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1. Introduction
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Emergence 4

Emergence is the phenomenon by which:

interacting many-particle (or agent) systems
exhibit large-scale self-organized structures
not explicitly encoded in the agents’ interaction rules

Typical emergent phenomena are

pattern formation

e
ex: a biological tissue b

coordination
ex: a bird flock

self-organization
ex: pedestrian lanes

Emergence is a key process
of life and social systems by which
they self-organize into functional systems
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Questions -

& large-scale structure (macro model: PDE)
Requires rigorous passage “micro — macro’

Understand link between: %
individual behavior (micro model: ODE or SDE) @ \
g

o]
2

4

e ‘

Why macro models ? l
Computational time
Analysis: stability, bifurcations, ...
Data (images) inform on the macro scale

What is special about emergent systems ?
“micro — macro’ Boltzmann, Hilbert, ...
Lions (94), Villani (10), Hairer (14), Figalli (18) ...

Unusual features
Lack of propagation of chaos
Lack of conservations: particles are “active”
Coexistence of # phases
Complex underlying geometrical structures

= revisit classical concepts
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2. Directional coordination: the Vicsek model

2. resentation

2.2 Space-homogeneous case: phase transitions

2.3 Space-inhomogeneous case: macroscopic limit

il
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Directional coordination: the Vicsek model

2.1 Presentation

Tamas Vicsek Buda pest)
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VICSGk mOdel [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

8

Individual-Based (i.e. particle) model
self-propelled = all particles have same constant speed = 1
align with their neighbors up to some noise
Particle ¢: position X,(t) € R™, velocity direction V,(t) € S*~1

Xq(t) — Vq(t)
dVy(t) = Py o (kU,dt + V2 dBj)

J
Uqg = ﬁa Jqg = | Z Vj
73, | X;—Xq|<R

R = interaction range
k = k(|J,|) = alignment frequency
Jq, = local particle flux in interaction disk
U, = neighbors’ average direction
PvJ_ =Ild -V, ®V, = orth. proj. on VL
o = Stratonowtch guarantees |V (t)| =1, V¢t

\ NN\

“Minimal model” for collective dynamics
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Phase transition

Phase transition in Vicsek model

symmetry breaking
disordered — aligned

small k

large
Simulations by A. Frouvelle
Order parameter measures alignment
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Mean-field model 10

f(x,v,t) = particle probability density with (z,v) € R™ x S*~!

satisfies a Fokker-Planck equation

Ocf +v-Vof + V- (Frf)=Af
Fe(x,v,t) = P, (kug(x,t)), Py =ld—v®uv
Jr(z,t)

up () = et = | (4w, £) w duw dy
! |<]f<33,t)| I ly—x|<R JSn—1

J¢(x,t) = particle flux in a neighborhood of x
uy(x,t) = direction of this flux

kus(z,t) = alignment force (with k = k(|J¢|))

Fy(z,v,t)) = projection of alignment force on {v}+

P,. =Id — v ® v = projection on {v}+

Vo Vo divand grad on S*~1; A, = Laplace-Beltrami on S"~!
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Remarks 11

From particle to mean-field
Requires number of particles N — oo
Define empirical measure:

Y (@, 0,8) = NS00 80x,(1).v (1)) (%5 0)
N — f where f satisfies Fokker-Planck
Formal derivation in [D., Motsch: M3AS 18 (2008) 1193]

Rigorous convergence proof:
Classical: particle models with smooth interaction e.g. [Spohn]
Difficulty here is handling constraint |v| =1
Done for k(|J¢|) = |J¢| in [Bolley Canizo Carrillo: AML 25 (2012) 339]
Open for k(|J¢|) = 1 (difficulty: controling singularity at J; = 0)

Existence and uniqueness of solutions to Fokker-Planck
[Gamba, Kang: ARMA 222 (2016) 317]

Other collective dynamics models do not normalize velocities
e.g. Cucker-Smale, Motsch-Tadmor — huge literature

Pierre Degond - Mathematical models of self-organization - Bordeaux 27/11/2019 W



12

Directional coordination: the Vicsek model

2.2 Space-homogeneous case: phase transitions

[A. Frouvelle, Jian-Guo Liu, SIMA 44 (2012) 791]
[PD., A. Frouvelle, Jian-Guo Liu, JNLS 23 (2013), 427]
[PD., A. Frouvelle, Jian-Guo Liu, ARMA 216 (2015) 63-115]

Amic Frouvelle (Dauphine) Jian-Guo Liu (Duke)
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Spatially homogeneous case

13

Forget the space-variable: vV, =0: f(v,t), vesS"!

