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|. Introduction

(1) The systems: Hall-MHD and electron-MHD

(2) Main results: ill-posedness vs. well-posedness
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Magnetohydrodynamic (MHD) systems

» MHD = Euler/Navier-Stokes + Maxwell (Alfven 1942):

Ju+u-Vu+Vp—vAu=1J x B,
0:B+V xE=0, (MHD)
V-u=V-B=0,

> u(t) : R® — R3, p(t) : R® = R are the bulk plasma velocity
field and pressure,

» B(t),E(t) : R — R3 are the magnetic and electric fields, and
» J(t): R® — R3 is the current density.



The usual MHD system

» Close the system in terms of u and B with
J=VxB
and
E+uxB=nd,

where 1 > 0 is magnetic resistivity.

(Ampere’s law)

(Ohm's law)
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Hall-MHD system (more realistic)

» Actual plasmas consist of at least two species: electrons and
ions (heavier).

» When the motion of electrons is much faster than the others,
Ohm'’s law obtains a correction of the form

E+uxB=nJ+eJ xB.

» The resulting system:

du+u-Vu+ Vp —vAu = (V x B) x B,
0B —V x (uxB)+ ¢V x ((V x B) x B) =nAB,
V-u=V-B=0.

(Hall-MHD)
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Some previous works

» Suggested by Lighthill in 1960 (cf. textbook by Pecseli).

» Formal derivations: Lighthill, Jang-Masmoudi,
Acheritogaray-Degond-Frouvelle-Liu.

» Mathematical work: mostly in the resistive case (loss of one
derivative due to the Hall term).

» Chae-Weng: finite time blow-up under LWP assumption.
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lll-posedness: nonexistence

In the end, we have proved the following:

Theorem (Nonexistence)

For any e > 0 and s > 3+ 1/2, there is a data with compact
support in (ug, Bo) € H*~! x H%(M) for which there is no solution
in the space (u, B) € L*([0,d]; H*~ x HS(M)) for any 6 > 0.
» The situation is not better for data in C* or even in analytic
(any Gevrey) regularity.
» Domain: M = R¥ x T3~k (weaker result in the T3-case).

» Norm inflation for perturbations near degenerate stationary
magnetic fields — Nonexistence by superposition.



II. Stationary solutions and main linear results

(1) Stationary solutions and linearized systems

(2) Main linear result



Basic properties of the system

» Energy is conserved: for a solution (u, B), we have formally

1
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Basic properties of the system

» Energy is conserved: for a solution (u, B), we have formally

1
4 / (Ju> 4 |B]?)(t) dxdydz | = V/ |Vu|?(t) dxdydz,

M = Rk x T3k,

» Situation is different for higher norms: we have
1d
/ 10(M)BJ? dxdydz
2dt Jy

- —/ (V x 0MB) - ((V x B) x dMB) dxdydz + O.K.
M
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A class of stationary magnetic field

» The first step is to understand the linearized dynamics around
stationary magnetic fields.

> A time-independent magnetic field B defines a stationary
solution (with zero velocity field) if divB = 0 and

o

V x (V x B) is a pure gradient.

> We impose further conditions on B: assume planarity as well
as invariance with respect to a 1-parameter family of
isometries of the plane.

» Then, essentially we have

o

B=1(y)ox or g(r)d.



Energy identities for the linearization

> The linearization around (0, B) takes the following form:
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Energy identities for the linearization

> The linearization around (0, B) takes the following form:

Oru — vAu =P((V x B) x b+ (V x b) x B)
b+ V x (u x B)
+Vx((Vxb)xB)+Vx((VxB)xb)=0,
V.-u=V.-b=0,
(Hall-MHD-lin)
» Formally taking u = 0, we obtain the linearization around B
for the E-MHD system.
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Energy identities for the linearization

» We have the following linearized energy identity:
d (1 2 2 2
— (= [ |ulo(t) + |b]7(t)dxdydz | + v [ |Vu|*(t)dxdydz
:/ ((b-V)B))vW — ((u-V)B))b dxdydz+/ ((b-V)(V x B);))
M M

» Gives an L2 a priori estimate for the perturbation (u, b).
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Main ill-posedness statement for the linearization

» (Translationally symmetric case.) Assume that
B = f(y)0x
with linearly degenerate profile:
o, f'(y0) #0, f(y) = 0.

