Qualitative properties on a Fokker-Planck equation in neurosciences

D. Salort, LBCQ, Sorbonne Université

from collaborations with M. Caceres, J.-A. Carrillo, K. Ikeda, B. Perthame, P. Roux, R. Schneider, D. Smets.

25 november 2019

Introduction and position of the problem

General problematic: How collective neuronal dynamics can emerges from individual neuron?

It may depends on several aspects as:

- Intrinsic dynamic of each neuron
- Type of coupling between neuron
- Memory effects
- delay of transmission
-

Neural cell.

Description of a unit neural activity:

To communicate neurons emit action potential that is also calling "spike".

Action potential

This phenomenon involves several complex processes including: opening and closing of various ion channels.

Leaky Integrate and Fire model

Leaky Integrate and Fire model:

- Neuron describe via its membrane potential $v \in (-\infty, V_F)$
- When the membrane potential reach the value V_F , the neuron spikes
- After a spike, the neuron, instantly, reset at the value V_R .

Model chosen (Brunel, Hakim):

$$\frac{\partial p}{\partial t}(v,t) + \underbrace{\frac{\partial}{\partial v}\left[\left(-v + bX(t)\right)p(v,t)\right]}_{\text{Leaky Integrate and Fire}} - \underbrace{a\frac{\partial^2 p}{\partial v^2}(v,t)}_{\text{noise}} = \underbrace{\frac{\textit{N}(t)\delta(v - \textit{V}_R)}{\textit{neurons reset}}}, \qquad v \leq \textit{V}_F \,,$$

$$p(V_F,t)=0, \quad p(-\infty,t)=0, \quad p(v,0)=p^0(v)\geq 0 \quad N(t):=-a\frac{\partial p}{\partial v}(V_F,t)\geq 0.$$

- p(v,t): density of neurons at time t with a membrane potential $v \in (-\infty, V_F)$
- b : strength of interconnexions.
- N(t): Flux of neurons which discharge at time t.
- X(t): Amplitude of stimulation of that receives the network at time t

Several choices for the amplitude of stimulation.

Several choices for X(t)

- Instantaneous transmission X(t) = N(t) (with Carrillo, Perthame, Smets)(2015)
- Delay transmission X(t) = N(t d). (with Caceres, Roux, Schneider) (2018) (and with K. Ikeda, P. Roux, D. Smets) (2019)

$$\begin{split} \frac{\partial p}{\partial t}(v,t) + \underbrace{\frac{\partial}{\partial v}\left[\left(-v + \frac{bN(t)}{p(v,t)}\right] - \underbrace{a\frac{\partial^2 p}{\partial v^2}(v,t)}_{\text{noise}} = \underbrace{\frac{N(t)\delta(v - V_R)}{\text{neurons reset}}}, \qquad v \leq V_F \,, \\ p(V_F,t) = 0, \qquad p(-\infty,t) = 0, \qquad p(v,0) = p^0(v) \geq 0 \,. \\ N(t) := -a\frac{\partial p}{\partial v}(V_F,t) \geq 0 \,. \end{split}$$

Well posedness of the solution?

The total activity of the network N(t) acts instantly on the network.

- For all b > 0, by well choosing the initial data, we have blow-up (Caceres, Carrillo, Perthame)
- ② As soon $b \le 0$, the solution is globally well defined (Carrillo, González, Gualdani, Schonbek, Delarue, Inglis, Rubenthaler, Tanré, Carrillo, Perthame, Salort, Smets).

From Carrillo, Caceres, Perthame

Stationary states

Stationary states (Caceres, Carrillo, Perthame)

Implicit formula

$$p_{\infty}(v) = \frac{N_{\infty}}{a} e^{-\frac{(v - bN_{\infty})^2}{2a}} \int_{\max(v, V_R)}^{V_F} e^{\frac{(w - bN_{\infty})^2}{2a}} dw$$

with the constraint on N_{∞}

$$\int_{-\infty}^{V_F} p_{\infty}(v) dv = 1.$$

- There exists C > 0 such that, if $b \le C$, there exists a unique stationary state
- ② for intermediate b and some range of parameters (V_R, V_F, a) , there exists at least two stationary states
- If b is big enough, there is no stationary states.