Ouf ==V - (Frf)+ Ayf:=Q(f) = collision operator

uf:#, Jr = f(', ) v dv'
‘ f| §n—1

Ff — k(|‘]f‘> Pvlufa
Set: p(t) = [ f(v,t)dv. Then dp = 0. So, p(t) = p = Constant

Global existence results
for k(|J¢|)/|Jf| smooth: [Frouvelle Liu: SIMA 44 (2012) 791]

& [D. Frouvelle Liu: JNLS 23 (2013) 427 & ARMA 216 (2015) 63]

for k(|JJ¢|) = 1: [Figalli Kang Morales: ARMA 227 (2018) 869]

Equilibria: solutions of Q(f) =0
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Simulation of convergence to equilibrium 14
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Equilibria are VMF distributions 15

(VMF = Von Mises-Fisher) given by s

et U O.8: . ;%

f(”U) — pMHU(U)v MHDU<U) — f el U dy : o
where orientation u € S*~1! is arbitrary \

and concentration parameter k = k(|J¢|) J ; k

Order parameter: c¢;(k) = [ My, (v)u-vdv € [0,1], e1(k)

Compatibility equation: |J;| = pei(k) = pei(k(|J¢]))

introducing j(x) = inverse function of k(|.J¢|), can be recast in

. j(s)

Number of roots and local monotony of ‘7( determine
number of equilibria and their stability
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Examples

16

Ex. 1. k(|J]) = ‘| - continuous phase transition
Ex. 2: k(|J|) = |J| +|J|?*: discontinuous phase transition
S’ )

2 5

GEJ —~ VMF, stable E VMF, stable
S 8 1 VMF, unstable

8 2 /

5 Isotr\opic, unstable 1 g - \\\ Isotqsic, unstable

Isotropic, stablel‘\ Density p Isotropic, stable / Density p
Ex. 1 Ex.2
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Free energy

17

Free energy: F(f) = /f In fdv— ®(|J¢]) with & =Fk

Free energy dissipation: %]—"(f) =-D(f) <0

D) = 51) [ £IVof = K1) up)| do

f is an equilibrium iff D(f) =0
Free energy decays with time towards an equilibrium

Unstable VMF are local max or saddle-points of F

Stable VMF are local min of F

F estimates L°-distance to local equilibrium:
”f(t) - pMﬁ:uf(t)H%? ~ ‘F(f(t)) _ F(pMmuf(t)) \t

Convergence to equilibrium with explicit rate

relies on entropy-entropy dissipation estimates:cf Villani, . ..

D(f) 2 2\ (F(f) = F(My))+ “small’
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Directional coordination: the Vicsek model

2.3 Space-inhomogeneous case: macroscopic limit

[PD, S. Motsch: M3AS 18 Suppl. (2008) 1193]
[PD., A. Frouvelle, Jian-Guo Liu, JNLS 23 (2013), 427]
[PD., A. Frouvelle, Jian-Guo Liu, ARMA 216 (2015) 63-115]

il

Sebastien Motsch (Arizona State)
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Space-inhomogeneous model 19

Restore x-dependence:

atf"‘vvxf—l_vv . (Fff) :Avfa Ff(.fl?,?],t) :Pvl(kuf(xat))a

Jf(:z:,t)

ug(w,t) = , J (:m):/ Sy, w,t) wdwdy
! ‘Jf(ili,t)‘ g ly—z|<R JSn—1

Macroscopic scaling: change variables to 2’ = ez, t/ = &t

(2’,t") = macroscopic space and time variables

Scaled model (dropping primes):  0;f° +v -V, f® = %Q(fs)

where QQ(f) collision operator studied above
limit £ — 0 leads to macroscopic model

