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Statistical mechanics : the description of the matter at a

mesoscopic level
Goal:

To describe the behaviour of by the movement of its elementary
a fluid components.
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Statistical mechanics : the description of the matter at a

mesoscopic level
Goal:

To describe the behaviour of by the movement of its elementary
a fluid components.

But since the number of particles in a single cubic meter of air is of order 1025,
one cannot describe explicitly the movement of any of its particles.

The fluid will be described by the quantity f(¢,x,v), the density of particles lying
at time ¢ at point = and moving with velocity v.

f is called the one-particle density function in the phase space.
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Choosing the model for the dynamics of the particles : the
hard spheres, with specular reflexion

One assumes that the gas is monoatomic and electrically neutral. The gas is
composed of spherical particles of diameter €, which evolve outside of an obstacle

€ of the Euclidean space R? (d > 2). The position of the particle i at time ¢ will
be denoted x;(t), and its velocity at time ¢ v;(t).
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Choosing the model for the dynamics of the particles : the
hard spheres, with specular reflexion

One assumes that the gas is monoatomic and electrically neutral. The gas is
composed of spherical particles of diameter &, which evolve outside of an obstacle
€ of the Euclidean space R? (d > 2). The position of the particle i at time ¢ will
be denoted x;(t), and its velocity at time ¢ v;(t).

Far enough from the obstacle (i.e. when d(£2, z;(t)) > £/2) and from the other

particles (i.e. when d(z;(t),z;(t)) > ¢ for j # i), the particles move in straight
lines, with constant velocity :

Vi (t) =0
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Choosing the model for the dynamics of the particles : the

hard spheres, with specular reflexion

One assumes that the gas is monoatomic and electrically neutral. The gas is
composed of spherical particles of diameter &, which evolve outside of an obstacle
€ of the Euclidean space R? (d > 2). The position of the particle i at time ¢ will
be denoted x;(t), and its velocity at time ¢ v;(t).

Far enough from the obstacle (i.e. when d(£2, z;(t)) > £/2) and from the other

particles (i.e. when d(z;(t),z;(t)) > ¢ for j # i), the particles move in straight
lines, with constant velocity :

o vi(t) =0
{vﬁ =v1; — (w- (v1 —v2))w,

vy =wvg + (w- (v1 — v2))w,

. r2 — X1
with w =
‘ |zo — 21|
/
9

Figure: Collision between two
particles : |z; — 29| =€
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Choosing the model for the dynamics of the particles : the

hard spheres, with specular reflexion

One assumes that the gas is monoatomic and electrically neutral. The gas is
composed of spherical particles of diameter &, which evolve outside of an obstacle
€ of the Euclidean space R? (d > 2). The position of the particle i at time ¢ will
be denoted x;(t), and its velocity at time ¢ v;(t).

Far enough from the obstacle (i.e. when d(£2, z;(t)) > £/2) and from the other

particles (i.e. when d(z;(t),z;(t)) > ¢ for j # i), the particles move in straight
lines, with constant velocity :

o vi(t) =0
{v; =v1 — (0 (v1 = v2))w, "

v
. v 2 Wy =va 4 (w- (v1 —v2))w, o vf =1 —2(vy - n)n
h @y — m1 !
wi w =
‘ lz2 —z1 €}
vl
/U2/

Figure: Collision between two Figure: Bouncing against the
particles : |z; —zo| =€ obstacle : d(z1,9Q) =¢/2
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Formal way to obtain the Boltzmann equation
Equation satisfied by f 7

8tf+’vaf=0

o & E DA
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Formal way to obtain the Boltzmann equation

Equation satisfied by f 7

Of+v-Vuf = [P((v', v)) — (v,v*))f@)(t,m,v’,x,v;)

- P((U’U*) - (’U/,Ui))f@)(t,l‘,’U,IL‘,’U*)]
dv!, dv’ dv,
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Formal way to obtain the Boltzmann equation

Equation satisfied by f 7

Ouf +v-Vaf = [P((), ) = (v,0.)) fO(t, 2,0, 2, 0L)

- P((va*) — (’U,,U:())f@)(t,l‘,U,HZ’,U*)]

/ /
X]lv—&-v*:v’—i-v;]lﬁ_i_ [og |2 _ [o |2 n [v ]2 d’l)* dv d'U*
2 2 2 2
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Formal way to obtain the Boltzmann equation

