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Outline

The first Story
Nonlinear Consensus Model

The second story
Aggregation of tensors

The third story
Consensus-based optimization algorithm
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Three questions to be addressed

e (Q1): Is there any "universal design principle" for
collective dynamics?

e (Q3): Can we design an aggregation model on the
space of tensors?

« (Q8): Can we use aggregation models for
optimization?
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Outline

The first Story
Nonlinear Consensus Model
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The first story

Is there any possible universal design principle
for collective dynamics?
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Collective behaviors of biological systems

e Aggregation, flocking and synchronization
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Aggregation of bacteria
The Keller-Segel model :Patlak (1953), E. Keller and L. Segel (1970s)

oip+ V- (pVe) =olp, —Ac=p,

p = p(t,x) : local mass density of bacteria,
¢ = c(t, x) : density of chemotactic substance.

Paricle Keller-Segel model:
N
dxi(t) = —% 3" Vo(xi(t) — xi(t))dt + V2odBi(t),
J#i
x;j(t) : Position process of the i-th bacteria at time ¢,

F = —-V¢: Couloumb’s force, e.g., ¢(x) = |1x\’ ford = 3.
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In the absence of stochastic noise o = 0, particle Keller-Segel
model becomes
Z ‘Xj _ X”S

1#1

cf. N-body system under gravitational force in R3:
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Flocking of Cucker-Smale particles

e Dynamics observables:
Xj : position, v; : velocity.

The Cucker-Smale model (2007) IEEE Trans. Automat. Control

(2007):

N
ax; av, &
EL':V/A 7'—NZ: (Ix = xi)(v; — vi).

where 1 is a communication rate (modeling issue), e.g.,

1
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Synchronization of Kuramoto oscillators

e Dynamic observables:

9, : phase,  6; : frequency.

The Kuramoto model (1975):

d L+ Zsm(e i=1,---,N.
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Corresponding PDE models
e The Keller-Segel model

O+ V- (pVe)=oclAp, —Ac=p,

e The hydrodynamic Cucker-Smale model

dip + Vx - (pu) =0,
di(pu) + Vx - (pu® u)

S /H 01X = YI)(U(Y) — u))p(x)ply)

e The kinetic Kuramoto model
OtF + 9y(w[F]F) = 0,
27
w[Fl(0,v,t) :=v — /{/ / sin(6. — 0)F (0., v., t)dv,.db.
0 R

At PDE level, PDE models look different.
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Particle models

e The Keller-Segel model in R3
oK Xk — Xj
= Z Xk — X[

o The Cucker-Smale model

N

. . K

Xi= Vi, V=) tes(Xk = X0) (Vi = Vi).
k=1

N
e The Kuramoto model

0; = vi + — Zsm 0k — 6)).

THE THIRD STORY
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First-order formulation of the C-S model on a line

e The C-S model in 1D: H-Kim-Park-Zhang '19 ARMA
o N
Xi = Vj, Vi = N ;MX;( — Xi)(Vk — Vi)

Idea

d [ d
1/J(Xk — X,‘)(Vk — V,') = a A w(S)ds =: E\UCS(XK — X,').
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Then, C-S flocking becomes a first-order consensus model:
o N
vi(X0, VO + NZ\IJCS
. N
vi(XO, V0) =0 — N > (xg
j=1

cf. KM = CS: H-Lattanzio-Rubino-Slemrod ’11.
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Particle Pictures

gi : generalized position of the i-th particle.

e The deterministic Keller-Segel model in 3d

N
. K q
gi=vi+ ng a(9k — qi), Wa(Q):W'
e The Cucker-Smale model in 1d
q
gi= N Z Ves(q— Gi), Ves(q) = / Yes(y)dy.

e The Kuramoto model

N
g =vi+ ,’3; Vi(gk — ), Vi(g) =sing.
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Summary

e Master Particle model for collective dynamics

Zlm
Mz

In other words, there exists a kind of triality relation:

Keller-Segel aggregation
< 1D CS flocking
<= Kuramoto synchronization.
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Outline

The second story
Aggregation of tensors
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The second story

Can we design an aggregation model on the
space of tensors ?
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There are several first-order aggregation models for the
collections of real numbers, real vectors in R? and unitary
matrices U(d).

o Are there aggregation models for non square
matrices, for example R"*™ with n # m?

o Can we design a first-order aggregation model on a
space of tensors ?
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Lohe Hiearchy

An aggregation model for an ensemble of
tensors

Tensor
?