Asymptotic qualitative dynamic if b=0: (no interconnexions) solutions converge to a stationary state (Caceres, Carrillo, Perthame)

Idea of the proof:

• Entropy inequality with $G(x) = (x - 1)^2$

$$\frac{d}{dt} \int_{-\infty}^{V_F} p_{\infty}(v) G\left(\frac{p(v,t)}{p_{\infty}(v)}\right) dv \leq -2a \int_{-\infty}^{V_F} p_{\infty}(v) \ \left[\frac{\partial}{\partial v} \left(\frac{p(v,t)}{p_{\infty}(v)}\right)\right]^2 \ dv.$$

Poincaré estimates

$$\int_{-\infty}^{V_F} \frac{(p-p_\infty)^2}{p_\infty} dv \leq C \int_{-\infty}^{V_F} p_\infty \left(\nabla \left(\frac{p-p_\infty}{p_\infty} \right) \right)^2 dv.$$

What happens if we add interconnexions? (Carrillo, Perthame, Salort, Smets) (in 2015)

Inhibitory case (entropy methods and upper-solutions):

- Uniform estimates on the flux of neurons N with respect to b and the initial data (assuming t large enough)
- Exponential convergence to the stationary state if |b| small enough (global attractor)

Exitatory case (combining entropy methods and some kind of supersolutions):

- Estimates on N, depending on the initial data and b.
- Exponential convergence to a unique stationary state for sufficiently weak interconnections with respect to the initial data (not global attractor)

Existence of periodic solutions?

Not numerically observed

A priori estimates on *N*.

Theorem:

Inhibitory case:

• There exists a constant C, such that for all initial data and $b \le 0$, there exists T > 0 such that for all $I \subset [T, +\infty)$,

$$\int_I N(t)^2 dt \le C(1+|I|).$$

• Assume the initial data in L^{∞} . Then, for all $b \leq 0$, there exists C > 0 such that

$$\|N\|_{L^{\infty}} \leq C.$$

Excitatory case:

• Given an initial data and b > 0 small enough, $\exists C > 0$ such that for all interval I,

$$\int_I N(t)^2 dt \le C(1+|I|)$$

Asymptotic dynamic.

Theorem:

Inhibitory case:

• Let $b \le 0$. $\exists C, \mu > 0$ such that for all $0 \le -b \le C$ and all initial data

$$\int_{-\infty}^{V_F} p_{\infty} \left(\frac{p-p_{\infty}}{p_{\infty}}\right)^2(t,v) dv \lesssim e^{-\mu t} \int_{-\infty}^{V_F} p_{\infty} \left(\frac{p-p_{\infty}}{p_{\infty}}\right)^2(0,v) dv.$$

Excitatory case:

• Given an initial data, if b > 0 is small enough, then $\exists \mu > 0$ such that

$$\int_{-\infty}^{V_F} p_{\infty} \left(\frac{p-p_{\infty}}{p_{\infty}}\right)^2(t,v) dv \lesssim e^{-\mu t} \int_{-\infty}^{V_F} p_{\infty} \left(\frac{p-p_{\infty}}{p_{\infty}}\right)^2(0,v) dv.$$

Entropy estimate

Classical entropy estimates: Let $G(x) = (x - 1)^2$, then

$$\frac{d}{dt} \int_{-\infty}^{V_F} p_{\infty}(v) G\left(\frac{p(v,t)}{p_{\infty}(v)}\right) dv = \\ -N_{\infty} \left[G\left(\frac{N(t)}{N_{\infty}}\right) - G\left(\frac{p(V_R,t)}{p_{\infty}(V_R)}\right) - \left(\frac{N(t)}{N_{\infty}} - \frac{p(V_R,t)}{p_{\infty}(V_R)}\right) G'\left(\frac{p(V_R,t)}{p_{\infty}(V_R)}\right) \right]$$

 \leq 0 because G convex

$$-2a \int_{-\infty}^{V_F} p_{\infty}(v) \left[\frac{\partial}{\partial v} \left(\frac{p(v,t)}{p_{\infty}(v)} \right) \right]^2 dv$$

$$+2b(N-N_{\infty})\int_{-\infty}^{V_F}p_{\infty}\left[\partial_{v}\left(\frac{p(v,t)}{p_{\infty}(v)}\right)\left(\frac{p(v,t)}{p_{\infty}(v)}-1\right)+\partial_{v}\left(\frac{p(v,t)}{p_{\infty}(v)}\right)\right]dv.$$

non linear part

Entropy estimates.

Strategy to obtain uniform estimates (inhibitory case)

Introduction of a fictif stationary state associated to a parameter $b_1 > 0$ different from b < 0.