Equation satisfied by f 7

Of+v-Vuf = P((v,v*) — (v',v;))

X |:f<2) (t7 x? v’? x’ /Ufk) - f(2) (t’ w? U’ :L‘, U*)]

/ !/
X]lv+v*:v/+vi]lw+ Jog |2 _ ‘U/‘2+ ‘“;‘2 d'U>,< dv d’U*
2 2 2 2
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Formal way to obtain the Boltzmann equation
Equation satisfied by f 7
8tf+v-fo=/ B(v — ve,w)[f (1 2,0 f (¢, 2, L)
Rd Jsi~!
— f(t,x,v)f(t,x,v*)] dw do,

This is the Boltzmann equation (1872).
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Formal way to obtain the Boltzmann equation

Equation satisfied by f 7

8tf +v- Vg;f = e Sd—1B(U _ ’U*,w) [f(t,:l?,'(),)f(t,ﬂ?,v;)
- f(t,x,v)f(t,x,v*)] dw do,

For f a solution of the Boltzmann equation, the following
quantities are conserved :

// f(t,z,v)dzdv.
I’UI2

The stationnary solutions of the Boltzmann equation are
exactly the Maxwellian functions :

M(v) = Xexp(b- v+ c|v|?), with b e R, XA >0,¢ < 0.
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H-theorem and Loschmidt’s paradox

For a solution f of the Boltzmann equation, if one considers the entropy :

H(f)(t):/x/vf(t,a:,v)lnf(t,a:,v)dvdzv,
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H-theorem and Loschmidt’s paradox

For a solution f of the Boltzmann equation, if one considers the entropy :

H(f)(t):/x/vf(t,.r,v)lnf(t,w,v)dvd:v,

one can prove that, if f is not an equilibrium (i.e. a Maxwellian), then :

% _ ! / / / / 0, w) () F (o)) = F(0)f(v2))

!
: )dwdv*dvdz <0.
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% _ ! / / / / 0, w) () F (o)) = F(0)f(v2))

!
: )dwdv*dvdz <0.

This is the H-theorem (1872).
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle €2,

described by the configuration Zy and the evolution of the distribution function
fn of the system in the phase space DY.
One denotes :

Zn = (21,01, ., TN, ON) = (21,5 2N) e RN,

with z; = (2;,v;) € R?¢, and
Dy = {Zx € (2 + B(0,2/2))° x R)" /

Vi # 4, |£U7; —{Ej| > E}.
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle €2,

described by the configuration Zy and the evolution of the distribution function
fn of the system in the phase space DY.

This distribution satisfies the Liouville equation on the phase space :

N
Onfn+ Y vi- Ve fn =0,
i=1
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle €2,

described by the configuration Zy and the evolution of the distribution function
fn of the system in the phase space DY.
This distribution satisfies the Liouville equation on the phase space :

N
Onfn+ Y vi- Ve fn =0,

i=1
with the following boundary conditons :
In(t 21,0150, 24,055, TN, UN)
= fn(t,z1,v1, .., 2,0 — 2(v; )N, .. TN, UN)

when d(z;,Q) =¢/2 and v; - n > 0,
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle €2,

described by the configuration Zy and the evolution of the distribution function

fn of the system in the phase space DY.
This distribution satisfies the Liouville equation on the phase space :

N
Onfn+ Y vi- Ve fn =0,
i=1

with the following boundary conditons :

In(t,zi,v1, .04,V TN, UN)

= fn(t,z1,v1, .., 2,0 — 2(v; )N, .. TN, UN)
when d(z;,Q) =¢/2 and v; - n > 0, and

fN(tuxlvvlﬂ"'7xivvia"'7xjvvj7"'7xNavN)

= fn(t,z1, 01,0, 20,05, T, V), EN, UN)
when |z; — x| = ¢ and (x; — z;) - (v; — vj) > 0.
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle €2,

described by the configuration Zy and the evolution of the distribution function
fn of the system in the phase space DY.

Introducing the marginals fl(\f) of the distribution function :

1(\}9) (Zs) = / fN(t, Z37Zs+1a ceey ZN)]IDJEV dzs+1 .. .dZN,
R2d(N—s)
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle 2

described by the configuration Zy and the evolution of the distribution function
fn of the system in the phase space DY.

