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We consider the following Vlasov-Poisson system with screening :

Of +v-Vf +E-V,f =0,  1>0, (x,v) e R*xR?

E:—qu)a
o-tp=p-1, p=[ fav
fli=o=/fo >0.

e Dynamics of charged particles (ions) in a plasma.
f(t,x,v) >0 : distribution function in phase space R x R?
p(t,x) : density of ions
E(t,x) : electric field

e Screening : Coulomb potential % — Yukawa potential ?

e Equivalently, in Fourier space, low frequency regularization : ﬁ —
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Any p(v) > 0 (with the normalization [ps tt dv = 1) is a trivial stationary solution of
the system (with £ = 0).

MAIN QUESTION :
Asymptotic Stability of such homogeneous equilibria p(v) ?

Remarks :

o There exist (linearly) unstable equilibria [Penrose, 1960].
® As [p3, g3 Hdvdx = oo : infinite mass solution.
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Theorem 1 (/Bardos, Degond 1985])

Consider Vlasov-Poisson without the —1. Assume f; is compactly supported and

|V0||Lfv + ”Vx,va”L;‘jv < 1.

Then there exists a unique global solution to the Vlasov-Poisson system, satisfying

ez + Ve (Dl +E@) Iz 4o 0,

with algebraic decay.

Remarks :

e Originally written for Vlasov-Poisson without screening.
¢ Mainly based on dispersion for the free transport operator on R>.

Higher derivatives : [Hwang, Rendall, Veldzquez 2011], [Smulevici 2016] .

In the screened case, works as well in 2D [Choi, Ha, Lee 2011].
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Lemma 1
Letf be the solution to

Af +v-Vif =0,  fli=o=/fo>0.

Then p = [gsf dv satisfies for all t > 0

1
POz < SWollze
t

1
le@l2 < —[ollLe,
tr

1 k
IVip 2 £ — IV¥follie-
i3 x

Based on

f(t)-xa V) =f0(x_ tV,V)-
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e Introduce the characteristics curves (X, V) solving

d
%X&t(xa V) = VsJ(x; V), Xt,l(x7v) =X,
d
avm(x, v) = E(5,X;+(x,v)), Ver(x,v) =,

e The solution to the Vlasov-Poisson system satisfies

ft,x,v) = fo(Xo(x,v), Vo, (x,v)).

Ensuring that (Xo,, Vo) is a small perturbation of the free flow yields the
dispersive estimate
o) S1/7,

hence the theorem (prove this by bootstrap).
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Theorem 2 ([Bedrossian, Masmoudi, Mouhot 2018])

Assume U satisfies the Penrose stability condition. Let n > 1. Let k > % Assume

k k
[V (o =)z, + V)"V, (fo— )l 2, < 1.
Then there exists a unique global solution to the Vlasov-Poisson system, satisfying

(@) = I+ [E@) s 420 0,
Elgw(x,v), ||(f_u)(tvx+tvav)_gw(xav)” \«t%+°° 07

with algebraic decay.

Penrose stability condition : 3k > 0,

inf inf
120 1eR,ECR3

1—/+we”’*7’ i Vou(Er)de| > K
0 e v+ =K

Any radial and positive equilibrium u satisfies the Penrose stability condition.
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Remarks on the paper of Bedrossian-Masmoudi-Mouhot

e The proof is mainly based on Fourier analysis and inspired by the study of
Landau damping (same stability problem set on T¢ x RY) [Mouhot, Villani
2011], [Bedrossian, Masmoudi, Mouhot 2016].

e On T¢, dispersion is replaced by phase mixing.

e On T, the main obstruction to asymptotic stability are the so-called “plasma
echoes” that correspond to certain resonances appearing in the study of
nonlinearities. Their effect is tamed using high regularity solutions (Gevrey or
analytic spaces).

e On R?, dispersion is used to show that these resonances are very rare.

e The proof is not simpler in the case i = 0 or in higher dimensions.
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Theorem 3 ([HK, Nguyen, Rousset])

Assume | satisfies the Penrose stability condition.
Letk > 3. Assume

1) o — 1)l + o — ptllwrs + o — Kl are + Ve (o — )1 < 1.
Then there exists a unique global solution such that
o)) = Ll + D IVip ()l + (03P (1) = U= + (1) V2p (1) | = < log(2+1),

and
_ log(2+1¢
g (x,v),  ||[(f — 1) (B, x+1v,V) — goo (X, V) || 1= < g(ﬂ )‘
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o The strategy of the proof is based on the lagrangian structure of the
Vlasov-Poisson system. It can be seen as a generalization of the Bardos-Degond
result for 4 = 0.

o [t does not rely on the strategy developed for Landau damping on the torus. We
completely avoid the study of plasma echoes.