When ¢ — 0, f¢ — fs. t. Q(f) =0 = f is an equilibrium
Hypothesis: & = Constant = only equilibria are VMF pMj.,,
3 unique VMF equilibrium ; A isotropic equilibrium
No phase transition
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Macroscopic model 20

When ¢ — 0 fo(z,v,t) = p(x,t) Myy(z)(v)
space non-homogeneous = p(x,t) and u(x,t) are not constant
p and u determined by macroscopic equations

Resulting system is Self-Organized Hydrodynamics (SOH)
Otp+c1Vy - (pu) =0
0 (8tu + co(u - Vx)u) +P, V.p=0
lu| =1

Classically: use collision invariants: ¢ (v)| [ Q(f)¥ dv =0, Vf

Requires dimension { Cl } = number of equations
Here dimension { ClI } =1 < number of equations (= n)

Generalized collision invariants (GCl) overcome the problem
first proposed in [PD, S. Motsch: M3AS 18 Suppl. (2008) 1193]
GCl 1) satisfies Cl property with smaller class of f
Finding v involves inverting the “adjoint” of ()
co is found as a moment of GCI v; ¢; = order parameter
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Remarks 21

SOH is similar to Compressible Euler egs. of gas dynamics
Continuity eq. for p
Material derivative of u balanced by pressure force —V,p

But with major differences:

geometric constraint |u| = 1 (ensured by projection operator P, 1)
co # c1: loss of Galilean invariance

Hyperbolic system
but not in conservative form: shock solutions not well-defined

Local existence of smooth solutions in 2D and 3D
[PD Liu Motsch Panferov, MAA 20 (2013) 089]
Existence / uniqueness of non-smooth solutions open

Rigorous limit £ — 0 proved:
[N Jiang, L Xiong, T-F Zhang, SIMA 48 (2016) 3383]

Differences (but also similarities) with the Toner-Tu model
[J Toner, Y Tu, PRL 75 (1995) 4326]
built on symmetry considerations

Pierre Degond - Mathematical models of self-organization - Bordeaux 27/11/2019 W



Comparison between micro and macro 22

Micro at t =0.00 Macro at t =0.00

Micro (Vicsek) Macro (SOH)

Density (color code)

Density (color code)
& velocity directions

& velocity directions

Simulation by
G. Dimarco,
TBN. Mac,

N. Wang

\
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3. Body attitude coordination

[PD, A. Frouvelle, S. Merino-Aceituno, M3AS 27 (2017) 1005]
[PD, A. Frouvelle, S. Merino-Aceituno, A. Trescases, MMS 16 (2018) 28]

Arianne Trescases (Toulouse) & Sara Merino-Aceituno (Sussex & Vienna)
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A new alignment dynamics 24

Self-propelled agents which align with their neighbors
Vicsek model: Alignment of their directions of motion

New model: Alignment of their full body attitude

Vicsek model
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Body attitude alignment model 25

X,(t) € R™: position of the g-th subject at timet. g¢qe{1,...,N}

A,(t) € SO(n): rotation mapping reference frame (eq,...,e,) to
subject’s body frame

A,(t)er € S™1: propulsion direction ASa
X, () = Ayt :
qu(t) = PTAq(t)SO(n) o (]@é_lth s \/§ng)7

J, | X;=Xq|<R

M, arithmetic mean of neighbors’ A matrices
A, =PD(M,) < 3S, symmetric s.t. M, = A,S, (polar decomp.)
Pr, ,SO(n) Projection on the tangent Ta,5SO(n),

maintains A,(t) € SO(n)
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Motivation and numerical result 26

Sperm observed through
microscope

positions and body
attitudes of
particles in
periodic cube

Simulation by
M. Biskupiak
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Questions and methodology 27

Understand the differences between Vicsek and body alignment
do gradients of body frames genuinely influence motion ?
— use macroscopic model to shed light on this question

Main steps of derivation of macroscopic model:
(i) take N — oo and obtain mean-field model
(ii) rescale mean-field model by £ (micro to macro scales ratio)
(iii) take € — 0 and obtain macro model

Step (iii): f© = fe(x, A,t) with x € R®, A € SO(n) solves

0% + (Aer) - Vel = ZQU): QU= ~Va-(Fyf) +Aaf
Fy=kPr,By, Bf:PD(Mf), Mf:/so( )f(:l?,A/,t)A/dA,

Equilibria are VMF-like: Q(f) =0« dp >0, B € SO(n) s.t.

k B-A
f(A) = pMyp(A), Myp(A)

e
p: density; B: mean body-frame. Depend on (z,t). Satisfy macro Egs.