Introducing the marginals fl(\f) of the distribution function :

1(\}9) (Zs) = / fN(t, Z37Zs+1a ceey ZN)]IDJEV dzs+1 .. .dZN,
R2d(N—s)

one can show that each marginal satisfies the equation (for 1 < s < N —1):

mzm Vo g = e,
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle (2,
described by the configuration Zy and the evolution of the distribution function
fn of the system in the phase space DY.

Introducing the marginals fl(\f) of the distribution function :

1(\?) (Zs) = / fN(t, Zs, Zs4lye--s ZN)]IDJEV dzs+1 .. .dZN,
R2d(N—s)

one can show that each marginal satisfies the equation (for 1 < s < N —1):
<5>+Zm Ve f§) = N pety,

where C° a1 Is the collision term, which writes :

N, 1 cd—1
Cssi flstD = N — s)e /d 1/d (Vs41 — Vi)
— S S
X ](VSH)(t, Zs, i + ew, Vs41) dw dvgiq.
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Introducing the BBGKY hierarchy

One studies the system of N hard spheres evolving outside of the obstacle €2,
described by the configuration Zy and the evolution of the distribution function
fn of the system in the phase space DY.

Introducing the marginals fl(\f) of the distribution function :
1(\?) (Zy) = / IN(t Zs, 2541, - -+, 2N ) Ipe, d2syr ... dan,
R2d(N—s)
one can show that each marginal satisfies the equation (for 1 < s < N —1):
(s) +Zv’b V f(S _CS o f(s+1 .

Those N equations constitute the BBGKY hierarchy.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

So far, no link was given between the number N of particles of the system, and
the radius /2 of those particles.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit :

Ned=1=1.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy
One will consider the Boltzmann-Grad limit :
Ned=1 =1.

This means that the mean free path does not depend on the number NV of particles
of the system.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy
One will consider the Boltzmann-Grad limit :
Ned=1 =1.

This means that the mean free path does not depend on the number N of particles
of the system.

5
QN
5

Figure: Volume covered by a particle of radius /2, traveling with a normalized
velocity, during a time 1
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The Boltzmann-Grad limit, and the Boltzmann hierarchy
One will consider the Boltzmann-Grad limit :
Ned=1 =1.

Decomposing the collision term CS ot "

S

1
el 1/d 1/ (Vs41 — ;) [(\er )(t, Zs, xi + ew,vs11) dw dvgyq
si-1JRd

11 Vg1
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit :

Ned=1=1.

Decomposing the collision term CS ot "

S
1
—5)ed” 1/ / (Vs41 — v;) ](\er )(t,Zs,xi + ew, Vs41) dw dvg g
— sd—tJrd
— Seit
S
1

= gd- 1/ / (Vs41 — Ul)] f(s+ )(t,Zs,$i + ew, Vs41) dw dvg 41

Sd 1 Rd

ot

1
d— 1/d l/d (Vs1 —v3)] _ D (4 Zy, 25 + ew, ep1) dw dvg g
se-tJr

Vsl
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit :

Ned=1=1.

Using the boundary condition for the incoming configurations

S
+1
N — s)ed= 1/ / (Vs41 — Vi) fr (s )(t, Zg,xi + ew,vs11) dw dvgyq
sd—1JRa

=1 Vsl

s
_ gd—1 _
- /Sd 1/]Rd Us+1 vz)]+

Vi1

i
(5+1) / /
X (t, 21,01, T4, 0, ., @+ ew, V) dw dvg g

S
et 1/ / (V1 —vi)] _ Gt Zg, w1+ 2w, vg41) dw dvg g
Sd 1 Rd

Vst
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

One will consider the Boltzmann-Grad limit :

Ned=1=1.

Performing the change of variables w — —w in the second term

S
+1
N — s)ed= 1/ / (Vs41 — Vi) fr (s )(t, Zg,xi + ew,vsy1) dwdvgyq
st JRa

=1 Vsl

s
_ gd—1 _
- /Sd 1/]Rd Us+1 vz)]+

Vi1

i
(5+1) / /
X (t, 21,01, T4, 0, ., @+ ew, V) dw dvg g

S
1
gl 1/ / (Vg1 — )] ](\f—i_ )(t,Zs,.Ti — ew, Vsq1) dw dvgqq
Sd 1 Rd

Vst
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The Boltzmann-Grad limit, and the Boltzmann hierarchy
One will consider the Boltzmann-Grad limit :
Ned=1 =1.