e We only ask for an initial control of one derivative as in the Bardos-Degond
result.
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o Write f(f,x,v) = u(v) + g(#,x,v). The perturbation satisfies
dg+v-Vig+E-Vig=—E-V,,
E=— xq)a

0— A =p, p=/ gdv
]R3

gli=o=g  (=fo—u).
e Duhamel formula :

8(0.529) = 80(Ko.58) Voslow)) [ (- 9op) (5. Koo ). Ve 10))
e Compared to the case u = 0, there is a source term. Rewrite this as
28 = go(Xo.1(x,v), Vo (x,v))
+ /0 "E(s,x— (1—8)v) - Vopu(v) ds— /0 Vo) (5,Xe 1 (6,0), Ve (5,0)) ds
where .7 is the linear operator defined as

ZLg ::g—l—/OtE(s,x— (t—s)v)-V,u(v)ds.



Lgimg— [[10.0-80 7 pllssr—(1=9)) Vo) ds

Whereas Bedrossian-Masmoudi-Mouhot rather see the Vlasov equation as
dig+v-Vig+E-Vyu=—E-Vg,
getting
ZLg=golx—tv,v)— /Ot (E-V,g) (s,x—(t—s)v,v)ds
we rely on the lagrangian structure of the system, yielding
28 = g0(Xou(x,v), Vou(x,v))

+/ sx—(t—s) )vvu(v)ds—/ot(E-vvu)(s,xs,t(x,v),vs,,(x,v))ds.

— Same linearized operator, different way to write the source term.
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The strategy is as follows :

e There is a preferred quantity in order to propagate global regularity for the
Vlasov-Poisson system, that is the density

p= [ gav.
R3

e 1) Obtain pointwise in time estimates on the L' or L norm of the density for
the linear operator .Z, saturating the dispersive estimates for the free flow.

o II) Bootstrap analysis
— Prove that the characteristics are close to the free ones.

— Use of elementary bilinear “dispersive” estimates to handle the nonlinear
terms.
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We study
Lg=S(tx,v), t>0.

Integrating in v and setting

S(t,x) = /R3,5’(t,x,v)dv,

we obtain

plt,x) = / / “p](s,x— (1—$)v) - Vo (v) dvds + S(1,%), 10,

with p and S extended by zero for ¢ < 0, so that we end up with

P = [ [ Lzol9e =807 pllse— (1= 5)0) - Vun () dvds + 8(4),

forall t € R.
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Theorem 4

Assume U satisfies the Penrose condition. Then, there exists M > 0 such that for all
S e L'(R,L'(R*)NL>(R3)), p satisfies the estimates

el +21lp (@)= < Mlog(1+1)[S] 49,
VR (0)l|p + Vo (1) [l < Mlog(1+1)]S]]ys,

fort > 1, where
1S1lyo = T(‘)II]D(IIS(S)IILI +(149)°[18(5)]|=)
N3

I1S1ly; = ?up(”S(s)”Ll +(1+8) VSl + (1+5)HIVS(s) |2) -

B

By-product : solutions to the linearized Vlasov-Poisson system
I +v-Vof =Vi(1=A) 'p-Vou =0,  flico=fo-

decay as solutions to free transport, up to a log loss.
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Idea of the proof :
By the Penrose condition, we can rewrite the equation for p as
p=S+GxS,

where x denotes convolution in ¢ and x, and

e e V(&) dr

~ 2"
G(r.8) = ——— .
1— fO emﬁ . Vvl.l(ét) dt

Prove pointwise in time decay estimates for the L! or L™ norm of G, using the fine
properties of the symbols and Littlewood-Paley decomposition in time and space.

This allows to go “beyond” Hormander-Mikhlin and Calderén-Zygmund theories for
this operator (that would only yield L} L{ type estimates, for 1 < p,q < o).



17/19

Set

A (t) = sup

u oy (1Pl + 5Pl + () T 0 + (5 V0 o=

e Local well-posedness theory in Sobolev spaces for Vlasov-Poisson allows to set
up a bootstrap analysis.
Let Ty > 0 be the maximal existence time.

e For £ > 0 small enough introduce
T" = sup{t €(0,Tp), H (1) < 8}.

The goal is to show T* = Ty = +oo.



Recall

Zg = gO(XO,t(xa V), VO,t(-xa v))
—|—/0 E(s,x—(t—s)v)-Vvu(v)ds—/o (E-Vyu) (8,Xs(x,v), Vss(x,v))ds

~~

=7 (t,x,v)

Thanks to the linear theorem
(1) < sup|Slyo +[ISlly;
[0,1)
< €& + “what comes from the nonlinear term”

<e&-+e>  ..hopefully..

To this end, prove that on [0, T*), characteristics remain close to the free ones, and
that they can be straightened up to a small error of order €.
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Thanks for your attention !