» Then, there exists a profile b(x,y) € C° and G(y) € C*
such that with initial data

up =0, bn),0 = Re(e*0HeMp(x, y)),

any L?-solution for the linearization satisfies the following
norm growth:

by (D)l vy 26 Asel 002 by o2



Main ill-posedness statement for the linearization

» (Axi-symmetric case.) We assume that

B = g(r)dy

and

dro >0 g'(r) #0, g(r) =0.



Main ill-posedness statement for the linearization

» (Axi-symmetric case.) We assume that

o

B =g(r)dy
and
3o >0 g'(rn0) #0, g(ro) = 0.

» Then, there exists a profile b(r) € C°(0,c0) and
G(r) € C*°(0,00) such that with initial data

up = 0, bry o = Re(eM0TC(Dp),
any L2-solution for the linearization satisfies:

1600 ()| ety 2., A€ I g 2.
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Comments

> The growth rate ||b(t)||ys = A$e©5 is sharp.

» Gives nonexistence in Sobolev spaces higher than L2 by
Frequency superposition.

» The fact that rate depends on s suggests ill-posedness at the
level of any Gevrey regularity. (Just need to make sure the
initial data can be chosen to be Gevrey.)

» Not simple amplitude growth in Fourier, but transfer of
energy to higher Fourier modes with speed proportional to the
initial frequency (contrast with backwards heat).

P> Seems to be a general feature for degenerate dispersive
equations. c.f. Craig-Goodman: ill-posedness for

Oru £ x03u = 0.



[11. Formal discussions

(1) Whistler waves
(2) Bicharacteristics

(3) A formal model equation
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Linearization around a constant magnetic field

> Take E-MHD for simplicity and B = Bd.
Then the linear system becomes

v

b+ BV xb=0, V-b=0.
P This system can be diagonalized;
Orby +BO|V|by =0, w = B&J¢],
where
by :=bF |V|7'V x b.

» The group velocity £V¢w shows dispersion.

» Comparison with Alfven waves.



Linearization around a non-constant magnetic field

» For a general stationary B, we have
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Linearization around a non-constant magnetic field

» For a general stationary B, we have
dib+ (B-V)V x b=lo.t.
> After diagonalizing the principal symbol —(B -€£)EX, the
analogue of the group velocity is given by the Hamiltonian
vector field

(Vep,—Vip) on T*M

with associated ODE

)
)

X = Vep(X,
E = —vxP(X7

where p = £B(x) - £[¢].
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o

Model example: bicharacteristics for B = y0,

» Conservation: =, and =, due to translation invariance, and
p(X, =) = y(X)=«|=| which is just the Hamiltonian.

» That is, the Hamiltonian ODE is completely integrable.

> Take for instance X(0) = (0,1,0) and =(0) = (A, —A,0) for
A > 0; explicit integration gives

= —Asinh(At + In(1 + v2)) =~ XM

_cosh(In(1++v2)) J
~ cosh(At + In(1++v2)) — '

=y




A formal model equation

» Take on R? the following scalar equation:
O¢b + if (y)0x0yb =0,

whose principal symbol is similar to that for linearized E-MHD.



A formal model equation

» Take on R? the following scalar equation:
O¢b + if (y)0x0yb =0,

whose principal symbol is similar to that for linearized E-MHD.

» Explicitly solvable: first separate x-dependence by taking the
Fourier transform in x, and then change coordinates
0> = &x0¢, Oy = f(y)0, to get (9r — dy)b=0.
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2+1/2 dimensional reduction

> We take advantage of the 24-1/2 d reduction (z-invariance):
it is natural then to introduce v and w by

(Vx b)? =-A¢p, (Vxuf=uw.

o

» For B = f(y)0x, the linearized system in terms of
(u?,w, b*, 1) is given by

O — f(y)0xb* — vAu* =0,

Oww — f"(y)0xt) + f(y)0x A1) — vAw = 0,

Oeb® — F(y)du™ + f(y)0xtp — f(y)0: Ay = 0,
o) — f(Y)8X(_A)_1W + f(y)oxb* =0,
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2+1/2 dimensional reduction

» In the E-MHD case,

Oeb* — f(y)0x A + f"(y)dxyp = 0,
O + f(y)0xb* = 0.

> Near B = g(r)Jy, the system is essentially the same:
V4 1 3 /
Orb* — g(r)0p A + <g (r)+ P (r)> O = 0,
o) + g(r)9pb* = 0.

» Here we have a gap.



Degenerating wave packets

» We construct approximate solutions to the linearized systems
(“solve the illposed part”).



Degenerating wave packets

» We construct approximate solutions to the linearized systems
(“solve the illposed part”).

