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Neuron model

The FitzHugh-Nagumo model for one neuron

We consider:  v̇ = N(v)− w + Iext,

ẇ = τ (v − γ w),
(1)

Hodgkin & Huxley, '39.

I v ∈ R: membrane potential of the neuron,

I w ∈ R: adaptation variable,

I Iext: input current received from the environment,

I N(v) = v (1− v) (v − θ), θ ∈ (0, 1),

I τ ≥ 0, γ ≥ 0: given constants.

References
Hodgkin & Huxley '52 , FitzHugh '61 , Nagumo, Arimoto & Yoshizawa '62



Neural network model

The FitzHugh-Nagumo model for a network of n neurons:

For i ∈ {1, ..., n}, we de�ne:
I xi ∈ Rd : spatial position of the neuron i , d ∈ {1, 2, 3},
I vi ∈ R: membrane potential,

I wi ∈ R: adaptation variable.

We consider: 
ẋi = 0,

v̇i = N(vi )− wi −
1

n

n∑
j=1

Φ(‖xi − xj‖) (vi − vj ),

ẇi = τ (vi − γ wi ),

(2)

where Φ : R→ R is a connectivity kernel.



Purpose

We want to �nd a macroscopic description of the FitzHugh-Nagumo model in the
limit n→ +∞, taking into account interactions between neurons. We de�ne the
macroscopic quantities:

I ρ0(x) ≥ 0 the neuron density in the network at position x,

I V (t, x) and W (t, x) the average values of potential and adaptation variable at
time t and position x.

FHN reaction-di�usion system

 ∂tV (t, x) = σ [ρ0 ∆xV (t, x) + 2∇xρ0 · ∇xV (t, x)] + N (V (t, x))−W (t, x),

∂tW (t, x) = τ (V (t, x) − γW (t, x)) ,
(3)

where σ > 0 depends on the interaction kernel.

Strategy

Derivation of an intermediary mean-�eld equation.



Neural network model

References
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I Mean-�eld limit of Hodgkin-Huxley and FitzHugh-Nagumo systems with noise
and a conductance-based connectivity kernel,
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Luçon & Stannat '14:

I Mean-�eld limit of FitzHugh-Nagumo-like equations with noise and a compactly
supported singular connectivity kernel.
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Our framework

I We neglect the noise from the environment, so our model is deterministic,

I the connectivity between neurons is weighted only by the distance,

I the support of the connectivity kernel can be unbounded.



Mean-�eld limit

For all n ∈ N, (xj , vj ,wj )1≤j≤n is the solution to the FitzHugh-Nagumo system, and
we de�ne the empirical measure:

µn(t) :=
1

n

n∑
j=1

δ(xj (t);vj (t);wj (t)).

Assumption: Φ ∈W 1,∞(Rd ),
Purpose: prove that µn → f as n→∞, where f satis�es the kinetic equation:

Nonlocal transport equation

∂t f + ∂v [f (N(v) − w − KΦ[f ])] + ∂w [f τ (v − γ w)] = 0, (4)

where

KΦ[f ](t, x, v) :=

∫
Rd+2

Φ(‖x− x′‖) (v − v ′) f (t, x′, v ′,w ′)dx′dv ′dw ′,

References

I Crevat '19,
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Regime of strong local interactions
We consider the regime of strong local interactions:

Φ(‖x‖) =
1

εd+2
Ψ

(
‖x‖
ε

)
,

and we investigate the limit ε→ 0.

Assumption: Ψ > 0, Ψ ∈ L1(Rd ), σ =

∫
Rd

Ψ(‖x‖)
‖x‖2

2
dx < ∞.

Nonlocal transport equation:


∂t f ε + ∂v [f ε (N(v) − w − Kε[f ε])] + ∂w [f ε τ (v − γ w)] = 0,

Kε[f ε] =
1

εd+2

∫
Rd+2

Ψ

(
‖x− x′‖

ε

)
(v − v ′) f ε(t, x′, v ′,w ′) dx′ dv ′ dw ′.

(5)

where we de�ne the macroscopic quantities:
ρε(t, x) = ρε0(x) :=

∫
R2

f ε0 (x, v ,w) dv dw ,

ρε0(x)V ε(t, x) :=

∫
R2

f ε(t, x, v ,w) v dv dw ,

ρε0(x)W ε(t, x) :=

∫
R2

f ε(t, x, v ,w)w dv dw .



