
Cauchy problem for the Hall-MHD system
without resistivity: ill-posedness

In-Jee Jeong(KIAS)
with Sung-Jin Oh (UC Berkeley)

Inaugural France-Korea Conference

November 27, 2019



Outline

I. Intro. to Hall-MHD and main nonlinear results

II. Stationary solutions and main linear results

III. Formal discussions

IV. Ideas of the linear proof

V. Linear to nonlinear



I. Introduction

(1) The systems: Hall-MHD and electron-MHD

(2) Main results: ill-posedness vs. well-posedness



Magnetohydrodynamic (MHD) systems

I MHD = Euler/Navier-Stokes + Maxwell (Alfven 1942):
∂tu + u · ∇u +∇p− ν∆u = J× B,

∂tB +∇× E = 0,

∇ · u = ∇ · B = 0,

(MHD)

I u(t) : R3 → R3, p(t) : R3 → R are the bulk plasma velocity
field and pressure,

I B(t),E(t) : R3 → R3 are the magnetic and electric fields, and

I J(t) : R3 → R3 is the current density.
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The usual MHD system

I Close the system in terms of u and B with

J = ∇× B (Ampere’s law)

and

E + u× B = ηJ, (Ohm’s law)

where η > 0 is magnetic resistivity.



Hall-MHD system (more realistic)

I Actual plasmas consist of at least two species: electrons and
ions (heavier).

I When the motion of electrons is much faster than the others,
Ohm’s law obtains a correction of the form

E + u× B = ηJ + εJ× B.

I The resulting system:
∂tu + u · ∇u +∇p− ν∆u = (∇× B)× B,

∂tB−∇× (u× B) + ε∇× ((∇× B)× B) = η∆B,

∇ · u = ∇ · B = 0.
(Hall-MHD)
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Electron-MHD system

I Formally take u = 0:{
∂tB +∇× ((∇× B)× B) = 0,

∇ · B = 0.
(E-MHD)

I Idea: the bulk plasma is essentially at rest compared to the
motion of the electrons.
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Some previous works

I Suggested by Lighthill in 1960 (cf. textbook by Pecseli).

I Formal derivations: Lighthill, Jang-Masmoudi,
Acheritogaray-Degond-Frouvelle-Liu.

I Mathematical work: mostly in the resistive case (loss of one
derivative due to the Hall term).

I Chae-Weng: finite time blow-up under LWP assumption.



Some previous works

I Suggested by Lighthill in 1960 (cf. textbook by Pecseli).

I Formal derivations: Lighthill, Jang-Masmoudi,
Acheritogaray-Degond-Frouvelle-Liu.

I Mathematical work: mostly in the resistive case (loss of one
derivative due to the Hall term).

I Chae-Weng: finite time blow-up under LWP assumption.



Some previous works

I Suggested by Lighthill in 1960 (cf. textbook by Pecseli).

I Formal derivations: Lighthill, Jang-Masmoudi,
Acheritogaray-Degond-Frouvelle-Liu.

I Mathematical work: mostly in the resistive case (loss of one
derivative due to the Hall term).

I Chae-Weng: finite time blow-up under LWP assumption.



Some previous works

I Suggested by Lighthill in 1960 (cf. textbook by Pecseli).

I Formal derivations: Lighthill, Jang-Masmoudi,
Acheritogaray-Degond-Frouvelle-Liu.

I Mathematical work: mostly in the resistive case (loss of one
derivative due to the Hall term).

I Chae-Weng: finite time blow-up under LWP assumption.



Ill-posedness: nonexistence

In the end, we have proved the following:

Theorem (Nonexistence)

For any ε > 0 and s > 3 + 1/2, there is a data with compact
support in (u0,B0) ∈ Hs−1 × Hs(M) for which there is no solution
in the space (u,B) ∈ L∞([0, δ];Hs−1 × Hs(M)) for any δ > 0.

I The situation is not better for data in C∞ or even in analytic
(any Gevrey) regularity.

I Domain: M = Rk × T3−k (weaker result in the T3-case).

