(X) := \{x \in X \mid \pi_x : X \to \mathbb{P}^{n+e-1} \text{ is non birational}\}$ which is finite. So, Fujita-Zariski Theorem guarantee the semiampleness.

If we assume $\widetilde{E} = \emptyset$, then, the non-isomorphic double point locus $D(\widetilde{\pi})$ of $\widetilde{\pi}$ is equivalent to $(d - n - e - 1)\widetilde{H} - K_{\widetilde{X}}$. Define $D(\pi) := \overline{\sigma(D(\widetilde{\pi})|_{\widetilde{X} \setminus E_1 \cup \cdots \cup E_{e-1}})}$ which is called the double point divisor from inner projection π_{Λ} and linearly equivalent to $B_{inn} := (d - n - e - 1)H - K_X$.

Proposition (Noma)

- Suppose that X is not a scroll over a smooth projective curve, the Veronese surface in P⁵, or a Roth variety. Then, B_{inn} is semiample.
- $\operatorname{reg}_{H}(\mathcal{O}_{X}) \leq d e$ unless X is a scroll over a curve.

Remark that b.p.f. implies "semiample" which also implies nefness. The base locus of B_{inn} is contained in the non-birational locus $C(X) := \{x \in X \mid \pi_x : X \to \mathbb{P}^{n+e-1} \text{ is non birational}\}$ which is finite. So, Fujita-Zariski Theorem guarantee the semiampleness.

If we assume $\widetilde{E} = \emptyset$, then, the non-isomorphic double point locus $D(\widetilde{\pi})$ of $\widetilde{\pi}$ is equivalent to $(d - n - e - 1)\widetilde{H} - K_{\widetilde{\chi}}$. Define $D(\pi) := \overline{\sigma(D(\widetilde{\pi})|_{\widetilde{\chi} \setminus E_1 \cup \cdots \cup E_{e-1}})}$ which is called the double point divisor from inner projection π_{Λ} and linearly equivalent to $B_{inn} := (d - n - e - 1)H - K_X$.

Proposition (Noma)

- Suppose that X is not a scroll over a smooth projective curve, the Veronese surface in P⁵, or a Roth variety. Then, B_{inn} is semiample.
- $\operatorname{reg}_{H}(\mathcal{O}_{X}) \leq d e$ unless X is a scroll over a curve.

Remark that b.p.f. implies "semiample" which also implies nefness. The base locus of B_{inn} is contained in the non-birational locus $C(X) := \{x \in X \mid \pi_x : X \to \mathbb{P}^{n+e-1} \text{ is non birational}\}$ which is finite. So, Fujita-Zariski Theorem guarantee the semiampleness.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

So, the double point dvisor $B_{inn} = (d - n - e - 1)H - K_X$ is nef. On the other hand,

$$(d-e-i)H = K_X + (n+1-i)H + B_{inn}.$$

Thus, Kodaira vanishing give a proof of $reg(\mathcal{O}_X) \leq d - e$. We have the following (jointly with J. Park, to appear):

Proposition

Let $X \subseteq \mathbb{P}^r$ be a non-degenerate scroll of degree d and codimension e over a smooth projective curve of genus g. Suppose that $n = \dim(X) \ge 2$. Then we have the following:

1 If
$$g = 0$$
, then $reg(O_X) = 1$.

2 If
$$g = 1$$
, then $reg(O_X) = 2$.

3 If
$$g \ge 2$$
, then $\operatorname{reg}(\mathcal{O}_X) \le d - e - 2$.

4 D K 4 B K 4 B K 4 B K

Theorem

Let $X \subseteq \mathbb{P}^r$ be a non-degenerate smooth projective variety of degree d and codimension e. Then we have the upper bound and classification of boundary cases(jointly with J. Park, to appear):

•
$$\operatorname{reg}(\mathcal{O}_X) \leq d - e$$
.

② $reg(\mathcal{O}_X) = d - e$ if and only if $X \subseteq \mathbb{P}^r$ is a hypersurface or a linearly normal variety with d = e + 1 or e + 2.

^S reg(\mathcal{O}_X) = d − e − 1 if and only if $X \subseteq \mathbb{P}^r$ is an isomorphic projection of a projective variety in (a) at one point, a linearly normal variety with d = e + 3 and e ≥ 2, or a complete intersection of type (2,3).

くロン 不通 とくほ とくほ とうほう

• Thank you very much for your concern!

э

イロト イポト イヨト イヨト