Macroscopic model

The macroscopic quantities derived from f ε satisfy the following system:

ρε0 ∂tV
ε − ρε0 Lρε0 (V ε) = ρε0 N(V ε)− ρε0 W ε

+

∫
f ε (N(v)− N(V ε)) dv dw︸ ︷︷ ︸

:= E(f ε)

,

ρε0 ∂tW
ε = τ ρε0 (V ε + a− bW ε) ,

(6)

where

Lρε
0

(V ε)(t, x) :=
1

εd+2

∫
Rd

Ψ

(
‖x− x′‖

ε

)
ρε0(x′)

(
V ε(t, x′)− V ε(t, x)

)
dx′.

I The non local operator Lρε
0

(V ε) plays the role of di�usion in this system,

I To get a macroscopic FitzHugh-Nagumo model, we have to prove that as ε→ 0:
I E(f ε) → 0,
I Lρε

0
(V ε) converges towards the local di�usion operator.

I This equation is not well-de�ned for x ∈ Rd such that ρε0(x) = 0.



Di�usive limit

Theorem: Di�usive limit (Crevat '19)

Assume that there exists a positive constant C such that for all ε > 0:

‖ρε0‖L1 + ‖ρε0‖L∞ ≤ C ,

∫
Rd+2

(
‖x‖4 + |v |4 + |w |4

)
f ε0 (x, v ,w) dx dv dw ≤ C .

We choose a well-prepared initial data (ρ0,V0,W0) such that

ρ0 ≥ 0, ‖ρ0‖L1 = 1, ρ0 ∈ H2(Rd ), ρ0 ∈ C3b (Rd ), V0, W0 ∈ H2(Rd ),

1

ε2
‖ρε0 − ρ0‖2L2 +

∫
Rd
ρε0(x)

[
|V ε0 (x)− V0(x)|2 + |W ε

0 (x)−W0(x)|2
]
dx → 0.

Then for all t ∈ [0;T ]:∫
Rd
ρε0(x)

|V − V ε|2 + |W −W ε|2

2
(t, x)dx → 0,

where
V ,W ∈ L∞

(
[0,T ],H2(Rd )

)
∩ C0

(
[0,T ],H1(Rd )

)
is the solution to the macroscopic reaction-di�usion system, and (ρε0,V

ε,W ε) are the
macroscopic quantities computed from the solution f ε of the kinetic equation.
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Main steps of the proof

I Estimate of moments of f ε to control a kinetic dissipation,

I Convergence of the macroscopic quantities using a relative entropy argument.

Di�culty

I Show that there exists a positive constant C > 0 such that:∣∣∣∣∫ T

0

∫
Rd

(V ε(t)− V (t))

(∫
R2

f ε(t) [N(v)− N(V ε(t))] dv dw

)
dxdt

∣∣∣∣
≤ C

(∫ T

0

∫
Rd+2

f ε(t) |V ε(t)− v |2 dxdv dw dt

)1/2

.
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∣∣∣∣
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(∫ T

0

∫
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f ε(t) |V ε(t)− v |2 dxdv dw dt

)1/2

.



Numerical simulations

Purpose:

I Reproduction of qualitative behaviours measured in vivo,

I Macroscopic behaviours with a numerical scheme for a kinetic model.

Some remarks on the numerical scheme:

I Discretization of (V ,W ): particle method,

I Discretization of space: spectral method,

I Discretization of time: semi-implicit numerical scheme of order 1.

We simulate V ε(t, x) =

∫
v f ε(t, x, v ,w)dv dw .

We consider the connectivity kernel

Ψ(‖x‖) =
n0√
2πT0

exp

(
−
‖x‖2

2T0

)
,

with n0 = 0.1 and T0 = 0.05.



A variety of cortical waves

Huang et al. , Neuron, '10.

In vivo spiral waves in the neo-cortex.



A variety of cortical waves

A radially-propagating pulse A rotating spiral wave

ε = 0.1, τ = 0.002, γ = 1, θ = 0.1



Conclusion

Conclusion:
We have rigorously established:

I a link between the FitzHugh-Nagumo system and the kinetic model, derived as
the mean-�eld limit as n→∞,

I a link between the mean-�eld model of FitzHugh-Nagumo type and a
macroscopic reaction-di�usion system, with an estimate of the error with respect
to the parameter ε, using a relative entropy argument.

Work in progress:

I Development of a numerical approximation stable and consistent in ε:
Asymptotic-Preserving scheme.

Perspectives:

I Analysis of macroscopic models (e.g. traveling wave solutions in heterogeneous
and periodic media).



Thank you for your attention.
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