I Norm inflation for perturbations near degenerate stationary
magnetic fields → Nonexistence by superposition.
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II. Stationary solutions and main linear results

(1) Stationary solutions and linearized systems

(2) Main linear result



Basic properties of the system

I Energy is conserved: for a solution (u,B), we have formally

d

dt

(
1

2

∫
M

(|u|2 + |B|2)(t) dxdydz

)
= −ν

∫
M
|∇u|2(t) dxdydz ,

M = Rk × T3−k .

I Situation is different for higher norms: we have

1

2

d

dt

∫
M
|∂(N)B|2 dxdydz

= −
∫
M

(∇× ∂(N)B) · ((∇× B)× ∂(N)B)dxdydz + O.K .
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A class of stationary magnetic field

I The first step is to understand the linearized dynamics around
stationary magnetic fields.

I A time-independent magnetic field B̊ defines a stationary
solution (with zero velocity field) if divB̊ = 0 and
∇× (∇× B̊) is a pure gradient.

I We impose further conditions on B̊: assume planarity as well
as invariance with respect to a 1-parameter family of
isometries of the plane.

I Then, essentially we have

B̊ = f (y)∂x or g(r)∂θ.
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Energy identities for the linearization

I The linearization around (0, B̊) takes the following form:
∂tu − ν∆u = P((∇× B̊)× b + (∇× b)× B̊)

∂tb +∇× (u × B̊)

+∇× ((∇× b)× B̊) +∇× ((∇× B̊)× b) = 0,

∇ · u = ∇ · b = 0,
(Hall-MHD-lin)

I Formally taking u ≡ 0, we obtain the linearization around B̊
for the E-MHD system.
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I Gives an L2 a priori estimate for the perturbation (u, b).
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Main ill-posedness statement for the linearization

I (Translationally symmetric case.) Assume that

B̊ = f (y)∂x

with linearly degenerate profile:

∃y0, f ′(y0) 6= 0, f (y0) = 0.

I Then, there exists a profile b(x , y) ∈ C∞c and G (y) ∈ C∞

such that with initial data

u0 = 0, b(λ),0 = Re(e iλ(x+G(y))b(x , y)),

any L2-solution for the linearization satisfies the following
norm growth:

‖b(λ)(t)‖Hs(M) &s,B̊ λ
se |f

′(y0)|sλt‖b(λ),0‖L2 .
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Main ill-posedness statement for the linearization

I (Axi-symmetric case.) We assume that
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Comments

I The growth rate ‖b(t)‖Hs & λsec0sλt is sharp.

I Gives nonexistence in Sobolev spaces higher than L2 by
Frequency superposition.

I The fact that rate depends on s suggests ill-posedness at the
level of any Gevrey regularity. (Just need to make sure the
initial data can be chosen to be Gevrey.)

I Not simple amplitude growth in Fourier, but transfer of
energy to higher Fourier modes with speed proportional to the
initial frequency (contrast with backwards heat).

I Seems to be a general feature for degenerate dispersive
equations. c.f. Craig-Goodman: ill-posedness for

∂tu ± x∂3
xu = 0.
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III. Formal discussions

(1) Whistler waves

(2) Bicharacteristics

(3) A formal model equation



Linearization around a constant magnetic field

I Take E-MHD for simplicity and B̊ = B̄∂x .

I Then the linear system becomes

∂tb + B̄∂x∇× b = 0, ∇ · b = 0.

I This system can be diagonalized;

∂tb± ± B̄∂x |∇|b± = 0, ω = B̄ξx |ξ|,

where

b± := b ∓ |∇|−1∇× b.

I The group velocity ±∇ξω shows dispersion.

I Comparison with Alfven waves.
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Linearization around a non-constant magnetic field

I For a general stationary B̊, we have

∂tb + (B̊ · ∇)∇× b = l .o.t.

I After diagonalizing the principal symbol −(B̊ · ξ)ξ×, the
analogue of the group velocity is given by the Hamiltonian
vector field

(∇ξp,−∇xp) on T ∗M

with associated ODE

Ẋ = ∇ξp(X ,Ξ)

Ξ̇ = −∇xp(X ,Ξ)

where p = ±B̊(x) · ξ|ξ|.
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Model example: bicharacteristics for B̊ = y∂x

I Conservation: Ξx and Ξz due to translation invariance, and
p(X ,Ξ) = y(X )Ξx |Ξ| which is just the Hamiltonian.