Matrix(U(d))

Lohe-Matrix model

Vector(S")
Lohe-Sphere model

Scalar(R)
Kuramoto model

This is a joint project with Hansol Park (Ph.D. student in SNU).
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What is a tensor?

In high school or linear algebra class in college, you might learn

"maitrix" as a rectangular array of (real or complex) numbers.

Note that 1 x 1 matrix is simply a number and n x 1 matrix can

be interpreted as a vector in R” or C"” depending on your scalar
field. Thus matrix includes numbers and vectors.

Then you also might have a chance to think of the following
question what is a high-dimensional generalization
of a matrix?
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o Mathematical Definition: Let V and V* be a vector space and
dual spacer over a scalar field F. Then, a tensor is a scalar
valued multi-linear map with variables in both V and V*.

o Physical Definition: Tensor is a multi-dimensional array of
scalar values, and the rank of a tensor is the number of indices.

o Remark: We denote a set of all rank-m tensors with size
di X -+ X dmby Tm(C; dy x ---dm). Then, the set
Tm(C; dy x ---dp) is a vector space over C.
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Pictorial representation for tensors

(a) (b)
O scalar —O vector

(c) (d)

—O— matrix 4?7 rank-3 tensor

Scalar: rank-0 tensor, Vector: rank-1tensor, Matrix: rank-2
tensor

Thus, a tensor is a multi-dimensional
generalization of a scalar value, vector and
matrix
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Goal of the second story

In this talk, | would like to propose a new
aggregation model on 7,(C; dy x - - - dp)

The Kuramoto model = The Lohe sphere model —
The Lohe matrix model — The Lohe tensor model
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Existing aggregation models for low-rank tensors
e The Lohe matrix model for complex-valued rank-2 tensors:

Ui : d x dunitary matrix, H;: d x d Hermitian matrix.

iU 7H+ﬁ : (uy -uy}).
=1

e The Lohe sphere model for real-valued rank-1 tensors:
x;: arealvectorinRY,  Q;: d x d skew-symmetric matrix.

N

5 (6 X)Xk — (X, X)),

k=1

= Qix; +

Z\?

e The Kuramoto model for real-valued rank-0 tensors:

0, : real number, v;: real number.

K N
V/ NZ 9}(—
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Hierarchy relations

e Lohe matrix model = Lohe sphere model: For d = 2, we

set
! 1ok AR —x2+ix? xt—ix! )’
k=1 1 ] I
3
H; = Zw,l-(ak + vib,
k=1
where
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N
} K
131125 = Qixi + N > il X = (%3, xk) X0),
k=1
where Q; is a real 4 x 4 antisymmetric matrix:

0 —w? w,-z —w;

Q, — w;‘?’ 0 —w,-1 —wiz

T —w? W] 0 —w?
w; w,-z w,‘-q’ 0
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e Lohe sphere model = Kuramoto model:

We set
-~ ~__|cos0, 10—y
d—2, X’_I:Sin9/:|7Q/_[V,' 0]7

Then, x' and x? components of

N
K
Xj = Qixi + 4 D (X X)Xk — (X, Xi)Xi),
k=1
reduce to
0 =vi+ N ZSil’l(ek — 0,').
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Problem statement

On the space of rank-m tensors 7,(C), we would like to design
a new aggregation model with the following two minimal
properties:

e Emergent collective behavior under suitable conditions

e Reductions to Lohe type low-rank aggregation models for
special cases
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Lessons from existing models