For all convex function G regular,

$$\begin{split} \frac{d}{dt} \rho_{\infty}^{1}(v) G\left(\frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) &= \\ -N_{\infty}^{1} \delta_{v=V_{R}} \left[G\left(\frac{N(t)}{N_{\infty}^{1}}\right) - G\left(\frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) - \left(\frac{N(t)}{N_{\infty}} - \frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) G'\left(\frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) \right] \\ &- a \rho_{\infty}^{1}(v) \ G''\left(\frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) \left[\frac{\partial}{\partial v} \left(\frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) \right]^{2} \\ &+ (bN(t) - b_{1}N_{\infty}^{1}) \frac{\partial}{\partial v} \rho_{\infty}^{1}(v) \left[G\left(\frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) - \frac{\rho(v,t)}{\rho_{\infty}^{1}(v)} G'\left(\frac{\rho(v,t)}{\rho_{\infty}^{1}(v)}\right) \right]. \end{split}$$

Idea of proof for uniform estimates.

We choose $G(x) = x^2$, $b_1 > 0$ given, we multiply by a function γ supported on $(V_R, V_F]$, to have

$$\begin{split} \frac{d}{dt} \int_{-\infty}^{V_F} \rho_{\infty}^1 \left(\frac{\rho}{\rho_{\infty}^1}\right)^2 (t, v) \gamma(v) dv = \\ \int_{-\infty}^{V_F} (-v + bN(t)) \rho_{\infty}^1 \left(\frac{\rho}{\rho_{\infty}^1}\right)^2 (t, v) \gamma'(v) dv - \frac{N^2(t)}{N_{\infty}^1} (t) \gamma(V_F) \\ -2a \int_{-\infty}^{V_F} \rho_{\infty}^1 \left(\partial_v \left(\frac{\rho}{\rho_{\infty}^1}\right)\right)^2 \gamma(v) dv + a \int_{-\infty}^{V_F} \rho_{\infty}^1 \left(\frac{\rho}{\rho_{\infty}^1}\right)^2 (t, v) \gamma''(v) dv \\ - \left(bN(t) - b_1 N_{\infty}^1\right) \int_{-\infty}^{V_F} \gamma(v) \partial_v \rho_{\infty}^1 \left(\frac{\rho}{\rho_{\infty}^1}\right)^2 dv. \end{split}$$

Conclusion of instantaneous LIF model

- Equation ill posed as soon b > 0 if the initial data is well chosen.
- \bullet If b>0 is small enough and the initial data well chosen, exponential convergence to the unique stationary state.
- In the inhibitory case, uniform estimates on N(t) and exponential convergence for |b| small enough.
- ullet Question of proof of convergence to the unique stationary state open, for the inhibitory case and |b| large
- Question of periodic solution is totally open.

Equation with delay

$$\begin{split} \frac{\partial p}{\partial t}(v,t) + \underbrace{\frac{\partial}{\partial v}\left[\left(-v + \frac{bN(t-d)}{p(v,t)}\right) - \underbrace{a\frac{\partial^2 p}{\partial v^2}(v,t)}_{\text{noise}} = \underbrace{\frac{N(t)\delta(v-V_R)}{\text{neurons reset}}}, \qquad v \leq V_F \,, \\ p(V_F,t) = 0, \qquad p(-\infty,t) = 0, \qquad p(v,0) = p^0(v) \geq 0 \,. \\ N(t) := -a\frac{\partial p}{\partial v}(V_F,t) \geq 0 \,. \end{split}$$

Principal properties (with Caceres, Roux et Schneider) (see also Delarue, Inglis, Rubenthaler, Tanré)

- No more blow-up
 - Existence and uniqueness of a global classical solution
 - Exponential convergence to a unique stationary state as soon |b| small enough (with same assumption as in the case without delay).

Equation with delay

Idea of proof for global existence:

- Via a change of variable, we obtain an implicit equation on the flux N.
- Via a fix point argument, we obtain local existence
- We construct a super solution to obtain uniform estimates and conclude to global existence

Equation with delay

Construction of the supersolution for a given input \mathcal{N}^0 :

$$\bar{\rho}(v,t) = e^{\xi t} f(v), \quad \xi \text{ large enough}$$

Construction of f

 $\bullet \ \, \text{Let} \, \, \varepsilon > 0 \, \, \text{with} \, \, \frac{\mathit{V}_F + \mathit{V}_R}{2} + \varepsilon < \mathit{V}_F \, \, \text{and let} \, \, \psi \in \mathit{C}^\infty_b(\mathbb{R}) \, \, \text{satisfying} \, \, 0 \leq \psi \leq 1 \, \, \text{and} \, \,$

$$\psi \equiv 1$$
 on $(-\infty, \frac{V_F + V_R}{2})$ and $\psi \equiv 0$ on $(\frac{V_F + V_R}{2} + \varepsilon, +\infty)$.