I That is, the Hamiltonian ODE is completely integrable.

I Take for instance X (0) = (0, 1, 0) and Ξ(0) = (λ,−λ, 0) for
λ > 0; explicit integration gives

Ξy = −λ sinh(λt + ln(1 +
√

2)) ' λeλt

y =
cosh(ln(1 +

√
2))

cosh(λt + ln(1 +
√

2))
' e−λt .
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p(X ,Ξ) = y(X )Ξx |Ξ| which is just the Hamiltonian.

I That is, the Hamiltonian ODE is completely integrable.

I Take for instance X (0) = (0, 1, 0) and Ξ(0) = (λ,−λ, 0) for
λ > 0; explicit integration gives

Ξy = −λ sinh(λt + ln(1 +
√

2)) ' λeλt

y =
cosh(ln(1 +

√
2))

cosh(λt + ln(1 +
√

2))
' e−λt .



A formal model equation

I Take on R2 the following scalar equation:

∂tb + if (y)∂x∂yb = 0,

whose principal symbol is similar to that for linearized E-MHD.

I Explicitly solvable: first separate x-dependence by taking the
Fourier transform in x , and then change coordinates
∂τ = ξx∂t , ∂η = f (y)∂y to get (∂τ − ∂η)b̃ = 0.
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IV. Ideas of the proof

“Construction of approximate solutions + generalized energy
estimate”

(1) 2+1/2 dimensional reduction

(2) Degenerating wave packets

(3) Generalized energy identities

(4) Incorporating the velocity field
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2+1/2 dimensional reduction

I We take advantage of the 2+1/2 d reduction (z-invariance):
it is natural then to introduce ψ and ω by

(∇× b)z = −∆ψ, (∇× u)z = ω.

I For B̊ = f (y)∂x , the linearized system in terms of
(uz , ω, bz , ψ) is given by

∂tu
z − f (y)∂xb

z − ν∆uz = 0,

∂tω − f ′′(y)∂xψ + f (y)∂x∆ψ − ν∆ω = 0,

∂tb
z − f (y)∂xu

z + f ′′(y)∂xψ − f (y)∂x∆ψ = 0,

∂tψ − f (y)∂x(−∆)−1ω + f (y)∂xb
z = 0,
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2+1/2 dimensional reduction

I In the E-MHD case,{
∂tb

z − f (y)∂x∆ψ + f ′′(y)∂xψ = 0,

∂tψ + f (y)∂xb
z = 0.

I Near B̊ = g(r)∂θ, the system is essentially the same:∂tb
z − g(r)∂θ∆ψ +

(
g ′′(r) +

3

r
g ′(r)

)
∂θψ = 0,

∂tψ + g(r)∂θb
z = 0.

I Here we have a gap.
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Degenerating wave packets

I We construct approximate solutions to the linearized systems
(“solve the illposed part”).

I Pass to a second order system for ψ and write down the ansatz

ψ ≈ λ−1e iλ(x+G(λt,y))H(λt, x , y)

(guided by the bicharacteristics).
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Degenerating wave packets

I It is simpler to massage the system a bit to work in
renormalized coordinates.

I To this end, consider

∂τ = λ−1∂t , ∂η = f (y)∂y ,

and after conjugation ϕ = f −
1
2ψ, we obtain

∂2
τϕ+ (λ−1∂x)2∂2

ηϕ+ λ2f 2(λ−1∂x)4ϕ = O.K .