And finally taking the limit ¢ — 0, Ned=1 = 1, the collision term becomes (for-
mally) :

(s+1) / /
Z/d 1/ US+1 )]+ N (t,.’El,’Ul,...,(ﬂi,’l}i,...,.’Ei,’l}s+1)de’l}S+1
1/ s+1

_Z/Sd 1/1;1 ’Uerl )]+ (S+1)(t’ Zs7mi7vs+1)dLL)dU5+1.

Vsl
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The Boltzmann-Grad limit, and the Boltzmann hierarchy
One will consider the Boltzmann-Grad limit :
Ned=1 =1.

One defines the Boltzmann hierarchy as the infinite sequence of equations:

Vs Z 1a atf(S) + Zvi : V:Ez f(S) = Cg,s+1f(s+1)7
i=1

with C¥,,, f+1) denoting

s
Z/d l/d[UJ'('Us+1—Ui)]+(f(s+1)(t,1'1,111,...,Ii,vg,...,zi,’U;_’_l)
i=17Se " YR

Vs+1

— @, Z, 2, Vsq1)) dvgqq dw.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

What's the link between the Boltzmann hierarchy and the Boltzmann equation ?
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

What's the link between the Boltzmann hierarchy and the Boltzmann equation 7
Considering the first equation of the Boltzmann hierarchy (s = 1):

OfV 4 vy -V, fH = /d l/d (va — vy ]+(f(2)(t,a:1,v’1,:171,v§)
SR

— Ot 21,01, 21, 02)) dvg dw,
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

What's the link between the Boltzmann hierarchy and the Boltzmann equation 7
Considering the first equation of the Boltzmann hierarchy (s = 1):

O f M + vy Vo fU = /Sd 1/]Rd (v2 — vy ]+(f(2)(t7$1,7)/1>$1,1)§)
— FO(t, 21,01, 21, v2)) dvg dw,
if one assumes in addition that the second marginal is tensorized :
FO(t, 1,01, 29, 00) = FO(t, 21, 01) fO (L, 22, 02),

the equation writes :
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

What's the link between the Boltzmann hierarchy and the Boltzmann equation 7
Considering the first equation of the Boltzmann hierarchy (s = 1):

8tf 1)+U1 mlf(l / / 2_7)1 :|+(f(2)(t,1171,1)/1,$1,1)£)
Sd 1 Rd
— Ot 21,01, 21, 02)) dvg dw,
if one assumes in addition that the second marginal is tensorized :
FOUt, 21,01, 22, v2) = fFO (8, 21,01) D (E 22, 02),
the equation writes :
Oef M + w1+ Vo, fO = / / [w+ (va—v1)], (FO(t,21,04) FD (8,21, v3)
s6HRY,

— fO 2, 0) f Dt 21, 7)) dvg dw.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

What's the link between the Boltzmann hierarchy and the Boltzmann equation 7
Considering the first equation of the Boltzmann hierarchy (s = 1):

O f M + vy Vo fU = /Sd 1/]Rd (v2 — vy ]+(f(2)(t7$1,7)/1>$1,1)§)
— FO(t, 21,01, 21, v2)) dvg dw,
if one assumes in addition that the second marginal is tensorized :
FO(t, 1,01, 29, 00) = FO(t, 21, 01) fO (L, 22, 02),

the first marginal is a solution of the Boltzmann equation.
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The Boltzmann-Grad limit, and the Boltzmann hierarchy

What's the link between the Boltzmann hierarchy and the Boltzmann equation 7
Considering the first equation of the Boltzmann hierarchy (s = 1):

oS +or- Vo f D = [ [ [ (2= 0] (Dt od 0, 0h)
Sd 1 Rd
— Ot 21,01, 21, 02)) dvg dw,
if one assumes in addition that the second marginal is tensorized :

FA (21,01, 29,02) = FO(t,21,01) fO(E, 29, 02),

the first marginal is a solution of the Boltzmann equation.

Goal: proving the convergence of the solutions of the BBGKY hierarchy
towards the solutions of the Boltzmann hierarchy.
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The rigorous definition of the collision term

One considers the integrated in time versions of the hierarchies.

o & E DA
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The rigorous definition of the collision term
One considers the integrated in time versions of the hierarchies.