— [eFBAdA
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Macroscopic model (dimension n = 3) 28

Self-Organized Hydrodynamics for Body orientation (SOHB)
provide Eqs for density p > 0 and mean body-frame B € SO(3)

Op+ V- (c1pB1) =0
0B + c2(B1 - V)B + [csB x Vlog p+ c4(By x curlB + (divB)By)] B = 0.

with By = Be; mean propagation direction

Vw € R3, [w]y is the matrix of z + w X =.

Define matrix D(B) by (w - V)B = [D(B)w]x B, Yw € R?
divB = Tr{D(B)}; curlBiss.t. [curlB]x = D(B) — D(B)!

Derivation uses generalized collision invariants
Ca,...,cq are moments of GCl. ¢; = “order parameter”
use of special parametrization of SO(3) ~ quaternions

Remarks: formal derivation still unknown in dimension > 4
derivation in 3D is formal; mathematical theory is empty

available: phase transitions in simpler model (w. A. Diez)
using quaternions, model = polymer model in 4D
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SOHB in frame representation 29

Define local frame B = [By, B2, B3| Then, SOHB is written

Op+ V- (c1pB1) =0

0 (6’7531 + co(By - Vm)Bl) + PB% (c;;pr — Ccyp curIB) =0

0 ((9th + co(By - Vx)Bg) — [Bg - (c;;pr — Cup curIB)}Bl + c4p (divB)B3z =0
p (04Bs + c2(B1 - V4)Bs) — [Bs - (c3Vyp — capeurlB)| By — cap (divB)By =0
with

curlB=(B1-V,)B1+ (By-V,)By+ (B3 -V,)B3

divB = [(B1-V4)Bs| - B3+ (B2 - Vg)Bs| - B1 + [(Bs - V3)Bi1| - Bs

If ¢4 = 0, reduces to Vicsek-SOH model for p and u = Bs:
Op+ V- (crpu) =0
p(Oru+ ca(u-Vi)u) + Pui(csVap) =0

But ¢4 # 0 in general
gradients of body frames genuinely influence motion
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4. Reflection: network formation models

i

Pierre Degond - Mathematical models of self-organization - Bordeaux 27/11/2019

U



Models of network formation 31

Microl

Main difference: in order to produce the network structure:
macro (right) requires the presence of a nonlinear decay term
micro (left) does not require

1 Jarxiv 1812.09992] with P. Aceves-Sanchez, B. Aymard (Nice), D. Peurichard
INRIA Paris), L. Casteilla & A. Lorsignol (Stromalab, Toulouse), P. Kennel
& F. Plouraboué (Fluid Mech. Toulouse)

2 [ Hu & Cai, PRL 111 (2013) 138701 ], [Haskovec, Markowich, Perthame,

Schlottbom, NLA 138 (2016) 127]
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Reflection on validity of macro models

32

Macro models seem less prone to pattern formation
than micro models
and require additional mechanisms

Are macroscopic models too deterministic ?
May require additional stochastic terms, leading to SPDE
How to rigorously derive such terms ?

Why is ability to pattern formation lost at coarse-graining 7
Breakdown of propagation of chaos at large time scales 7
Suggestion that this may be the case in

[E. Carlen, PD, B. Wennberg, M3AS 23 (2013) 1339]

il
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5. Conclusion

il
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Summary / Perspectives

34

Emergence = development of large-scale structures
by agents interacting locally without leader

Modelling emergence presents new challenges:
- lack of conservations due to agents’ active character
- possible breakdown of propagation of chaos

Emergence = phase transition from disorder to patterns
analyzed through bifurcation theory

Agents may carry inner geometrical structures
which influence the large-scale structures

New models constructed by combining various
inner geometrical structures and interactions

Needed to describe living and social systems complexity
and are source of new fascinating mathematical questions
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