» Pass to a second order system for ) and write down the ansatz
w ~ Aflei)\(X+G(/\t,y))H()\t7X7y)

(guided by the bicharacteristics).
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Degenerating wave packets

> It is simpler to massage the system a bit to work in
renormalized coordinates.

» To this end, consider
Or =A"10:, 9y =f(y)dy,
and after conjugation ¢ = fféw, we obtain
2¢ + (A 10x)%000 + N FP(A10) e = 0.K.

» In the case of Ty, x-dependence can be separated and
similarly 8-dependence in the axisymmetric case.



Degenerating wave packets

> Ansatz ¢ = A\~ Le 0T p(r, x 7)) gives
efi)\(XﬂL(D) [872_ + ()\718)()2872] + )\2f2()\718X)4] (Aflei)\(x%*d))h)

= AM—(0:9)% + (8,9)* + f)h
+ (2i0-90 + i020 — (070 — 2i0, POy — 2i(0,P)*0x — 4if 20y )h
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Degenerating wave packets

> Ansatz p = A\~ LeACAPTM) p( 7, x, ) gives
efi)\(XﬂL(b) [872_ + ()\718)()2872] + )\2f2()\718)()4] (Aflei)\(x%*d))h)

= AM—(0:9)% + (8,9)* + f)h
+ (2i0-90 + i020 — (070 — 2i0, POy — 2i(0,P)*0x — 4if 20y )h

+ A7)

» Obtain a hierarchy of equations (general rule).
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Degenerating wave packets

» Hamilton-Jacobi equation for ®: we may choose
O(rn)~=7+n, n<-1
» Transport equation for h: obtain global estimates

k ol —k—1
03X 107 0,0 h(T)HL$°L§m Sm llhollHe,

and degeneration

supp »(h(7)) C suppn(ho) — 7
» The error in the p-equation:

lee(T)z, < A ol -



Degenerating wave packets

» Returning to the original coordinates, we obtain an
approximate solution (for each \ € N)

b= (Vie, b),
satisfying
[1blligerz, =~ 1,
~ (0)
1Bz S e,
and

les(t)lliz, S 1.
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Generalized energy identities

> A remarkably simple way to show that b~ bis to utilize the
generalized energy identity.

» GEI: let b be a solution and b be an approx. solution with
O(1) error, initially close to by and L?-normalized. Then,

~ d ~
bg, by) ~ 1 —(b,b)| < 1.
< 05 0) ) ‘dt< ) >‘ ~
» But then, for some t € [0, T] we have
1

IBlz05+11Bllizey > (6,5} > o

and degeneration of ”EHL§L§ gives growth for b.
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Incorporating the velocity field

v

Passing from E-MHD to Hall-MHD: treat u as a perturbation.
“Good variable” B 4+ V X u: simple transport by u.

The choice for approx. sol. (from good variable):
iF=—¢, ©=—b.

Then we have a smoothing of order one: with
i= (VJ_(_A_I)(’Da ﬁz),

il fpor2 , S A™ L Vil fgerz , S 1.

We then proceed using the GEI. In the case v > 0, we also
utilize the a priori bound for v||Vul|,2.
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(1) Unboundedness of the solution operator

(2) Nonexistence



Unboundedness of the solution operator

Theorem

Near B = f(y)dx or g(r)dy (with degenerate profile), assume that
the solution map is well-defined:

Be((0,B): Higmp % Haomp) — L([0, 8] H2™Y) x L3°([0, 8]; H*)

for some €,6,r,s,sp > 0. Then this solution map is unbounded for
S0 > 3.



Unboundedness of the solution operator

Theorem
Near B = f(y)0x or g(r)0g (with degenerate profile), assume that
the solution map is well-defined:

Be((0,B); Hiomp X Heomp) —+ LE*([0, 6] H~1) x LE=([0, 8]; HY)

for some €,6,r,s,sp > 0. Then this solution map is unbounded for
S0 > 3.

Proof.

Contradiction argument and use the energy to handle the
nonlinearity: take GEIl for %(b, E) where b is now viewed as a
linear approx. solution with the nonlinearity as the RHS. Then
take A — oo to derive a contradiction. O
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Nonexistence

» Idea: superposition of instabilities in physical space (c.f.
Bourgain-Li).
» Take stationary solution

oo
B=Y B,
k=ko

o

=Y aB(Lx LNy — yi)s
k=ko

ay =2 L, =273

> Initial data
o
B=B+ ) 27%\7bn,)(t=0), MN=2" N>1
k=ko

» Localize the GEI to derive contradiction. Here a significant
technical difference between T, and R, .



Thanks!