O, z,) = fon(T55(Zy)) +/0 Ve £ (u, T2, (24) du,
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The rigorous definition of the collision term
One considers the integrated in time versions of the hierarchies.

f S)(t Z) (S) /Cs s+1 I(\?+1) ?Tsft(ZS)) dua
PO 20 = 15 / €O,y fOHD (0, TE0,(22) du
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The rigorous definition of the collision term
One considers the integrated in time versions of the hierarchies.

(¢, Z,) = <s) / Cla ST (u, TEE(Z,)) du,
FO @, 2,) = 1O (1502, / €0 oo S (0, T2, (2.)) du

For the Boltzmann hierarchy, the free transport with boundary condition 7:° pre-
serves the continuity.
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The rigorous definition of the collision term

One considers the integrated in time versions of the hierarchies. For the case of
the Boltzmann hierarchy:

FON, Z0) = f59(T2 / CO i1 FT (u, T30, Z0)) du.,

For the Boltzmann hierarchy, the free transport with boundary condition 7%°° pre-
serves the continuity.

= The Boltzmann hierarchy makes sense on continuous functions, decreasing suf-
ficiently fast in the velocity variable.
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The rigorous definition of the collision term

One considers the integrated in time versions of the hierarchies. For the case of
the BBGKY hierarchy:

t
O 2,) = F(T55(2,) + /0 Ve £ (u, T2, (Z4)) du,

Problem: the hard sphere transport 1% is only defined almost everywhere. One
cannot work with continuous functions for the BBGKY hierarchy.
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The rigorous definition of the collision term

One considers the integrated in time versions of the hierarchies. For the case of
the BBGKY hierarchy:

t
O 2,) = F(T55(2,) + /0 Ve £ (u, T2, (Z4)) du,

Problem: the hard sphere transport 1% is only defined almost everywhere. One
cannot work with continuous functions for the BBGKY hierarchy.

Sense of the collision term ?
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The rigorous definition of the collision term

One considers the integrated in time versions of the hierarchies. For the case of
the BBGKY hierarchy:

t
O 2,) = F(T55(2,) + /0 Ve £ (u, T2, (Z4)) du,

Problem: the hard sphere transport 1% is only defined almost everywhere. One
cannot work with continuous functions for the BBGKY hierarchy.

Sense of the collision term ?

1
/d 1/ w - (Vg1 — v;) 1(\f+ )(t,ZS,:ci + ew, Vs41) dw dvg 11
sé—1JRd

Vs41

Integral on a manifold of nonzero codimension.
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The rigorous definition of the collision term

One considers the integrated in time versions of the hierarchies. For the case of
the BBGKY hierarchy:

t
O 2,) = F(T55(2,) + /0 Ve £ (u, T2, (Z4)) du,

Problem: the hard sphere transport 1% is only defined almost everywhere. One
cannot work with continuous functions for the BBGKY hierarchy.

Sense of the collision term ?

1
/d 1/ w - (Vg1 — v;) 1(\f+ )(t,ZS,:ci + ew, Vs41) dw dvg 11
sé—1JRd

Vs41

Integral on a manifold of nonzero codimension.
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.

/ / / w- (Vsy1 — vi)f](\,sﬂ)(t7 Zs, @i + ew, vsy1) dw dvg 1 dZs
Di,ZS Sg_l Rgs+1
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.

+1
/ / / w - (Vg1 — V) ](VS )(t, Zs, i + ew, vsy1) dw dvgyy dZg
2 sd-t R
~———
2ds
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.

/ / / W (Veg1 — v5) ](\f+1)(Zs, x; + ew, vsy1) dwdvgyq dZs
D sd=1 JRrd
Zsg w v
il S
d—1

€

s +1
N——
2ds
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.

/ / / w - (Vg1 — v;) ](VSH)(ZS7 x; + ew, vsy1) dw dvgy1 dZs
D sd-t JRe
N Vs41
-1 3

2,
——"
2ds
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.

/ / / w - (Vg1 — v;) ](VSH)(ZS7 x; + ew, vsy1) dw dvgy1 dZs
D sd-t JRe
N Vs41
-1 3

2,
——"
2ds

2d(s+1)—1
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.