Fora giventensor T € T»(C; dy x ---dp)and a € N7, {1,--- , d;}, we
denote [T], to be the a-th component of T.

e The Lohe sphere model in vector form

2

K
Xi = Qix; + N ((Xi5 Xi) Xk — (Xi, Xk) X;)-
k=1

o The Lohe sphere model in component form

%[X/]a = [Qixi]a + &([Xi]s[Xi]s[Xc]a — [Xi]8[Xc] 5[Xi]a)

= [Qlaslxils + r([xils Xl slxela — [XilsXc s [Xia)

where x; = 4 S04 .



THE FIRST STORY THE SECOND STORY
0000000000000 0000000000000080000000000000000

e The Lohe matrix model in matrix form

. N
o * 1K * *
iU =H+ Wk§_1(UkUj = YUp).

or equivalently
U= ~iHU; + 5(Us ~ YUg ).

or

U = —iHU + g(UjU]-*Uc -y Uz U).

THE THIRD STORY
000000000000 00000
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o The Lohe matrix model in component form

[U]ab’*[ iHiUlas+5 ([U]aw[U]M[Uc]w [Ullay[Uels, [U]ls5)

Next, we interpret the free flow term [—iH; U] as a contraction
of rank-4 tensor A; and rank-2 tensor U;. For this, we define
rank-4 tensor A; as follows:

1, B=5,

[Alagrs = [=1Hjlaydss and  dgs = {0’ 645
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e Lemma: Let A; be a rank-4 tensor defined in previous slide.
Then, the following relations hold:

[A] 55 = —[Alasrs and  [AlagslUlys = [—iHjUags-
yéaps

Proof: For the first identity, we use defining relation for a rank-4
tensor A;, Hi = H; and 053 = d3s to get

[’Z\j]waﬁ = [i’:’j]'ya5(56 = [iHj]avfséﬁ = _[_iHj]av5B5 = _[Aj]aﬁﬁ'
For the second identity, one has

[Ajlasrs[Ujlye = [=1HjlaydpslUjlys = [—iHjlar U]y = [-1HjU]]ag-
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Finally, one has

105 = Alasssl Ul o [[Uelea U1 slUNss — 1o Ul U]
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Lesson from previous models

Consider an ensemble {Tj}j’i1 of rank-m tensors over complex
field C, and for notational simplicity, we set

Oé*:(Oé1,"',C¥m), ﬁ*:(ﬁh"'vﬁm)’

Then, we begin with following structure:

51‘[7-/]"‘* = free flow + cubic interactions.

¢ (Modeling of free flow)

Contraction of rank-2m tensor A; and rank-m tensor T;:

free flow part = [Aj]a.5.[Tj]5. -
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¢ (Modeling of cubic interactions): for a dummy variable 3,
[TC]i1 [7-/]6[7-1112 - [n]ﬁ [Tc]ﬁ[T/]’Z
e Definition:
We define the inner product of size Ny xNox --- x Ny, as follows.

<TI7 Tj>F = [:,-I]Oé*[—,;]oz*a Ivj:1vaN
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Generalized Lohe tensor model

d
E[Ti]moazomamo = [Af]a100420"'0tm051ﬁzmﬁm[7—1']5152-"5171

+ Z Hi1"'im([TC]0¢1i1“'Olmim[-ri]a11ag1---am1[7—/]‘11(1—11)"'am(1—im)
(i1, im)€{0,1}™

~ [Tillcy 02 Tl Tils1iy0200-)-0m =i )

where A; satisfies

[Allasan-amsio--8m = ~AilB182- s am-
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g, Q. * * + , o are fixed indices.

o1, 001, -+, amy are dummy variables.