2 Let B > 0 such that

$$\forall t \geq 0, \forall v \in (V_R, V_F), \quad |-v + bN^0(t)| \leq B$$

and $\delta > 0$ such that $a\delta - B \ge 0$.

We chose

$$f\equiv 1$$
 on $(-\infty, V_R]$

$$f(v) = e^{V_R - v} \psi(v) + \frac{1}{\delta} (1 - \psi(v))(1 - e^{\delta(v - V_F)}) \text{ on } (V_R, V_F].$$

What about periodic solutions in the excitatory case?

Still no periodic solutions if we add a delay in the excitatory case

from Caceres Schneider

What about periodic solutions?

$$\frac{\partial p}{\partial t}(v,t) + \underbrace{\frac{\partial}{\partial v}\left[\left(-v + \frac{bN(t-d)}{p(v,t)}\right]}_{\text{Leaky Integrate and Fire}} - \underbrace{\frac{\partial^2 p}{\partial v^2}(v,t)}_{\text{noise}} = \underbrace{\frac{R(t)}{\tau}\delta(v-V_R)}_{\text{neurons reset}}, \qquad v \leq V_F \,,$$

$$R'(t) + \frac{R}{t} = N(t)$$

Periodic solutions if b large enough if we add a refractory state

from Caceres Schneider

Conclusion on the preceding results of the NLIF model

- Instantaneous transmission implies often an ill-posed problem and no periodic solutions seems to numerically emerge
- ullet Adding of delay implies global existence and emergence but still no periodic solutions if b>0
- Adding a refractory state, we obtain the emergence of periodic solutions.

Can we theoretically tackle emergence of periodic solutions?

Setting: We consider the inhibitory case with delay transmission ($b << 0, d=1, V_F=0, a=1$)

$$\frac{\partial p}{\partial t}(v,t) + \underbrace{\frac{\partial}{\partial v}\left[\left(-v + \frac{bN(t-1)}{p(v,t)}\right]}_{\text{Leaky Integrate and Fire}} - \underbrace{\frac{\partial^2 p}{\partial v^2}(v,t)}_{\text{noise}} = \underbrace{\frac{N(t)\delta(v-V_R)}{\text{neurons reset}}}, \qquad v \leq 0 \; ,$$

$$p(0,t) = 0, \quad p(-\infty,t) = 0, \quad p(v,0) = p^{0}(v) \ge 0 \quad N(t) := -\frac{\partial p}{\partial v}(0,t) \ge 0.$$

Theorem (with K. Ikeda, P. Roux, D. Smets):

The solution of NLIF can be written as

$$p(t, v) = \phi(v - c(t)) + R(v, t)$$
, where $\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

and where R is such that,

$$2e^{-t}\int_0^t e^s \|R(s)\|_{L^2}^2 ds \leq \|U(0)\|_{L^2}^2 e^{-t} + \widetilde{C}e^{-t}\int_0^t e^s N(s) ds - \|U(t)\|_{L^2}^2$$

where

$$U(t) = \int_{-\infty}^{v} R(t, w) dw$$
 and $c'(t) + c(t) = bN(t - 1)$.

Can we theoretically tackle emergence of periodic solutions?

Formal restriction to a delay equation

$$c'(t) + c(t) = bc(t-1)e^{-\frac{c^2(t-1)}{2}}.$$

Theorem (with K. Ikeda, P. Roux, D. Smets)

Assume that b << 0 is small enough, then there exists a non trivial periodic solution of Equation

$$c'(t) + c(t) = bc(t-1)e^{-\frac{c^2(t-1)}{2}}.$$

Idea of the proof: Inspired from a proof from K. P. Hadeler and J. Tomiuk.

- Unstable eigenvalues of the linearized problem with a good control of the imaginary part
- Application of a fixed point Browder Theorem via an introduction of an appropriate cone of initial functions where we can obtain useful estimates of the solution of the delay equation.

Thank you

Let \mathscr{D} be a closed subset of a Banach space and $\mathscr{F}: \mathscr{D} \to \mathscr{D}$ a continuous mapping. Let \bar{x} be a fixed point of \mathscr{F} with the following property: There is an open neighborhood $U \ni \bar{x}$, $U \subset \mathscr{D}$, such that for every $x \in U$ with $x \neq \bar{x}$ there is an integer n = n(x) for which $\mathscr{F}^{(n)}x \notin U$. Such point \bar{x} is called an ejective fixed point of \mathscr{F} .

Theorem 2 (Browder [4]). Let \mathscr{D} be a closed, bounded, convex set of infinite dimension in a Banach space, and let $\mathscr{F}: \mathscr{D} \to \mathscr{D}$ be continuous and compact. Then \mathscr{F} has a fixed point which is not ejective.