/ / / w - (Vg1 — v;) ](VSH)(ZS7 x; + ew, vsy1) dw dvgy1 dZs
D sd-t JRe
N Vs41
-1 3

2,
——"
2ds

2d(s+1)—1

A dimension is still missing.
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.
Adding the last missing dimension using the transport, acting on the time variable.

t
// / / W (Vg1 — o) WS (T (Z, i + w, 0641)) dw dvg 1 dZ, dt
0 JDE 4 sd—1 Rgs+1
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.
Adding the last missing dimension using the transport, acting on the time variable.

t
// / / W (Vg1 — o) WS (T (Z, i + w, 0641)) dw dvg 1 dZ, dt
0 JDE 4 sd—1 Rgs+1

One finally adds a cut-off 15 such that the hard sphere transport coincides with
(ZS, t7w7 vs+1) = (XS - tVS7 ‘/8; L +ew — t’U5+1, /USJrl)v

of Jacobian determinant |w - (vs41 — v;)].
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The rigorous definition of the collision term

Idea [Gallagher, Saint-Raymond, Texier 2014]: integrating with respect to the
remaining variables, to use the Fubini theorem.
Adding the last missing dimension using the transport, acting on the time variable.

t
// / / W (Vg1 — o) WS (T (Z, i + w, 0641)) dw dvg 1 dZ, dt
0 Jps sd—1 Rgs+1

One finally adds a cut-off 15 such that the hard sphere transport coincides with
(ZS, t7w7 vs+1) = (XS - tVS7 ‘/8; L +ew — t’U5+1, /US+1)7

of Jacobian determinant |w - (vs41 — v;)].

t
/ / / / w - (vs+1—vi)h§{?+1) (Tf‘[l’s(Zs, T 4 ew, vsq1)) dw dvgyr dZg dt
0 Dzvzs S571 Rgs+1

= / Wz,

s+1
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The rigorous definition of the collision term
Theorem [Gallagher, Saint-Raymond, Texier 2014], [D. 2019]

Let T be a positive number. Let gs11 : [0,7] x Ry — R4 such that for all
r € Ry, the function t — gsy1(t,r) is increasing, and

H/d]llvs+1|2R|V8+1|gs+1(t7 |Vst1l) dvssa
R

— 0.
Lo ([0,T], L (Rés)) B=+oo

Then for every function h(5*1) € C([0,T7], L>°(D5,,)) such that
[RCHD(E, Z41)| < Agsa (t, [Varal),

the transport-collision operator C, S+17~S+1 R+ belongs to L>([0,T] x D%)
and satisfies

! s+1Ts+1 6h(s+1)(t 7 )

< AZS:(N
i=1

Sd 1
1] . |/ (|vs] + [Vsx1])gst1(t, [Veya|) dvsya.
R

V.
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces: '
one considers a positive number /3 and the following norm:

£, = sup L1920 ex (5 Zm )l
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces: _
one considers a positive integer s, a positive number 3 and the following norm:

£, = sup L1920 ex (5 Zm )l

and the space X ;3 :

Xoap={f €Co((@ xRY)") /[, , < +oo}

satisfying the specular boundary condition in the case in the particles lie outside of
an obstacle.
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces:
one considers a real number i and the following norm:

[ il =50 (1791, s explsm).

B s>1

Théophile Dolmaire From Newton to Boltzmann November 26, 2019 9/11



Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces:
one considers a real number i and the following norm:

[

and the space Xg g, :

_ (s)
» i;};(lf |, 5 exp(sh)),

Xopu = {(F) 0 /T, < +o).
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces:

one considers a positive number 7', two non increasing functions ¢t — E(t) > 0 and
t — p(t) € R, and the following norm:

lle= )l = e, 6205

B O<t<T Bl).u(t)
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces:

one considers a positive number 7', two non increasing functions t — B(t) >0 and
t — n(t) € R, and the following norm:

lle= )l = e, 6205

B O<t<T Bt) ()]

and the space XO,E,~
Xz ={t= (1) oy /||t ng@‘”gﬂ < foo),
satisfying the continuity in time condition:

; (s) (s) - —
el T) ¥s2 1, lim |10 - rOw),, 5,
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces: . _ o
one obtains the existence and uniqueness of solutions to the hierarchies in the

spaces X ~~.
P 0,8,u

Theorem ([Ukai 2001], [Gallagher, Saint-Raymond, Texier 2014])

Let o be a strictly positive number, and 9 be a real number. There exist a time
T > 0, a strictly positive decreasing function 8 and a decreasing function 1
defined on [0, T such that :

B(0) = Bo, 1(0) = po,

and such that for any positive integer IV in the Boltzmann-Grad limit Ne
any pair of sequences of initial data Fiyo € Xy 2 3,1, and Fo € X g,,4, give rise

respectively to unique solutions in XNE B and X0 £ to the BBGKY and the

d—1 _ 1’

Boltzmann hierarchies.
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces: . _ o
one obtains the existence and uniqueness of solutions to the hierarchies in the

spaces X0 ~~.
It is even possible to give explicit expressions of the solutions.