A, are generalization of skew-hermitian matrices.
T; have size di x db x --- x dp.(Rank m-tensor)

Aihassize dy x do x -+ xdpxdy x b x -+ X dm.(Rank
2m-tensor)
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Lohe tensor Model
For the handy notation, we define follows:

Q0 = Q10020 * - Amo; g = Q11021 * - Ot
Quj, = O1jiO2) " Cmiyy  x(1—i) = Q1(1—ip)C2(1—i) """ Cm(1—ipm)>

By = B1B2 - Bm, iy = Iio -+ Im.
If we use above handy notation, we can obtain
d
gilTlawo = [Allaos. [Tils.
N—

Free Flow

+ Z Ki, ([TC]O*;* [7_—/'](1*1 [Ti]a*“,,-*) - [T/']a*i* [7_—0](“1 [Tl‘]oé*(pi*))
i.e{0,1}m

Cubic coupling Terms
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Reduction of the Lohe tensor model

e Ensemble of rank-1 tensors

d

E[zi]am :[Qf]a1051 [Zf]51 + HO([ZC]Oqo [Ei]a” [Zi]oé11 7[2/]!110 [Z_C]a11 [zi]a11)
—_———— —_————

Contracted Contracted
+ K1 ([Zc]an [Zi]an [Zf]am - [z/]aﬁ [ZC]om [Zi]am)'
— —
Contracted Contracted

After contractions, one has the complex analog of the Lohe sphere
model:

zi= Qiz;  +ro((Zi 2i) 26 — (2c, 2j)Z) +11((21, Zo) — (Ze. 21))2i,
Free Flow  Lohe sphere coupling new coupling

where inner product (-, -) defined as

(u,v) == u*v = U], [V]a-
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For real rank-1 tensors, the new coupling terms are zero, and
we obtain the Lohe sphere model for z; = x;:

).(I- = QiXi —+ /{0(<Xi,Xi>Xc - <XCa Xi>Xi)'
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e Ensemble of rank-2 tensors

[Ulaoas = [Allasoazes 51Ul s, 52
+ #00([Uclaroozo (Ul oy g [Uilassazr — [Uilasgazs [Uel s gy [Ullassazy
([Uc]a1oa21 [L_ji]omoé21 [Ui]anazo - [Ui]a1oa21 [Uc]oma21 [Ui]anazo
+ #10([Uclansazo [ Uil oy gy [Uilasonzs = [Uilassazg [Uel gy gy [Ullasgarzs
+ K11 ([Uclarsazy [U/]a11a21 [Ullasoazy — [Uilagsas: [Uc]a11a21 [Uilaseaz

Where a1 and apy are dummy variables.

+ Kot

~— ~— — ~—
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After simplification, one has

U = AU+ roo(tr(Uf U Ue — u(Us U U)
free flow Lohe sphere coupling
+ ko1 (U U Ui — Ui Uz Uy) + k10 (U U U — Ui UG U
Lohe matrix coupling Lohe matrix coupling
+ k11 (r(UF Ug) — (U U)) U

new coupling

e Remark If we put m=2, kgg = k11 =0, ko1 + Kig = K and
[Ailagve = [—1Hj]ay0sc then we can obtain “Lohe Matrix Model".
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Emergent aggregation estimates

Consider the Lohe tensor model.

d
E[Tf]a*o = [Ai]a*oﬂ*[Ti]B*
—
Free Flow

+ Z [TC]a*r* a 1[T]a w(1— s [Ti]Oé*f* [fC]aﬂ[Tf]am_f*))
i»e{0,1}m

Coupling Term

1TillF = \/[Ta. [Tila.-

e Theorem: (Conservation law)

We set

1Tl =T . t>0.
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Emergent aggregation dynamics
We set
D(T):=max||Ti = Tjllr,  D(A):=max||A = Allr, fo:=2) .
’ ’ i 70

e Theorem: H-Park ’19

Suppose that the coupling strength and the initial data satisfy

Ko — 2kl TS| I

A =0, 2ro

N Ko in in
Ro< =10 1T =1, 0<D(T") <
o< gy I (")

Then, there exist positive constants Co and C; depending on «;, and T such
that
Coe*(K'OJrz’%OHTénHF)t < D(T()) < Cy ef(ﬁo*2f%o\|7é'"\lp)t7 t>0.

