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Neuron model

The FitzHugh-Nagumo model for one neuron
We consider:
v = N()—w+ lext,

W = T(Vf’yw)v

» v € R: membrane potential of the neuron,

» w € R: adaptation variable,

> lext: input current received from the environment,
» N(v) = v(l—-v)(v—0), 0¢€(0,1),

» 7 >0, v > 0: given constants.

Hodgkin & Huxley, '39.

References
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Neural network model

The FitzHugh-Nagumo model for a network of n neurons:
For i € {1,..., n}, we define:

> x; € RY: spatial position of the neuron i, d € {1,2,3},

> v; € R: membrane potential,

> w; € R: adaptation variable.

We consider:
X.,' = 07
1 n
o= e > o(llxi — %) (vi = ),
=1
wi = T(vi —yw),

where ® : R — R is a connectivity kernel.



Purpose

We want to find a macroscopic description of the FitzHugh-Nagumo model in the
limit n — 400, taking into account interactions between neurons. We define the
macroscopic quantities:

> po(x) > 0 the neuron density in the network at position x,

> V(t,x) and W(t,x) the average values of potential and adaptation variable at
time t and position x.

FHN reaction-diffusion system

otV (t,x) = o[poAxV(t,x) + 2Vxpo - VxV(t,x)] + N (V(t,x)) — W(t,x),
oeW(t,x) = 71 (V(t,x) — vW(t,x)),
(3)

where o > 0 depends on the interaction kernel.

Strategy

Derivation of an intermediary mean-field equation.



Neural network model

References
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Our framework

> We neglect the noise from the environment, so our model is deterministic,
> the connectivity between neurons is weighted only by the distance,

> the support of the connectivity kernel can be unbounded.



Mean-field limit

For all n € N, (xj, vj, wj)1<j<n is the solution to the FitzHugh-Nagumo system, and
we define the empirical measure:

1 n
un(t) = 3 0w (erm (o)
j=1

Assumption: ® ¢ W1°(RY),
Purpose: prove that u, — f as n — oo, where f satisfies the kinetic equation:

Nonlocal transport equation

Oef + 0y [F (N(v) — w — Ko[f)] 4+ 0w [f 7 (v — yw)] = 0, (4)
where
Kolf](t,x,v) = / o(||x —x'||) (v — V') f(t,x', v/, w')dx'dv'dw’,
Rd+2
References
> Crevat '19,

» Bolley, Cafiizo and Carrillo '11.



Regime of strong local interactions
We consider the regime of strong local interactions:

o) = v ().

and we investigate the limit ¢ — 0.

2
Assumption: ¥ >0, V¢ [!(RY), o= / \U(||x\\)@dx < oo.
RrRd

Nonlocal transport equation:

Aefe + 8y [fE(N(v) — w — K[f])] + w[fe7(v — yw)] = 0,

(5)

1 [[x = x|l
Ke[fe] = iz /Rd+2 v (f (v — V) et X', v, w')dx' dv/ dw'.

where we define the macroscopic quantities:
po(tx) = 650 = [ (x, v, w)dvw,
R2
p5(x) Ve(t,x) = / fe(t,x, v,w)vdvdw,
2

p5(x) We(t,x) = fE(t, %, v,w) wdvdw.

R2



Macroscopic model

The macroscopic quantities derived from ¢ satisfy the following system:

POV — 05 L5 (VE) = g N(V) = pg W
+/f5(N(v) ~ N(VF)) dvdw,
(6)
=E(f€)
pg Ot We = 7p5(VeE+a—bWe),

where

L5 (VO (£x) = 6d1+2 /Rd\u (@) e () (VE(t.x) — VE(£,)) dx'.

> The non local operator Epg(Vg) plays the role of diffusion in this system,

> To get a macroscopic FitzHugh-Nagumo model, we have to prove that as ¢ — 0:
> £(f°) » 0,
> L,,g(VE) converges towards the local diffusion operator.

» This equation is not well-defined for x € R? such that p§(x) = 0.



Diffusive limit
Theorem: Diffusive limit (Crevat '19)
Assume that there exists a positive constant C such that for all ¢ > 0:
llpgll2 + llpgllee < C, /RM (Ix[[* + [v[* + |w|*) f5(x,v,w)dxdvdw < C.
We choose a well-prepared initial data (po, Vo, Wo) such that
po >0, |pollx =1, po € HA(RY), po € CHRY), Vo, Wo € HA(RY),
2105 = polltx + [ 650 [IV6 () = Vo) + W5 (x) — Wo(x)[2] dx — 0.

Then for all t € [0; T]:

d - V7VE2 W7W€2
[, s “+ C (e, x)dx — o,
RY

2

where V,W e L>® ([o, ut Hz(Rd)) n o ([o, 7], Hl(Rd))

is the solution to the macroscopic reaction-diffusion system, and (pg, V=, W*<) are the
macroscopic quantities computed from the solution ¢ of the kinetic equation.
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Main steps of the proof

> Estimate of moments of f¢ to control a kinetic dissipation,
» Convergence of the macroscopic quantities using a relative entropy argument.

Difficulty

> Show that there exists a positive constant C > 0 such that:

’/OT/Rd (Ve(t) — V(1)) (/12 £2(£) [N(v) — N(VE(t))] dvdw) dxdt

T 1/2
<cC (/ / fe(t) [VE(t) — v|? dxdvdwdt) .
0 RdA+2
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Main steps of the proof
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Difficulty

> Show that there exists a positive constant C > 0 such that:

’/OT/Rd (ve(t) — V(1) (/}Rz F() [N(v) — N(VE(2))] dvdw) dxdt

T 1/2
<cC (/ / fe(t) [VE(t) — v|? dxdvdwdt) .
Jo JRd+2



Numerical simulations

Purpose:

» Reproduction of qualitative behaviours measured in vivo,

» Macroscopic behaviours with a numerical scheme for a kinetic model.

Some remarks on the numerical scheme:

» Discretization of (V, W): particle method,
> Discretization of space: spectral method,
» Discretization of time: semi-implicit numerical scheme of order 1.

We simulate VE(t,x) = [ vfe(t,x,v,w)dvdw.

We consider the connectivity kernel

o I
Wlxl) = 52 e (251 )
with np = 0.1 and To = 0.05.



A variety of cortical waves

il

Huang et al. , Neuron, '10.

In vivo spiral waves in the neo-cortex.



A variety of cortical waves
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Conclusion

Conclusion:
We have rigorously established:

> a link between the FitzHugh-Nagumo system and the kinetic model, derived as
the mean-field limit as n — oo,

> a link between the mean-field model of FitzHugh-Nagumo type and a
macroscopic reaction-diffusion system, with an estimate of the error with respect
to the parameter ¢, using a relative entropy argument.

Work in progress:

» Development of a numerical approximation stable and consistent in &:
Asymptotic-Preserving scheme.

Perspectives:

> Analysis of macroscopic models (e.g. traveling wave solutions in heterogeneous
and periodic media).



Thank you for your attention.
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