FO 20 = T f0(20)
+oo  ,t 0 t1 0
+Z/o ﬁitlcg,s—i—l/o Ti2,Cortsia -
k=1

th—1
/O 00 e fETE (e, Z) b dta dty.
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces: . _ o

one obtains the existence and uniqueness of solutions to the hierarchies in the
X ~~.

spaces X 5~

It is even possible to give explicit expressions of the solutions (k = 1).

Considering for example the second term of the decomposition:

;/Ot/w . (W (vs41 — (Ttsl’o—t(Zs))w)L

X ST 20, (T30 0 Z0) Y ) )

T (TE0 (2,), (T2 (Z)) 7 ves ) )] dw dv,y 1 diy,
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Existence and uniqueness of the solutions of the hierarchies

Introducing the following functional spaces: . _ o

one obtains the existence and uniqueness of solutions to the hierarchies in the
X ~~.

spaces X 5~

It is even possible to give explicit expressions of the solutions (k = 1).

Considering for example the second term of the decomposition:

;/Ot/w . (W (vs41 — (Ttsl’o—t(Zs))w)L

X ST 20, (T30 0 Z0) Y ) )

T (TE0 (2,), (T2 (Z)) 7 ves ) )] dw dv,y 1 diy,

one is naturally led to consider pseudo-trajectories.
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The convergence of the solutions, case without an obstacle

W30 = 530 \6

vis(t)
o)

v ()
v5a(t)

Di

255(0) = 254(0)

255(0) = 253(0)

253(0) = 254(0)
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The convergence of the solutions, case without an obstacle

it~ 1)

= a5yt —t)

03
vy (t)

0.1

3 ()

i)

0 . it —t2) = it — to)
vy (t) = vy (t)
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The convergence of the solutions, case without an obstacle

Theorem [Lanford 1975], [Gallagher, Saint-Raymond, Texier 2014]

Let fo : R2¢ — R, be a continuous density of probability such that

for some B > 0. Consider the system of N hard spheres of diameter &, initially
distributed according to f and independent. Then, in the Boltzmann-Grad limit
N — 400, Ne®—1 = 1, its distribution function fl(\}) converges to the solution of
the Boltzmann equation f with the cross section b(v,w) = (v - w)4 and with
initial data fo, in the following sense:

fo(z,v)exp (§ |v|2)

< 400
Lo (R24)

— 0.
N—+oo
Lo ([0,T]xR2)

(@) [ oI = 1))

If in addition fj is Lispchitz, the rate of convergence is O(£%) with a < g—jr}.

v
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The convergence of the solutions in the half-space

In the case when there is an obstacle, one has to introduce a cut-off on the proximity
between the obstacle and the particle undergoing an adjunction.
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The convergence of the solutions in the half-space

Lanford's theorem in the half-space with specular reflexion, [D. 2019]

Let fo: {z € R‘} x R’ — Ry be a continuous density of probability such that

f(z,v) — Oand

|(2,v)|—=+00

< 400
ch)(R2d)

fo(x,v) exp (§|v|2>

for some B > 0. Consider the system of N hard spheres of diameter ¢ inside the
half-space with specular reflexion, initially distributed according to fy and

independent. Then, in the Boltzmann-Grad limit N — +oo, Ned=1 =1, its
distribution function fj(vl) converges to the solution of the Boltzmann equation f
with the cross section b(v,w) = (v - w)4, with specular reflexion and with initial
data fy, in the following sense:

H]lK(x,v)( j(vl) = f)(%v)H

—
L ([0,T]x{z-e1>0}x{v-e1#0}) N—+o00

If in addition the square root of the initial datum /fy is Lipschitz with respect to
the position variable uniformly in the velocity variable, the rate of convergence is
O(e®) with a < 13/128.
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