Proof: By direct estimates, one has Gronwall differential inequality:

%D(T) + koD(T)| < 260D(T)? + Aol | TP||FD(T), ace. t > 0.
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Let n be the largest root of the quadratic equation:
2r0x% + (ko — 2#o| | TO'|[2)x = D(A).
Then, the root n satisfies

Ko — 2Rol| TZ'| 17

2Kg

O<n<

e Theorem: H-Park 19
Suppose that coupling strength, initial data and frequency matrices satisfy
_on inp 2,2
ko >0, 0<D(T(0)<n and DA < %’
0

Then practical synchronization emerges:

lim limsup D(T(t)) = 0.
D(A)/ko—0+ r—>oop ( ())

Proof: By direct estimates, one has Gronwall differential inequality:
d

ZD(T) < 26oD(T)? = (0 — 280l| T |BYD(T) + D(A), ae.t>0.
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Summary

1. We have established Lohe Hierarchy:

The
Lohe-Tensor model

The
Lohe-Matrix model

The
Lohe-Sphere model

The Kuramoto model

2. As byproducts of our generalized approach, we have derived
complex analogue for the Lohe sphere model.
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Outline

The third story
Consensus-based optimization algorithm
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The third story

Application of nonlinear consensus models to
metaheuristic optimization algorithms
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This is a joint work with Doheon Kim (KIAS) and Shi Jin
(Shanghai Jiaotong Univ.)
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A typical optimization problem

For a given objective function L: S — R, we
would like to find a global minimum X* € S such
that

X* e argminy s L(X),

where we do not assume L is neither convex
nor smooth, and 5 > 0
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Consensus-based optimization(CBO) algorithm

e Introduced by a series of papers: Pinnau-Totzeck-Tse-Martin ('17),
Carrillo-Choi-Totzeck-Tse ('18), Carrillo-Jin-Li-Zhu ('19)

)
dX! = —\(X! — X;) dt+aZ(Xt —x"dW/ey,

< i
_ X! e—BLX))
X;g — (X;k,'I’ . ’X;k,d) — Z/—A} te I

\ Z/:1 e_BL(X[)

?
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e (Emergence of a global consensus): Fora.s. w € Q, is
there a global consensus state X, (w) €9 such that

Jim [1X{(w) ~ Xi(W)lle=0, ij=1,,N,
—00
?

e (Convergence of CBO algorithm): If the constant
consensus state X, exists, then under what condition how
the consensus state X, is close to the global minimum X*
of L?
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CBO as a nonlinear consensus model

ax] = )\Zwt (XK—XI) dt+azz¢f,‘ hawle, t>o0,
k=1 I=1

where ¢ := ¢K(X, t) is the communication weight function:

. el t>0, k=1, N
t -— Z;\L1 e_BL(Xt/)v =V — b y IV

Note that

N
(Nyf>0, 1<k<N, > gf=1 forallt>0,
k=1
(if) Dependence only on the state of source sample point,



THE FIRST STORY THE SECOND STORY THE THIRD STORY
0000000000000 0000000000000000000000000000000 00000008000000000

Emergence of a global consensus

Note that x!"' := x' — x/' satisfies
ij,l ij,l ij,l
ax = —xxdt — oxaw!, t>o0,
l//‘ VY|
X =X} — x}.
t g~ %o %o

By Ito’s formula, one has

2

i il o
x{" = ” exp[—()\Jr—

2)t+aw,’}, t>0.
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e Theorem: H-Jin-Kim 19
Let {X/} be a solution process. Then,

ik ik
lim |x" — x| =0, as.
t—o0

im P(|x* ~ X2 > ) =0,
t—o0

cf. No restrictions on initial data

THE THIRD STORY
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for any € > 0.
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Convergence Analysis of CBO
Recall that X satisfies

dX{ = - \X{ - X; )dt+oz X' — xhaw]e,,
I=1
and we introduce an ensemble average:

N
1 P = -
X; = NZXt’Z(Xt17"‘ ,x9).
i=1
o Lemma: Let {X/}1<;<n be a solution.
d
() 1X] = X2 = S (x" = %) exp [— <2>\ + 02) t+ 2JW,’] .
1=1

i) [ Xe — X2 < max | X — X2
(i) | Xt ’|_1§/3§N|t 1

N d
(ii) 1N SIX-X <2y (@%(Xd’ - )‘(5)2> exp [f (2/\ + 02) t+20 Wt’] .
i=1 I=1



THE THIRD STORY
0000000000 e000000

o Lemma: Let {X/}1<;<n be a solution.

N 2
2 (@r—o?)t il 212

E;E]Xt X > < 2e=(3r—< ZELT%V(XO — X5)?|.

1

(if) If 2\ > o, then there exists a random vector X, such that

lim X/ = X, as., 1 <i<N.
t—o0

Proof. Fori=1,--- Nand/=1,--- ,d,
t —)\/ dS—}—U/Ov (Xs —Xs )dWI = X0 —)\111—}—0112

Thus, it suffices to check that convergence of Z{1 and Z;».



THE THIRD STORY
0000000000 0e00000

e Case A (Almost sure convergence of Z14): We first show that
there exist positive random functions C; = Cj(w), i = 1,2 such
that ‘

|xt’” — )‘(t*"| <Cie @ as weq,

where Cq and C, are positive constants. We set

t t
Ji1 = T1q —/ C1e‘025ds:/ (x¢' = x5" — C1e7%%) ds.
0 0
<0

Since the integrand is nonpositive a.s., 11 is non-increasing in
t a.s. Then, we show

2C,

> — 1
Ji = Cs
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e Case B (Almost sure convergence of Z1»): We show that the

term Ty, is martingale and uniformly bounded in L2. By direct
calculation, one has

t 2
E / Xl —x! dW’}

|: 0 ( S S ) S

t t N o
,E/(x;”f)"(;‘”)zdsg/ > EIXE - Xs [Pds

0 0 =

t d

< —(@x— o2 )s v
< 2N (/0 ds) ; (]E m/%XN Xy — x3) )

=I\2
- 2)\ 022( 1T/a<XN _XO) )
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Let L = L(x) be a C2-objective function satisfying the following
relations:

Ly:= inf L(x)>0 and C;:= max{sup | V2L(x )||27 max sup |02 L(x )|]
xeRd xeRd xeRd J

where || - || denotes the spectral norm.
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e Theorem: H-Jin-Kim '19
Suppose that A\, o and {X}} satisfy

2A> 0%, X:ijid,, X,~ X™ for some random variable X",

il 2+ o2 P o
(1l 2 B s e s .
1=1 -

for some 0 < € < 1. Then, one has
. . ; 1
ess inf,cq L(X*(w)) < ess inf,cq L(X"(w)) + O<§>’ for 5> 1.

Consequently, if the global minimizer X* of L is contained in
supp law(X'™), then

ess infco L(X™(w)) < L + 0(%) for 5> 1.
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Idea of Proof: By technical calculations, one can derive

1 oo 1 in 1
— _logEe ALX™) < " logEe PLX") — _loge.
3 g =73 g 3 g

Now we use Laplace’s principle in the limit 5 — oo to get
1

ess inf,cq L(X*®(w)) < ess infucq L(X ’”(w))+0( 3

) for B> 1.
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Summary

1. We provided a convergence analysis for the CBO
algorithm under some conditions on system parameters
and initial data.

2. Our theoretical analysis might be used for the convergence
analysis for biologically motivated metaheuristic
algorithms, e.g., Particle Swarm Optimization.

Thank you for your attention !!!
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