I In the case of Tx , x-dependence can be separated and
similarly θ-dependence in the axisymmetric case.
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Degenerating wave packets

I Ansatz ϕ = λ−1e iλ(x+Φ(τ,η))h(τ, x , η) gives

e−iλ(x+Φ)
[
∂2
τ + (λ−1∂x)2∂2

η + λ2f 2(λ−1∂x)4
]

(λ−1e iλ(x+Φ)h)

= λ(−(∂τΦ)2 + (∂ηΦ)2 + f 2)h

+ (2i∂τΦ∂τ + i∂2
τΦ− i∂2

ηΦ− 2i∂ηΦ∂η − 2i(∂ηΦ)2∂x − 4if 2∂x)h

+ λ−1(· · · )

I Obtain a hierarchy of equations (general rule).
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Degenerating wave packets

I Hamilton-Jacobi equation for Φ: we may choose

Φ(τ, η) ≈ τ + η, η � −1

I Transport equation for h: obtain global estimates

max
0≤k,l≤m

‖∂kτ ∂lx∂m−k−lη h(τ)‖L∞τ L2
x,η

.m ‖h0‖Hm
x,η

and degeneration

supp η(h(τ)) ⊂ supp η(h0)− τ

I The error in the ϕ-equation:

‖eϕ(τ)‖L2
x,η

. λ−1‖h0‖H4 .
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Degenerating wave packets

I Returning to the original coordinates, we obtain an
approximate solution (for each λ ∈ N)

b̃ = (∇⊥ψ̃, b̃z),

satisfying

‖b̃‖L∞t L2
x,y
≈ 1,

‖b̃(t)‖L2
xL

1
y
. e−

f ′(0)
2
λt ,

and

‖e b̃(t)‖L2
x,y

. 1.



Generalized energy identities

I A remarkably simple way to show that b̃ ≈ b is to utilize the
generalized energy identity.

I GEI: let b be a solution and b̃ be an approx. solution with
O(1) error, initially close to b0 and L2-normalized. Then,

〈b0, b̃0〉 ≈ 1,

∣∣∣∣ ddt 〈b, b̃〉
∣∣∣∣ . 1.

I But then, for some t ∈ [0,T ] we have

‖b‖L2
xL

∞
y
‖b̃‖L2

xL
1
y
≥ 〈b, b̃〉 > 1

2

and degeneration of ‖b̃‖L2
xL

1
y

gives growth for b.
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Incorporating the velocity field

I Passing from E-MHD to Hall-MHD: treat u as a perturbation.

I “Good variable” B +∇× u: simple transport by u.

I The choice for approx. sol. (from good variable):

ũz = −ψ̃, ω̃ = −b̃z .

I Then we have a smoothing of order one: with
ũ = (∇⊥(−∆−1)ω̃, ũz),

‖ũ‖L∞t L2
x,y

. λ−1, ‖∇ũ‖L∞t L2
x,y

. 1.

I We then proceed using the GEI. In the case ν > 0, we also
utilize the a priori bound for ν‖∇u‖L2 .
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ũ = (∇⊥(−∆−1)ω̃, ũz),
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V. Linear to nonlinear

(1) Unboundedness of the solution operator

(2) Nonexistence



Unboundedness of the solution operator

Theorem
Near B̊ = f (y)∂x or g(r)∂θ (with degenerate profile), assume that
the solution map is well-defined:

Bε((0, B̊);H r
comp × Hs

comp)→ L∞t ([0, δ];Hs0−1)× L∞t ([0, δ];Hs0)

for some ε, δ, r , s, s0 > 0. Then this solution map is unbounded for
s0 ≥ 3.

Proof.
Contradiction argument and use the energy to handle the
nonlinearity: take GEI for d

dt 〈b, b̃〉 where b is now viewed as a
linear approx. solution with the nonlinearity as the RHS. Then
take λ→∞ to derive a contradiction.
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Nonexistence

I Idea: superposition of instabilities in physical space (c.f.
Bourgain-Li).

I Take stationary solution

B̊ =
∞∑

k=k0

B̊k :=
∞∑

k=k0

akB̃(L−1
k x , L−1

k (y − yk)),

ak = 2−sk , Lk = 2−
k
2 .

I Initial data

B = B̊ +
∞∑

k=k0

2−kλ−sk b̃(λk )(t = 0), λk = 2Nk ,N � 1.

I Localize the GEI to derive contradiction. Here a significant
technical difference between Ty and Ry .
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Thanks!


